Sovereign Risk and Dutch Disease

Carlos Esquivel Rutgers University

August, 2022

Motivation

- "Natural resource curse": resource rich economies grow more slowly
- One explanation: the "Dutch disease"
 - growth externality: innovation in manufactring sector
 - natural resource exports depress investment in manufacturing
- Also applies to other inflows (foreign borrowing, foreign aid)
- This paper:
 - Does the Dutch disease affect default risk?
 - ► Is it a "disease"?

Carlos Esquivel (Rutgers)

This paper

- Theoretical framework:
 - sectoral allocation of capital affects default risk
 - externality: effect of private capital portfolio on default risk
 - trade-off: future returns to investment vs. present borrowing terms
 - decentralization: tax on returns to non-traded investment
- Quantitative exercise:
 - commodity windfalls amplify externality
 - higher optimal tax (or reserve accumulation) during windfalls

Contribution to literature

- Sovereign default with natural resources: López-Martín, Leal, Martínez Fritscher (2019); Hamann, Mendoza, Restrepo-Echavarría (2020); Esquivel (2021)
 - Contribution: decentralization of production
- Private externality to public debt: Wright (2006); Kim, Zhang (2012); Arce (2021); Galli (2021); Wu (2021)
 - Contribution: externality in sectoral allocation of capital
- Dutch disease: Corden, Neary (1982); Benigno, Fornaro (2013); Alberola, Benigno (2017); Ayres, Hevia, Nicolini (2020)
 - Contribution: study effects of Dutch disease on sovereign default risk

Two-period Model

- Small-open economy with a continuum of households, competitive firms, and a government
- Households:
 - own firms and capital
 - choose capital allocation
- Benevolent government:
 - issues non-contingent debt in international markets
 - lacks commitment

Preferences and technology

• Household preferences

$$U(c_0,c_1) = u(c_0) + \beta \mathbb{E}_0[u(c_1)]$$

where u' > 0, u'' < 0, and is invertible

Preferences and technology

• Household preferences

$$U(c_0, c_1) = u(c_0) + \beta \mathbb{E}_0[u(c_1)]$$

where u' > 0, u'' < 0, and is invertible

• Consumption good produced with technology

$$c_t = Y(c_{N,t}, c_{T,t}) = \left[\omega^{\frac{1}{\eta}} c_{N,t}^{\frac{\eta-1}{\eta}} + (1-\omega)^{\frac{1}{\eta}} c_{T,t}^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}$$

where $\eta > 0$ is the elasticity of substitution, $\omega \in (0,1)$

Preferences and technology

• Household preferences

$$U(c_{0},c_{1})=u(c_{0})+\beta\mathbb{E}_{0}\left[u(c_{1})\right]$$

where u' > 0, u'' < 0, and is invertible

• Consumption good produced with technology

$$c_t = Y(c_{N,t}, c_{T,t}) = \left[\omega^{\frac{1}{\eta}} c_{N,t}^{\frac{\eta-1}{\eta}} + (1-\omega)^{\frac{1}{\eta}} c_{T,t}^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}$$

where $\eta > 0$ is the elasticity of substitution, $\omega \in (0,1)$

• Intermediates produced with technologies:

$$y_N(z_t, K_{N,t}) = z_t K_{N,t}^{\alpha_N}$$
$$y_T(z_t, K_{T,t}) = z_t K_{T,t}^{\alpha_T}$$

where z_0 given, $z_1 \in [\underline{z}, \overline{z}]$ is a shock with CDF F(z)

Carlos Esquivel (Rutgers)

Capital and portfolio allocation

- Fixed amount of capital \bar{K} in economy
- households endowed with $\bar{k} = \bar{K}$, cannot sell to foreigners
- Capital freely allocated in each sector one period in advance:

$$k_{N,t} + k_{T,t} = \bar{k}$$

• Let
$$k_{\mathcal{T},t} = \lambda_t \bar{k}$$
 and $K_{\mathcal{T},t} = \Lambda_t \bar{K}$, where $\lambda_t, \Lambda_t \in [0,1]$

- λ_t is portfolio allocation of a representative household
- Λ_t is portfolio allocation of the economy
- Initial $\lambda_0 = \Lambda_0$ given

