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1 Introduction

Like most other countries, Denmark is undergoing a process of urbanization and spatial

concentration of economic activity. While this has led to increased productivity in

the largest cities through agglomeration effects, it has also resulted in major societal

challenges. These include the extensive and systematic flows of people and jobs to urban

areas resulting in traffic congestion and significant increases in house prices, thereby

altering the demographic composition of cities and increasing regional inequality.

Various policies are considered to deal with the downsides of urbanization and conges-

tion, including infrastructure investments, relocating government jobs from Copenhagen

to the rest of Denmark, increasing urban density and housing supply, and promoting

telecommuting. However, the dynamic effects of these policies are not well understood

due to the complexity of households’ joint choice of employment, work and residential

location, as well as commuting. A dynamic perspective is required to understand how

these decisions vary over the life cycle and are affected by family structure, housing

prices, amenities, and uncertainty about future job opportunities. For example, a tempo-

rary shock such as increased commuting cost due to an epidemic has a very different

dynamic impact than a permanent shock such as expanding the supply of housing via

rezoning and urban development.

A dynamic model enables us to predict house price trends. For example, suppose

the space in central Copenhagen freed up by older households choosing to retire and

move to suburban locations fails to offset the inflow of younger households responding

to job opportunities. The equilibrium response to this imbalance increases house prices

but also pushes out less well off households further from the center, resulting in longer

commutes, increased traffic congestion, and urban gentrification.

Intelligent policy-making requires a dynamic equilibrium model that predicts how

housing prices, job opportunities, amenities, and the cost of commuting affects individ-

uals’ choices of where to live and work, and the impact on house prices, commuting,

residential sorting, and inequality. This is the key challenge we address in this paper.

We develop and estimate a dynamic equilibrium life cycle model of residential

and work locations, taking into account households’ changing need for housing size,

location-specific earning potentials, commuting costs, amenities, and moving costs.
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Using the model, we study how these choices affect house prices, commuting patterns,

and demographic composition of cities in the short run, that is, treating the location

of jobs, housing stock, amenities, and transport infrastructure as given. We then run

counterfactual simulations to predict the effects of two policies: i) an increase in housing

supply and ii) changing the commuting times via the introduction of telecommuting.

Our model is inspired by Buchinsky, Gotlibovski and Lifshitz (2014), which we

extend to a dynamic discrete-continuous choice setting with endogenous house prices

and equilibrium constraints. We focus on equilibrium location choices of the full regional

population rather than those of a specific demographic group of newly immigrated

residents. The life cycle framework allows us to account for age-dependent heterogeneity.

To reduce the complexity of modeling life cycle consumption, savings, and borrowing

decisions, we assume individuals have quasi-linear utility functions and do not face

borrowing constraints. Instead we capture these effects via heterogeneity in the marginal

utility of money, such that rich households with lower marginal utility of money have

a higher demand for housing and sort into more expensive geographic areas. Given

the complexity of the model, we also assume that the housing size can be adjusted

continuously in each time period without any adjustment costs.

These simplifications provide a computationally tractable framework for studying

location decisions in more detail. We can derive a closed-form solution for the optimal

level of housing as a static subproblem that can be solved independently of the overall

discrete location choice dynamic programming problem. The residential and work

location choices are dynamic and subject to high fixed adjustment costs. Even with

these simplifications, it is challenging to estimate the model due to the large number of

states and choices which depend on the number of work and residence locations. To

ameliorate this curse of dimensionality we aggregate location choices to the municipal

level and restrict attention to the island of Zealand (which includes Copenhagen and its

surroundings). Out of the 98 municipalities in Denmark, we consider the 16 municipali-

ties located in the Greater Copenhagen Area (henceforth GCA), with the surrounding

regions of Zealand providing the “outside option”.

Using Danish administrative panel data we track all households, their members, jobs,

and residential locations for the period 1993-2013. We focus on the years 2000-2004

and 2009-2013 to structurally estimate the model using a nested backward induction
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maximum likelihood algorithm. Subsequently, we use the model to simulate the counter-

factuals mentioned above. This has already found a practical application. Currently, the

Danish Ministry of Transportation (DMT) has adopted our analysis of the first counter-

factual policy of increased housing supply for urban planning. Specifically, the Danish

Parliament has recently approved the construction of a large artificial island, named

Lynetteholm, which is located in the harbor of Copenhagen and can be integrated with

the existing city via roads, tunnels and metro lines. The island is intended to protect

Copenhagen against flooding and has the potential to hold up to 3 million square meters

of housing. This would amount to a 12% increase in the stock of housing in central

Copenhagen.

In the first counterfactual, we present a stylized version of the counterfactual analysis

conducted for the DMT. In particular, we consider a 5% increase in the housing stock in

central Copenhagen and find that this policy increases urbanization as households move

from the peripheral regions towards the center. Equilibrium prices fall in all locations,

especially in the two most central municipalities where the policy is implemented. Five

years after this expansion, rental prices are lower by 6.6% in these locations.

In the second counterfactual, we consider the effect of extended use of telecommuting.

We treat telecommuting as a feasible option for highly educated workers, though not for

the less educated, such as service workers, who must be physically present at their work

locations. We find that the educated workers’ option to telecommute causes some of

them to gradually migrate to more spacious suburban locations while still retaining high-

paying jobs in the center of Copenhagen. The reduction in time spent commuting and

ability to consume more housing in desirable suburban locations significantly increases

welfare of educated workers. Their out migration also increases suburban prices relative

to urban center prices, but the reduction in the latter is not sufficiently large to result in a

big benefit to less educated workers who face unchanged commuting costs.

Our paper contributes to several strands of the literature. First of all, our model

captures a household’s trade-off between locating close to a dense labor market while

having to pay more for housing in equilibrium, a trade-off originally formulated in the

mono-centric city models of Alonso et al. (1964) and Muth (1969). Recent papers have

expanded on this framework by modeling the transportation network across the city

while tracking the home and work location of inhabitants. See for instance Tsivanidis

3



(2019), Heblich, Redding and Sturm (2020), Dingel and Tintelnot (2020), Teulings,

Ossokina and de Groot (2018), Severen (2021), Chernoff and Craig (2021). Other papers

such as Allen and Arkolakis (2019) and Monte, Redding and Rossi-Hansberg (2018)

develop tractable models that encompass the flow of labor and goods across regions of

an entire country rather than merely within a metropolitan area. The latter show that

local employment responses to labor demand shocks hinge on local infrastructure. Our

counterfactual that decreases the cost of commuting for educated workers echoes this

result, as educated labor flows to the urban labor market while moving their residences

out. Yet, our main contribution to this line of research is that we offer a dynamic life

cycle model structurally estimated on full population administrative panel data. We can

therefore provide a detailed account of the distribution of heterogeneous welfare gains in

our counterfactuals.

A further significant contribution is that our model characterizes the dynamic non-

stationary response of housing prices and relocation patterns to a policy intervention.

Understanding the short-run dynamics of an intervention is, we believe, crucial for policy

advice. This also distinguishes our work from the contribution by Ahlfeldt, Redding,

Sturm and Wolf (2015). They develop a general equilibrium model of a city where

people select a combination of residence and job locations while letting wages and prices

of land adjust in response to moving patterns. Their focus is on estimating the extent of

agglomeration on productivity, not on the location choice per se. Even though they do

study how equilibrium land prices change in response to altered moving patterns, they

only estimate the long-run effects in a static modeling framework. A dynamic model is

crucial in the counterfactuals we consider to fully understand the life cycle-dependent

adjustment paths in migration and employment and the evolution of home prices that

only gradually unfold due to significant fixed costs of moving.

The work by Kennan and Walker (2011), Oswald (2019), Dahl (2002) and Tunali

(2000) are methodologically also closely related to ours in that they formulate structural

life-cycle models in which economic agents undertake costly moving decisions in order

to gain in either income prospects, access to amenities or both. Their scope is on

the nationwide allocation of labor and thus focus on larger regions without allowing

for commuting. Related is also Diamond (2016) who demonstrates an endogenous

relationship between labor market prospects in cities and city amenities, which drive

4



inequality in welfare between high- and low-educated individuals.

An important feature of our model is that urban labor markets are attractive not

just because of higher wages but also because distance is costly when searching for

jobs. This is a point stressed by Manning and Petrongolo (2017) who create a search

model that accounts for commuting, which turns out to be a critical factor for job search

behavior. They model the endogenous structure of the local labor market, taking the

home location of workers as fixed. We allow for the estimated job arrival probabilities to

depend on the urban density, although they are not an equilibrium outcome of our model.

There is a substantial literature concerned with estimating the willingness to pay for

local non-traded amenities, which may be endogenous to the current spatial sorting of

households. See for instance Sieg, Smith, Banzhaf and Walsh (2004), Bayer, McMillan,

Murphy and Timmins (2016) and the review by Kuminoff, Smith and Timmins (2013).

Our structural estimates include the willingness to pay for local amenities such as access

to cafés and bars but we abstract away from amenities that are an outcome of a sorting

equilibrium, e.g. the sociodemographic makeup of a neighborhood. However, in line

with the sorting literature we note that our counterfactual simulations are based on a

housing market equilibrium where local prices must ensure zero excess demand for

square meters in each region. Changing local amenities or labor market prospects thus

implies changes in housing prices in equilibrium, yet in a non-linear way that depends

on transitory demographic shifts.

The rest of the paper is organized as follows: Section 2 outlines the model. Section 3

introduces the algorithm we use to solve and estimate the model and describes how we

solve for short-run equilibrium prices. Section 4 presents the empirical results, including

parameter estimates and model fit in terms of house prices, residential and work location

choices, and the resulting commuting and spatial sorting. In 5 we do the counterfactual

simulations discussed above and section 6 concludes.

