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Abstract

The standard model of permanent and transitory income provides estimates that differ

depending on the type of moments used—levels or differences—and the weighting

matrix applied. We propose two changes to the standard model. First, we account

for the time-aggregated nature of observed income data. Second, we allow transitory

shocks to persist for varying lengths of time. With only one additional parameter,

our proposed model consistently estimates the parameters of the income process

irrespective of the moments and weighting matrix applied. We strongly advise against

estimating the standard model using difference moments.
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1 Introduction

[T]he key challenge for future work is to develop a specification for the wage
process that is both parsimonious enough to be used as an input to incomplete-
markets models, and rich enough to account empirically for the covariance
structure of wages in both levels and differences.

Heathcote, Perri, and Violante (2010, p. 40)

What is the nature of idiosyncratic income risk faced by households, and how has this
changed over time? The related economic literature centers around a model of permanent
and transitory shocks. In this standard model, households face a series of income shocks.
Some of these income shocks permanently (or persistently) affect income, such as a job
change or promotion. Others only have transitory effects on income, such as a bonus
or a spell of unemployment. However, although widely used, this model is known to
be misspecified. The permanent and transitory components’ estimated variance varies
significantly depending on which set of moments (levels or differences) and weighting
matrix (optimally, diagonally, or equally weighted) is used in the estimation.

In this paper, we make two changes to the standard model of income innovations.
First, we account for the time-aggregated nature of observed income data. Implicit in
the standard model is that households receive all their income shocks on January 1st
each year. As first noted in Working (1960), when income shocks are persistent and
distributed throughout the calendar year, the covariance of observed annual income
exhibits strong serial correlation even if the underlying income shocks are uncorrelated.
We provide evidence from Norway to support our assumption that income shocks are
distributed evenly within a calendar year. The implied covariance matrix for permanent
and transitory income shocks differs significantly under this assumption relative to the
standard assumption that shocks occur only on January 1.

The second change we make to the standard model is to divide transitory shocks
into two flavors. “Bonus” (or measurement error) shocks display no persistence, while
“passing” shocks persist for a stochastic period of time. We motivate this division because
having only one flavor of transitory shock cannot capture the patterns we see in Norwegian
administrative data. Furthermore, a transitory shock that persists for a stochastic period
of time seems to be a more natural assumption than one in which all transitory shocks
persist for a fixed period. We show that the first-difference covariance matrix induced by
the passing shock in our time-aggregated model is similar to that induced by permanent
shocks in the standard model. As a result, these passing shocks have previously been
partly interpreted as permanent shocks when using difference moments for estimation.
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One key result of the two changes we propose to the standard model is to reconcile the
different permanent and transitory income variance estimates that arise from estimation
using the covariance of first differences or the level of income. The standard model induces
a covariance structure on both levels and differences—cov(yt, ys) and cov(∆yt,∆ys), respec-
tively. If the model is well specified, the estimates recovered in the data for permanent
and transitory income variance would not depend on the applied covariance structure or
the weighting matrix used in the estimation. In practice, using difference moments usu-
ally results in significantly higher estimated permanent income variance and significantly
lower estimated transitory income variance relative to estimation using level moments.

We simulate our proposed model and show that when we estimate the standard model
on the simulated data, we find evidence of the same type of misspecification as in actual
data. Indeed, with the most commonly used weighting—diagonally weighted minimum
distance (DWMD)—the permanent income variance is higher, and the transitory income
variance is lower when estimating the standard model with difference moments than
with level moments. This structure of misspecification is the same as we observe when
estimating the standard model in actual data. Hence, the two adjustments we make,
allowing shocks to occur during the year and enriching the description of transitory
shocks, are sufficient to explain the differences in parameter estimates obtained when
estimating the standard model across moments and weighting matrices.

We next estimate our proposed model using Norwegian administrative data and data
from the Panel Study of Income Dynamics (PSID). Regardless of the moment or weighting
matrix applied, we find similar parameter estimates. This stability of parameter estimates
suggests that our proposed model is less misspecified than the standard model. Moreover,
since our model only requires the estimation of one extra parameter, we can estimate it
using the relatively small sample in the PSID. Hence, we argue that the benefit of reducing
misspecification outweighs the loss from the increased model complexity from adding
this one extra parameter. We provide codes to make estimation of our proposed model
available to other researchers.

Although the standard model is misspecified, some combinations of moments and
weighting matrices seem to work better than others. Both in simulated and actual data, the
combination of level moments and either the equally or the diagonally weighted minimum
distance method provide parameter estimates close to the data-generating process or
the parameter estimates of the proposed model. The intuitive reason is that with level
moments and a sufficiently persistent permanent income process, the permanent variance
will be identified from covariances generated from sufficiently large time differences
(cov(yt, ys) with s >> t). Hence, as long as these long covariances have non-zero weights
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(e.g., with EWMD), the standard model will accurately identify the permanent income
variance.

We can, therefore, summarize our main results for practitioners as follows. If the data
set contains many panel observations, use our parsimonious model of income dynamics
to estimate the income process. The model is robust to using specific moments (levels
or differences) and the weighing matrix (optimally, diagonally, or equally weighted)
applied. If the data set is ‘small,’ use the standard model but estimate it using level
moments and the equally or diagonally weighted minimum distance method. Using
difference moments potentially biases the results significantly. Therefore, we strongly
advise against estimating the standard model using difference moments.

We also use our proposed model to investigate how income risk varies by age and how
the nature of income risk has changed over time. We use both Norwegian administrative
data and the Panel Study of Income Dynamics (PSID) to estimate our model. First,
regarding lifecycle income risk, we find that neither permanent nor transitory income
variance vary much from age 35 to 50. This result is consistent with prior findings in the
literature where income risk does not vary much by age (see, e.g., Storesletten, Telmer, and
Yaron, 2004, Heathcote, Storesletten, and Violante, 2005, and Guvenen, Karahan, Ozkan,
and Song, 2021). Second, we find some evidence that ‘start-of-working-life’ inequality
and permanent income risk have increased over time in both the Norwegian data and
in the PSID.1 We further show that the estimated time-trends of income risk are similar
irrespective of whether one used our proposed model or the standard model. Hence, while
the standard model tends to yield very different estimates of the level of risk depending
on the moment or weighting matrix applied, the time trends in income risk are similar.

Related literature. Our paper most closely relates to Daly, Hryshko, and Manovskii
(2022) who also ask why estimates of permanent and transitory shocks in the standard
model depend on the estimation method used. However, their solution is different.
They argue that differences in the sample selection that naturally arise between level
and difference estimation in unbalanced panels can explain the differences in estimates.
They show that using a balanced panel overcomes these sample selection issues and, as
a result, conclude that the standard model can fit the data well. In contrast, we show,
both in theory and practice, that the results of Daly, Hryshko, and Manovskii (2022) are

1This is a question that has been discussed extensively at least since Gottschalk, Moffitt, Katz, and
Dickens (1994). Recent contributions include Moffitt and Gottschalk (2002), Gottschalk and Moffitt (2009),
Heathcote, Storesletten, and Violante (2010), Heathcote, Perri, and Violante (2010), Sabelhaus and Song
(2010), Moffitt and Gottschalk (2012), Bloom, Guvenen, Pistaferri, Sabelhaus, Salgado, and Song (2017),
Moffitt, Bollinger, Hokayem, Wiemers, Abowd, Carr, McKinney, Zhang, and Ziliak (2021), Carr, Moffitt,
and Wiemers (2020), Moffitt and Zhang (2020), and McKinney and Abowd (2020).
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sensitive to the weighting matrix used in the estimation. This sensitivity is distinct but
similarly concerning evidence that the standard model is misspecified. We show that
our proposed model is robust to the choice of moments used and the choice of weighting
matrix. Nevertheless, we remain convinced by the arguments about sample selection and,
as a result, restrict ourselves to the use of balanced panels in the analysis.

Several papers are building rich models to match more moments of the income distri-
bution. A closely related paper is Guvenen, McKay, and Ryan (2022), who build an income
process that is rich enough to match several moments of the income distribution but is
still tractable enough to be included in models. Other recent examples include Druedahl,
Graber, and Jørgensen (2021), who build a model that matches data on monthly income in-
novations in Denmark; Guvenen, Karahan, Ozkan, and Song (2021) who build an income
process to match moments from administrative data on annual income innovations in the
U.S.; and Arellano, Blundell, and Bonhomme (2017) who estimate a process that allows
for variation in parameters by individual income levels to match income innovations.2

Common to this literature is that the models are complex and require the estimation of
several additional parameters. Our contribution is that, instead of building complicated
models to match the dynamics of the income innovations, we construct a parsimonious
model robust to known misspecification issues. Hence, it matches data well, yet is simple
enough to be included in models and allows estimation in relatively small data sets.

The time aggregation problem has been known at least since Working (1960). Recently,
Eika (2018), Crawley (2020), and Crawley and Kuchler (2022) highlight how the estimation
of the standard permanent-transitory model is biased when shocks can occur during the
year and not only on January 1. The standard way of solving the time-aggregation
problem is to estimate a higher-frequency model which allows shocks to occur during a
year. For example, Klein and Telyukova (2013) build a higher-frequency version of the
standard permanent-transitory model and estimate it using lower-frequency data. Our
contribution is to construct a high-frequency model adjusted sufficiently to address the
misspecification issues discussed above.

Roadmap. The rest of the paper is structured as follows. Section 2 describes the Nor-
wegian administrative data. Section 3 presents the standard model and illustrates the
misspecification issues using Norwegian data. Section 4 presents the proposed model

2Several other papers also estimate variants of non-linear income dynamics, e.g., Browning, Ejrnaes,
and Alvarez (2010), Altonji, Smith Jr., and Vidangos (2013), De Nardi, Fella, and Paz-Pardo (2020), Braxton,
Herkenhoff, Rothbaum, and Schmidt (2021), and De Nardi, Fella, Knoef, Paz-Pardo, and Van Ooijen (2021).
For Norway, Halvorsen, Holter, Ozkan, and Storesletten (2020) present evidence of non-gaussian features
of income dynamics.