Debt and default

- Government has legacy B_0 , issues B_1
- (z, x) is the aggregate state, $x = (\Lambda, B)$
- In t = 1 government observes (z_1, x_1) and makes default decision

• no default:
$$C^{P}(z_{1},x_{1}) = Y\left(y_{N,1}^{P},y_{T,1}^{P}-B_{1}
ight)$$

• default:
$$C^{D}\left(z_{1},x_{1}
ight)=Y\left(y_{N,1}^{D},y_{T,1}^{D}
ight)$$
, productivity is $z_{D}\left(z_{1}
ight)\leq z_{1}$

• Default set is $\mathcal{D}(x) = [\underline{z}, z^*(x))$, with cutoff $z^*(x)$ such that

$$C^{D}(z^{*}(x), x) = C^{P}(z^{*}(x), x)$$

Timing

- Period 0:
 - **1** Government issues B_1 **problem**
 - 2 Households observe B_1 and choose λ_1 problem
 - **(3)** Foreign lenders observe B_1 and Λ_1 and purchase the debt
 - Production and consumption occur
- Period 1:
 - **(**) Government observes z_1 and decides to default or repay
 - Production and consumption occur

Equilibrium and efficiency

- Equilibrium definition is standard
- The Euler equation of a representative household is:

$$0 = \mathbb{E}\left[\beta u'\left(\tilde{C}_{1}\right)\frac{\left(\tilde{r}_{T,1}-\tilde{r}_{N,1}\right)\bar{K}}{\tilde{P}_{1}}\right]$$

• The Euler equation of a benevolent planner is:

$$0 = \mathbb{E}\left[\beta u'\left(\hat{C}_{1}\right)\frac{\left(\hat{r}_{\mathcal{T},1}-\hat{r}_{\mathcal{N},1}\right)\bar{K}}{\hat{P}_{1}}\right] + u'\left(\hat{C}_{0}\right)\frac{\hat{\partial q}}{\partial \Lambda}\frac{\hat{B}_{1}}{\hat{P}_{0}}$$

Misallocation of capital prices

• **Proposition 1**: If $\eta < 1$, then the default set is shrinking in Λ_1 . That is, $\frac{\partial z^*(x)}{\partial \Lambda} \leq 0$. (Proof)

Misallocation of capital Prices

- **Proposition 1**: If $\eta < 1$, then the default set is shrinking in Λ_1 . That is, $\frac{\partial z^*(x)}{\partial \Lambda} \leq 0$. Proof
- **Proposition 2**: Households overinvest in the non-traded sector *N*.

Misallocation of capital prices

- **Proposition 1**: If $\eta < 1$, then the default set is shrinking in Λ_1 . That is, $\frac{\partial z^*(x)}{\partial \Lambda} \leq 0$.
- **Proposition 2**: Households overinvest in the non-traded sector *N*.
- Intuition: recall the planner's Euler equation

$$\mathbb{E}\left[\beta u'\left(\hat{C}_{1}\right)\frac{\left(\hat{r}_{T,1}-\hat{r}_{N,1}\right)\bar{K}}{\hat{P}_{1}}\right]+u'\left(\hat{C}_{0}\right)\underbrace{\frac{\partial\hat{q}}{\partial\Lambda}}_{\geq0}\frac{\hat{B}_{1}}{\hat{P}_{0}}=0$$

from Proposition 1 it follows that q is increasing in Λ , then:

$$\mathbb{E}\left[\beta u'\left(\hat{C}_{1}\right)\frac{\left(\hat{r}_{\mathcal{T},1}-\hat{r}_{\mathcal{N},1}\right)\bar{K}}{\hat{P}_{1}}\right]\leq0$$