2 A Dynamic Model of Residential and Work Locations

In this section we formulate an individual level dynamic decision problem of residential

and work location taking future prices and job opportunities in different regions as given.

In the following section we integrate it into a model of temporary equilibrium where
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home prices are determined to equate supply and demand for housing region by region.

2.1 Sequential choice of work and residence locations

At each age t of the life cycle, t ∈ {t0, . . . ,T}, individuals discretely choose their work

and residence locations (including the option of not working), as well as the size of

their residence. We set T = 76 such that nearly all individuals are retired and no longer

change residence further. Let R denote the number of possible locations. The number of

discrete location choices in the model (including non-employment) is then R× (R+1).

Accounting for the cost of moving job and residence requires the same number of location

states. Even not counting other state variables, this makes the location choice problem

computationally very hard. To tackle this problem we make a number of simplifying

assumptions.

First, we assume there are no fixed costs associated with adjusting housing size in the

current location. We treat all individuals as renters, and the per period cost of housing

equals their choice of square meters times the rental price per square meter. It follows that

we can compute the indirect utility of housing given individual characteristics and region

of residence. We derive the corresponding static demand for home size in Section 3.3.

Thus, our dynamic discrete choice model subsumes the continuous choice of house size

in the indirect utility for housing.

Second, we assume that work and residence location choices are made sequentially,

namely that work location choice is made first followed by the residence location choice.

Even though this assumption does not decrease the number of alternatives in the resulting

nested choice model (R+ 1 work location nests by R residential alternatives each), it

allows us to introduce a sensible job matching process. Namely, we differentiate between

the job transition choice that denotes intention, from the job outcome that becomes the

next period work location. Thus, our model allows for unsuccessful attempts to change

work location and involuntary unemployment.

In our computational approach we recognize the fact that the expected future value of

the current period choices only depends on the work and residence locations realized

by the end of the period. We therefore formulate the dynamic programming problem

in terms of expected value functions, keeping its dimensionality on the order of R2
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rather than R4 ((R+1)×R states by (R+1)×R choices) as would be required by the

traditional solution in the space of choice-specific value functions.

Because “work location” appears in the model in three different forms (existing, in-

tended, and realized work location), we use the following explicit notation to distinguish

between them. We denote wlt the beginning of the period existing work location (state)

and dw
t the period t choice of intended work location (choice). This may or may not be

the same as wlt . Finally, to denote the outcome of the job match process during period

t we simply use wlt+1, as the realized in period t work location becomes the existing

one in period t + 1.1 Similarly, let rlt denote the period t residential location and dr
t

the choice of new residence location. We assume perfect control over the location of

the residence (subject to the equilibrium house prices), and therefore the location of

residence in period t +1 is given by the choice at period t, i.e. rlt+1 = dr
t .

The timing of decisions is as follows. At the start of period t the individuals know

their work and residence location and other state variables xt described below, captured

by state vector st = (wlt ,rlt ,xt). Individuals make their work and residential location

choices sequentially but instantaneously at the start of each period t, with the intended

work location decision made first, followed by the residential location decision made

conditional on the realization of the employment search, i.e. realized work location

wlt+1. Once the intended work location is chosen, the job search outcome is realized, and

the residence location choice is made, the household determines the optimal house size

depending on their own characteristics and the chosen region of residence. Thereafter,

the housing consumption is enjoyed for the rest of the period, and the process transitions

to the next period.

Individuals’ discrete choices also depend on IID generalized extreme value idiosyn-

cratic shocks εt = (εw
t ,ε

r
t ) ∈RR+1 ×RR that can be interpreted as transitory components

of the utility that the econometrician does not observe. These stochastic components are

revealed to the individual sequentially: at the time of the work location decision dw
t only

the “work location shocks” εw
t are known, whereas the residential location shocks εr

t are

only revealed after the individual learns the outcome of their employment search. In

other words we assume that the households find out the idiosyncratic attributes of the
1Using notation wlt+1 as the realized work location in period t involves a degree of confusion with the time subscripts, but we

opt to bear this cost to avoid having an additional outcome variable.
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residence locations only once they know where their job takes them. These assumptions

lead to the standard nested logit choice structure of the work and residence location

decisions.

2.2 Job search transitions

Before deriving the recursive formulation of the model, we specify the possible tran-

sitions in the job search process. A spatial model with fixed wages could lead to the

outcome where far more people want to move into a high wage region than there are

available jobs. We introduce a simplified labor market into the model to avoid this

unrealistic scenario.

Let the spatial work region wlt = ø denote the state of non-employment, which can

naturally be combined with any residence region rlt . We assume that unemployment

can be chosen voluntarily, but also allow for involuntary job separations with a certain

probability, including the cases when no job transition is intended (dw
t = wlt).

Let πn
t (d

w
t ,wlt ,xt), dw

t ̸= wlt , denote the probability of finding a new job in the region

dw
t given household characteristics xt . If dw

t = wlt , then πn
t (wlt ,wlt ,xt) ≡ πk

t (wlt ,xt)

denotes the probability of keeping the existing job in location wlt2. If the individual

chooses to stop working, dw
t = ø, then πn

t (ø,wlt ,xt) = 1, there is perfect control over this

decision. However, if the individual searches for a new job in a different region, then

dw
t ̸= wlt and the transition probability is

wlt+1 =


dw

t with probability πn
t (d

w
t ,wlt ,xt),

wlt with probability
(
1−πn

t (d
w
t ,wlt ,xt)

)
πk

t (wlt ,xt),

ø with probability
(
1−πn

t (d
w
t ,wlt ,xt)

)(
1−πk

t (wlt ,xt)
)
.

(1)

Thus, if an individual chooses to search for a job in a new location dw
t ̸= wlt , there are

three possible outcomes: i) the individual receives a job offer in this location; ii) the

individual does not get a job offer in the location but is able to keep her existing job; or

iii) the individual’s job search is unsuccessful and she is laid off from her current job.

If the individual does not search for a job in a new location, dw
t = wlt , we assume

they intend to continue working in the same location as before, and the transition

probabilities can be computed as the special case of (1) where we set πn
t (d

w
t ,wlt ,xt) = 0.

2We treat job transitions within the same region as equivalent to staying on the current job.
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For unemployed individuals specification (1) can be applied as well, in which case the

last two rows collapse into one and we have

wlt+1 =

 dw
t with probability πn

t (d
w
t ,ø,xt),

ø with probability 1−πn
t (d

w
t ,ø,xt).

(2)

This specification allows for differences in the chance of landing a job, which depends

on current employment status, but we do not place any ex ante restrictions on the ranking

of the job probabilities conditional on (dw
t ,wlt). We do assume that all unemployed

individuals older than 60 retire. More precisely, if t > 60 and wlt = ø the probability

of getting a new job is zero. Non-employment thus effectively becomes an absorbing

state for the elderly. Note that few individuals actually return to employment after a

non-employment spell, but we make no further restrictions on employment transitions.

Our assumption helps to identify job finding probabilities; had we classified the large

fraction of our population who is de facto retired as job searching, the estimates of

πn
t (d

w
t ,ø,xt) would be hugely downward biased. The precise functional forms for these

transition probabilities are given in Section 2.4.

2.3 Recursive formulation and Bellman equations

Let Vt(st ,εt) denote the optimal discounted utility, which is a function of the observed

state variables st = (wlt ,rlt ,xt) and unobserved variables εt . As mentioned in Section 2.1,

we focus on solving for the expected value function EVt(wlt+1,rlt+1,xt), and then express

Vt in terms of current utility and discounted future utility βEVt . Note that the expected

value function at period t depends on the work and residence locations at period t +1.

Even though this may appear as a type of “clairvoyance” of the decision makers, it is

merely the consequence of our timing assumptions. Locations next period (wlt+1,rlt+1)

are the result of decisions in the relocation stage at the start of each period.

Unlike the expected value function EVt(wlt+1,rlt+1,xt), the period t (deterministic)

flow utility accounts for switching costs associated with relocations, and therefore has

to depend on both initial locations and the realized location. To allow for maximum

flexibility in how switching costs enter the model we use a generic utility function

given by u(wlt ,rlt ,wlt+1,rlt+1,xt). Note that the choice variables enter into the utility
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function indirectly: choice of work location dw
t governs the job search process described

in previous section, and under assumed perfect control the choice of residence location,

we have dr
t = rlt+1.

Given the nested discrete choice structure in the model described in Section 2.1, the

extreme value shocks εt = (εw
t ,ε

r
t ) enter the Bellman equation in a non-trivial way. We

build the Bellman equation in stages following the backward induction over the events

within the time period. Let β denote the discount factor of the individual. We assume

the discount factor depends on individual survival rates by allowing discount factors to

change with age.

Recall that εr
t ∈ RR are the stochastic components of the utility corresponding to the

choice of residence location, once the outcome of the job search process is revealed,

and the new work location wlt+1 is known. Let εr
t (d

r
t ) be the idiosyncratic utility

costs/benefits of choosing to move to location dr
t . We assume it is extreme value

with scale parameter σr. Let EV r
t (wlt ,rlt ,wlt+1,xt) be the ex ante expected value for

individuals who know their employment location outcome wlt+1 but have not learned

the residential location shocks {εr
t (d

r
t )} yet. This is given by the usual log-sum formula

EV r
t (wlt ,rlt ,wlt+1,xt) =

σr log

(
∑
dr

exp{[u(wlt ,rlt ,wlt+1,dr,xt)+βEVt(wlt+1,dr,xt)]/σr}

)
. (3)

The implied residence location choice probabilities are given by the multinomial logit

formulas

Pr
t (d

r
t |wlt ,rlt ,wlt+1,xt) =

exp{[u(wlt ,rlt ,wlt+1,dr
t ,xt)+βEVt(wlt+1,dr

t ,xt)]/σr}
∑dr exp{[ut(wlt ,rlt ,wlt+1,dr,xt)+βEVt(wlt+1,dr,xt)]/σr}

.