5



and Section 5 shows how estimation of the standard model on simulated data from our
proposed model yields the same structure of misspecification issues as with actual data.
In Section 6, we estimate our proposed model using Norwegian and U.S. data, illustrating
that the parameter estimates are now independent of the moments or weighting matrix
applied and that our proposed model is still parsimonious enough to be estimated on a
small data set (PSID). Section 7 concludes.

2 Data

The analysis uses Norwegian administrative data on annual income. We combine this
income data with demographic information such as sex, age, country of birth, and years
of education. To make our results comparable to the rest of the literature, we restrict
our attention to males born in Norway with income between 1971 and 2014. In a partial
analysis presented in Appendix A, we also utilize a monthly income data set covering the
period from 2015 to 2019. The Norwegian income data have several advantages relative
to other available data sets. First, the data are administrative and, therefore, cover the
entire population of Norwegian residents. Second, only a small share of the earnings
are right-censored.3 Therefore, our data include precisely measured earnings for almost
everyone. Moreover, the long panel from 1971 to 2014 allows us to follow individuals for
long periods. Indeed, the data include the complete earnings history from the first job to
retirement for some cohorts.

Variable definitions. Our measure of pre-tax earnings includes both labor income (from
wages and self-employment) and work-related cash transfers such as unemployment
and short-term sickness benefits. In the analysis, pre-tax earnings are deflated with the
consumer price index, indexed to the 2011 Norwegian kroner. The observations we use
for idiosyncratic income are residuals obtained from a regression of log earnings on a full
set of dummies for year, age, and years of education.

Sample selection. We select our sample from this data according to the suggestions in
Daly, Hryshko, and Manovskii (2022). They argue for the importance of using a balanced
sample since gaps in the data can bias the estimation of income processes, and the bias is
different for estimation using moments in levels and differences. We focus on individuals

3Bhuller, Mogstad, and Salvanes (2017) document that less than 3 percent of the sample is right-censored
in any given year. The income series is available from 1967, but Halvorsen, Ozkan, and Salgado (2022) show
that top-coding was most prevalent from 1967 to 1970, and that from 1971 less than 1% of observations are
right-censored each year.
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in the middle of their careers, restricting attention to ages 35 to 50.4 When doing so,
we include individuals if earnings observations are available for all the years from 34
to 51 to ensure a balanced sample.5 In addition, we restrict our sample by removing
observations of extreme income changes and observations where the income level is very
low. We define extreme income changes as observations where income either increased by
more than 500 percent or decreased by more than 80 percent as in Daly, Hryshko, and
Manovskii (2022). A very low level of income is defined to be below the Norwegian social
security system’s definition of a base level (around USD 10,000 in 2011). Observations
where an individual has a lower income level than this base level are considered years
where the individual is only loosely attached to the labor force and is treated as a missing
observation. If an individual ever experiences an extreme income change or a very low
level of income, then all observations for that individual are dropped from the sample.
Thus, the requirement of a balanced panel is maintained.

With these sample selection criteria, our data include 536,399 Norwegian males dis-
tributed over 27 cohorts born between 1937 and 1963.

3 Problems with the Standard Model

This section illustrates some well-known misspecification issues with the standard model
using the Norwegian income data. We first describe the model and how to identify the
model parameters. Next, we present estimation results for all combinations of moments
and weighting matrices typically applied. We show that the resulting parameter estimates
vary with the moments and weighting matrix, suggesting that the model is misspecified.

3.1 The Standard Model

We will use the ‘standard model’ as a benchmark to highlight some of the existing problems
in the literature and how our proposed model resolves these problems. While there are
many variants of the standard model that we show here—most commonly including
some decay in the permanent component—they all suffer from the same problems that

4We start at age 35 because the variance of income by age is decreasing with age before age 35 in the
Norwegian data, driven by the variance of high-skilled individuals (Blundell, Graber, and Mogstad, 2015).
Neither the standard nor our proposed model can account for such a pattern. Appendix B provides more
detail on our sample selection.

5Following Daly, Hryshko, and Manovskii (2022), the first (34) and last (51) observations ensure that we
include individuals who worked the entire first (35) and last (50) observation in our sample.
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our proposed model can resolve.6

The standard model is written in the same frequency as the data, most commonly
annual. Log income, yt, is composed of a permanent component, pt, along with transitory
shocks, εt, that have some persistence, θ. The model can be written as

yt = pt + εt + θεt−1 (1)

pt = pt−1 + νt (2)

where εt and νt are uncorrelated with each other and also over time, in this way, the
permanent component of income moves as a random walk at an annual frequency and
the transitory component of income follows an MA(1) process. The process begins at time
zero with some existing distribution of permanent income. The parameters of interest
in this model are the variance of permanent and transitory income shocks, σ2

νt
and σ2

εt

respectively, as well as the ‘start-of-working-life’ variance of permanent income, σ2
p0

and
the MA(1) parameter θ.

Researchers can use either level or difference moments to identify the parameters in
the model. If they use difference moments, the covariance structure of permanent income
is:

var(∆pt) = σ2
νt

(3)

cov(∆pt,∆ps) = 0 if s , t. (4)

and the covariance structure of the transitory component is (defining the transitory com-
ponent as qt = εt + θεt−1)

var(∆qt) = σ2
εt

+ (1 − θ)2σ2
εt−1

+ θ2σ2
εt−2

(5)

cov(∆qt,∆qt−1) = −(1 − θ)σ2
εt−1

+ θ(1 − θ)σ2
εt−2

(6)

cov(∆qt,∆qt−2) = −θσ2
εt−2

(7)

cov(∆qt,∆qs) = 0 if s < t − 2. (8)

Using the independence of the permanent and transitory components of income, the
covariance structure of the difference in log income is the sum of the covariance structure

6Appendix F estimates both the standard and proposed model allowing for general persistence and find
the same structure of misspecification issues also with a general persistence.
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of each component

cov(∆yt,∆ys) = cov(∆pt,∆ps) + cov(∆qt,∆qs). (9)

It is then common to apply the general method of moments on (3)-(9) and to estimate
parameters by minimizing the distance between the empirically observed moments and
those implied by the model. The approach is similar when using level moments, and this
is deferred to Appendix C.1.

3.2 Results Using the Standard Model

We now estimate the standard model using the Norwegian data. We first describe our
estimation procedure before we present the estimated parameters.

Estimation procedure. We start with M balanced panels, each one starting in a different
year. For each panel we calculate the empirical covariance matrix for either the levels or
differences of income:

EmpiricalLevelst,s =
1
N

N∑
i=1

yi,tyi,s (10)

EmpiricalFDt,s =
1
N

N∑
i=1

∆yi,t∆yi,s (11)

where yi.t is residualized log income of individual i at time t as described in Section 2. Our
minimum distance procedure for differences uses the loss function:

L =

M∑
j=1

vech(EmpiricalFD j −ModelFD j)TΩ−1
j vech(EmpiricalFD j −ModelFD j)

and equivalently for levels. Here Ω j is either the full optimal minimum distance weighting
matrix for panel j (OWMD), the optimal minimum distance weighting matrix along
the diagonal with all off-diagonal elements set to zero (DWMD), or the identity matrix
(EWMD).

Results. Table 1 presents estimated parameters using all combinations of moments and
weighting matrix typically applied in the literature. There are several notable observa-
tions. First, the estimated parameters differ depending on whether one estimates the
model using level or difference moments. For example, looking at the ‘DWMD’ column,
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EWMD DWMD OWMD
Level Difference Level Difference Level Difference

σ2
perm 0.004 0.011 0.004 0.011 0.005 0.007
σ2

tran 0.032 0.020 0.033 0.020 0.021 0.021
θ 0.570 0.070 0.574 0.071 0.163 0.145
σ2

init 0.062 7 0.062 7 0.059 7

Notes: The table presents estimated parameters using the standard model on Norwegian data. ‘Level’ and ‘Difference’ denote the
type of moments used, corresponding to (10) and (11), respectively. ‘EWMD’, ‘DWMD’, and ‘OWMD’ is the type of weighting matrix
applied, corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. The table shows the mean of
parameter estimates over time and age.

Table 1: Estimated parameters using the standard model, Norwegian data

the estimated variance of permanent income is 0.004 when estimated using level moments
but almost three times as large when using difference moments. Similarly, the transitory
variance is 0.033 when using the levels compared with 0.020 when using the difference
moments. These differences in estimated parameters are large. Given that permanent in-
come risk is of primary importance for household welfare, these differences substantially
affects household behavior in models. Hence, it is important to understand the origins of
this result and how to estimate permanent and transitory income variances consistently.

Second, while the estimated permanent variance is higher when estimated using differ-
ence rather than level moments, the estimated transitory variance is lower. For example,
the estimation using level moments with DWMD yields a lower estimate of permanent
risk but a higher estimate of the variance of transitory risk than estimation using difference
moments with DWMD. Contrary movements in parameter estimates suggest that part of
the variation in the data is not uniquely allocated to the transitory or permanent variance
by the model. Instead, the decomposition depends on the moments used.

The third observation is that when using the full optimal minimum distance weighting
matrix (OWMD), one gets similar parameter estimates regardless of which moments are
used. Daly, Hryshko, and Manovskii (2022) notes this and argues that this estimation
method, combined with a balancing of the panels, yields consistent estimates of the
permanent and transitory variance. However, although parameter estimates are similar
across moments used, it does not imply that these estimates yield the correct parameter
values.

We have now established the main misspecification issues of the standard model.
The rest of the paper aims to provide an alternative yet simple model robust to these
misspecification issues.
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4 The Proposed Model

We now present the proposed model focusing on how it differs from the standard model.
There are two innovations to the model:

1. We write it in continuous time.

2. We allow for three types of income shocks.

This section shows that combining these two innovations can solve the identification
issues in the standard model discussed in Section 3. Moreover, since we only add one
additional parameter, our proposed model is parsimonious enough to be estimated in
relatively small data sets.