Misallocation of capital prices

- **Proposition 1**: If $\eta < 1$, then the default set is shrinking in Λ_1 . That is, $\frac{\partial z^*(x)}{\partial \Lambda} \leq 0$. Proof
- **Proposition 2**: Households overinvest in the non-traded sector *N*.
- Intuition: recall the planner's Euler equation

$$\mathbb{E}\left[\beta u'\left(\hat{C}_{1}\right)\frac{\left(\hat{r}_{T,1}-\hat{r}_{N,1}\right)\bar{K}}{\hat{P}_{1}}\right]+u'\left(\hat{C}_{0}\right)\underbrace{\frac{\partial\hat{q}}{\partial\Lambda}}_{>0}\hat{B}_{1}=0$$

from Proposition 1 it follows that q is increasing in Λ , then:

$$\mathbb{E}\left[\beta u'\left(\hat{C}_{1}\right)\frac{\left(\hat{r}_{\mathcal{T},1}-\hat{r}_{\mathcal{N},1}\right)\bar{K}}{\hat{P}_{1}}\right]\leq0$$

• Implement efficient allocation with tax:

$$\tau^{*} = \frac{u'\left(\hat{C}_{0}\right)\frac{\hat{\partial q}}{\partial \Lambda}\hat{B}_{1}/\hat{P}_{0}}{\mathbb{E}\left[\beta u'\left(\tilde{C}_{1}\right)\tilde{r}_{N,1}/\tilde{P}_{1}\right]\tilde{K}}$$

Infinite horizon

- Capital for traded k_T and non-traded production k_N
 - \blacktriangleright stocks depreciate at rate δ
 - adjustment costs $\Psi(K_{i,t+1}, K_{i,t})$

- Capital for traded k_T and non-traded production k_N
 - $\blacktriangleright\,$ stocks depreciate at rate $\delta\,$
 - adjustment costs $\Psi(K_{i,t+1}, K_{i,t})$
- Final good used for consumption and investment $C + P_{k_N}I_N + P_{k_T}I_T = Y$

- Capital for traded k_T and non-traded production k_N
 - $\blacktriangleright\,$ stocks depreciate at rate $\delta\,$
 - adjustment costs $\Psi(K_{i,t+1},K_{i,t})$
- Final good used for consumption and investment $C + P_{k_N}I_N + P_{k_T}I_T = Y$
- Productivity follows AR(1) process $z_t = \rho \log z_{t-1} + \epsilon_t$ with $\epsilon \sim N(0, \sigma_z^2)$

- Capital for traded k_T and non-traded production k_N
 - $\blacktriangleright\,$ stocks depreciate at rate $\delta\,$
 - adjustment costs $\Psi(K_{i,t+1},K_{i,t})$
- Final good used for consumption and investment $C + P_{k_N}I_N + P_{k_T}I_T = Y$
- Productivity follows AR(1) process $z_t = \rho \log z_{t-1} + \epsilon_t$ with $\epsilon \sim N\left(0, \sigma_z^2\right)$
- Commodity endowment is $y_C \in \{y_L, y_H\}$ follows Markov chain $\pi_{i,j}$

- Capital for traded k_T and non-traded production k_N
 - $\blacktriangleright\,$ stocks depreciate at rate $\delta\,$
 - adjustment costs Ψ(K_{i,t+1}, K_{i,t})
- Final good used for consumption and investment $C + P_{k_N}I_N + P_{k_T}I_T = Y$
- Productivity follows AR(1) process $z_t = \rho \log z_{t-1} + \epsilon_t$ with $\epsilon \sim N\left(0, \sigma_z^2\right)$
- Commodity endowment is $y_C \in \{y_L, y_H\}$ follows Markov chain $\pi_{i,j}$
- Long-term debt, matures at rate γ

- Capital for traded k_T and non-traded production k_N
 - $\blacktriangleright\,$ stocks depreciate at rate $\delta\,$
 - adjustment costs Ψ(K_{i,t+1}, K_{i,t})
- Final good used for consumption and investment $C + P_{k_N}I_N + P_{k_T}I_T = Y$
- Productivity follows AR(1) process $z_t = \rho \log z_{t-1} + \epsilon_t$ with $\epsilon \sim N\left(0, \sigma_z^2\right)$
- Commodity endowment is $y_C \in \{y_L, y_H\}$ follows Markov chain $\pi_{i,j}$
- Long-term debt, matures at rate γ
- Aggregate state is (s_t, x_t) with $s_t = (z_t, y_{C,t})$ and $x_t = (K_{N,t}, K_{T,t}, B_t)$

Carlos Esquivel (Rutgers)

