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This paper uncovers a new finding on the role of expectations in shaping

economic fluctuations. Sentiment shocks – defined as changes in expectations

unrelated to fundamentals – drive boom-bust dynamics in the key macroeco-

nomic indicators1. That is, given a positive shift in sentiments, output initially

increases, but after some time, it significantly falls below trend. By contrast,

technology shocks bring about trend-reverting dynamics that are absent of any

oscillatory pattern.

Our findings relate to Keynes’ idea of the existence of “animal spirits” guid-

ing the actions of economic agents and driving business cycles. This idea is

appealing for at least two reasons. First, there is a broad consensus in the busi-

ness cycles literature that the economy is primarily driven by demand distur-

bances, while changes in technology drive only a small fraction of business cycle

fluctuations (see, for example, Angeletos et al., 2020). Within this paradigm,

sentiment shocks represent a natural candidate of demand-driven fluctuations.

Second, narratives of economic fluctuations driven by sentiments pervade the

history. For example, Hall (1993) argues that the 1990-1991 recession has

no clear fundamental source, rather it originated from a spontaneous fall in

consumption.2 Another piece of evidence is the swift recovery post 9/11, that

Shiller (2020) attributes to an unexpected change in national sentiment due to

the public resolution to defy the attackers by carrying on with life as normal.

Even the Great Recession is hard to justify by solely relying on depressed fun-

damentals (see, among others, Farmer, 2012 and Bacchetta and Van Wincoop,

2016).

Besides showing that sentiments are an important contributor of business

cycle fluctuations, we find that they shape the economy in a way that is pro-

foundly different from shocks to fundamentals. A direct consequence of our

result is that expansions fueled by sentiments are more likely to culminate into

a recession than those expansions driven by technology improvements. There-

fore, distinguishing between sentiments and fundamentals become even more

1 By change in fundamentals we mean any exogenous change in payoff-relevant variables and
beliefs thereof, including technology, oil, monetary and fiscal shocks, as well as changes in
preferences or endowments.

2 See also Blanchard (1993) for an “animal spirit” account of the 1990-1991 recession.
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relevant for policy makers, whose aim is to prevent inefficient economic fluctu-

ations. We place such distinction at the center of our analysis.

We begin by estimating sentiment shocks. Using quarterly expectations data

from the Survey of Professional Forecasters (SPF), we compute the time t revi-

sion of the one-year-ahead expectations on real GDP growth formed by analysts

in quarter t−1. We then extract the sentiment component as the residual of a

regression of expectations revisions onto past, present, and future technology

growth, as well as onto estimated expectations on future technology growth.

Controlling for both expected and actual technology realizations isolates shifts

in analysts’ expectations due to pure sentiments from those originating from ex-

post wrong beliefs on future technology (often labelled as noise shocks). Once

we extract the sentiment component from analysts’ expectations revisions, we

use local projections as in Jordà (2005) to estimate the response of macroe-

conomic aggregates to sentiment shocks. Remarkably, we find that a positive

sentiment shock leads to boom-bust dynamics in aggregate quantities. Real

GDP, consumption, hours, and investment significantly increase on impact and

remain elevated for about three years, after which they display a significant con-

traction below their long-run trend of comparable magnitude and length. To

our knowledge, this is the first study showing predictable sentiment-led boom-

bust dynamics. As such, we subject our results to a vast array of robustness

checks. For instance, we check that the results are robust to controlling for

other shocks estimated by the literature including monetary, fiscal, and oil price

shocks, to using different expectations targets for the identification of sentiment

shocks, and to different sample periods.

Next, we show that the oscillatory dynamics that we find in response to sen-

timent shocks do not emerge in response to fundamental shocks. We carry out

two distinct exercises. First, we consider analysts’ expectations revisions with-

out controlling for changes in technology, and we find that positive revisions

surprises do not predict a future bust. Second, we identify technology shocks

and estimate their effects on the business cycle. To do so, we extract the unpre-

dictable component of the growth rate of the utilization-adjusted Total Factor

Productivity taken from Fernald (2014) and estimate its effect on the econ-
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omy via local projections. We find that technology shocks lead to significant

and positive deviations of macroaggregates from their long-run trend without

exhibiting any oscillatory pattern.

Altogether, our empirical results pose new challenges for business cycle mod-

els. On the one hand, workhorse DSGE models (see, for example, Smets and

Wouters, 2007) feature no intertemporal dependence between expansions and

recessions. For this reason, they are unable to reproduce the oscillatory re-

sponses to sentiment shocks. On the other hand, models of endogenous cy-

cles as in Beaudry et al. (2020) feature oscillatory dynamics in response to all

shocks, thus they fall short in reproducing the responses to technology shocks.

In the second part of the paper, we present a model that shares elements with

both families of models and offers an explanation of the conditional emergence

of boom-bust cycles.

We augment an otherwise standard RBC model with two main ingredients.

First, firms can borrow from households only up to a limit which depends on

their market value. Second, firms face a working capital requirement. The

interaction of the borrowing limit and the working capital requirement gen-

erates amplification and, for some parametrizations, self-fulfilling equilibria.

