Attention Constraints and Learning in Categories

Peiran Jiao ¹ Rahul Bhui ²

¹Maastricht University & Nuffield College

²Massachusetts Institute of Technology

EEA-ESEM 2022 Milan

iao		

- ∢ ∃ →

Jiao & Bhui

Attention is a scarce cognitive resource.

∃ >

- Attention is a scarce cognitive resource.
- Examples: investors(e.g. Huberman and Regev, 2001; Hirshleifer and Teoh, 2003), consumers (Gabaix and Laibson, 2003; Gabaix et al., 2003), firms (Hirshleifer et al., 2003).

- Attention is a scarce cognitive resource.
- Examples: investors(e.g. Huberman and Regev, 2001; Hirshleifer and Teoh, 2003), consumers (Gabaix and Laibson, 2003; Gabaix et al., 2003), firms (Hirshleifer et al., 2003).
- Rational inattention? Or biased?

- Attention is a scarce cognitive resource.
- Examples: investors(e.g. Huberman and Regev, 2001; Hirshleifer and Teoh, 2003), consumers (Gabaix and Laibson, 2003; Gabaix et al., 2003), firms (Hirshleifer et al., 2003).
- Rational inattention? Or biased?
- We ask: Do people *adjust* attention allocation in response to changes in the environment *optimally*?

Motivation: Categorization

 \blacksquare Limited attention \Rightarrow Focus on a subset of information

글 > - + 글 >

Motivation: Categorization

- \blacksquare Limited attention \Rightarrow Focus on a subset of information
- Which subset?
 - Salient information (e.g. Bordalo et al., 2012, 2013)
 - Easier-to-process information
 - Such as category-level information (Our focus)

Motivation: Categorization

- \blacksquare Limited attention \Rightarrow Focus on a subset of information
- Which subset?
 - Salient information (e.g. Bordalo et al., 2012, 2013)
 - Easier-to-process information
 Such as estasony loyal information (C)
 - Such as category-level information (Our focus)
- Psychology: people categorize to facilitate predictions (e.g. Murphy, 2002).
- Tradeoff:
 - Coarser categories
 - Finer categories
- Example: color concepts

- Style investing (Barberis and Shleifer, 2003).
- Stock price comovement (Peng and Xiong, 2006).
- Superficial name change (Copper et al., 2001).

- A Model
- An experiment with
 - Predetermined categories
 - Processing time as a proxy for attention
 - Endogenous allocation

э

▶ ∢ ∃ ▶

- The representative investor holds a portfolio with *m* industries and *n* firms within each industry.
- Firm j in industry i pays a dividend $d_{j,i,t}$ in each period t.

$$d_{j,i,t} = h_t + f_{i,t} + g_{j,i,t}$$
 (1)

■ i = 1, ..., m and j = 1, ..., n; h_t is the market component, f_{i,t} is the industry component and g_{j,i,t} is the firm-specific component.

These three components are independent from each other, and i.i.d. across periods.

$$\begin{split} h_t &\sim N(\bar{h}, \sigma_h^2), \\ f_{i,t} &\sim N(\bar{f}, \sigma_f^2), \ i = 1, ..., m, \\ g_{j,i,t} &\sim N(\bar{g}, \sigma_g^2), \ i = 1, ..., m, \ j = 1, ..., n. \end{split}$$

E + 4 E +

- Exponential utility: $u(c) = -\frac{1}{\gamma}e^{-\gamma c}$
- An investor maximizes her lifetime expected utility

$$\max E_t[\sum_{s=t}^{\infty} \delta^{s-t} u(c_s)]$$
(2)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Exponential utility: $u(c) = -\frac{1}{\gamma}e^{-\gamma c}$
- An investor maximizes her lifetime expected utility

$$\max E_t [\sum_{s=t}^{\infty} \delta^{s-t} u(c_s)]$$
(2)

 Intertemporal Budget Constraint: Initial cash holdings plus current dividends are either consumed or carried over to next period.

$$K_{t+1} = (K_t - c_t)(1 + r) + \sum_{i=1}^m \sum_{j=1}^m d_{i,j,t+1}$$
(3)

Need to forecast dividends to better smooth consumption over time.

Jiao & Bhui	Categories	8 / 37	

- To forecast dividends: Need to process information.
- The investor reads press releases, media coverages, analyst reports, etc.,
- Attention Constraint: κ .