Sovereign Risk and Dutch Disease

- Capital for traded k_T and non-traded production k_N
 - $\blacktriangleright\,$ stocks depreciate at rate $\delta\,$
 - adjustment costs $\Psi(K_{i,t+1}, K_{i,t})$
- Final good used for consumption and investment $C + P_{k_N}I_N + P_{k_T}I_T = Y$
- Productivity follows AR(1) process $z_t = \rho \log z_{t-1} + \epsilon_t$ with $\epsilon \sim N\left(0, \sigma_z^2\right)$
- Commodity endowment is $y_C \in \{y_L, y_H\}$ follows Markov chain $\pi_{i,j}$
- Long-term debt, matures at rate γ
- Aggregate state is (s_t, x_t) with $s_t = (z_t, y_{C,t})$ and $x_t = (K_{N,t}, K_{T,t}, B_t)$
- Timing within period:
 - shocks -> government's decisions -> investment decisions -> debt auction and repayment

Sovereign Risk and Dutch Disease

Misallocation of capital

• The **household's** no-arbitrage condition is:

$$0 = \mathbb{E}_{t} \left[\frac{\beta u'\left(\tilde{c}_{t+1}\right)}{u'\left(\tilde{c}_{t}\right)} \left(\tilde{R}_{T,t+1}^{D} - \tilde{R}_{N,t+1}^{D}\right) \right]$$

• From the **planner's** Euler equation:

$$0 = \mathbb{E}_{t} \left[\frac{\beta u'\left(\hat{C}_{t+1}\right)}{u'\left(\hat{C}_{t}\right)} \left(\hat{R}_{T,t+1}^{D} - \hat{R}_{N,t+1}^{D}\right) \right] + \left[\frac{\partial \hat{q}}{\partial K_{T}} - \frac{\partial \hat{q}}{\partial K_{N}} \right] \frac{\hat{B}' - (1 - \gamma) B}{\hat{P}_{0}}$$

Misallocation of capital Calibration

• Recall q(s, x'), let $\bar{K} = K_{N,ss} + K_{T,ss}$ and $q(s, \Lambda', B') = q(s, (1 - \Lambda')\bar{K}, \Lambda'\bar{K}, B')$

Business Cycle Moments

- Simulate 300 economies of 1050 quarters, drop the first 1000
- Use only samples that start at least 25 quarters after last default

	Planner	Decentralized		Planner	Decentralized
$r - r^*$	7.1%	12.3%	σ_{GDP}	5.8	7.1
<i>Pr</i> (default)	1.5%	3.0%	σ_c/σ_{GDP}	1.2	1.33
B/GDP	0.30	0.45	$\sigma_{\it inv}/\sigma_{\it GDP}$	3.8	4.1
K_N/Y	0.87	1.11	Cor (ca/gdp, gdp)	-0.44	-0.45
K_T/Y	1.13	1.05	$\mathit{Cor}\left(\mathit{r}-\mathit{r}^{*},\mathit{gdp} ight)$	-0.61	-0.32

Optimal tax and welfare

• Simulate 10,000 quarters, drop the first 1000

	$y_C = y_{C,L}$	$y_C = y_{C,H}$
average $ au^*$	2.4%	3.0%
<i>Pr</i> (default decentralized)	3.5%	1.5%
Pr (default planner)	2.6%	0.7%

• Welfare computation

$$\mathbb{E}_{0}\left[\sum_{t=0}^{\infty}\beta^{t}u\left(c^{Pla}\right)\right] = \mathbb{E}_{0}\left[\sum_{t=0}^{\infty}\beta^{t}u\left(\left(1+\chi\right)c^{Dec}\right)\right]$$

yields $\chi = 0.07$

Conclusion

- Sectoral allocation of capital affects default risk:
 - direction of effect driven by complementarity of traded and non-traded goods
 - implies pecuniary externality with private investment
 - natural resources amplify the externality
- Policy implications:
 - strong case for exchange-rate sterilization policies
- In data, resource rich countries: empirical
 - face more stringent borrowing costs
 - accumulate reserves during commodity windfalls

Firms and prices (back)