(4)

Now consider the choice of the work location at the beginning of period t, dw
t . Because

this choice is moderated by the job search process, we have to take into account the

probabilities πt(dw
t ,wlt ,xt ,wlt+1) that govern how the intended job location dw

t translates

into the realized one wlt+1. Let vw(wlt ,rlt ,xt ,dw
t ) denote the expected choice-specific

value corresponding to the particular choice of job location dw
t . We have

vw
t (wlt ,rlt ,xt ,dw

t ) = ∑
wl

πt(dw
t ,wlt ,xt ,wl)EV r

t (wlt ,rlt ,wl,xt). (5)
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Now recall that εw
t ∈RR+1 are the stochastic components corresponding to the choice

of work location, with additional voluntary choice of non-employment. Similar to

the residential location choice, let EV w
t (wlt ,rlt ,xt) be the ex ante expected value for

individuals who have not learned the work location shocks {εw
t (d

w
t )} yet. Under the

assumption that the shocks have an extreme value distribution with scale parameter σw,

EV w
t (wlt ,rlt ,xt) is given by the log-sum formula

EV w
t (wlt ,rlt ,xt) = σw log

(
∑
dw

exp

{
∑
wl

πt(dw,wlt ,xt ,wl)EV r
t (wlt ,rlt ,wl,xt)/σw

})
.

(6)

Similarly, we have the usual multinomial logit choice probability for the choice of work

location

Pw
t (d

w
t |wlt ,rlt ,xt) =

exp{vw
t (wlt ,rlt ,xt ,dw

t )/σw}
∑dw exp{vw

t (wlt ,rlt ,xt ,dw)/σw}
. (7)

After accounting for the transition probabilities πx(xt ,xt+1) of the non-location state

variables, which we assume are independent of both the stochastic shocks εt = (εw
t ,ε

r
t )

and the labor market probabilities πn
t (d

w
t ,wlt ,xt) and πk

t (wlt ,xt), we have by the definition

of the expected value function

EVt(wlt+1,rlt+1,xt) = ∑
xt+1

π
x(xt ,xt+1)EV w

t+1(wlt+1,rlt+1,xt+1). (8)

Combining equations (3), (5) and (8), we obtain a Bellman operator in expected

value function space that maps EVt+1(wlt+2,rlt+2,xt+1) in (3) into EVt(wlt+1,rlt+1,xt)

in (8). We solve the individual’s problem by backward induction from the maxi-

mum possible age T . For each period t we compute the expected value functions

EVt(wlt+1,rlt+1,xt), and the corresponding choice probabilities Pw
t (d

w
t |wlt ,rlt ,xt), and

Pr
t (d

r
t |wlt ,rlt ,wlt+1,xt) that serve as the basis for formulating the likelihood function.

2.4 State space dynamics

Table 1 presents the non-location state variables in the model that we include to control

for the heterogeneity among the households. Together with the two location variables

(wlt ,rlt) they form the full vector of state variables. The time-invariant household type

is given by education (schooling) edut , while the combined children and marital status
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Table 1: Non-location state variables including household types that enter xt .

Symbol Description Possible Values

cst Number of children at home
0 no children
1 1 child
2 2 or more children

mst Marital status
0 single
1 married/cohabiting

edut Education (school) type
0 Less than short cycle education
1 Short cycle education
2 Long cycle education (BA/master/PhD)

(cst ,mst) evolves as a simultaneous state-dependent Markov process with transition

probabilities defined below. The evolution of (cst ,mst) depends on age and schooling.

To reduce the computational burden we opt for an assumption that the number of children

can maximally change by one every year. Obviously, this fails in case of twin births,

couple formation where the spouse has more than one child, or if more than one child

moves out of the household, but we believe this assumption is accurate enough to capture

the most important dynamics. The evolution of (cst ,mst) is governed by

(csit+1,msit+1)∼ µcs,ms(·|cst ,mst ,edut ,aget). (9)

The transition probabilities of children and marital status are estimated separately in

a first step. Given that the education is time invariant, the transition probability of the

non-spatial part of the state space vector πx(xt ,xt+1) is given by (9). Details on the

particular specification are given in the online appendix.

The probability of getting a new job πn
t (d

w
t ,wlt ,xt) and the probability of keeping the

existing job πk
t (wlt ,xt) are defined as follows.

π
n
t (d

w
t ,wlt ,xt) =

[
1+ exp

(
−
(

β
π(new)
0 +β

π(new)
a aget +β

π(new)
unemp 1wlt=ø

+β
π(new)
jobdensity jobdensity(dw

t )+
2

∑
k=1

(
β

π(new)
s (k)1edut=k

)))]−1

,

(10)

where the term jobdensity(dw
t ) captures the heterogeneity in job moving behavior and

is defined as the number of jobs of for the education edut jobs in region dw
t , and 1 is the

indicator function.
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A positive β
π(new)
jobdensity increases the individual’s probability of receiving a job offer

from a region which has more jobs of their education type, adding to its attractiveness.

Including a full search equilibrium of the labor market in our model, as in Manning and

Petrongolo (2017), would be desirable but is computationally intractable in our setting.

Instead we assume the constant demand for labor and proxy job availability using the

described count measure. The probability of keeping one’s current job is defined by

π
k
t (wlt ,xt) =

[
1+ exp

(
−
(

β
π(keep)
0 +β

π(keep)
a aget +

2

∑
k=1

(
β

π(keep)
s (k)1edut=k

)))]−1

.

(11)

2.5 Specification of the utility function

The utility function u(wlt ,rlt ,wlt+1,rlt+1,xt) that we introduced in Section 2.3 is the

“indirect utility” stemming from the specification which includes preferences for the

housing size. We describe it in full detail now.

The utility of any location choice can generally be written as the sum of the following

components (suppressing arguments and indices)

u = um +ur +uh +amenities− swcost p
r − ttimecost︸ ︷︷ ︸

uo

, (12)

where um is the monetary utility (disposable income net of housing expenditures), ur

is disutility of work which is equal to zero when wlt+1 = ø3, uh is the housing utility

obtained from the utilization of a chosen home size, amenities reflects the regional-

specific attractiveness of housing options, swcost p
r is the psychological costs of changing

the location of residence, and ttimecost is the cost of commuting between the chosen

locations of work and residence. According to our timing convention, all the house and

regional characteristics correspond to the chosen location rlt+1. It is this location that is

enjoyed during period t, after the instantaneous moving phase in the beginning of the

period.

The um component can be expressed as a product of the marginal utility of money
3The utility of retirement for the eligible individuals (t ≥ 60) is instead given by a fixed constant ur = cwork,ra.
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κ(inct) which depends on disposable individual income and the consumable earnings

um = κ(inct)
(
inct −hcostt

)
, (13)

where inct denotes disposable individual income in period t, and hcostt is the cost of

living in a house of the optimal size in the chosen region. We assume the following

functional form for the marginal utility of money

κ(inct) = κ0 +
Y

∑
ỹ=1

κyear,ỹ1{year=ỹ}+κyinct +κmsmst+

+
2

∑
k=1

κc,k1{cst=k}+κaaget +
2

∑
j=1

[(κs, j +κas, jaget)1{edut= j}], (14)

where κ0 and κyear establish the base level of marginal utility of money in the corre-

sponding calendar years. Assuming κy < 0, we have linearly decreasing marginal utility

of money, implying richer households are less sensitive to the costs of housing. In

the absence of a wealth state variable and a consumption/savings choice in the model,

marginal utility subsumes all effects of the credit constraint or availability of mortgage.

The difference in the level of marginal utility of money for couples relative to singles

is given by κms. Thus, while singles must afford housing solely through their own

income, couples may share their expenses on housing which changes their marginal

utility of money. To further account for heterogeneity in κ(inct), we also include effects

of children (κc), schooling (κs), age (κa) and interaction between age and schooling (κas).

The age and schooling effects approximate for the potentially increasing disconnect

between earned income and wealth as one ages and with higher level of schoolings.

Individual income inct = inct(wlt ,wlt+1,xt) is modeled by a collection of Mincer-

type equations estimated separately by region, education and calendar year. We also use

regional and income-specific tax schedules to transform pre-tax income into disposable

post-tax income which the individual consumes including housing and commuting

expenses. More details on the specifications for incomes and tax schedules are provided

in Section 3 and in the online appendix.

Regional amenities are modeled as a combination of spatial and calendar time specific

constants. In particular, we use the number of cafés and bars4 in the region as proxy
4More precisely we use the total number of individuals working in these industries in the region.
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for downtown amenities. To reflect individual heterogeneity in tastes for amenities, we

interact them with age and number of children as follows

amenities(rlt+1)= (α
ca f e
0 +α

ca f e
a aget +

2

∑
k=1

α
ca f e
c,k 1{cst=k})ca f esrlt+1 +

R

∑
rl=1

αrl1{rlt+1=rl},

(15)

where αrl is a vector of coefficients for each region and ca f esrlt+1 measures the number

of cafès and bars per square kilometer in region rlt+1. Psychological moving costs

swcost p
r are a functions of family characteristics, age and education:

swcost p
r (xt) = 1{rlt ̸=rlt+1}

[
γ0 + γaaget +

2

∑
k=1

γc,k1{cst=k}+ γmsmst +
2

∑
j=1

γs, j1{edut= j}
]
,

(16)

so the propensity to move changes with age and family size.

