Power of CLR and Related Tests

Nicolas van de Sijpe and Frank Windmeijer

Dept. of Economics University of Sheffield

Dept. of Statistics and Nuffield College University of Oxford

Milan, 23 August 2022

- Standard linear IV setting, one endogenous variable, homoskedasticity, $y = x\beta + u$, $x = Z\pi + v$
- Weak instrument robust inference, AR, LM and CLR tests for $H_0: \beta = \beta_0$
- Conditional Wald (CW) tests, not unbiased
- Power comparisons in general done for two different designs, varying β whilst
 - keeping Σ , variance of $(u_i, v_i)'$, fixed
 - keeping Ω , variance of $(r_i, v_i)'$ fixed, $y = Z\pi_y + r$
- Comparison of *CLR* and *CW* done for fixed-Ω design, *CLR* found to be superior.

- Andrews, Moreira and Stock (Ecta, 2006), introduced fixed-Ω design
- Andrews, Moreira and Stock (JoE, 2007), Ω compared ${\it CLR}$ and ${\it CW}$ tests
- Mills, Moreira and Vilela (JoE, 2014), Ω compared CLR and CW_0 tests
- Andrews, Marmer and Yu, (QE, 2019), vary β_0 instead of β , but that is same as fixed- Σ design.

Main Issues

Let

$$\Sigma = \begin{bmatrix} \sigma_u^2 & \rho_{uv}\sigma_u\sigma_v \\ \rho_{uv}\sigma_u\sigma_v & \sigma_v^2 \end{bmatrix}; \quad \Omega = \begin{bmatrix} \sigma_r^2 & \rho_\Omega\sigma_r\sigma_v \\ \rho_\Omega\sigma_r\sigma_v & \sigma_v^2 \end{bmatrix}$$

- ρ_{uv} is measure for endogeneity, ρ_{Ω} is not
- Fixed- Ω power curve considers quite specific ρ_{uv}, β combinations.
 - Very little space devoted to low/moderate endogeneity and/or ρ_{uv} and β having same sign when testing $H_0: \beta = 0$.
 - $\bullet\,$ Can investigate power for these cases better with fixed- $\Sigma\,$ design
 - Find in simulations that CW tests have more power than CLR test when ρ_{uv} is small/moderate and/or when ρ_{uv} and β have the same sign

- Fixed- Ω design: cannot set wlog $\beta_0 = 0$ and $\sigma_r^2 = \sigma_v^2 = 1$, can do latter conditional on former.
- Fixed- Σ design: can set wlog $\beta_0 = 0$ and $\sigma_u^2 = \sigma_v^2 = 1$

The *LR* test statistic is criterion difference given by

$$LR = \frac{u_0' P_Z u_0}{\widehat{\sigma}_0^2} - \frac{\widehat{u}_L' P_Z \widehat{u}_L}{\widehat{\sigma}_L^2}$$
$$= AR - B\left(\widehat{\beta}_L\right)$$

where $\hat{\beta}_L$ is the LIML estimator and $B\left(\hat{\beta}_L\right)$ the Basmann test for overidentifying restrictions, $\hat{u}_L = y - x\hat{\beta}_L = Wb_L$, $b_L = \left(1 - \hat{\beta}_L\right)'$, $\hat{\sigma}_L^2 = b'_L \hat{\Omega} b_L$. $LR \frac{d}{H_0} \chi_1^2$

under strong instrument asymptotics, but not with weak or uninformative instruments. For *CLR* use conditional critical values.

6/15

Proposition

LR statistic is identical to $W_0\left(\widehat{\beta}_L\right) = t_0(\widehat{\beta}_L)^2$

$$LR = W_0\left(\widehat{\beta}_L\right) = \frac{\left(\widehat{\beta}_L - \beta_0\right)^2 \left(x' P_Z x - n\widehat{\kappa}\widehat{\omega}_{22}\right)}{\widehat{\sigma}_0^2}$$

$$\widehat{\beta}_{L} = \frac{x' P_{Z} y - n \widehat{\kappa} \widehat{\omega}_{12}}{x' P_{Z} x - n \widehat{\kappa} \widehat{\omega}_{22}},$$
$$\widehat{\kappa} = \min \operatorname{eval} \left(\widehat{\Omega}^{-1} \left(n^{-1} W' P_{Z} W \right) \right).$$

 $W_0\left(\widehat{\beta}_L\right)$ proposed by Mills, Moreira and Vilela (JoE, 2014).

日本・モト・モト

DGP for fixed- Ω design is given by

$$y = x\beta + r - \beta v$$
$$x = Z\pi + v$$

as then reduced form is $y = Z\pi\beta + r$. We cannot set $\beta_0 = 0$ and $\sigma_r^2 = \sigma_v^2 = 1$ wlog.

Ω and Σ(β)

For fixed- Ω design with

$$\Omega = \left[egin{array}{cc} 1 &
ho_\Omega \
ho_\Omega & 1 \end{array}
ight],$$

we have that

$$\Sigma\left(eta
ight)=\left[egin{array}{cc} 1-2eta
ho_{\Omega}+eta^2 &
ho_{\Omega}-eta\
ho_{\Omega}-eta & 1 \end{array}
ight],$$

or

$$\begin{aligned} & \frac{\sigma_u^2(\beta)}{\beta^2} \to 1 \text{ when } |\beta| \to \infty \\ & \rho_{uv}(\beta) \to -1 \text{ when } \beta \to \infty \\ & \rho_{uv}(\beta) \to 1 \text{ when } \beta \to -\infty \end{aligned}$$

Note that ρ_{uv} and β have here only the same sign for $0 < \beta < \rho_{\Omega}$. For $\rho_{\Omega} = 0.5$, ρ_{uv} only moderate, say $-0.5 \le \rho_{uv} \le 0.5$ for $0 \ge \beta \ge 1$.

Figure: Weak instruments asymptotic power of *CLR* test, $k_z = 5$, $\lambda = 1$.

イロト イヨト イヨト イヨト

æ

Figure: Weak instruments asymptotic power curves of the *CLR* test for fixed Ω design, left panel, and fixed Σ design, right panel. $k_z = 5$, $\lambda = 1$.

Power of CLR and CW Tests

First replicate Andrews, Moreira and Stock (JoE, 2007):

Figure: Asymptotic power of tests, fixed Ω design, $\rho_{\Omega} = 0.5$, $k_z = 5$, $\lambda/k_z = 1$.

Power of CLR and CW Tests

Figure: Asymptotic power of tests, fixed Σ design, $k_z = 5$ and $\lambda/k_z = 2$, for different values of ρ_{uv} .

イロト イヨト イヨト

Conclusions

- Fixed-Ω design does not appear a good design to assess relative properties of tests.
- Cannot set $\beta_0=0$ and $\sigma_r^2=\sigma_v^2=1$ wlog in fixed- Ω design
- Argument often used for keeping Ω fixed is that it can be estimated consistently and hence treated as known, but keeping it fixed changes the design which has not before been specified.
- $\bullet\,$ Can better control endogeneity features in fixed- $\Sigma\,$ design
- Fixed- Σ designs shows more power for *CW* tests in low/moderate endogeneity settings, and settings with signs of β and ρ_{uv} the same.
- Behaviour of test-based construction of confidence intervals from fixed- Σ design.

白 マイビット イレー

15/15