• Prices in default are

$$p_{N,t}^{D} = \left(\frac{\omega}{1-\omega} \frac{y_{T}\left(z_{D}\left(z_{t}\right),\Lambda_{t}\bar{K}\right) + T_{t}^{D}}{y_{N}\left(z_{D}\left(z_{t}\right),\left(1-\Lambda_{t}\right)\bar{K}\right)}\right)^{\frac{1}{\eta}}$$
$$P_{t}^{D} = \left[\omega\left(p_{N,t}^{D}\right)^{1-\eta} + \left(1-\omega\right)\right]^{\frac{1}{1-\eta}}$$
$$r_{N,t}^{D} = p_{N,t}^{D}\alpha_{N}z_{D}\left(z_{t}\right)\left(\left(1-\Lambda_{t}\right)\bar{K}\right)^{\alpha_{N}-1}$$
$$r_{T,t}^{D} = \alpha_{T}z_{D}\left(z_{t}\right)\left(\Lambda_{t}\bar{K}\right)^{\alpha_{T}-1}$$

• Prices in repayment are

$$p_{N,1}^{P} = \left(\frac{\omega}{1-\omega} \frac{y_{T}\left(z_{1},\Lambda_{1}\bar{K}\right) + T_{t}^{P}}{y_{N}\left(z_{1},\left(1-\Lambda_{1}\right)\bar{K}\right)}\right)^{\frac{1}{\eta}}$$
$$P_{1}^{P} = \left[\omega\left(p_{N,1}^{P}\right)^{1-\eta} + \left(1-\omega\right)\right]^{\frac{1}{1-\eta}}$$
$$r_{N,1}^{P} = p_{N,1}^{P}\alpha_{N}z_{1}\left(\left(1-\Lambda_{1}\right)\bar{K}\right)^{\alpha_{N}-1}$$
$$r_{T,1}^{P} = \alpha_{T}z_{1}\left(\Lambda_{1}\bar{K}\right)^{\alpha_{T}-1}$$

Firms and prices Back

• Prices in default are

$$p_{N,t}^{D} = \left(\frac{\omega}{1-\omega} \frac{y_{T}\left(z_{D}\left(z_{t}\right),\Lambda_{t}\bar{K}\right) + T_{t}^{D}}{y_{N}\left(z_{D}\left(z_{t}\right),\left(1-\Lambda_{t}\right)\bar{K}\right)}\right)^{\frac{1}{\eta}}$$
$$P_{t}^{D} = \left[\omega\left(p_{N,t}^{D}\right)^{1-\eta} + \left(1-\omega\right)\right]^{\frac{1}{1-\eta}}$$
$$r_{N,t}^{D} = p_{N,t}^{D}\alpha_{N}z_{D}\left(z_{t}\right)\left(\left(1-\Lambda_{t}\right)\bar{K}\right)^{\alpha_{N}-1}$$
$$r_{T,t}^{D} = \alpha_{T}z_{D}\left(z_{t}\right)\left(\Lambda_{t}\bar{K}\right)^{\alpha_{T}-1}$$

• Prices in repayment are

$$p_{N,1}^{P} = \left(\frac{\omega}{1-\omega} \frac{y_{T}\left(z_{1},\Lambda_{1}\bar{K}\right) + T_{t}^{P}}{y_{N}\left(z_{1},\left(1-\Lambda_{1}\right)\bar{K}\right)}\right)^{\frac{1}{\eta}}$$
$$P_{1}^{P} = \left[\omega\left(p_{N,1}^{P}\right)^{1-\eta} + \left(1-\omega\right)\right]^{\frac{1}{1-\eta}}$$
$$r_{N,1}^{P} = p_{N,1}^{P}\alpha_{N}z_{1}\left(\left(1-\Lambda_{1}\right)\bar{K}\right)^{\alpha_{N}-1}$$
$$r_{T,1}^{P} = \alpha_{T}z_{1}\left(\Lambda_{1}\bar{K}\right)^{\alpha_{T}-1}$$