λ

$$\lambda_{h,t} \in [0,1]$$

$$\lambda_{f,i,t} \in [0,1]$$

$$\lambda_{g,i,j,t} \in [0,1]$$

$$\lambda_{g,i,j,t} \in [0,1]$$

$$h,t + \sum_{i=1}^{m} \lambda_{f,i,t} + \sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{g,i,j,t} \leq 1$$
(4)

- ∢ ∃ →

э

The investor processes information to extract signals, s for each factor.

$$\begin{split} s_{h,t} &= h_t + \epsilon_{h,t}, \quad \epsilon_{h,t} \sim \mathcal{N}(0,\eta_{h,t}^2), \\ s_{f,i,t} &= f_{i,t} + \epsilon_{f,i,t}, \quad \epsilon_{f,i,t} \sim \mathcal{N}(0,\eta_{f,i,t}^2), \\ s_{g,i,j,t} &= g_{j,i,t} + \epsilon_{g,i,j,t}, \quad \epsilon_{g,i,j,t} \sim \mathcal{N}(0,\eta_{g,i,j,t}^2). \end{split}$$

- Errors are independently drawn.
- Need to capture: The more attention on a factor, the better signal on that factor.

• Entropy method to measure informational value of signal.

- The amount of information contained in s is measured by its entropy;
- Entropy is the reduction of uncertainty due to s;
- More attention to a factor \Rightarrow Generate *s* with higher entropy.
- Tradeoff:
 - More attention to one factor
 - \Rightarrow More accurate signal on that factor;
 - \Rightarrow Better forecast on that factor;
 - \Rightarrow Less attention available for other factors.

- The investor maximizes lifetime expected utility.
- Given two constraints:
 - Attention Constraint
 - Budget Constraint
- Equilibrium:
 - Marginal contributions of attention to all factors are equalized.
 - Asset prices as the shadow prices from the pricing kernel are determined by marginal utilities.

- A simplified prediction task
 - There are only two levels: 1 industry and n firms.
 - Each firm's dividend is a linear combination of the industry component and the firm's idiosyncratic component.

$$d_{j,t} = f_t + g_{j,t} \tag{5}$$

• f_t and $g_{i,t}$ follow normal distributions known to the subjects.

Each session contained 2 blocks, 10 periods per block.

Each period was divided into Observation and Prediction phases.

- Observation phase:
 - Mouse over: reveal signals of that component;
 - Move to another component: previous signals disappear;
 - Limited time: e.g. 15 seconds per period.
- Prediction phase:
 - Forecast next period values of all firms' dividends;
 - Accuracy rewards:

Predictions of one randomly chosen period are rewarded; Calculated based on Mean Squared Errors. When subjects move their mouse to a factor, a sequence of signals are revealed.

$$\begin{split} \mathbf{s}_{f,t} &= f_t + \epsilon_{f,t}, \quad \epsilon_{f,t} \sim \mathcal{N}(0,\eta_\tau^2), \\ \mathbf{s}_{g,j,t} &= g_{j,t} + \epsilon_{g,j,t}, \quad \epsilon_{g,j,t} \sim \mathcal{N}(0,\eta_\tau^2). \end{split}$$

47 ▶

Screenshot

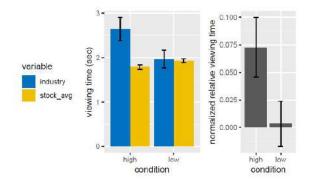
Jiao & Bhui

イロト イヨト イヨト イヨト

Control: Processing time

- More time on the industry factor than on each individual firm
- More time on a factor
 - \Rightarrow More accurate forecast on that factor
 - \Rightarrow Less accurate forecast on other factors
- More time on a salient factor
- Learning: time on industry stabilized but heterogeneous

Within each condition, 1 parameter varies between blocks.


- Variance: High vs Low relative variance of Stocks.
 - More attention to industry factor under higher variance.
- **Size**: Many vs Few number of firms.
 - More attention to industry factor under more firms.
- **Time**: Lengthy vs Brief time each period.
 - More attention to industry factor under less time.

- Online experiment on Amazon Mechanical Turk.
 - Instructions and comprehension questions;
 - Main task with attention check;
 - Survey of demographics and financial literacy.
- A session took around 30 minutes.
- Subjects were paid \$9 on average.