The costs of commuting between rlt+1 and wlt+1 are assumed to be proportional to

the exogenous travel time between the work and home locations and allowed to change

over calendar time to reflect potential changes in infrastructure and congestion. Hence,

we have

ttimecost = (η0 +
Y

∑
y=1

ηyear,y1{year=y})ttime(rlt+1,wlt+1) (17)

where the function ttime(rlt+1,wlt+1) denotes the travel time between work location

wlt+1 and residence location rlt+1.

We find that the regional-specific sales price of housing in the data is almost perfectly

linear in home size measured in square meters of floor space (results not shown). It is

therefore natural to specify housing demand h(rlt+1,xit ;Ph(rlt+1)) in residential region

rlt+1 as a function of the per square meter regional-specific housing price Ph(rlt+1). We

can express it as an equivalent annual rental price.

Housing costs hcostt are then given by a product of size of the house ht+1 and

equilibrium price P(rlt+1)

hcostt(rlt+1,ht+1) = ψucP(rlt+1)ht+1, (18)

where the scale parameter ψuc reflects mortgage expenses and housing taxes and is
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allowed to change over calendar time as follows

ψuc = ψ0 +
Y

∑
y=1

ψyear,y1{year=y}. (19)

The demand for housing also depends on individual characteristics such as household

size and income. This reflects that richer people can buy relatively more square meters,

and that larger families may substitute space for location. We define the utility uh of

living in a house as a quadratic polynomial of its size ht with heterogeneous coefficients

uh = Φ(xt)ht+1 +
1
2

φh2 h2
t+1, (20)

where φh2 < 0 governs the degree of diminishing returns to house size and Φ(xt) is a

heterogeneous parameter given by

Φ(xt) = φ0 +
Y

∑
y=1

φyear,y1{year=y}+φaaget +φa2age2
t +φmsmst+

+
2

∑
k=1

φc,k1{cst=k}+
2

∑
j=1

φs, j1{edut= j}+
R

∑
rl=1

φrl1{rlt+1=rl}. (21)

Based on the specification of the utility function in (12)-(14) and the housing cost in

(18), we form the first order conditions for the optimal amount of housing. The optimal

choice of the house size is given by

ht+1 = [κ(inct)P(rlt+1)ψuc −Φ(xt)]φh2. (22)

Substituting expression (22) back into the utility function defined in equations (12)-(19),

we obtain the final specification of the indirect utility function u(wlt ,rlt ,wlt+1,rlt+1,xt).

Therefore, our model assumes that households can freely adjust the size/quality of

their home in each period and in every region independent of moving.5 Moreover,

because we abstract away from any savings and home equity, households only consider

the ”square meter rental costs” that pertains to homes in each region through local prices.

Both of these assumptions allow for the optimal amount of housing to be separable from

the dynamic choice of location and be expressed as the solution to a static subproblem

that enters into the indirect instantaneous utility. This greatly reduces the computational
5This is equivalent to having no cost of moving within the region to the house of optimal size.
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burden, effectively allowing the structural estimation of the model to be carried out.

3 Structural Estimation

This section describes the estimation strategy. We estimate the model sequentially in

three steps. First, we separately estimate the parameters of the income and tax equations

as well as parameters in transition probabilities of the states. Second, we estimate the

the housing demand equation to obtain reduced form parameters which are rescaled

within structural estimation during the next stage. Finally, we use maximum likelihood

to estimate the remaining structural parameters.

3.1 Summary of the data sample

We have access to full population register data for the period 1993-2013. This data

combines detailed information on residential and work locations, demographic charac-

teristics, housing size and labor market outcomes. For the estimation we focus on the

years 2000-2004 and 2009-2013. We exclude the years around the housing boom in

the financial crisis and do not attempt to model the temporary price hike during this

period, but rather focus on explaining the increasing spatial variation in house prices

characterized by increasingly diverging house prices between urban and rural areas.6

We observe each individual’s choice di,t ≡ {rli,t+1,wli,t+1,hi,t+1} and state si,t on an

annual basis. Further, for each calendar year we observe regional house prices, local

amenities and local labor market attributes such as the number of jobs available for

individuals with different levels of education. As mentioned earlier, we focus on the

municipalities in the GCA. Figure 1 shows the set of regions that we use and their

abbreviations.

The data reveal that while 58% of residential moves do not involve a change in work

region, a large share of 33% of home location moves involve a change in work region

either one year before or after the residential move. This highlights the importance of

modeling the dynamics and simultaneity in home and work location choices.
6Detailed description of how the sample we use is constructed from individual Danish registers is provided in the online appendix.
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Figure 1: Definition of regions in the Greater Copenhagen Area

Note: The abbreviations denote the following regions: Copenhagen (CPH), Frederiksberg (FRB), Ballerup (BAL), Broendby
(BRO), Dragoer (DRA), Gentofte (GEN), Gladsaxe (GLA), Glostrup (GLO), Herlev (HEV), Albertslund (ALB), Hvidovre (HVI),
Hoeje-Taastrup (HOT), Roedovre (ROD), Ishoej (ISH), Taarnby (TAR), Vallensbaek (VAL), rest of Zealand (ZEA).

3.2 Income equations, tax equations and transition probabilities

The estimation of transition probabilities for children and marital status, µcs,ms, is per-

formed non-parametrically on the data pooled over age conditional on the level of

schooling. Survival probabilities are also estimated non-parametrically over age by

marital status and schooling. See the online appendix for further details.

In order to capture regional differences in both income level and its age gradient,

we estimate the coefficients of the wage equations separately for each combination of

region and education. Unemployment benefits are estimated lumped up with other social

security payments.7 We find significant variation in incomes across regions, education

groups and these differences vary over the life cycle, which all contribute to a stronger

identification of marginal utility of money.

In addition, we estimate regional-specific tax schedules with three income brackets to

resemble the Danish income tax system where municipality taxes in rich municipalities
7We do not allow for regional differences in non-employment income, even though these are indeed observed due to differences

in savings. Yet, since an individual would not be able to change her savings by moving, we abstract away from differences in average
regional savings. The result is of course that the returns to income received while working is downward biased in rich areas and
upward biased in poor areas.
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tend to be lower than in poor municipalities. Predicted tax payments from the model

explain 91% of the variation in actual tax payments.8

3.3 Housing demand

The fact that the optimal choice of the housing size characterized by the first order

condition (22) is a static sub-problem independent of the dynamic location choices

allows us to estimate it in the second step of our three stage estimation sequence. Using

the pooled micro data we estimate the following demand for housing equation by OLS

hit+1 = φ̃0 +
Y

∑
y=1

φ̃year,y1{year=y}+ φ̃aaget + φ̃a2age2
t + φ̃msmst +

2

∑
k=1

φ̃c,k1{cst=k}

+
2

∑
j=1

φ̃s, j1{edut= j}+
R

∑
rl=1

φ̃rl1{rlt+1=rl}+ κ̃y[inct ·ψucP(rlit+1)]

−
(

κ̃0 +
Y

∑
y=1

κ̃year,y1{year=y}+ κ̃msmst +
2

∑
k=1

κ̃c,k1{cst=k}+ κ̃aaget

+
2

∑
j=1

[(κ̃s, j + κ̃as, jaget)1{edut= j}]

)
ψucP(rlit+1)+ρit , (23)

where ρit is a random error. Note that the parameters φ̃ and κ̃ in the reduced-form demand

equation in (23) are proportional to the structural parameters that index marginal utility

of money κ(·) and heterogeneous housing utility parameters in Φ(·). The respective

scale factors −1/φh2 > 0 and −ψuc/φh2 > 0 are identified together with the remaining

structural parameters on the third stage of our estimation procedure. In other words, the

reduced-form estimates are kept fixed during the structural estimation and only rescaled

using the values of the structural parameters ψuc and φh2. This approach significantly

reduces the dimensionality of the maximum likelihood problem when estimating the full

model.

3.4 Maximum likelihood estimation of structural parameters

Having obtained estimates for state transitions, income and tax equations and reduced

form (scaled) housing demand parameters, the final step involves estimating structural

parameters, θ, by maximum likelihood. Recall that θ includes parameters indexing
8Further details are available in the online appendix.
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probability of getting a new job, (10), probability of keeping current job, (11), marginal

utility of money, (14), housing costs, (18) including user costs in (19), utility values of

the amenities, (15), psychological costs of moving residence, (16), travel time costs,

(17), the utility of retiring, cwork,ra, and the degree of diminishing returns to house size,

φh2 . We fix the discount factor to β = 0.95 but multiply it by individual survival rates

that we estimate.

The likelihood function is derived from the choice probabilities for work and home

location decisions given in (4) and (7). Because we assume perfect control for residential

location, the latter can be directly evaluated at the data, giving the likelihood of the

observed location of residence. To calculate the likelihood of the observed work location,

however, we have to integrate out the likelihood over the possible choices and only

write the likelihood in terms of observed work location transitions, i.e. as transition

probabilities from state wlt to wlt+1.

Observing a “null” transition wlt to wlt+1 = wlt could have resulted from both an

individual deciding to keep their job, and being successful with probability πk
t (wlt ,xt),

and an individual trying to find a new job dw
t and being unsuccessful with probability(

1− πn
t (d

w
t ,wlt ,xt)

)
πk

t (wlt ,xt). Observing a transition wlt to wlt+1 ̸= wlt could have

resulted only from an individual deciding to move jobs and being successful with

probability πn
t (wlt+1,wlt ,xt).

The above two cases also apply for unemployed, wlt = ø. But transitions from

employment, wlt ̸= ø, to unemployment, wlt+1 = ø, may happen in three different

ways. With probability
(
1−πn

t (d
w
t ,wlt ,xt)

)(
1−πk

t (wlt ,xt)
)

an individual could have

unsuccessfully tried to transition to a job dw
t , and at the same time has been displaced.