- **Proposition 1**: If $\eta < 1$, then the default set is shrinking in Λ_1 . That is, $\frac{\partial z^*(x)}{\partial \Lambda} \leq 0$.
- *Proof*: the derivative of z^* is

$$\frac{\partial z^{*}(x)}{\partial \Lambda} = -\frac{\frac{\partial C^{P}(z^{*},x)}{\partial \Lambda_{1}} - \frac{\partial C^{D}(z^{*},x)}{\partial \Lambda_{1}}}{\frac{\partial C^{P}(z^{*},x)}{\partial z} - \frac{\partial C^{D}(z^{*},x)}{\partial z}}$$

- the denominator is **positive** because C^P and C^D are increasing in z and
 - for $z < z^*(x)$ we have $C^D > C^P$

• the numerator
$$\frac{\partial V^{P}(z^{*},x)}{\partial \Lambda_{1}} - \frac{\partial V^{D}(z^{*},x)}{\partial \Lambda_{1}}$$
 is **positive** if $\eta > 0$. Note that:
$$\frac{\partial C}{\partial \Lambda} = \underbrace{\frac{\partial Y}{\partial C_{T}} \frac{\partial y_{T}}{\partial K_{T}} \bar{K}}_{MPK \text{ of extra } K_{T}} - \underbrace{\frac{\partial Y}{\partial C_{N}} \frac{\partial y_{N}}{\partial K_{N}} \bar{K}}_{MPK \text{ of less } K_{N}}$$

• the numerator
$$\frac{\partial V^{P}(z^{*},x)}{\partial \Lambda_{1}} - \frac{\partial V^{D}(z^{*},x)}{\partial \Lambda_{1}}$$
 is **positive** if $\eta > 0$. Note that:
$$\frac{\partial C}{\partial \Lambda} = \underbrace{\frac{\partial Y}{\partial c_{T}} \frac{\partial y_{T}}{\partial K_{T}} \bar{K}}_{MPK \text{ of extra } K_{T}} - \underbrace{\frac{\partial Y}{\partial c_{N}} \frac{\partial y_{N}}{\partial K_{N}} \bar{K}}_{MPK \text{ of less } K_{N}}$$

• so evaluated at (z^*, x) we get the numerator is:

$$\frac{\partial C^{P}}{\partial \Lambda} - \frac{\partial C^{D}}{\partial \Lambda} = \left[\frac{\partial Y^{P}}{\partial c_{T}}y_{T}^{P} - \frac{\partial Y^{D}}{\partial c_{T}}y_{T}^{D}\right]\frac{\alpha_{T}}{\Lambda} + \left[\frac{\partial Y^{D}}{\partial c_{N}}y_{N}^{D} - \frac{\partial Y^{P}}{\partial c_{N}}y_{N}^{P}\right]\frac{\alpha_{N}}{1 - \Lambda}$$

• the numerator
$$\frac{\partial V^{P}(z^{*},x)}{\partial \Lambda_{1}} - \frac{\partial V^{D}(z^{*},x)}{\partial \Lambda_{1}}$$
 is **positive** if $\eta > 0$. Note that:
$$\frac{\partial C}{\partial \Lambda} = \underbrace{\frac{\partial Y}{\partial c_{T}} \frac{\partial y_{T}}{\partial K_{T}} \bar{K}}_{MPK \text{ of extra } K_{T}} - \underbrace{\frac{\partial Y}{\partial c_{N}} \frac{\partial y_{N}}{\partial K_{N}} \bar{K}}_{MPK \text{ of less } K_{N}}$$

• so evaluated at (z^*, x) we get the numerator is:

$$\frac{\partial C^{P}}{\partial \Lambda} - \frac{\partial C^{D}}{\partial \Lambda} = \left[\frac{\partial Y^{P}}{\partial c_{T}}y_{T}^{P} - \frac{\partial Y^{D}}{\partial c_{T}}y_{T}^{D}\right]\frac{\alpha_{T}}{\Lambda} + \left[\frac{\partial Y^{D}}{\partial c_{N}}y_{N}^{D} - \frac{\partial Y^{P}}{\partial c_{N}}y_{N}^{P}\right]\frac{\alpha_{N}}{1 - \Lambda}$$