Results

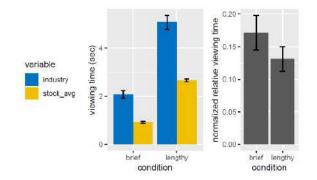
イロト イヨト イヨト イヨト

Attention Allocation: Variance

< 一型

글 > - + 글 >

Attention Allocation: Size



æ

2

► < Ξ ►</p>

Attention Allocation: Time


A B K A B K

Attention Allocation: Model

- 1 industry, n stocks
- Predict dividend of each stock *i*, which is $d_i = f + g_i$
- Priors: $f \sim N(0, \sigma_f^2)$, $g_i \sim N(0, \sigma_g^2)$; extract Gaussian signals
- Must spend attention budget κ to get information about factors
- Fraction α spent on industry, and $\frac{1-\alpha}{n}$ on each stock
- Entropy reduced by $I = \frac{1}{2} (\sigma_{prior}^2 / \sigma_{posterior}^2)$
- Suppose linear in attention, then $I = \frac{1}{2}\theta\kappa\alpha$
- Optimization problem: $\arg \min_{\alpha} \sum_{i} Var(V_i)$

• (Interior) solution:
$$\alpha^* = \frac{\frac{n}{\theta\kappa}\log(\frac{n\sigma_f^2}{\sigma_g^2}+1)}{n+1}$$

Attention Allocation: Model

25 / 37

Performance?

イロン イ理 とくほと くほとう

Accuracy

Upper panels for High performers, and lower panels for Low performers.

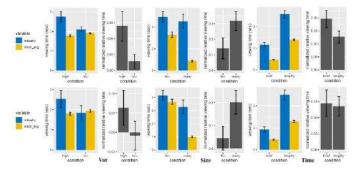
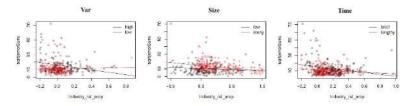
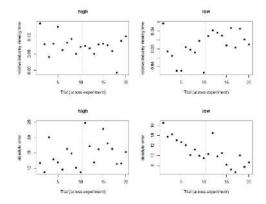



표 문 문

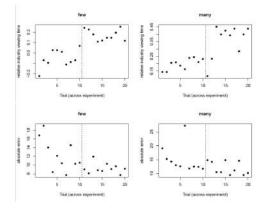
Accuracy and Attention Allocation

 Significant association between accuracy and (relative) attention to industry, but only when category is most important.

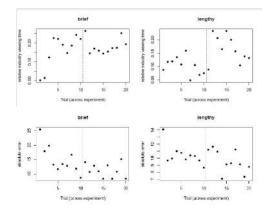
28 / 37


.∋...>

Learning?


Learning: Variance

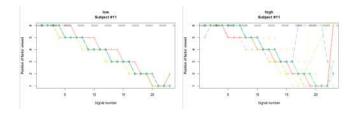
æ


→ < ∃ →</p>

Learning: Size

ヘロト 人間 ト くほ ト くほ トー

Learning: Time

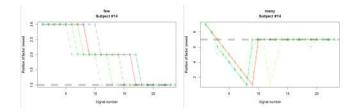

Categor	ies	3	32	/3	37
			r		

문에 비용에 다

э.

Jiao & Bhui

Attention Trajectory: Variance

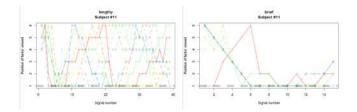

Jiao		

< 🗇 🕨

æ

→

Attention Trajectory: Size



Jiao & Bhui

Categories 34 / 37

イロト イヨト イヨト イヨト

Attention Trajectory: Time

Jiao a		

<ロト < 団ト < 団ト < 団ト

- Attention shifts as predicted by model of optimal attention allocation
- Attention is more diffuse than predicted, but there are signs of convergence
- Some evidence of learning toward optimal behavior
- Future directions: Model of learning? Working memory? Overconfidence? Analysis of attention shift?

Thank you! Questions Please.

Me: http://peiranjiao.wordpress.com p.jiao@maastrichtuniversity.nl Link to paper: https://doi.org/10.31234/osf.io/t5sy4

글 > - + 글 >