Or, with probability 1−πk
t (wlt ,xt) an individual could have tried to keep their job wlt ,

but was unsuccessful and laid off. Finally, an individual could have voluntarily chosen

to quit working, dw
t = ø.

Recall that πt(dw
t ,wlt ,xt ,wlt+1) defined in Section 2.3 summarizes the work transition

probabilities as a function of the intended work location. The contribution to the

likelihood for an individual who is in observed work location wlt and residential location

rlt at time t and in observed work location wlt+1 and residential location rlt+1 at time
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t +1 is

Lt(wlt ,rlt ,wlt+1,rlt+1,xt) =

Pr
t (rlt+1|wlt ,rlt ,wlt+1,xt) ·∑

dw
Pw

t (d
w|wlt ,rlt ,xt)πt(dw,wlt ,xt ,wlt+1). (24)

The full log-likelihood is constructed from individual likelihoods in the standard way

by collecting the individual likelihood contributions and the objective of the maximum

likelihood estimation is thus

L(θ) =
1
N ∑

i
∑
t
{logPr

t (rlit+1|wlit ,rlit ,wlit+1,xit ;θ)+

+ log∑
dw

Pw
t (d

w|wlit ,rlit ,xit ;θ)πt(dw,wlit ,xit ,wlit+1;θ)}, (25)

where N is the number of individuals. To estimate the structural parameters we proceed

in the spirit of the Nested Fixed Point (NFXP) algorithm by Rust (1987) . Hence, for

each evaluation of the likelihood function we solve the model via backwards induction

in each calendar year.

3.5 Solving for equilibrium house prices

The equilibrium object we solve for is housing/rental prices in each calendar year9,

whereas incomes, job arrival and dismissal rates are taken as given and housing supply is

assumed fixed. Thus, we take a short-term perspective and thus abstract from the longer

run dynamics where new houses are built in response to changes in house prices. We

do not attempt to model equilibrium wage determination in the labor market (or longer

run location decisions by employers), and ignore that firms in reality may change labor

demand in their locations (and thus the number of jobs offered in different locations) in

response to changes in local labor supply.

In equilibrium we assume that the total demand for housing measured in square

meters equals the supply in each residential region. Thus, when solving for the housing

market equilibrium, the R-dimensional vector of regional square meter prices Ph =

(Ph(1), ..,Ph(R)) is set to equate the inelastic, exogenously fixed supply St(rl) of total

square meters of housing to the demand for the available square meters Dt(rl,Ph) in each
9Where we assume that household hold beliefs that equilibrium prices hold during their lifetime.
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residential region rl = {1, . . .R}. For the supply, we simply aggregate the individual-

level demand for observed square meters of housing hit for people who already live in

region rlit = rl at the beginning of each period t

St(rl) =
N

∑
i=1

hit1(rlit = rl). (26)

The regional demand for housing Dt(rl,Ph) is calculated as the expected demand by

taking a population average of housing demand weighted by choice probabilities of

either staying or moving to region rl at the end of period t. To obtain demand, we

start by simulating N individual states by drawing from observed states in the dataset

with replacement. We then simulate a work location outcome, wlt+1, using the decision

rule Pw
t and job transition probabilities πt such that we can condition on these in the

computation of demand below:

Dt(rl,Ph) =
N

∑
i=1

h(rl,xit ;Ph(rl))Πt(rl|wlit+1,rlit ,xit ;Ph), (27)

where Πt(rl|wlit+1,rlit ,xit ;Ph) is the probability that an individual in state sit =

(wlit+1,rlit ,xit) chooses to live in region rl given the vector of regional house prices, Ph

and simulated work location wlit+1. Πt is given by the right hand side of (4), but here

we have added Ph as an argument to signify its dependence on house prices.

The resulting simulator for demand is in principle not smooth given that we have

simulated a work location outcome, wlt+1 using a simple accept/reject simulator. How-

ever, since the conditional demand for residence, Πt(rl|wlit+1,rlit ,xit ;Ph), is smooth in

the vector of housing prices and employment probabilities, we can use gradient-based

methods to calculate equilibrium. We calculate the house price equilibrium by stacking

the excess demand equations to have a system of R equations (for the housing market)

in R unknowns. We then solve for the R-dimensional price vector Ph using Newton’s

method.

The short run equilibrium concept is imposed for simplicity. To work with a long

run equilibrium notion that endogenizes the supply of housing, we would need data

on zoning regulations and decisions by home builders and developers where to build

more in different regions. Finally, commuting times/costs are potentially something to
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Table 2: First Stage Parameter Estimates, Reduced form Housing Demand

Coeff. Estimates Standard Error Z-statistic

Const., φ̃0 70.2740 0.16419 428.0
Married, φ̃ms 27.8578 0.03868 720.2
Children, φ̃c (1) 5.7386 0.05149 111.4
Children, φ̃c (2) 14.6098 0.04911 297.5
Age, φ̃a 2.1723 0.00348 624.8
Age2/1000, φ̃a2 -19.1718 0.03074 -623.6
Price pr. sqm, κ̃0 -296.2954 0.91043 -325.4
Price pr. sqm × Income, κ̃y 20.2790 0.07002 289.6
Price pr. sqm × Age, κ̃a 0.0209 0.00853 2.4
Price pr. sqm × Age x Schooling, κ̃a,s (1) 1.0073 0.00476 211.5
Price pr. sqm × Age x Schooling, κ̃a,s (2) 2.9563 0.00529 558.4
Price pr. sqm × Schooling, κ̃s (1) -51.7247 0.24317 -212.7
Price pr. sqm × Schooling, κ̃s (2) -95.3167 0.25080 -380.1
Price pr. sqm × Children, κ̃c (1) 0.4389 0.29673 1.5
Price pr. sqm × Children, κ̃c (2) 13.4067 0.28757 46.6
Price pr. sqm × Married, κ̃ms -63.4794 0.22117 -287.0
Dependent variable: House size in square meters
Other controls: Regional dummies, φ̃rl and time effects φ̃year and κ̃year

endogenize too, including in the short run. If the counterfactual equilibrium results in

changed location patters, the resulting utilization of the road network will change as well

and thereby affect congestion and commuting times. Future work will focus on these

more involved specifications.

4 Estimation Results

In this section we present the parameter estimates for the reduced form housing demand

equations and the complete dynamic location choice model. We show that the model

fits the dynamics of observed location choices, sorting and commute patterns quite well

over the life cycle and across space. Using the estimated model to solve for equilibrium

house prices, we find that the equilibrium prices implied by our model closely track the

increased spatial divergence and year to year local price developments of house prices

observed in the data.

4.1 Parameter estimates and model fit

Table 2 presents parameter estimates and Figure 2 shows the corresponding model fit

obtained from the reduced form housing demand regression in (23). We regress the size
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of individuals’ homes measured in square meters, against demographic variables as well

as price per square meter, Pit and its interaction between the two.

The coefficients have reasonable magnitudes and expected signs. We see that demand

is increasing as a function of age and household size. For individuals with the same

marginal utility of money, those who live in couples have homes that on average measure

27.9 m2 more than singles. Children living at home is also associated with larger

dwellings (5.7 additional m2 for families with one child and 14.6 m2 with two or more

children). Housing demand is decreasing in prices for all individuals as the combined

heterogeneous reduced form coefficient on prices, κψuc
φh2

is negative for all combinations

of demographics and predicted income after taxes. As expected, richer individuals

are generally less price-responsive (the coefficient on prices interacted with income

is positive). We also include an educational-specific linear effect in age to proxy for

differences in for example life-cycle wealth. Compared to low-educated individuals, the

highly educated are more price sensitive when young and less price sensitive later in life.

This contributes to explaining the higher housing demand later in life.

The average price per square meter was 32,145 DKK In Copenhagen in year 2000

(measured in 2011 consumer prices).10 Hence, individuals choosing to live in the

Copenhagen municipality will on average demand 20.279 ·32,145/100,000 = 6.5 more

square meters of housing for each additional 100,000 DKK of individual annual income

after tax. Similarly, a single individual aged 30, with no children, low education, and

after-tax income of 300,000 DKK living in Copenhagen demands 38.0 fewer square

meters of housing compared to an individual with similar characteristics living outside

the capital area (Rest of Zealand) where square meter prices are 15,981 DKK on average,

i.e. around 16,000 DKK lower than in Copenhagen municipality11.

Figure 2 clearly illustrates the demographic differences in housing demand over the

life cycle. We also see that the reduced form model for housing demand closely captures

the overall differences in the changes in demand over the life cycle for each educational

group. Though there are some challenges capturing the differences in demand at the

beginning of the life cycle when we separate the age profiles by marital status or children,
10Both after-tax income, incit and house prices, Pit are measured in 100,000 DKK/year. After-tax income and house prices are

deflated using consumer prices with the base year 2011 so that for example the implicit willingness to pay for housing, amenities and
commuting will be measured in 2011 units of disposable income. We use this unit of measurement throughout.

11The difference in housing demand across these two regions is computed as (−296.2954+20.2790 ·3+0.0209 ·30) · (0.32145−
0.15981) =−37.958.
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the model does capture the crucial dependence between household composition and

housing demand.

Figure 2: House size in square meters over the life cycle

(a) By schooling
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(b) By marital status
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(c) By children
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Recall that our estimation strategy only allowed for identification of scaled pa-

rameters in the first step housing demand. The vector of reduced form coefficients

(φ̃ = −φ/φh2, κ̃ = κψuc/φh2) in Table 2 are proportional to the structural parameters

that index the marginal utility of housing φ = (φ0,φms,φc,φa,φa2) and the parame-

ters κ = (κ0,κy,κc,κms,κs,κa,s) that index marginal utility of money, but scaled with

−φh2 > 0 and φh2/ψuc < 0 respectively. Holding fixed the reduced form estimates from

the first-step demand equation, we estimate φh2 < 0 and ψuc > 0 along with the remain-

ing structural parameters by maximizing the likelihood from the residential and work

location choice model.