4.1 Time Aggregation

The first change we make is to write the standard model in continuous time. This change
in timing allows us to model income shocks that occur at different times throughout the
calendar year. This adjustment is motivated by well-known time aggregation problems
with the standard model, such as the implicit assumption that shocks occur on January
1st. In Appendix A, we show, using monthly income data from Norway, the unsurprising
result that income innovations such as job transitions, job losses, bonus payments, and
pay rises tend to occur throughout the calendar year. Although we work in continuous
time, a monthly or even quarterly model would serve the same purpose and result in
similar estimates to those here. The key feature is that the model frequency should
be sufficiently higher than the frequency of the observed data. Note that the model’s
frequency (continuous-time) does not dictate the frequency of income shocks—for any
individual, they may only arrive on average every decade. It is the distribution of shocks
within the year that matters, not their frequency. Motivated by the empirical observations
in Appendix A, we model the arrival of shocks as being uniformly distributed throughout
the calendar year.

4.2 Additional Shocks

The second innovation is allowing for three types of income shocks in our model rather
than two in the standard model. Permanent shocks are the exact analog of those in
the standard model but embedded in continuous time. Bonus shocks are the analog
of transitory shocks in the standard model with no MA(1) component and can also be
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thought of as encompassing classical measurement error.7 Finally, in place of the MA(1)
process for transitory shocks, we propose ‘passing’ income shocks persisting a stochastic
period of time. The rest of this subsection describes each income shock type in detail, how
these shocks are identified in the data, and how the standard model may misinterpret
these shocks in the presence of time aggregation.

Shock type 1: Permanent. A permanent shock to income can be thought of as a pro-
motion, a wage rise, or a job change. In our proposed model, such shocks are equally
likely to occur at any time within the calendar year. Figure 1a illustrates an example of the
income flow coming from this type of process. The solid-orange line shows the income
flow, while the black crosses show observed income. In this example, a permanent income
shock occurs about one-quarter of the way into 2017, and income remains high for the
remaining years. Notice that observed income for each year smooths the shock over two
years. In 2017, the worker received the higher income flow for three-fourths of the year,
and his income in 2017 is, therefore, three-fourths of the shock size higher than in 2016.
From 2018, she received the higher income flow for the entire year, and the observed
increase relative to 2016 is equal to the shock size.

The observed income series exhibit a positive serial correlation due to the ‘smoothing’
of shocks over two years. This smoothing is the crucial result in Working (1960), and
it shows up in the covariance structure of the difference of log income, and hence feeds
through to the estimated variance of permanent and transitory shocks.

Mathematically, we defined the permanent income process as follows. Let Pt be a
martingale with unit volatility and σ2

perm,s be the volatility of permanent income at time s.
An example of such a Pt is a Brownian motion. However, the model allows for more
general martingale processes including those with large shocks. As such, although the
model is set in continuous time, shocks such as promotions or job changes may occur
infrequently. We can then define the permanent income flow at time t as8

pt = p0 +

∫ t

0
σ2

perm,sdPs.

However, the flow of income at any instance t is not observed. We instead observe the
total income received over a one-year period. For example, the observed (permanent)

7In contrast to the standard model, our proposed model is able to distinguish between classical mea-
surement error (which would be interpreted as ‘bonus’ shocks) from transitory income shocks (see, e.g., the
discussion in Meghir and Pistaferri, 2011).

8In the body of the paper, we focus on versions of the model where the permanent component of income
is a unit root. In Appendix F, we estimate the models in which the permanent component is allowed to
mean-revert.
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(b) Covariance structure for difference moments

Figure 1: Permanent shock income flow and difference covariance structure

income in year T is9

pobs
T =

∫ T

T−1
ptdt. (12)

The covariance structure of these permanent income shocks in differences is

var(∆pobs
T ) =

1
3
σ2

perm,T +
1
3
σ2

perm,T−1

cov(∆pobs
T ,∆pobs

T−1) =
1
6
σ2

perm,T−1

cov(∆pobs
T ,∆pobs

S ) = 0 if S < T − 1.

9The permanent component of income is not observable by itself, but this is the relevant permanent
income component of observable income.
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Figure 1b shows the covariance structure of such a time-aggregated random walk as blue
bars, along with the standard-model version—equivalent to a continuous-time model
in which all income shocks occur on January 1st —shown as orange crosses. Failing to
account for the possibility that income shocks can happen at any point in the calendar year
will lead to significant estimation problems if the model is estimated using the difference
covariance structure.

Shock type 2: Bonus. The bonus shock consists of a one-time shock to income, like a
bonus that arrives on a specific date. It could be either positive or negative. Figure 2a
shows this type of shock modeled as an income ‘flow’ in continuous time in the solid-
orange line, along with the observed income in black crosses. In this example, the shock
occurs one-quarter of the way through 2017 and, because it is instantaneous, it is modeled
as a Dirac delta function to the income flow. We let Bt be a martingale with unit volatility,
and σ2

bonus,s be the volatility of bonus income at time s. Observed bonus income is the sum
of all bonus income received over the year, defined as

bobs
T =

∫ T

T−1
σ2

bonus,sdBs. (13)

The induced covariance structure for the difference moments, shown in Figure 2b as
blue bars, is identical to that induced by a transitory shock with no MA(1) component in
the standard model, shown as orange crosses. In particular, the timing of the shock within
the calendar year—one of our key innovations—makes no difference to the covariance
structure for this type of shock.

The covariance of the change in income this period with the change in income in the
previous period (the negative blue bar cov(∆yt,∆yt−1)) can be used in the standard model
with no MA(1) component to identify the size of transitory variance. This is because in the
standard model, the component of this covariance (cov(∆yt,∆yt−1)) coming from the per-
manent shocks is equal to zero. Therefore, the change in income next period is negatively
correlated with transitory shocks this period, but uncorrelated with permanent shocks
this period, conditions that make the change in income next period a valid instrument for
transitory shocks this period in the standard model. Figure 1b shows that this is not the
case in our model—the existence of permanent shocks will increase cov(∆yt,∆yt−1) and
hence depress the estimate of transitory income variance under the standard model.
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Figure 2: Bonus shock income flow and difference covariance structure

Shock type 3: Passing. The final income shock we introduce is a ‘passing’ shock. For
this shock, income flow jumps by some amount at the time of the shock arrival. Income
flow then remains at that new level, returning to the old level with a fixed hazard rate.
One can think of the passing shock as representing an unemployment spell or a temporary
switch to part-time employment.

An alternative to the passing shock is to assume that the shock decays at a constant
rate over time, like an AR(1) process in discrete time. This type of shock process results
in an identical covariance matrix to that of the passing shock process we describe here,
and hence estimations of the parameters in these two specifications are isomorphic. How-
ever, we choose to describe the model as having passing shocks for two reasons. First,
Druedahl, Graber, and Jørgensen (2021) estimate a monthly model where they specify a
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shock type that is general enough to potentially contain both the passing variant and the
AR(1) variant. They reject the AR(1) version and end up with an income process that is
essentially similar to the passing shock in the current paper. Second, Arellano, Blundell,
and Bonhomme (2017) show that individuals with very low income realizations tend to
experience sudden large increases in income. These sudden large increases are more con-
sistent with the end of passing-type shocks when income jumps back toward the mean,
rather than slowly drifting toward the mean.

Figure 3a shows two examples of how the passing shock works. Approximately one
quarter through 2017, a positive income flow shock hits. The income flow remains high
for around one year (the solid-orange line) or around two years (the dashed-orange line).
In both these examples, observed income for 2017 is about three-fourths the size of the
flow shock (similar to the permanent shock example), but the observed income in 2018
either drops back toward its 2016 level (black cross) or climbs higher to be equal to the
size of the shock (gray cross). By 2020 there is no residual income flow from either shock
and the observed income is back to its 2016 level.

Figure 3b shows the covariance structure for this passing shock in blue bars. Depending
on the half-life of the passing shock, the second blue bar (cov(∆yt,∆yt−1)) may be either
positive or negative. In the example illustrated, chosen to match the estimates from the
Norwegian administrative data, cov(∆yt,∆yt−1) is slightly positive. Compared with the
orange crosses, which mark the covariance structure of these shocks under the assumption
they only occur on January 1st each year (equivalent to an AR(1) discrete time process), the
covariance structure (except for var(∆yt)) is relatively flat and close to zero. We propose
that this is the reason the persistence of these passing shocks has not been noted before—
because of the covariance structure shown in the blue bars in Figure 3b, the shock is
mistaken for a permanent shock in the estimation of the standard model. Indeed, any
estimation method will struggle to differentiate between this covariance structure and
that shown by the orange crosses in Figure 1b.

We let Qt be a martingale with unit volatility, and σ2
passing,s be the variance of passing

income at time s. Formally, the passing shock component of income flow can be written
as

qt =

∫ t

0

σ2
passing,s

Θ(τ)
1ξs>t−sdQs

where Θ(τ) is a normalization factor so that the total observed passing income variance
is equal to σ2

passing,s.
10 For each s > 0, ξs is an exponentially distributed random variable

10The expression for the normalizing factor Θ(τ) can be found in Appendix C.2
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Figure 3: Passing shock income flow and difference covariance structure

with P(ξs > τ) = 0.5—that is, the passing shocks have a half life equal to τ. The observed
passing income is then

qobs
T =

∫ T

T−1
qtdt. (14)

4.3 Mapping Between the Standard and the Proposed Model

Our proposed model has five parameters. Three have almost exact counterparts in the
standard model: initial permanent income variance, permanent income variance and
transitory income variance.11 The two remaining parameters, the half-life of the passing

11We refer to the increase in variance of permanent income over a year as permanent income variance, but
it could also be called the permanent volatility in the proposed model. The transitory income variance is
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shock (τ) and the fraction of the transitory variance that is of the ’bonus’ variety (b =

σ2
bonus/σ

2
tran where σ2

tran = σ2
bonus + σ2

passing), roughly serve the same purpose as the MA(1)
parameter in the standard model in determining how persistent transitory shocks are,
although they are not numerically comparable. Table 2 shows how the parameters in the
two models compare.

Parameter Description Proposed Standard

Permanent income variance σ2
perm Var(ν)

Transitory income variance σ2
tran (1 + θ2)Var(ε)

Half life of ‘passing’ shock τ 7

‘Bonus’ fraction of σ2
tran b 7

MA(1) transitory persistence 7 θ
Initial permanent income variance σ2

init Var(p0)

Table 2: Parameters in the proposed and standard models

5 Simulation Results

In this section, we present a simulation exercise that aims to illustrate how the two changes
we propose to the standard model can reconcile the misspecification problems discussed
in Section 3. In particular, we show that in data simulated from our proposed income
process, the standard model has the same type of misspecification issues as in actual
data. Hence, the simulation exercise indicates that the standard model’s problems can
be explained by time-aggregation issues combined with an insufficient description of
transitory income shocks.