Therefore, the model features local indeterminacy of equilibria around a unique

steady state as in Benhabib and Farmer (1994). The intuition behind indetermi-

nacy of equilibria is as follows. If households become more optimistic regarding

firm value, the borrowing constraint relaxes, and firms can finance more pro-

duction. As firms increase their labor demand, households’ income increases

and so does their demand for firm assets, which results in an increase of firm

value and a validation of the initial households’ optimism.

We then feed the model with sentiment and technology shocks. Consistent

with their empirical counterpart, we define sentiments as rational expectation

shocks independent from technology. Crucially, the model rationalizes the con-

ditional boom-bust dynamics that we find in the data. The intuition is that

while both sentiment and technology shocks increase firm value, the nature

of the increase matters for propagation. During a sentiment-driven expansion,

households increase their saving desire because they know that a recession will
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follow. Then a recession occurs as households begin to sell firm assets without

internalizing the adverse consequences on the borrowing constraint and on the

economic activity. During an expansion driven by a temporary improvement in

technology, in contrast, firm value increases because firms are more profitable.

Since households know that higher firm values are due to higher technology,

they will not sell firm assets and, consequently, there will be no credit crunch.

Related literature This paper relates to three strands of the literature. First,

our empirical results relate to the literature on the estimation of expectation

shocks. The definition of expectation shocks is, however, not uniform across

studies. On the one hand, there is a strand of research which draws from Pigou

(1927) and focuses on noise shocks, that is, on mistakes about future technol-

ogy movements.3 On the other hand, there is a set of papers that identifies

expectation shocks as orthogonal to fundamentals and their expectations. Our

definition of sentiment shocks is in line with this latter strand of literature.

Examples in this class are Leduc and Sill (2013), Fève and Guay (2019), and

Levchenko and Pandalai-Nayar (2020), which use Structural Vector Autoregres-

sions (SVARs) to identify sentiment shocks from survey data, and study their

empirical responses. We complement these studies by proposing a different

method to trace out the dynamics implied by sentiment shocks, which does not

rely on SVARs. While we find similar short horizon responses to a sentiment

shock, we document novel evidence of a medium horizon reversal. A related

handful of papers uses instrumental variables to identify exogenous expecta-

tional shifts. In particular, Benhabib and Spiegel (2019) identifies sentiment

shocks from political outcomes, and Lagerborg et al. (2022) from the number

of fatalities in mass shootings. Both studies find that sentiment shocks have

sizeable effects on the economy while they are silent on their medium horizon

impact.

3 Works on the estimation of noise shocks include Oh and Waldman (1990), Beaudry and Portier
(2004), Lorenzoni (2009), Schmitt-Grohé and Uribe (2012), Blanchard et al. (2013), Hürtgen
(2014), Forni et al. (2017), Chahrour and Jurado (2018), Benhima and Poilly (2021), En-
ders et al. (2021), Chahrour and Jurado (2022), Faccini and Melosi (2022), and Enders et al.
(2022).
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The second strand of literature related to this paper is the one supporting

the endogenous cycle hypothesis. The idea is that the economy features an

endogenous propagation mechanism that makes it perpetually oscillating be-

tween periods of boom and periods of bust. The endogenous cycle view has

received only scattered attention (see Boldrin and Woodford (1990) for a sur-

vey), while a more exogenous view on cycles, according to which cycles man-

ifest due to the alternation of random positive and negative shocks, has pop-

ularized the literature. Recently, however, Beaudry et al. (2020) has revived

the attention on the endogenous cycle hypothesis. They analyze the spectrum

of several macroeconomic indicators and provide novel supportive evidence of

perpetual oscillations in the reduced form data of U.S. Our results represent

a step forward, in the sense that we attribute to sentiments the source of the

oscillations documented by Beaudry et al. (2020). More tangentially, there is

a growing literature that aims at detecting early warnings indicators of future

financial crises. Sufi and Taylor (2021) provides a summary of this literature.

Their abstract reads “[...] Crises do not occur randomly, and, as a result, an

understanding of financial crises requires an investigation into the booms that

precede them." We show that recessions are likely to occur when the boom

preceding them has a non-fundamental cause.

Finally, our model is related to the class of models with equilibrium inde-

terminacy and sunspot shocks. The workhorse model in this literature is the

one by Benhabib and Farmer (1994) in which equilibrium indeterminacy arise

due to aggregate increasing returns to scale.4 Their work suggests that eco-

nomic fluctuations may be driven not only by changes in fundamentals but also

by self-fullfilling changes of agents’ expectations. A close paper to ours in this

class is Benhabib and Wen (2004), which analyzes a RBC model with increasing

returns and endogenous capacity utilization. They show that when the model is

parametrized in the indeterminacy region, it can better replicate the autocovari-

ance properties of the data. We are similar in spirit but our model also empha-

sizes the different dynamics implied by technology and sunspot shocks. Lastly,

4 See also Azariadis (1981), Diamond (1982), Cass and Shell (1983), Woodford (1986), and
Cooper and John (1988).
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we relate to the class of models that generate self-fulfilling rational expecta-

tions equilibria due to credit market amplification. Examples of this class are

Benhabib and Wang (2013), Liu and Wang (2014), and Azariadis et al. (2015).