Table 3: User Cost of Housing and Curvature Parameter of Housing Demand

Coeff. Estimates Standard Error Z-statistic

Coef. on h2,φh2 ×1000 -0.0465 0.00036 -127.4
Baseline user cost of housing, ψ0 0.0239 0.00024 99.9
Time effect, ψ2001 -0.0052 0.00015 -34.9
Time effect, ψ2002 -0.0045 0.00016 -28.8
Time effect, ψ2003 -0.0063 0.00015 -41.0
Time effect, ψ2004 -0.0090 0.00016 -57.3
Time effect, ψ2009 -0.0035 0.00015 -23.6
Time effect, ψ2010 -0.0076 0.00015 -50.2
Time effect, ψ2011 -0.0089 0.00015 -57.7
Time effect, ψ2012 -0.0088 0.00015 -57.1
Time effect, ψ2014 -0.0110 0.00016 -67.4

The parameter estimates for φh2 and ψuc are given in Table 3. We estimate the annual

user costs of housing to ψ̂uc = 0.024, i.e. 2.4% of the house market value. This is

definitely on the low side, but there are certain factors that explain it. First, interest
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payments are deductible in the income tax, so these rates should reflect user costs after

taxes. Since the tax value of interest rate deductions is around 35%, the user cost before

taxes are correspondingly larger. Furthermore, our estimation period 2000-2004 is

mostly characterized by increasing housing prices. In the standard user cost equation for

housing, expected discounted capital gains reduce the user cost. If that equation truly

lies in the back of people’s mind when making housing purchases, then increasing prices

and optimistic expectations work to decrease the user costs. This might be what our

estimate of ψuc is picking up.

Using the estimates of φh2 = −0.0465/1000 and ψuc = 0.0239 together with the

reduced form estimates in housing demand given in Table 2, we can back out the

parameters that index marginal utility of money. As an example, we obtain κ0 = 0.1525

and κy = −0.0104. Despite the negative gradient in income (and age for the highly

educated), these parameters result in relatively large estimates of marginal utility of

money throughout most of the income distribution. The parameters therefore imply a

strong trade-off between home size and residential location and a clear sorting by richer

individuals into more attractive and expensive regions and larger houses.

Figure 3: Residential sorting and house size by home region
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Note: Panels (a) and (b) show the average size of homes in square meters by home region. Panels (c) and (d) show share of highly
educated by home region.
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Table 4: Taste Variation in Regional Amenities

Coeff. Estimates Standard Error Z-statistic

Taste for cafes and bars, αca f e

Constant, α
ca f e
0 0.0118 0.00005 257.9

Age, α
ca f e
a -0.0002 0.00000 -257.5

Children, α
ca f e
c (1) -0.0047 0.00005 -97.8

Children, α
ca f e
c (2) -0.0074 0.00003 -254.4

Other controls: Regional dummies, αrlt+1 , shown in online appendix.

Figure 3 illustrates the ability of the model to fit housing demand across regions

and the sorting of highly educated individuals. The spatial variation in square meter

demand and distribution of highly educated are captured well by the model. Residential

sorting by age, family composition and marital status match equally well (results not

shown). The main channel of educational sorting arises because the income equation is

specifically tied to the individual’s education, and income predicts the home location

through marginal utility of money. For example, the model is able to predict that the

share of highly educated is high in Copenhagen, Frederiksberg and Gentofte where

square meter prices are high.

Residential sorting is driven mainly by four factors: i) regional variation in house

prices and regional-specific amenities, ii) individual differences in housing demand, iii)

individual differences in marginal utility of money and iv) distance to local labor markets.

The presence of local amenities helps rationalize why individuals prefer to live in regions

where prices are high for reasons that are not explained by factors such as better access

to local labor markets. To flexibly capture time-constant regional-specific amenities,

we include fixed effects for each residential region, αrlt+1 . Some urban amenities such

as parks and green spaces have largely been time constant in the sample period, while

others such as cultural centers, restaurants, cafés and bars have changed considerably

during the sample period, especially in Copenhagen12. To capture this development

we include an index based on the number people working in cafés and bars per square

kilometer in the set of amenities. The parameter estimates are presented in Table 4.

We allow the taste for these amenities to depend on the demographic variables in the

model. The results are in line with our expectations; the taste for cafés and bars declines

with age and the number of children. Clearly, such factors are important in explaining
12See online appendix for summary statistics of number of cafés and bars in each region.
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Table 5: Utility Cost of Moving Residence

Coeff. Estimates Standard Error Z-statistic

Const., γ0 1.8750 0.00521 360.0
Age, γa 0.0579 0.00012 495.1
Children, γc (1) 0.4934 0.00382 129.2
Children, γc (2) 1.1926 0.00450 265.0
Married, γms -0.0368 0.00291 -12.6
Schooling, γs (1) 0.0163 0.00309 5.3
Schooling, γs (2) -0.1803 0.00317 -56.9

the changes in spatial sorting over time, where younger individuals to an increasing

extend are willing spend a larger fraction of their income to live in Copenhagen.

Figure 4: Share living in Copenhagen over the life cycle
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(b) By marital status
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Figure 4 shows the model’s overall high ability to fit the probability of living in

Copenhagen, but over the life cycle instead of the spatial allocation. Only for the

youngest cohorts is there a slight under-prediction. This is partly due to the fact that we

do not model educational choice. As many higher educational institutions are located in

Copenhagen, this is what attracts many young people to that location. Figure 4a does

indeed show that poorer fit is only evident for individuals with high education. It should

be noted that these moments are not only driven by the estimates of amenity values, but

to some extent by the moving costs that prevent people from moving away from their

initial, observed locations. Table 5 displays the estimates for the parameters γ that index

these utility costs associated with moving residence. Moving costs increase with age

and number of children, reflecting the tendency for one’s live to stabilize as one ages

(e.g. slower increase in income) and stronger attachment to the local community through

kindergartens and schools when children arrive.

Married and highly-educated people are more mobile. The latter reflects the steeper
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Figure 5: Share moving residential location over the life cycle
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income profile over the life cycle for highly educated and their more pronounced tendency

to reside in Copenhagen when young. Over time, their preferences for living outside

of Copenhagen start to kick in, hence prompting a move. The former indicates that,

compared to singles, married families are more likely to be prompted to move. In a

single-person family, only one person can trigger a move. The extension of the model to

explore the intra-household decision making is delegated to future research.

Overall, the model fit in terms of residential moving probabilities is good according

to Figure 5a. There is a slight under-prediction in the start of the life cycle, especially

for individuals without children and couples. The largest prediction error is found for

the probability of moving to and from Copenhagen (results not shown). The general

shape of the probability of moving away from Copenhagen (as a share of all individuals

in our data) is captured by the model, but it under-predicts the level until the age of 45.

A similar pattern is found for the share migrating to Copenhagen. As mentioned above,

a key factor left out of the model is that we ignore the obvious fact that Copenhagen is

a university city. Without explicitly modeling educational choice and the dynamics of

occupational career choice it is hard to explain why younger individuals with low income

choose to live in Copenhagen. Other omitted factors are individual taste variation over

a more detailed set of regional-specific amenities such as child care and school quality

which can readily be included into this model at a low computational cost.

We now move to the ability of the model to predict work location outcomes. Table

6 displays estimates for the parameters for the job arrival and dismissal probabilities

πn
t (d

w
t ,wlt ,xt : βn) and πk

t (wlt ,xt ;βk) that determine the work location transition prob-

abilities. They imply a high probability of keeping a job as expected, and there is a

positive effect of age and higher levels of schooling. Hence, a 40-year-old individual

29



with low education has a 97.7 percent chance of keeping the job. On the one hand, this

high keep probability is an implication of the fact that we focus on inter-regional job

moves while most job transitions are within-firm or intra-regional. On the other hand,

those types of job moves are of second order when explaining changes in commuting

behavior over time and over the life cycle. However, the large regional differences in

supply of jobs13 is strongly reflected in the job probabilities through the job density

parameter.

Table 6: Job Arrival and Dismissal

Coeff. Estimates Standard Error Z-statistic

Probability of keeping job: πk
t (wlt ,xt ;βk)

Const., β
π(keep)
0 0.3066 0.01085 28.3

Age, β
π(keep)
a 0.0558 0.00030 186.7

Schooling, β
π(keep)
s (1) 0.9288 0.00536 173.4

Schooling, β
π(keep)
s (2) 1.0818 0.00575 188.0

Probability of new job: πn
t (d

w
t ,wlt ,xt : βn)

Const., β
π(new)
0 -1.0998 0.00466 -235.9

Age, β
π(new)
a -0.0431 0.00010 -415.9

Schooling, β
π(new)
s (1) 0.1980 0.00253 78.3

Schooling, β
π(new)
s (2) 0.2264 0.00278 81.5

Job density β
π(new)
jobdensity 0.2608 0.00045 583.9

Prev. unempl., β
π(new)
unemp 1.0474 0.00236 443.9

Figure 6: Job moves
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(c) Working in CPH by schooling
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Note: Panels (a) and (b) show the share of all individuals who move work location away from and to Copenhagen, respectively.