Data-generating process. Observed income in our proposed model consists of the sum
of permanent, bonus, and passing income. These come from equations (12), (13), and (14)
respectively,

yobs
T = pobs

T + bobs
T + qobs

T .

defined as the variance of transitory income over one year that would be induced by the current transitory
income process. That is, in the standard model, transitory income variance at time T is (1 + θ2)Var(εT), not
Var(εT) which does not have a clear counterpart in the proposed model.
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In order to simulate data from our proposed model, we approximate the continuous-
time model by discretizing each year into N subperiods which we will call months. The
underlying permanent income process in the continuous-time model can be approximated
as

pT,i = p0 +

N(T−1)+i∑
j=0

√
σ2

perm

N
εperm,j.

Where pT,i is the annualized income in month i of year T, p0 ∼ N(0, σ2
init), and εperm,j ∼

N(0, 1) for all j ∈N. Over a year, the simulated observed permanent income is

pobs
T =

1
N

N−1∑
i=0

pT,i

= p0 +
1
N

N−1∑
i=0

N(T−1)+i∑
j=0

√
σ2

perm

N
εperm,j.

The simulated observed bonus component is

bobs
T =

N−1∑
i=0

√
σ2

bonus

N
εbonus,N(T−1)+i

where εbonus,j ∼ N(0, 1) for all j. Finally, a passing shock that occurs in month j contributes
to passing income for ξ j years. That is, at month N(T−1)+ i, the passing shock from month
j will be contributing to passing income only if ξ j > (N(T − 1) + i − j)/N. The annualized
income from the passing component of income in month i of year T can then be written as

qT,i =

N(T−1)+i∑
j=0

√
σ2

passing

NΘ(τ)
1{ξ j > (T − 1) + (i − j)/N}εpassing,j

and the observed income from passing income shocks is

qobs
T =

1
N

N−1∑
i=0

qT,i

=
1
N

N−1∑
i=0

N(T−1)+i∑
j=0

√
σ2

passing

NΘ(τ)
1{ξ j > (T − 1) + (i − j)/N}εpassing,j
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where εpassing,j ∼ N(0, 1) and ξ j is exponentially distributed with parameter λ = ln(2)/τ
for all j.

We simulate a panel of 50,000 individual log income histories using the discretized
version of our proposed model as the data-generating process over 16 years, dividing
each year into N = 12 subperiods. We then calculate the covariance moments of both
income levels and differences, that is cov(yt, ys) and cov(∆yt,∆ys) for all t and s between 0
and 15. For each set of moments, we estimate the standard model using three different
weighting matrices: equally weighted minimum distance (EWMD), diagonally weighted
minimum distance (DWMD), and the optimally weighted minimum distance (OWMD).

Simulation results. Table 3 presents the simulation results. The column with the “True
Value” shows the parameters of the data-generating process. We have not displayed the
results of estimating the proposed model because, despite the data-generating process be-
ing a discretized version of the proposed model, all methods recover estimated parameter
values almost indistinguishable from the true parameter values.

The columns using EWMD and DWMD in Table 3 show the main misspecification
problem: relative to estimation using level moments, estimation using difference moments
tend to overestimate permanent income variance and underestimate transitory income
variance. This pattern of misspecification is the same as we found when estimating the
standard model in Norwegian data in Table 1. Indeed, Tables 1 and 3 are difficult to
tell apart. Hence, the simulation exercise indicates that the standard model’s problems
can be explained by time-aggregation issues combined with an insufficient description of
transitory income shocks.

Moreover, reflecting the results in Daly, Hryshko, and Manovskii (2022), and as shown
in Section 3 when estimating the standard model on Norwegian data, there is no differ-
ence between the estimates obtained using level and difference moments when one uses
OWMD. However, estimation using OWMD—albeit similar across moments used—does
not obtain the parameters from the data-generating process. Hence, not being sensitive
to moments used is not sufficient to claim that the model no longer is misspecified.12

Proposition 1 sheds some light on why the optimal weighting matrix may yield similar

12In Appendix H we further investigate the results presented in Daly, Hryshko, and Manovskii (2022).
We follow the sample selection criteria they used for their Danish data as closely as possible to obtain a
similar selection from the Norwegian registry data. Then we replicate the estimations they present using
both level and difference moments with OWMD and show the same result: with a balanced panel there is
no difference between estimates from the two sets of moments. However, we also present estimates using
EWMD and DWMD and for those weighting matrices the parameter estimates again depend on the choice
of moments. Our simulation exercise therefore indicates that we cannot have confidence in the estimates
obtained using OWMD even though they do not depend on the choice of moments.
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EWMD DWMD OWMD
Parameter True Value Level Difference Level Difference Level Difference

σ2
perm 0.005 0.005 0.013 0.005 0.013 0.008 0.009
σ2

tran 0.038 0.031 0.017 0.032 0.017 0.021 0.020
τ 2.0 years 7 7 7 7 7 7

b 0.40 7 7 7 7 7 7

θ 7 0.50 0.10 0.53 0.10 0.18 0.16
σ2

init 0.065 0.065 7 0.065 7 0.064 7

Notes: The table presents estimated parameters using the standard model on data generated from the proposed model (N = 1,000,000).
‘True Value’ refers to the parameters used in the data-generating process. ‘Level’ and ‘Difference’ denote the type of moments used,
corresponding to (10) and (11), respectively. ‘EWMD’, ‘DWMD’, and ‘OWMD’ is the type of weighting matrix applied, corresponding
to identity, diagonally optimal, and full optimal weighting matrix, respectively.

Table 3: Estimated standard-model parameters using simulated data from the proposed
model

results independent of moments used.

Proposition 1. For any data-generating process with a stationary difference distribution, as
T → ∞ and N → ∞ the optimal weighted minimum distance estimator will yield the same
estimate irrespective of the type of moments—levels or differences—used.

The intuition for Proposition 1 is as follows. The OWMD estimation procedure is
invariant to any invertible linear mapping of the moments used for estimation. So, if we
had an invertible linear map from level moments to difference moments, the parameter
estimates from the OWMD estimation procedure would be identical in levels and differ-
ences. No such linear mapping exists because the dimension of the difference moments
is less than the level moments. However, there is an invertible linear mapping between
the level moments and the difference moments augmented with some additional terms.
The ‘some additional terms’ relate to the covariance of time-zero income levels. But if
T is large enough, the relative importance of these time-zero elements in the covariance
matrix converges to zero and the estimated parameters become similar. Hence, while
Daly, Hryshko, and Manovskii (2022) convincingly show the importance of using bal-
anced panels in estimation, the results of the paper do not indicate that the standard
model is well-specified. A more complete sketch proof of this proposition can be found
in Appendix D.1.

Notably, there are some combinations of weighting matrix and moments that yield
parameter estimates that are close to the data-generating process in Table 3, even when
the standard model is known to be misspecified. Indeed, the combination of EWMD
or DWMD and level moments provides estimates that are close to the true permanent
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and transitory variances in the data-generating process.13 Proposition 2 shows that as
long as the data-generating process has a random walk component and the transitory
income shocks are sufficiently temporary, the standard model will consistently estimate
the permanent income variance, and therefore also the total transitory income variance,
when using level moments and EWMD for estimation.

Proposition 2. For any data-generating process in which income is made up from a random walk
permanent income process and transitory income shocks that persist τ periods, the equally-weighted
minimum distance (EWMD) estimator with level moments using the standard model consistently
estimates the permanent income variance and the transitory income variance as long as the panel
length of the data is T >> τ.

The intuition for Proposition 2 is as follows. For s >> t, cov(yt, ys) does not depend on
the variance of transitory income. Therefore, if T >> τ there will be enough of these ‘long’
covariances for an unbiased estimate of permanent income variance. Transitory income
variance is identified residually, and will therefore also be estimated consistently.

Proposition 2 also sheds light on when estimation of the standard model using level
moments may not be robust. In particular, if the permanent shocks decay slowly over
time—as is common when estimating the standard model—the level estimation using
EWMD will no longer provide unbiased estimates. The intuition is straightforward. If
the permanent component of the income process is not a unit root, the permanent income
variance can no longer be identified from the ‘long’ covariances.

In Appendix G, we show the results of estimating the standard model on a shorter
panel of simulated data, as well as on a simulated panel in which the ‘permanent’ shocks
decay at a slow rate. We find that these changes have little effect on the difference estimates
(which are already biased) but can introduce bias in the level estimates. In particular, when
the permanent shocks slowly decay, the transitory income variance is overestimated, and
the permanent income variance is underestimated when using level moments, especially
for longer panels.

6 Data Results

We now proceed to estimate our proposed model using the Norwegian income data.
We first show that the parameter estimates are relatively insensitive to the moments and

13However, we note that the persistence of transitory shocks is too low. The parameters for the persis-
tence of the transitory shock—θ in the standard model, b and τ in our proposed model—are not directly
comparable. However, the θ estimated in the table suggests the transitory shocks are less persistent than in
the data-generating process.
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weighting matrix applied.14 Hence, the two adjustments we make, addressing the time
aggregation issue and enriching the description of transitory income shocks, are sufficient
to significantly reduce the extent of misspecification. To illustrate that our proposed
model is still parsimonious, we first estimate how income risk varies by age and time
using Norwegian data and next also estimate our proposed model using data from the
Panel Study of Income Dynamics.

6.1 Results using Norwegian Data

Estimation details. We allow for the age- and time-varying estimates for σ2
perm and σ2

tran,
with the restriction that the variances are constant through each calendar year. In order to
reduce oscillatory behavior in the permanent volatility estimate, we add a regularization
penalty to the loss function that penalizes changes in σ2

perm from year to year. In addition,
we adjust the model to allow for an institutional feature in Norway where a share (approx.
10 percent but time-varying) of labor income is paid in the following year as vacation pay.
We adjust the model-implied covariance matrix to account for this lag.15

Income risk. Panel A of Table 4 shows the parameter estimates using the proposed
model with each of the six combinations of weighting matrix and moment choice. To
ease comparison, Panel C of Table 4 also includes the estimates using the standard model
(same as Table 1). Our proposed model’s estimated parameters are similar across all six
combinations of data moments and weighting matrices. The permanent income variance
is between 0.003 and 0.005, while the transitory income variance is between 0.036 and
0.039. In contrast, the parameter estimates vary widely depending on the moment and
method applied when estimated using the standard model.