• computing the derivatives of Y and using $y_N^i = c_N^i$:

$$\frac{\partial C^{P}}{\partial \Lambda} - \frac{\partial C^{D}}{\partial \Lambda} = \left[\underbrace{\left(\frac{1}{c_{T}^{P}}\right)^{\frac{1}{\eta}} z^{*} - \left(\frac{1}{c_{T}^{D}}\right)^{\frac{1}{\eta}} z^{*}_{D}}_{>0} \right] \underbrace{\frac{(1-\omega)^{\frac{1}{\eta}} \kappa_{T}}{\Lambda} + \left[\underbrace{\left(\frac{1}{c_{N}^{D}}\right)^{\frac{1-\eta}{\eta}} - \left(\frac{1}{c_{N}^{P}}\right)^{\frac{1-\eta}{\eta}}_{N-\frac{1}{\eta}} \right]}_{>0 \text{ if } \eta < 1} \underbrace{\frac{\frac{1}{\eta} \kappa_{N}}{1-\Lambda}}_{>0 \text{ if } \eta < 1} \left[\frac{\frac{1}{\eta} \kappa_{N}}{1-\frac{1}{\eta}} \right] \frac{1}{\eta} \frac{1}$$

where the signs follow from $c_N^D \leq c_N^P \implies c_T^D \geq c_T^P$ at (z^*, x) . \Box

Proof

- Want to test three implications of the model about resource rich economies:
 - I face more stringent borrowing terms (higher spreads)
 - 2 accumulate international reserves during commodity windfalls
 - exchange rates appreciate during commodity windfalls

- Spreads:
 - ▶ EMBI spreads: 1993-2015, 37 countries
 - Institutional Investor Index (III): 1979-2015, 184 countries
 - constructed EMBI spreads using III

$$\ln\left(\text{spread}_{i,t}\right) = \gamma_0 + \gamma_1 \ln\left(III_{i,t}\right) + \kappa_i + \mu_t + \epsilon_{i,t}$$

- Natural resource rents as a fraction of GDP from World Development Indicators
- Total external debt stocks and central government debt as a fraction of GDP
- International reserves as a fraction of GDP from IMF
- Real exchange rate calculated as $\xi_{i,t} = \frac{e_{i,t}P_t^{US}}{P_{i,t}}$

$s_{i,t} = eta_0 + eta_1 \overline{h}$	$\overline{VR}_i + \beta_2 100$	$* \frac{debt_{i,t}}{GDP_{i,t}} +$	$-\beta_3 100 * \frac{reserves_{i,t}}{GDP_{i,t}}$	$+\mu_t + u_{i,t}$
	(1) EMBI	(2) EMBI	(3) Constructed EMBI	(4) Constructed EMBI
Av (NR rents / GDP)	0.128**	0.137	0.208** (0.0804)	0.926*** (0.281)
Reserves / GDP	-0.124***	-0 132**	-0.360***	-0 0853***
Total Debt / GDP	(0.0375) 0.0678* (0.0332)	(0.0481)	(0.0358) 0.167*** (0.0237)	(0.0285)
Gov Debt / GDP	()	0.0442**	()	0.122***
Constant	4.330** (1.513)	(0.627) 3.882*** (0.627)	4.438*** (0.975)	(1.829)
Year FE	Yes	Yes	Yes	Yes
Observations Number of countries	520 43	246	2,645	1,033
R-squared	0.267	0.307	0.216	0.292
Clustered standard errors in parenthesis				

$\ln\left(100 * \frac{rese}{GL}\right)$	$\left(\frac{rves_{i,t}}{OP_{i,t}}\right) = \chi_0 + \chi_1 \ln\left(\frac{1}{2}\right)$	$\left(100 * \frac{NR_{i,t}}{GDP_{i,t}}\right) +$	$-\kappa_i + \mu_t + v_{i,t}$
		(1) Reserves	-
	$\ln\left(100 * \frac{NR_{i,t}}{GDP_{i,t}}\right)$	0.117***	
	Constant	(0.0333) 1.635***	
	Year FF	(0.0380) Yes	
	Country FE	Yes	
	Observations	5,044	
	Number of countries	160	
	R-squared	0.183	_
	(justered standard erro	re in narenthesis	

Clustered standard errors in parentnesis.