Figure 6 shows that the model generally captures the overall age-dependence in

regional job transitions well, although there are some challenges of modeling the work

transition probabilities for the younger individuals. Concerning the probability of moving
13See online appendix for summary statistics on job density by region.
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work location to and from Copenhagen, the model predicts that the share moving their

job away from Copenhagen (out of all individuals in the data) slightly under-predicts

the actual share. The motivation for moving one’s job conditional on the home location

is shorter commute or higher incomes. Commute distances are exogenous and thus

independent of age, while incomes have an age profile. Consequently, incomes may

not exhibit enough variation across individuals to perfectly capture the shape. Allowing

for unobserved individual heterogeneity in incomes might improve on the fit since we

would better capture whether the more mobile individuals are those who have a high

unobserved fixed component of incomes that they can bring with them when they move

around.

Considering instead the share working in Copenhagen in Figure 6c, the fit looks very

good for the individuals older than 35. The heterogeneity across individuals is also

reflected in the model predictions. The work location decision is less well-captured

for the young highly educated people because we do not model initial conditions or

educational choice.

Looking at the share of individuals working in Copenhagen by their home municipal-

ity, the top panel of Figure 7 shows how the model captures the spatial distribution quite

well. Overall, the model also provides a very good fit of the average commute for each

residential region. The estimated commute cost parameter η0 = 0.179, with standard

error of 0.0015, is an economically and statistically significant parameter, implying sub-

stantial disutility of commuting. An average employed person with an after-tax income

of 300,000 DKK requires 70,000 DKK additional income to be willing to commute 30

extra minutes per day. Figure 8 illustrates the commute time over the life cycle and across

different types of individuals and it is predicted very accurately by the model across

several dimensions. For instance, the model captures very well that highly educated

commute shorter because they can afford housing close to Copenhagen center, where

most of their jobs are, while lower educated workers, whose jobs are less concentrated in

Copenhagen, are more likely to live and work outside of the most dense areas implying

longer commutes. It is mainly for individuals above age 60 that the model starts to

struggle, but there is also a strong selection among working individuals at that age. Thus,

it is not surprising that they cannot necessarily be compared to the younger working

cohorts.
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Figure 7: Work in Copenhagen and commute times (hours) by residential location

(a) Work in Cph. by home (obs.)

0.2

0.3

0.4

0.5

0.6

0.7
values

Share of commuters to cph by residental−choice (obs)
(b) Work in Cph. by home (sim.)

0.2

0.3

0.4

0.5

0.6

0.7
values

Share of commuters to cph by residental−choice (sim)

0.2

0.3

0.4

0.5

0.6

0.7
values

Share of commuters to cph by residental−choice (obs)

(c) Commute time by home (obs.)
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Note: Panels (a) and (b) show the share of individuals in each home region who works in Copenhagen or Frederiksberg. Panels (c)
and (d) show average commute time in hours by home region for employed individuals.

Figure 8: Commute time (hours)
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Table 7: Baseline fit: Change in home and work locations (share by schooling) and equilibrium prices
(100,000 DKK)

(data - baseline) rl(s0) rl(s1) rl(s2) wl(s0) wl(s1) wl(s2) Peq

Center of CPH 0.000 0.006 -0.048 0.003 0.033 -0.009 -0.023
West of CPH -0.005 -0.003 0.012 0.119 0.120 0.111 0.010
North of CPH -0.004 0.000 0.006 0.019 0.019 0.007 0.000
East of CPH 0.001 -0.001 0.003 0.024 0.025 0.024 0.004
RestOfZealand 0.008 -0.002 0.027 -0.142 -0.222 -0.170 0.012
Unemployment - - - -0.024 0.024 0.037 -

4.2 Baseline equilibrium

An ultimate test of the goodness of fit of our model is its ability to replicate the house

prices observed in the data by direct computation of the equilibrium prices implied by

the estimates of the structural parameters, as described in Section 3.5.

Figure 10 plots the computed equilibrium prices against observed price data. The fit

appears to be very good both in terms of the price ranking of the different regions as

well as the overall levels. Here is it is important to emphasize that the model is estimated

without explicitly imposing that the housing market is in equilibrium. The fact that the

equilibrium prices predicted from our estimated model closely track the observed house

prices in the different regions and across time, provides a good in-sample validation of

the many cross-equation restrictions implied by our modeling of location choices and

demand for house size.

With the overall fit being exceptionally good, there is a slight over-prediction of

prices in the cheapest regions and an under-prediction in Frederiksberg, one of the most

expensive regions. Our parsimonious modeling of individual income and the lack of

savings are again among the potential explanations as to why the model does not fully

capture why people are willing to pay such high prices in Frederiksberg, when they can

live in Copenhagen at a lower price and with better access to a much higher job density.

To further explore the goodness of fit of the model, we make the comparison between

simulated and empirical data for each year in 2009-2013. Thus, we simulate the model

forward starting in 2009 and allowing endogenous states to develop over the period. The

simulation starts at the empirical data on which the model was estimated. The outcome

of simulating the model one period ahead from the empirical data yields the initial state

(period 0) of the baseline simulation. Table 7 shows the difference in the distribution of

33



Figure 9: Observed and predicted equilibrium house prices per m2

(a) Selected regions, 2000-2004 and 2009-2013 (b) All regions, 2013

Note: Figure 10 show the model fit for equilibrium prices per m2 (100,000 DKK). All house prices are
deflated with consumer prices (base year 2011). Panel (a) plots observed (o) and predicted (+) equilibrium
house prices per m2 over the sample periods 2000-2004 and 2009-2013 (selected regions). Panel (b) plots
predicted equilibrium prices (vertical axis) against observed prices (horizontal axis) for all regions in 2013.

residential and work location choices for each education group as well as the difference

between empirical and model equilibrium prices in 2013 at an aggregated regional level

for expositions. Regions are grouped with other regions that show a similar development.

We see that differences in shares across most locations are in the order of 0 to ±2.5

percentage points, indicating the model’s reasonable ability to forecast the locational

choices over time. The model has trouble explaining why individuals would work in Rest

of Zealand though. This under-prediction mainly implies an over-prediction of working

in municipalities West of Copenhagen which are close in space to Rest of Zealand. The

inability of the model to predict the desire to work there is not a surprise given the

more inaccurate description of this region in terms of travel time and amenities. On the

other hand, the model does a good job matching equilibrium prices across regions. The

mismatch is in the order of -2,300-1,200 DKK per square meter. Overall, we consider

this evidence that the model is able to provide meaningful predictions forward in time

and therefore useful for analyzing the implications of counterfactual simulations.
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5 Counterfactual Equilibria Simulations

In this section we turn to the evaluation of counterfactual implications of i) an increase

in housing supply and ii) a introduction of remote work and telecommuting. We model

the latter as a differential reduction of commuting costs for educated workers relative

to less educated workers. The counterfactual simulations show strong response in the

equilibrium housing prices throughout the country which induce significant relocation of

both homes and work.

5.1 Counterfactual I: Increased housing supply

In order to make a valid comparison between the baseline of the model and a counterfac-

tual simulation, we make a series of one period forward simulations and recompute the

equilibrium on the housing market at each step similar to how the baseline simulation

was done in the end of the previous section. We start the simulation from the empirical

data and simulate one period under the baseline policy to form the initial conditions for

the counterfactual simulation. The counterfactual policy changes are imposed at the

beginning of the next simulated period (period 1). At the end of period 1 it is therefore

possible to identify all changes between baseline and counterfactual outcomes at the

household level. We run each counterfactual simulation for 5 periods starting in 2009

taking it out to 2013.

The first counterfactual experiment involves a 5 percent exogenous and permanent

increase of the housing supply (square meters) in Copenhagen and Frederiksberg which

constitute the aggregate region Center of Copenhagen. We interpret this as an illustration

of a small-scale version of the planned expansion of the housing supply in central

Copenhagen due to the construction of the artificial island Lynetteholm14. In general,

we find that increasing the supply of housing in a high-density area lowers the prices

significantly in this region. This effect spreads to the remaining regions in the economy.

Table 8 summarizes the implications increased housing supply to the location choice

for the three levels of schooling. As expected, the share living in Copenhagen increases

and it does so by 2.3-2.8% for each education group. The distribution of skills living in

the Copenhagen center thus does not change much in equilibrium. This also means that
14The official report on the analysis of the Lynetteholm project will be available from the DMT in late 2022.
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a policy of simply increasing available square meters does not automatically contribute

to fulfilling an agenda of e.g. a more mixed city in terms of socioeconomic background.

To achieve such a goal, policy makers would have to ensure these extra square meters

are used for construction of smaller size homes to attract low-income individuals. Since

our model does not model the supply side and rather allows individuals to scale housing

up and down without any adjustment costs, we cannot evaluate a more targeted housing

policy. However, the conclusion that urbanization increases is robust.

Those who move in response to the policy change do so differently dependent on

their educational level; i.e. low-skilled individuals mainly move out of the municipalities

east of Copenhagen while medium-skilled people arrive more uniformly from the other

regions. High-skilled individuals primarily move away from the municipalities west

of the Copenhagen center. This also means that while the distribution of skills in

Copenhagen center itself is not impacted significantly by the policy change, it changes

more in the remaining regions. The map in Figure 11a shows the percentage change in the

share of highly educated people by home region. We find the largest relative drops in most

regions west of Copenhagen though it increases by 1.4% in Glostrup. These different

responses to moving away from a certain region points to the heterogeneous trade-

offs that are faced by people with various educational background and hence earnings

perspectives. A high-skilled worker considers living in regions west of Copenhagen a

closer substitute to Copenhagen center than any other region because these two aggregate

regions both offer a rather short commute time to high-paying jobs for this group (e.g. in

Ballerup which offers one of the highest incomes, all else equal) and closeness to the

hub for high-skilled jobs in Copenhagen. Low-skilled workers, on the other hand, have a

particularly good job market in Taarnby which belongs to East of Zealand. They would

therefore like to live close by this region. In the baseline, however, living in Copenhagen

would be too expensive for a low-income individual while the counterfactual changes

this trade-off due to changes in equilibrium prices.