Our proposed model is constructed by making two adjustments to the standard model,
addressing time aggregation and enriching the transitory shock process. To illustrate that
both adjustments are necessary, Panel B shows parameters estimated by the proposed
model but with the bonus shock turned off. In this case, we have made only one adjustment
to the standard model: addressing the time aggregation issue. The parameter estimates
vary widely also in this case. Furthermore, the half-life of the passing shock is estimated
(using differences and EWMD or DWMD) to be close to zero—that is, the difference

14The estimation of all models in the body of the paper assume that the permanent component of income
is a unit root. In Appendix F, we show that all our main results prevail also if we relax the assumption of a
unit root.

15We adjust the model-implied moments such that they are associated with (1 − η)yt + ηyt−1 where η is
the vacation pay share and compare these with the data. In practice this adjustment has only a small effect
on our results.
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EWMD DWMD OWMD
Level Difference Level Difference Level Difference

Panel A: Proposed Model

σ2
perm 0.003 0.005 0.003 0.005 0.003 0.004
σ2

tran 0.039 0.038 0.038 0.039 0.039 0.036
τ 1.547 2.045 1.770 2.058 2.234 1.862
b 0.360 0.478 0.341 0.473 0.443 0.480
σ2

init 0.062 7 0.062 7 0.059 7

Panel B: Proposed Model (no bonus shock)

σ2
perm 0.003 0.011 0.003 0.011 0.005 0.007
σ2

tran 0.036 0.021 0.036 0.021 0.023 0.022
τ 0.982 0.065 1.202 0.080 0.231 0.157
b 0.000 0.000 0.000 0.000 0.000 0.000
σ2

init 0.064 7 0.063 7 0.060 7

Panel C: Standard Model

σ2
perm 0.004 0.011 0.004 0.011 0.005 0.007
σ2

tran 0.032 0.020 0.033 0.020 0.021 0.021
θ 0.570 0.070 0.574 0.071 0.163 0.145
σ2

init 0.062 7 0.062 7 0.059 7

Notes: The table presents estimated parameters using the proposed and standard models on Norwegian data. ‘Level’ and ‘Difference’
denote the type of moments used, corresponding to (10) and (11), respectively. ‘EWMD’, ‘DWMD’, and ‘OWMD’ is the type of
weighting matrix applied, corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. The table
shows the mean of parameter estimates over time and age.

Table 4: Estimated parameters using the Norwegian data

estimation really wants there to be a bonus shock and reduces the duration of the passing
shock until it approximates a bonus shock. Hence, the stability of our parameter estimates
do not come only from addressing the time aggregation issue. Instead, both adjustments
to the standard model are important to reduce model misspecification.16

Similar to Daly, Hryshko, and Manovskii (2022), we also find that the parameter esti-
mates of transitory and permanent variance become similar if one estimates the standard

16The other alternative intermediate model is to estimate the standard model with two types of transitory
income shocks. However, as discussed for example in Meghir and Pistaferri (2011), it is not possible to
estimate the standard model with a measurement error (or bonus) shock and an MA(1) income process
because the income process is then underidentified.
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model using the optimally weighted minimum distance method. However, as shown us-
ing simulated data, this does not suggest that the estimated variances are ‘more correct’.
Indeed, the estimated permanent variance using the standard model in the simulated data
was upward biased. In Table 4, we find the same pattern. The estimated permanent vari-
ance is higher when using the standard model and OWMD than when using the proposed
model and OWMD. One reason why this happens is the introduction of the passing shock.
The covariance structure of the passing shock is similar to that of the permanent shock.
Hence, when not including the passing shock, the model allocates part of the variation
coming from the passing shock as permanent income variance.

In two of the six combinations of moments and weighting matrix in Table 4, the
standard model provides similar permanent income variance estimates as the proposed
model. The proposed model’s permanent income variance is between 0.003 and 0.005. The
standard model estimated using the equally or diagonally weighted minimum distance
method with level moments provides parameter estimates of permanent income variance
within the bounds of the proposed model. These are the same combination of moments
and weighting matrix that provided estimates close to the data-generating process in the
simulation exercises. Hence, while we express caution about using the standard model,
our results indicate that if one has to use it (for example if the sample is too small), one
should estimate the standard model using level moments and the diagonally or equally
weighted minimum distance method. However, we warn that the transitory income
variance is always lower when estimated using the standard model compared with the
estimates using the proposed model.

Income risk by age and time. To investigate whether our proposed model yields dif-
ferent trends in income risk from the standard model, we provide age-varying and time-
varying estimates of income risk using both models. Figure 4 presents age profiles of
income risk estimated using the Norwegian data. We restrict attention in this section
to results using the diagonally weighted minimum distance method. Figure 4 thus dis-
plays the results for four different combinations of models (standard and proposed) and
moments (levels and differences).

The main takeaway from Figure 4 is that the misspecification of the standard model
might mislead researchers to spurious conclusions about age-patterns. This observation is
illustrated in the top right panel showing the estimates of the transitory income variance.
First, the misspecification of the standard model is visible as the large discrepancy between
the estimates using the standard model. Moreover, the age profiles estimated using the
standard model differ depending on the moments used. With level moments, transitory
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Figure 4: Age-varying estimates, Norwegian data

income risk decreases in age, while it is approximately flat if one estimates using difference
moments. In contrast, our proposed model is less sensitive to the type of moments used in
estimation. Indeed, irrespective of the moments used in estimation, the proposed model
suggests a similar age pattern: transitory income variance declines slightly by age. The
relatively flat age profiles of both transitory and permanent income variance are consistent
with the findings in Blundell, Graber, and Mogstad (2015).

Figure 5 shows how estimates of income risk has changed over time in Norway. Again,
the figure highlights how estimation using the standard model may yield different esti-
mated variance depending on the type of moments used. However, the time-trends are
relatively similar across specifications. The permanent income variance has increased
slightly across time, and the transitory income variance, while more noisy, has remained
relatively stable across time. Moreover, start-of-working-life income variance has in-
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Figure 5: Time-varying variance estimates, Norwegian data

creased from around 0.05 to almost 0.08 from 1972 to 1998. Again, the two models find
similar trends.17 Hence, our results suggest that although the standard model is misspec-
ified in the sense that it provides very different estimates of the level of income risk, the
time-trends of income risk seem relatively similar across models.

6.2 Results using the Panel Study of Income Dynamics

Above, we illustrated that our proposed model provides stable parameter estimates of
income risk in the Norwegian administrative data. In this section, to illustrate that the
model is sufficiently parsimonious, we show that our proposed model performs well also
when using much smaller sample sizes in the Panel Study of Income Dynamics (PSID).
We first describe the data source and sample selection before we estimate our proposed
model using data from the PSID.

PSID. The PSID has been the main source of data from which to estimate the idiosyn-
cratic income process of households in the United States. In our analysis, we follow the
data selection criteria of Moffitt and Zhang (2018), “the dataset consists of male heads
from 1970 to 2014, 30-59 years old who were not full-time students, had positive weeks
worked and wage and salary earnings, and which excludes non-sample men and all in
PSID over-samples.” Moreover, we only consider even year observations so that our
estimation consistently uses data every two years.18

The importance of estimating using a balanced panel is laid out in Daly, Hryshko, and

17We only show the estimates using level moments because the difference estimation method is unable
to identify this parameter.

18The PSID was run annually until 1997, after which is has been run only every other year.
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EWMD DWMD OWMD
Level Difference Level Difference Level Difference

Panel A: Proposed Model

σ2
perm 0.010 0.008 0.008 0.010 0.006 0.007
σ2

tran 0.065 0.080 0.066 0.074 0.053 0.051
τ 1.407 1.216 1.432 1.374 1.368 1.370
b 0.264 0.347 0.307 0.417 0.373 0.472
σ2

init 0.078 7 0.092 7 0.105 7

Panel B: Standard Model

σ2
perm 0.012 0.021 0.010 0.019 0.009 0.010
σ2

tran 0.047 0.044 0.054 0.042 0.034 0.036
σ2

init 0.069 7 0.086 7 0.105 7

Notes: The table presents estimated parameters using the proposed and standard models on the PSID. ‘Level’ and ‘Difference’ denote
the type of moments used, corresponding to (10) and (11), respectively. ‘EWMD’, ‘DWMD’, and ‘OWMD’ is the type of weighting
matrix applied, corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. Since the PSID data
only contain even-year observations, we do not identify θ in the standard model. The table shows the mean of parameter estimates
over time.

Table 5: Estimated parameters using PSID data

Manovskii (2022). Taking this lesson on board, we create 16 balanced panels, covering dif-
ferent time periods, from our underlying data. Each panel spans 14 years (8 observations,
each 2 years apart). The first spans the years 1970 to 1984, the next 1972 to 1986, all the
way to the last panel for 2000 to 2014. The idea is that 14 years is long enough to estimate
the model, while the requirement that panels be balanced means there would be too few
observations in longer panels. The size of our panels in the PSID is far smaller than those
from the Norwegian registry data. As a result, we do not allow the parameters to be
age varying. Reassuringly, the estimates from Norwegian data imply little age variation.
Furthermore, since the data is only even-year observations, we do not identify θ in the
standard model.