$\ln(rer_{i,t}) = \rho \ln(rer_{i,t-1})$	$)+\phi_1\left(100*rac{NR_{i,t}}{GDP_{i,t}} ight)+$	$\phi_2 \Delta_{t,t-1} \left(100 * \frac{\text{reser}}{\text{GD}} \right)$	$\left(\frac{\nabla ves_{i,t}}{PP_{i,t}}\right) + \kappa_i + \mu_t + \varepsilon_{i,t}$
		(1) Rea∣ Exchange Rate	
	$\ln\left(\mathit{rer}_{i,t-1}\right)$	0.909*** (0.0272)	
	$\left(100 * \frac{NR_{i,t}}{GDP_{i,t}}\right)$	-0.00597**	
	(reserves: .)	(0.00284)	
	$\Delta_{t,t-1}\left(100 * \frac{100 P_{i,t}}{GDP_{i,t}}\right)$	0.00203**	
	Constant	(0.000833) 0.280*** (0.0945)	
	Year FE	Yes	
	Country FE	Yes	
	Observations	3,980	
	Number of countries	158	
	R-squared	0.919	

Clustered standard errors in parenthesis.

Household problem (prices (Back)

• Since (z_0, x_0) is given, the problem of a representative household is:

$$\begin{split} \max_{\lambda_{1}} \int_{\underline{z}}^{z^{*}(x_{1})} \beta u\left(c_{1}^{D}\right) dF\left(z_{1}\right) + \int_{z^{*}(x_{1})}^{\overline{z}} \beta u\left(c_{1}^{P}\right) dF\left(z_{1}\right) \\ s.t. \quad P_{1}^{D} c_{1}^{D} &= \left[\left(1 - \lambda_{1}\right) r_{N,1}^{D} + \lambda_{1} r_{T,1}^{D}\right] \overline{k} + \Pi_{1}^{D} + T_{1}^{D} \\ P_{1}^{P} c_{1}^{P} &= \left[\left(1 - \lambda_{1}\right) r_{N,1}^{P} + \lambda_{1} r_{T,1}^{P}\right] \overline{k} + \Pi_{1}^{P} + T_{1}^{P} \\ \Lambda_{1} &= \Gamma_{H} \left(B_{1}\right) \end{split}$$

where prices and profits are functions of the state (z_1, x_1)

• Denote the policy function is $\lambda^*(B_1)$

Government problem (Back)

• The problem of the government in t = 0 is:

$$\max_{B_{1}} u(C_{0}) + \beta \int_{\underline{z}}^{z^{*}(x_{1})} u(C_{1}^{D}) dF(z_{1}) + \beta \int_{z^{*}(x_{1})}^{\overline{z}} u(C_{1}^{P}) dF(z_{1})$$

s.t. $\Lambda_{1} = \lambda^{*}(B_{1})$

where consumption in t = 0 is a function of x_0 (given) and x_1

$$C_{0} = C(x_{0}, x_{1}) = Y(y_{N,0}^{P}, y_{T,0}^{P} + \boldsymbol{q}(x_{1}) \boldsymbol{B}_{1} - B_{0})$$

• The solution is B^*

- Equilibrium: policy function $\lambda^*(B)$, debt issuance B^* , price schedule q(x), and beliefs $\Gamma_H(B)$ such that:
 - **(**) given q and Γ_G , B^* solves the government's problem
 - 2 given Γ_H , λ^* solves the household's problem for any B
 - beliefs are consistent $\Gamma_H(B) = \lambda^*(B)$
- Equilibrium allocation: $\tilde{x} = (\tilde{\Lambda}, \tilde{B})$ such that $\tilde{B} = B^*$ and $\tilde{\Lambda} = \lambda^* (B^*)$

Calibration Back

Parameter	Value	Parameter	Value
σ	2	β	0.98
<i>r</i> *	0.01	ϕ	2.5
η	0.83	ω	0.6
α_{N}	0.33	α_T	0.33
d_0	-0.21	d_1	0.42
ho	0.94	σ_z	0.027
УC,L	0.11	Ус,н	0.25
<i>Pr</i> (windfall)	0.05	windfall duration	16 quarters
γ	0.05	κ	0.03

• Parameters from the literature (Bianchi, et.al. (2018); Gordon, et. al. (2018))