The implications for equilibrium prices are presented in Figure 11b for each region in

2013. The map shows that the supply shock to Copenhagen center is not fully soaked

up by an increased number of residents: the equilibrium price per square meter is 1,530

DKK (6.6%) lower in the counterfactual. This is exactly what allows the low-skilled

people to reside here while staying close to Taarnby where their high-paying jobs are.
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Table 8: Counterfactual I: % change of home and work locations by schooling (2013)

rl(s0) wl(s0) rl(s1) wl(s1) rl(s2) wl(s2)

Center of CPH 2.40 0.27 2.83 0.16 2.32 0.14
West of CPH -1.06 -0.00 -0.92 -0.20 -2.06 0.18
North of CPH -1.31 -1.03 -0.55 -0.04 -1.25 0.19
East of CPH -2.02 0.09 -0.98 -0.12 -1.60 -0.03
RestOfZealand -0.79 -0.03 -0.54 -0.02 -0.82 -0.51
Unemployment - -0.01 - 0.19 - -0.27

Figure 10: Counterfactual I: Simulated change in sorting and Peq in 2013
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At the same time, they are now even closer to the high job density that Copenhagen also

offers for this group. The map also illustrates another important aspect of the model;

namely that regions are more or less close substitutes. That is, prices also decline in all

other regions because the overall supply of housing has risen. The same is true for rest

of Zealand which is not included in the map.

5.2 Counterfactual II: increased telecommuting

In the second counterfactual we decrease the commute time by 50% for educated workers

in all region pairs and within all regions but leave commuting times for less educated

workers unchanged. This is intended to resemble policies that encourage telecommuting

that benefit mainly educated workers of the “information sector” but do not benefit less

educated workers of “service sector” who must be physically present to perform their

jobs.

The policy makes it easier for people with higher level of schooling to keep high

paying jobs located in city centers while living in more attractive suburban areas. The

overall effect on locational decisions in 2013 are described in Table 9. We find that while

highly educated workers move home away the GCA to Rest of Zealand, lower educated
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Table 9: Counterfactual II: % change of home and work locations by schooling (2013)

rl(s0) wl(s0) rl(s1) wl(s1) rl(s2) wl(s2)

Center of CPH 3.77 0.44 4.52 0.39 -10.79 3.95
West of CPH 3.46 0.05 4.13 0.01 -13.23 -0.41
North of CPH 7.31 -0.06 7.51 -0.05 -9.62 -0.21
East of CPH 2.08 -0.11 4.81 -0.51 -10.40 1.07
RestOfZealand -3.95 -0.44 -3.09 -0.76 11.69 7.64
Unemployment - -0.27 - -0.20 - -8.38

workers make the opposite transition. Consequently, this policy provides lower-income

households the opportunity to reside closer to dense labor markets and all regions become

more mixed on socioeconomic characteristics.

For the higher educated individuals, both the shares working in Center of Copenhagen

and Rest of Zealand have increased. I.e. some of those moving away from the GCA find

it worthwhile moving their job there now that they only have to do the relatively long

intra-regional commutes or the commute to Copenhagen center half of the week. The

main part of these extra workers in Rest of Zealand come from a significant reduction

in non-employment though due to the improved trade-off between working and not

working when commuting costs are much lower. This is an essential insight: individuals

who live in regions with very high commute times will be discouraged to work, all

else equal. Improving commute times in rural regions can contribute to reducing the

unemployment rates there which are often seen to be higher than in the city centers. For

the other education groups, work locations have only changed slightly towards more

urbanization despite the relatively large responses on the residential margin. This means

these individuals were (more) constrained in baseline as they would prefer living closer

to the Copenhagen center but were not able to. All the above relocations result in and

from changing equilibrium housing prices. These changes are summarized in Table 10.

Looking at the table, the strength of modeling the dynamics of home and work decisions

stands out: due to the lower demand for living in the center of Copenhagen for the higher

educated as explained above, equilibrium prices fall by 0.53% immediately. However,

individuals are reluctant to move instantly due to moving costs so it takes a few years for

the population to fully re-locate. By 2013 the prices have fallen by 1.6-2.0% in the GCA

regions, making these regions affordable for lower-income households, and increased by

3.0% in Rest of Zealand. This gradual change in relocations and prices underlines the
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Table 10: Counterfactual II: % change in equilibrium prices 2009-2013

2009 2010 2011 2012 2013

Center of CPH -0.53 -1.01 -1.35 -1.64 -1.95
West of CPH -0.36 -0.64 -0.93 -1.15 -1.60
North of CPH -0.57 -1.08 -1.46 -1.58 -1.75
East of CPH -0.06 -0.10 -0.79 -1.04 -1.66
RestOfZealand 0.79 1.55 2.08 2.45 3.03

strength of our dynamic model.

To summarize the effects of changes in residential and work locations as well as

equilibrium prices, one can study the combined effect, namely commute time. Figure 12a

and Figure 12b show the distribution of simulated changes in commute times (conditional

on commuting) for low- and high-educated individuals who were working in both

baseline and counterfactual and have moved their residence compared to the baseline.

We show the conditional effect for exposition, and especially to avoid a large mass point

at 0.

While lower educated mainly experience reductions in commute time, the opposite is

true for higher educated. This emphasizes the importance of modeling home and work

choices simultaneously; whenever commuting incentives are modified, both home and

work locations respond. Consequently, a large mass of these higher educated people

commute longer when they commute, but only do so half of the week. An example is

the large probability mass around a commute time change of 30-40 minutes in panel (b).

Zooming in on those individuals, we see that they represent people who moved to Rest

of Zealand and chose to work in either Rest of Zealand or Copenhagen in particular to

benefit from the high employment probabilities. In the baseline, these people lived on the

perimeter of the GCA which are all characterized by rather low commute times. Hence,

in the new equilibrium, some individuals are willing to endure the higher commute times

a few times a week when moving to rural regions in exchange for lower square meter

prices, despite the fact that prices across regions started to converge after the intervention.

This example demonstrates the complexity of predicting the implications of such a policy

and again underlines the importance of applying a rich dynamic model to capture such

patterns.

Finally, we compute welfare effects of the travel time reduction. Figure 12c illustrates

the average percentage change in the expected value for a given level of schooling over
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Figure 11: Counterfactual II: Simulated change in commute time (minutes) and welfare (%)

(a) ∆ minutes (low education) (b) ∆ minutes (high education) (c) %∆ EV

Note: Changes computed by subtracting baseline from counterfactual. Panels (a) and (b) show changes in commute times
conditional on commuting. Panel (c) shows the relative change in welfare.

the life cycle. Highly educated people are the winners as they benefit from having access

to the higher-paying jobs in Copenhagen center without paying the high housing prices

for this access. Gradually, as these individuals’ marginal utility of money decrease due

to increasing income with age, the welfare change starts to drop towards 0 around the

age of retirement. At that age, most have opted out of the labor force and no longer

commute. However, they are facing the increased housing prices in regions where they

now live, as indicated by the negative welfare change during the retirement phase. This

cost is more than offset by the positive changes to welfare experienced in the younger

ages.

For lower educated individuals, the welfare gain is close to zero. This is a combination

of them gaining from lower commute times, but only by paying the higher housing prices

compared to baseline where they were less likely to live within the expensive GCA.

In conclusion, lowering commute times is therefore a welfare-improving policy as it

reduces frictions, though the welfare gains are unequally distributed in the population.

6 Conclusion

In this paper we developed a dynamic equilibrium model of joint home and work

location decisions as well as housing demand for individuals and estimated its structural

parameters using Danish administrative panel data. We found that overall the empirical

fit of the model is very good. We focused on the Greater Copenhagen Area (GCA) and

analyzed the counterfactual effects of i) increasing the housing supply in the center of

Copenhagen and ii) encouraging more telecommuting for highly educated.
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Overall, the model developed and estimated in this paper provides valuable insights

into our understanding of the location and movement patterns among Danish households.

These are driven by the cost of living and commuting and are very heterogeneous in the

population. From counterfactual i) we learned that urbanization increased and sorting

patterns changed in regions outside the center of Copenhagen. Counterfactual ii) revealed

that highly educated would move out of the city to peripheral regions where they could

consume larger homes at a reduced price. These relocations freed up space in the center

such that lower educated people could afford living closer by their jobs in the new

equilibrium. In general, reducing commute times would therefore relax the binding

between residential and work locations (here primarily for higher educated) and thereby

allow locations to become more specialized in either jobs or residence. As a result,

welfare gains were positive in total, but unequally distributed across household types

with higher educated being better off and lower educated indifferent.

The implementation of the model is not free of simplifying assumptions, but even

in their presence it proves to be a very valuable tool, capable of explaining important

variation in the data, and enabling us to undertake interesting counterfactual experiments.

Among most significant limitations are the assumptions of temporary equilibrium on the

housing market and abstraction from capital gains of housing. Both are computationally

infeasible to implement in the current version of the model where we work with a choice

set with 18×17 alternatives and a state space of almost 300,000 points. The regions

can be less aggregated, and a wider area of the country than the GCA can be used

for estimation. Inclusion of the equilibrium wage settlement into the consideration is

another obvious dimension for improvement. Even under the assumption of short-term

dynamics in the labor market similar to the housing market (so that the supply of jobs

is constant) the wages can be treated similarly to house prices and be determined in

the spatial equilibrium. All of these latter improvements, although requiring additional

work and computational time, are straightforward to implement. We acknowledge their

relevance, but leave the implementations for future research.
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