Income risk. Table 5 presents the estimated parameters using the proposed and standard
models in PSID data.19 There are four main takeaways. First, as was illustrated in the
Norwegian data, the estimated parameters differ depending on the moments used when

19Appendix E provides bootstrapped confidence intervals for the PSID estimates. The large sample size
of the Norwegian data makes the parameter estimate confidence bands small, and negligible next to the
large model uncertainty.
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Figure 6: Time-varying variance estimates, PSID data

estimating using the standard model. For example, focusing on DWMD, permanent
variance is almost twice as large when estimated using difference moments compared
with level moments. Parameter estimates from our proposed model are more similar.
For example, the estimated permanent income variance varies between 0.006 and 0.010,
as compared with 0.009 and 0.021 in the standard model. Second, despite the two-year
gap between surveys, using the proposed model we find estimates for the half-life of
passing shocks to be well over one year. We also find that these passing shocks make
up more than half of the observed transitory income variance. Third, as shown by Daly,
Hryshko, and Manovskii (2022), the standard model parameters are almost independent
of moments used when using the optimal weighing matrix, although it does not imply
that the parameter estimates using the standard model and the optimal weighting matrix
are more ‘correct’. Fourth, the parameter estimates from the standard model with level
moments are closest to the estimates from the proposed model, suggesting that the use of
level moments is the best available option if one has to rely on standard model estimates.
Estimation of the standard model using difference moments tend to produce very different
parameter estimates.

Income risk over time. Figure 6 displays the estimated permanent, transitory, and start-
of-working-life variance over time estimated using PSID data. The main takeaway here is
the same as for the Norwegian data. While the standard model tends to produce estimates
that differ from the proposed model in levels of income risk, the time trends are relatively
similar. Estimates using both the standard and the proposed models suggest an increase
in all three components of income risk over time.
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7 Conclusion

The standard permanent-transitory income process has two well-known problems. First, it
suffers from time-aggregation problems. Second, it is misspecified because the parameter
estimates depend on the type of moments and weighting matrix applied. This paper
proposes a parsimonious model of income dynamics that (i) tackles the well-known time-
aggregation problem and (ii) is robust to the choice of moments or weighting matrix.
The model only requires one additional parameter compared with the standard model.
Hence, one can estimate our proposed model using relatively small data sets and include
it in heterogeneous-agent models without needing several additional state variables.

We reiterate our conclusion for practitioners here. If the data set contains many panel
observations, use our parsimonious model of income dynamics to estimate the income
process. The model is robust to using specific moments (level or difference) and the
weighing matrix (optimally, diagonally, or equally weighted) applied. If the data set is
‘small,’ use the standard model, but estimate it using level moments and the equally or
diagonally weighted minimum distance method. Using difference moments potentially
biases the results significantly. Therefore, we strongly advise against estimating the
standard model using difference moments.
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Appendix

A Within-year Distribution of Income Shocks

This section presents evidence on high-frequency income innovations using monthly labor
income data from Norway. We first describe the data sources before providing evidence
suggesting that income innovations occur throughout the year.

Data. For this part of the analysis, we use monthly matched employer-employee data
maintained by Statistics Norway from 2015-2019. The data contains information on
hours worked, hourly wage, and salary per employer-employee-month. Further, the data
include a detailed decomposition of labor income into contracted wage, bonus payments,
overtime, and hourly wage contracts.
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Notes: A job change is defined as a transition of a worker from a main employer to a different main employer. A job loss is defined as
a transition from an employment relationship to no employment relationship. A pay rise is defined as an increase in the contracted
wage between 0.5% and 10% within the same worker-firm relationship. Due to the prevalence of vacation pay that either is paid in
June or July, we cannot confidently identify pay rises in these months and set them to missing.

Figure A.1: Evidence for the Distribution of Income Shocks Within the Calendar Year

34



Within-year income innovations. The standard model described in Section 3 implicitly
assumes that income shocks occur on January 1st each year. To investigate the validity of
this implicit assumption and motivate our proposed model, we use Norwegian monthly
data on job events to determine if they are clustered at particular times of the year. The
results for job changes, bonus payments, job losses, and pay rises are shown in the four
panels of Figure A.1. The figure makes clear that income changes tend to occur throughout
the year. However, there is some clustering of events around specific dates. For example,
job changes and job losses are more prevalent in January. Bonus payments tend to be
paid out in March and December, and pay rises are more common in the second half of
the year. However, although there is some temporal clustering, income shocks tend to be
occur in all months and assuming that shocks are approximately uniformly distributed
across time within a year seems reasonable.

B Further detail on sample selection

We have chosen to focus our analysis on Norwegian males in the most stable part of their
working life—ages 35 to 50. This age restriction is somewhat more restrictive than other
studies in the literature. There are a number of reasons for this restriction. First, our
large sample size allows us to restrict our analysis to the prime of working life without
sacrificing accuracy. Second, the main focus of our paper is to reconcile known problems
with the standard model and this is best done without introducing too many age-varying
complications to the model. Third, we see strong evidence in the Norwegian data that the
type of model we analyze here, both the standard model and our proposed model, does
not fit our data for the young and the old. Figure A.2 shows how the variance of income
changes with age. In our models, this variance is expected to grow with age, which it
does in the age range we restrict to. However, in the 30-35 age range, we see income
variance declining. Furthermore, we have found this cannot be explained by a reduction
in transitory variance. Rather, it appears to come from mean-reversing permanent shocks
as the young converge toward stable jobs from informal or part-time work. In addition, the
age group above 50 shows an increase in permanent shocks that appears to be associated
with early retirements. Further work in these directions may be fruitful but is beyond the
scope of this paper.
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Figure A.2: The variance of income by age

C Moments

C.1 Estimating the Standard Model using Level Moments

If they use level moments, the covariance structure of the permanent component is, for
t < s,

cov(pt, ps) = var(pt) = σ2
p0

+

t∑
i=1

σ2
νi
.

and the covariance stucture of the transitory component is (define the transitory compo-
nent as qt = εt + θεt−1)

var(qt) = σ2
εt

+ θ2σ2
εt−1

cov(qt, qt−1) = θσ2
εt−1

cov(qt, qs) = 0 if s < t − 1.

Using the independence of the permanent and transitory components of income, the co-
variance structure of log income is the sum of the covariance structure of each component

cov(yt, ys) = cov(pt, ps) + cov(qt, qs).

One can then apply the general method of moments and find the parameters that minimize
the distance between the empirically observed moments and those implied by the model.
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C.2 Passing Shock Moments

The following definitions will be useful for calculating the model implied passing shock
moments:

Λ0,θ =

∫ 1

0
θe−θxdx

= 1 − e−θ

Λ1,θ =

∫ 1

0
xθe−θxdx

=
1
θ
− e−θ(1 +

1
θ

)

Λ2,θ =

∫ 1

0
x2θe−θxdx

=
2
θ2 − e−θ(1 +

2
θ

+
1
θ2 ).

Now consider the variance of the passing shock for income between time 0 and time 1. It
can broken down into components that come from shocks between time 0 and 1, time -1
and 0, time -2 and -1, etc. The component that comes from shocks that take place between
time 0 and 1 is again broken into two parts: shocks that pass before time 1 and shocks
that persist past time 1. Shocks that pass before time 1 and last for a period x contribute
x2 to the variance. Shocks that arrive at time 0 < t < 1 and persist past time 1 contribute
(1 − t)2 to the variance. Summing these two parts up we define:

Θ0,θ,var =

∫ 1

0

( ∫ 1−t

0
x2θe−θxdx +

∫
∞

1−t
(1 − t)2θe−θxdx

)
dt

=

∫ 1

0

(
− (1 − t)2e−θ(1−t)

−
2(1 − t)
θ

e−θ(1−t) +
2
θ2 (1 − e−θ(1−t)) + (1 − t)2e−θ(1−t)

)
dt

=
1
θ2

(
1 −Λ1,θ −

1
θ

Λ0,θ

)
.
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Now consider shocks that arrive between time -1 and 0. Again, these can be divided into
two parts, so we define:

Θ−1,θ,var =

∫ 1

0
e−θ(1−t)

( ∫ 1

0
x2θe−θxdx +

∫
∞

1
θe−θxdx

)
dt

=

∫ 1

0
e−θ(1−t)

( ∫ 1

0
x2θe−θxdx + 1 −

∫ 1

0
θe−θxdx

)
dt

=
1
θ

Λ0,θ(e−θ + Λ2,θ).

Now for shocks that arrive between time −N and −N + 1 we have for N ≥ 1:

Θ−N,θ,var =

∫ 1

0
e−θ(N−t)

( ∫ 1

0
x2θe−θxdx +

∫
∞

1
θe−θxdx

)
dt

= e−θ(N−1)Θ−1,θ,var.

Define the variance of a passing shock assuming the underlying martingale has variance
1:

Υ(θ) =

∞∑
N=0

Θ−N,θ,var.

Note this expression also gives us the normalizing factor Θ(τ), substitutingθ = log(2)/τ
for the half-life τ:

Θ(τ) = Υ(log(2)/τ). (A.1)

Assuming constant variance between each integer time interval, the variance of the pass-
ing shock at time T is:

VarT,passing =

∞∑
N=0

σ2
T−N,passing

Υ(θ)
Θ−N,θ,var. (A.2)

Similarly for the covariance of income between time 1 and 2 with that between 0 and 1,
first consider the component that comes from shocks between 0 and 1 and define:

Θ0,θ,cov1 =

∫ 1

0

( ∫ 2−t

1−t
(1 − t)(x − (1 − t))θe−θxdx +

∫
∞

2−t
(1 − t)θe−θxdx

)
dt

=
1
θ

Λ2
1,θ +

e−θ

θ
Λ1,θ.
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Now the component that comes from shocks between -1 and 0:

Θ−1,θ,cov1 =

∫ 1

0

( ∫ 3−t

2−t
(1 − t)(x − (2 − t))θe−θxdx +

∫
∞

3−t
(1 − t)θe−θxdx

)
dt

=
e−θ

θ
Λ0,θΛ1,θ +

e−2θ

θ
Λ1,θ

and hence the component that comes from shocks between −N and −N + 1 for N > 1 is:

Θ−N,θ,cov1 = e−(N−1)θΘ−1,θ,cov1.

The covariance of time-aggregated income with its lag is then:

CovT,T−1,passing =

∞∑
N=0

σ2
T−N−1,passing

Υ(θ)
Θ−N,θ,cov1.

Finally, the covariance of time-aggregated income with its Mth lag is then:

CovT,T−M,passing =

∞∑
N=0

σ2
T−N−M,passing

Υ(θ)
e−θ(M−1)Θ−N,θ,cov1. (A.3)

Equations A.2 and A.3 give the model covariance matrix in level for the passing shocks.
In first differences, we have:

cov(∆yT,∆yTS) = cov(yT, yT−S) − cov(yT−1, yT−S) − cov(yT, yT−S−1) + cov(yT−1, yT−S−1) (A.4)

from which we can calculate the model covariance matrix in first differences.

D Proofs

D.1 Sketch Proof of Proposition 1

The aim of this proof is to show that using the optimal minimum distance estimator will
give the same parameter estimates regardless of using level or difference moments when
there are sufficient panel observations of each individual. There are two steps in the
proof. We first show that the optimal minimum distance estimator gives the same result
when the moments are transformed by an invertible linear mapping. We next show that
one can construct such an invertible linear mapping that transforms level moments into
difference moments, but it includes some additional terms. However, as we add more
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panel observations, the contribution of these additional terms converges to zero such that
the optimal minimum distance estimator will yield the same result regardless of which
moments are used.

Assume that Y = (y1, ..., yT) is a random variable, that f (Y) is a function that generates
data moments from Y, and that g(θ) is a function generating model moments for a set of
parameters θ. We can then formulate the original optimal minimum distance problem
(OMD) as

argmin
θ
E( f (Y) − g(θ))

′

Ω−1E( f (Y) − g(θ))

where Ω = E( f (Y) − E( f (Y)))′E( f (Y) − E( f (Y))).
This problem is equivalent to

argmin
θ
E(A f (Y) − Ag(θ))

′

Ω̃−1E(A f (Y) − Ag(θ))

for any invertible linear map A of dimension T(T+1)
2 where Ω̃ = E(A f (Y)−E(A f (Y)))′E(A f (Y)−

E(A f (Y))). Hence, solving the optimal minimum distance problem of f (Y) and g(θ) is
equivalent to solving the same problem for A f (Y) and Ag(θ).

To show that the level and difference moments give the same estimates under the
optimal minimum distance estimator, we have to show that there exists such an A that
transforms level moments into difference moments. The level moments are defined as

f (Y) = vech(Y
′

Y)

and the difference moments are defined as

f (∆Y) = vech((∆Y)
′

(∆Y)).

Since Y is of length T and ∆Y is of length T−1, f (Y) and f (∆Y) have different dimension so
there does not exist an invertible A such that A f (Y) = f (∆Y). However, we can construct
an invertible linear mapping A with some extra terms:

A f (Y) = [y2
1, y1∆y1, y1∆y2, ..., y1∆yT, f (∆Y)].

Given that ∆Y is a stationary process, y1∆yn goes to zero in expectation as n→ ∞. Thus,
as T → ∞, the extra terms play no role in the minimization so long as the covariance
matrix of ∆Y is a function of the parameter of interest.
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D.2 Sketch Proof of Proposition 2

Suppose the data-generating process for income consists of initial permanent income,
permanent income that follows a random walk, and transitory shocks that persist no more
than N periods. Assume that Y = (y0, y1, ..., yT) is random variable of length T generated
from this income process. The covariance matrix for this process can be summarized as:

var(yt) = σ2
init + tσ2

perm + σ2
trans (A.5)

cov(yt, yt+s) is unconstrained if s ≤ N (A.6)

cov(yt, yt+s) = σ2
init + tσ2

perm if s > N (A.7)

The standard model moments are:

var(yt) = σ2
init + tσ2

perm + σ2
trans (A.8)

cov(yt, yt+s) = σ2
init + tσ2

perm if s ≤ N (A.9)

cov(yt, yt+s) = σ2
init + tσ2

perm if s > N (A.10)

Given that the transitory variance only affects the value of A.8, given a diagonal weighting
matrix (either EWMD or DWMD) the estimation methodology will choose σ2

trans to exactly
match the model and empirical var(yt). As a result, A.8 will have no role to play in the
estimation of σ2

perm and σ2
init. Indeed, these will be entirely determined by A.10 as T → ∞

because the relative weight assigned to A.9 will go to zero (T → ∞ but N is fixed, and
the weight on cov(yt, yt+s) will tend to a fixed positive number under both EWMD and
DWMD). As A.10 is identical to A.7, the estimation of σ2

perm and σ2
init will be consistent

resulting therefore in an consistent estimate of σ2
trans from A.8.

E Bootstrapped PSID confidence intervals

Table A.1 shows the PSID estimation results for both the proposed and standard model,
level and difference moments, along with their bootstrapped confidence intervals in paren-
theses below.
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EWMD DWMD OWMD
Level Difference Level Difference Level Difference

Panel A: Proposed Model

σ2
perm 0.010 0.008 0.008 0.010 0.006 0.007

(0.008, 0.012) (0.005, 0.012) (0.007, 0.010) (0.006, 0.014) (0.005, 0.007) (0.005, 0.008)
σ2

tran 0.065 0.080 0.066 0.074 0.053 0.051
(0.057, 0.075) (0.068, 0.088) (0.057, 0.073) (0.056, 0.079) (0.035, 0.050) (0.036, 0.051)

τ 1.407 1.216 1.432 1.374 1.368 1.370
(1.258, 1.440) (1.152, 1.399) (1.262, 1.463) (1.356, 1.452) (1.255, 1.471) (1.279, 1.463)

b 0.264 0.347 0.307 0.417 0.373 0.472
(0.243, 0.288) (0.314, 0.440) (0.297, 0.329) (0.359, 0.502) (0.316, 0.451) (0.352, 0.554)

σ2
init 0.078 7 0.092 7 0.105 7

(0.067, 0.098) 7 (0.079, 0.107) 7 (0.088, 0.114) 7

Panel B: Standard Model

σ2
perm 0.012 0.021 0.010 0.019 0.009 0.010

(0.010, 0.014) (0.016, 0.025) (0.008, 0.011) (0.015, 0.022) (0.007, 0.009) (0.008, 0.011)
σ2

tran 0.047 0.044 0.054 0.042 0.034 0.036
(0.040, 0.053) (0.036, 0.051) (0.046, 0.058) (0.032, 0.047) (0.022, 0.033) (0.025, 0.034)

σ2
init 0.069 7 0.086 7 0.105 7

(0.058, 0.088) 7 (0.074, 0.101) 7 (0.068, 0.090) 7

Table A.1: PSID estimation with bootstrapped standard errors

F Persistent (but not permanent) shocks

The paper restricts attention to estimating income processes where the permanent compo-
nent is a unit root. In this appendix, we present the paper’s main results when we allow
the persistent part of the income process to have an arbitrary persistence.

Specifically, we adjust the standard income process to be

yt = pt + εt + θεt (A.11)

pt = ρpt−1 + vt (A.12)

where the adjustment is to allow for a ρ that is not equal to 1. Similarly, we adjust the
persistent part of the proposed model to be

dpt = log(ρ)(pt − p0)dt + σpermdPt

where the adjustment is that log(ρ) = 0 in the version of the model in the paper, while we
allow for a general ρ in this appendix.
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EWMD DWMD OWMD
Level Difference Level Difference Level Difference

Panel A: Proposed Model

σ2
perm 0.004 0.006 0.004 0.006 0.003 0.005
σ2

tran 0.038 0.034 0.041 0.035 0.039 0.033
τ 1.494 1.810 1.328 1.815 2.241 1.640
b 0.390 0.540 0.407 0.526 0.443 0.525
ρ 0.991 0.979 0.982 0.985 1.000 0.989
σ2

init 0.063 7 0.063 7 0.059 7

Panel B: Standard Model

σ2
perm 0.010 0.014 0.010 0.015 0.011 0.010
σ2

tran 0.022 0.017 0.022 0.016 0.019 0.019
θ 0.216 0.026 0.233 0.000 0.088 0.092
ρ 0.923 0.894 0.921 0.809 0.926 0.952
σ2

init 0.063 7 0.062 7 0.059 7

Notes: The table presents estimated parameters using the proposed and standard models on Norwegian data. ‘Level’ and ‘Difference’
denote the type of moments used, corresponding to (10) and (11), respectively. ‘EWMD’, ‘DWMD’, and ‘OWMD’ is the type of
weighting matrix applied, corresponding to identity, diagonally optimal, and full optimal weighting matrix, respectively. The table
shows the mean of parameter estimates over time and age.

Table A.2: Estimation with persistent, but not permanent shock

Table A.2 presents the estimated income processes on Norwegian data when we allow
for a ρ ≤ 1. The proposed model provides consistent estimates of the model parameters
even in this more general case. In particular, across all combinations of moments and
weighting matrices applied, the estimates of ρ are close to 1, and the estimated permanent
and transitory variances are stable.

In contrast, estimates of the standard model vary more depending on moments, and
weighting matrices applied. For example, the estimates of ρ vary from 0.81 to 0.95.
The estimates of the permanent variance also vary more. However, when adjusted for
the persistence of the permanent component (annual variance = σ2

perm/(1 − ρ2)), they are
only slightly higher than the permanent variance estimates from the proposed model.
Moreover, when we estimate using the optimal weighted minimum distance method, we
get similar results regardless of the moments used, as discussed in Proposition 1.

Table A.3 also presents the results when we simulate the proposed model and estimate
the standard model. Again, we do not provide the estimates of the proposed model since it
is the data-generating process. Compared with the data-generating process, the standard
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EWMD DWMD OWMD
Parameter True Value Level Difference Level Difference Level Difference

σ2
perm 0.005 0.008 0.015 0.009 0.015 0.013 0.013
σ2

tran 0.038 0.026 0.015 0.027 0.015 0.017 0.017
τ 2.0 years 7 7 7 7 7 7

b 0.40 7 7 7 7 7 7

θ 7 0.38 0.07 0.39 0.07 0.12 0.11
ρ 1.00 0.97 0.93 0.97 0.93 0.94 0.95
σ2

init 0.065 0.062 7 0.063 7 0.064 7

Table A.3: Estimation of simulated data on the standard model with persistent, but not
permanent shock

model, in this case, tends to underestimate the persistence of the permanent component.
Furthermore, the standard model tends to overestimate permanent variance somewhat
and underestimate the transitory variance, suggesting that some of the transitory shocks
in the model are misrepresented as permanent shocks when estimated using the standard
model. This pattern of misrepresented shocks was also present in the simulation exercise
in the text.

G Further Simulation Results

Tables A.4, A.5, and A.6 show estimation results for the standard model for simulation
results varying the length of the panel (T=16 or 5) and introducing some decay in the
permanent shock (we set ρ = 0.97 in the proposed model data-generating process). The
estimation results reported are for the standard model with ρ = 1.

Two results are noteworthy. First, reducing the panel size to T = 5 results in the level
estimation mildly underestimating the transitory income variance, while the difference
estimates are unchanged and remain far from the true parameter values. Second, if the
‘permanent’ income shock decays even slowly over time, estimating the standard model
with ρ = 1, especially for long panels, results in an overestimation of the transitory vari-
ance and an underestimation of the permanent variance when using level moments. The
difference estimates are little changed. This bias in the level moments is also found when
we estimate the proposed model with ρ = 0 and is caused by the model misinterpreting
the decaying permanent shocks as transitory.

In the paper we do not allow for permanent shocks to decay. When we estimated ρ in
the Norwegian data, we found it to be equal to 0.
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EWMD DWMD OWMD
Parameter True Value Level Difference Level Difference Level Difference

σ2
perm 0.005 0.005 0.012 0.005 0.012 0.008 0.012
σ2

tran 0.038 0.027 0.017 0.027 0.017 0.021 0.018
τ 2.0 years 7 7 7 7 7 7

b 0.40 7 7 7 7 7 7

θ 7 0.32 0.10 0.32 0.10 0.18 0.12
σ2

init 0.065 0.073 7 0.073 7 0.070 7

Table A.4: Estimated standard-model parameters using data simulated from the proposed
model (T=5)

EWMD DWMD OWMD
Parameter True Value Level Difference Level Difference Level Difference

σ2
perm 0.005 0.003 0.012 0.003 0.012 0.005 0.008
σ2

tran 0.038 0.038 0.017 0.039 0.017 0.023 0.021
τ 2.0 years 7 7 7 7 7 7

b 0.40 7 7 7 7 7 7

θ 7 0.71 0.10 0.76 0.10 0.21 0.18
σ2

init 0.065 0.048 7 0.048 7 0.041 7

Table A.5: Estimated standard-model parameters using data simulated from the proposed
model (T=16, ρ=0.97)

EWMD DWMD OWMD
Parameter True Value Level Difference Level Difference Level Difference

σ2
perm 0.005 0.003 0.012 0.003 0.012 0.006 0.011
σ2

tran 0.038 0.029 0.017 0.029 0.017 0.023 0.018
τ 2.0 years 7 7 7 7 7 7

b 0.40 7 7 7 7 7 7

θ 7 0.36 0.11 0.36 0.11 0.21 0.12
σ2

init 0.065 0.060 7 0.060 7 0.056 7

Table A.6: Estimated standard-model parameters using data simulated from the proposed
model (T=5, ρ=0.97)
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H Replicating DHM on Norwegian data

As mentioned in Section 1, the paper most closely related to ours is Daly, Hryshko, and
Manovskii (2022) (DHM). Therefore, this section replicates their results on Norwegian
data by comparing estimates using moments in levels and differences. They use registry
data from both Denmark and Germany, and here we aim to mimic as closely as possible
the three different sample selection criteria that they apply to the Danish data.

We again use the Norwegian registry data described in section 2 and restrict our
attention to males born in Norway. As DHM do in the Danish data, we further restrict
attention to those born in the years from 1951 to 1955 and only use wage data from 1981 to
2006. We also drop individuals whose educational status has changed during their longest
spell (discussed further below). Outliers are defined as year-to-year earnings increases of
more than 500 percent or a decrease of more than 80 percent. Individuals with earnings
outliers within their longest spell are dropped.

There are two selection criteria that DHM apply to the Danish data that we cannot
replicate exactly in the Norwegian data: 1) They drop records where individuals worked
less than 10 percent of the year as a full-time employee, and 2) they remove individuals
who were ever self-employed. We handle both of these by referring to the Norwegian
social security system’s definition of a base level of income (“grunnbeløp” which is ab-
breviated to ‘G’), which is used as a basis for calculations of various social security and
pension benefits. The first criteria mentioned above is handled by dropping observations
where income is below 1G. This should capture individuals who are only loosely attached
to the labor force during the year. The second criteria drops observations where business
income is above 1G which should capture those who are self-employed.20

DHM’s focus is on the importance of using a balanced sample, and to highlight this
they contrast estimates obtained from three different samples in their paper. The first
sample (“Balanced”) only keeps individuals where observations are available for all 26
years they consider. The second sample (“9 consec.”) constructs spells of consecutive
observations for each individual and only keeps those individuals where the longest spell
contains at least 9 consecutive observations. Only the observations within that longest
spell are kept, so that there are no gaps in the resulting data set. The third sample (“20
not nec. consec.”) keeps individuals where at least 20 income observations are available
but does not require that these are consecutive. So in this sample, the “longest spell” is
not relevant and the data can contain gaps. Table A.7 shows the number of individuals
we obtain in the three different samples and compares them to the numbers obtained by

20Note that the measure of business income is only available from 1993.
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Sample Norwegian data Danish data (from DHM)

Sample 1 - Balanced 71,825 67,008
Sample 2 - 9 consec. 98,078 102,825
Sample 3 - 20 not nec. consec. 90,305 90,668

Table A.7: Number of individuals in the three samples in Norwegian and Danish data

DHM in the Danish data.
Tables A.8, A.9, and A.10 present results from estimating the standard model from

section 3.1 using both moments in levels and differences for each of the three samples.
Table A.8 shows that we get similar results to DHM when we follow their approach

and use the optimal weighting matrix—that is, the inverse of the variance-covariance
matrix of the data moments—in the estimation. Columns (1)—(4) show results for the
samples with 9 or more consecutive observations and with 20 or more observations that
are not necessarily consecutive. For both of these samples, we see the same patterns that
DHM report for the Danish data: The estimated persistence and variance of the permanent
shock as well as the estimated persistence of the transitory shock are higher when using
difference moments, while the estimated variance of the transitory shock is higher when
using moments in levels. Columns (5) and (6) show that these differences disappear when
using the balanced sample where individuals are only included if data is available for all
of the 26 years. Thus the estimation on Norwegian registry data give results very similar
to the ones obtained by DHM for Danish (and German) data.

Tables A.9 and A.10 show that using a different weighting matrix in the estimation—
respectively the inverse of a diagonal weighting matrix using only the variance of the data
moments and the identity matrix—does not yield the same results as in DHM. In both
of those estimations, we get that using difference moments leads to a higher estimated
variance of the permanent shock and a lower estimated variance of the transitory shock
even in the balanced sample. The estimated values of persistence also depend on the
moments used, but the ranking differs depending on the weighting matrix.

That the choice of weighting matrix affects the estimation results in this way is yet
another indication that the standard model is misspecified and that simply using a bal-
anced panel does not fix the issue. We remain convinced that using a balanced panel is
important for the reasons pointed out by DHM, but the observation that the estimated
values in columns (5) and (6) of table A.8 are the same does not necessarily show that
these estimates are correct. As shown in the estimation on simulated data presented in
table 3, obtaining the same estimated values using moments in levels and differences does
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9 consec. 20 not nec. consec. Balanced
Levs. Diffs. Levs. Diffs. Levs. Diffs.

ρ 0.952 0.990 0.967 0.981 0.970 0.975
(0.001) (0.0003) (0.0006) (0.0005) (0.0006) (0.0008)

σ2
perm 0.010 0.015 0.008 0.013 0.006 0.006

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

θ 0.221 0.250 0.195 0.263 0.273 0.272
(0.002) (0.003) (0.003) (0.003) (0.003) (0.003)

σ2
tran 0.017 0.009 0.019 0.010 0.009 0.009

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001)

σ2
init 0.025 — 0.027 — 0.025 —

(0.0004) — (0.0004) — (0.0004) —

χ2 8,312 5,259 8,970 8,705 8,335 7,228
(d.f.) 346 321 346 321 346 321

Table A.8: Estimates of the earnings process in Norwegian administrative data using
DHM’s sample selection criteria. V matrix = DHM (= optimal weighting matrix)

not guarantee that the estimations recover the true parameter values.
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9 consec. 20 not nec. consec. Balanced
Levs. Diffs. Levs. Diffs. Levs. Diffs.

ρ 0.968 0.990 0.977 0.889 0.979 0.828
(0.0002) (0.0007) (0.0002) (0.0037) (0.0002) (0.0064)

σ2
perm 0.008 0.017 0.006 0.017 0.005 0.011

(0.00003) (0.0002) (0.00003) (0.0002) (0.00002) (0.00016)

θ 0.477 0.233 0.440 0.206 0.737 0.211
(0.012) (0.003) (0.010) (0.004) (0.044) (0.004)

σ2
tran 0.023 0.009 0.026 0.008 0.012 0.007

(0.0003) (0.0001) (0.0003) (0.0001) (0.0006) (0.0001)

σ2
init 0.025 — 0.029 — 0.026 —

(0.0001) — (0.0001) — (0.0001) —

χ2 11,883 6,147 18,423 7,643 13,985 5,993
(d.f.) 346 321 346 321 346 321

Table A.9: Estimates of the earnings process in Norwegian administrative data using
DHM’s sample selection criteria. V matrix = diagonal.

9 consec. 20 not nec. consec. Balanced
Levs. Diffs. Levs. Diffs. Levs. Diffs.

ρ 0.969 0.992 0.981 0.987 0.983 0.988
(0.279) (4.65) (0.293) (5.38) (0.336) (8.71)

σ2
perm 0.007 0.018 0.006 0.018 0.005 0.011

(0.046) (0.668) (0.040) (0.670) (0.040) (0.669)

θ 0.466 0.239 0.460 0.239 0.726 0.245
(14.6) (14.3) (12.3) (14.8) (52.5) (16.6)

σ2
tran 0.024 0.010 0.028 0.010 0.014 0.008

(0.348) (0.439) (0.343) (0.443) (0.745) (0.442)

σ2
init 0.026 — 0.031 — 0.027 —

(0.124) — (0.126) — (0.127) —

χ2 0.0064 0.0012 0.0119 0.0017 0.0079 0.0013
(d.f.) 346 321 346 321 346 321

Table A.10: Estimates of the earnings process in Norwegian administrative data using
DHM’s sample selection criteria. V matrix = identity.
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