While their emphasis is either on a single shock or the unconditional properties

of the economy, our model is built to rationalize why only non-fundamental

shocks can explain the boom-bust patterns observed in the data.

1 Empirical responses to sentiments and fundamentals

In this section we identify sentiment shocks and estimate their effects on the

economy. We proceed in two steps. First, we isolate the sentiment component

from a time series of expectations on the future economy. We do so by tak-

ing the residual from a regression of expectations on past, present, and future

realizations of technology growth, as well as on expectations of future tech-

nology. Second, we estimate the impulse responses of several macroeconomic

aggregates to sentiment shocks via local projections.

Identification of sentiment shocks To proxy expectations of market partic-

ipants, we use expectations data from the Survey of Professional Forecasters

(SPF) maintained by the Philadelphia Fed. The survey consists in quarterly

forecasts at several horizons for a number of macroeconomic indicators avail-

able from 1968Q4. In our baseline specification, we use the mean of analysts’

one-year-ahead forecasts on U.S. real GDP growth from 1970Q3 to 2020Q1.5,6

Let xt+h|t−1 be the mean analysts’ forecast of xt+h made in quarter t− 1, we

compute the quarter t forecast revision as

St =
xt+3|t
xt−1|t

− xt+3|t−1

xt−1|t−1
,

where the second term on the right-hand side is the forecast on annual GDP

growth made in quarter t−1 and the first term is the updated forecast in quar-

5 We start from 1970Q3 to avoid discontinuities in the data, while we stop in 2020Q1 to exclude
the COVID-19 recession.

6 In Section 1.1 we show that results are robust to using the median (instead of the mean) or
using other macroeconomic indicators included in the Survey such as unemployment or the
Industrial Production Index.
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ter t. The difference between the two, St, is the forecast revision from t−1 to

t.7 To isolate the sentiment component, we regress St on the past, present, and

future technology, and on past and present expectations of future technology.

Importantly, including both realized technology and its expectations allows us

to control for fluctuations induced by ex-post wrong beliefs about future tech-

nology, i.e. noise shocks. The regression reads:

St =
K∑

k=−K
αk∆ logTFPt−k +

J∑
j=0

β jbt− j +νt, (1)

where we omit the constant for convenience. We use utilization-adjusted quar-

terly TFP from Fernald (2014) as a proxy for technology. We set the number

of lags K and J equal to four and the number of leads K to 12.8 The term

bt ≡ Ê t[logTFPt+3 − logTFPt−1] is the estimated beliefs on future annual TFP

growth where we keep the timing consistent with the forecast revisions St. TFP

expectations are not readily available in the survey, thus we compute bt as the

fitted value of the following regression:

logTFPt+3 − logTFPt−1 =
M∑

m=1
αm∆ logTFPt−m+1 +

Q∑
q=1

βqPCt−q+1 + r t, (2)

where the left-hand side is the annual growth rate of quarterly utilization-

adjusted TFP, and the right-hand side includes quarterly TFP growth and the

matrix PC of the first four principal components of the quarterly dataset main-

tained by McCracken and Ng (2020). The number of lags M and Q is equal to

four.9,10

7 Note that the nowcast of xt−1 made in t−1 and the backcast in t are not necessarily the same
since analysts do not observe the current values of x. See Enders et al. (2021) for an exploration
of the economic effects of nowcast errors.

8 Results are unchanged when using more leads or lags. See Appendix D.
9 The right-hand side of Equation (2) might not fully capture agents’ information about future

technology, therefore in Section 1.1 we augment the controlling set with the TFP news shocks
estimated in our sample using the procedure by Barsky and Sims (2011).

10 Appendix D shows that results are robust to changing the number of lags or of principal com-
ponents.
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Table 3 in Appendix C shows the results for both regressions, and Figure 9 in

Appendix B illustrates the sentiment shock series. Interestingly, the R-squared

of the regression of Equation (1) is slightly above 40%, meaning that more than

half of changes in analysts’ expectations is not due to realized changes in TFP

or noise. This implies that a large share of the variation of the forecast revisions

St is driven by sentiments.11

Impulse responses to sentiment shocks The residual, ν̂t, from Equation (1)

is our estimate of a sentiment shock at time t. Next, we estimate the impulse re-

sponses to a sentiment shock using local projections as in Jordà (2005). Specif-

ically, for each variable of interest y, we run the following projections

yt+h − yt−1 = θhν̂t +
P∑

p=1

[
δpν̂t−p +λp∆yt−p

]
+1h>0ût+1,t+h +ut,t+h

for h = 0,1, . . . ,H

(3)

where the parameter θh is the response of y to a sentiment shock after h peri-

ods. In the baseline, we control for the first 4 lags, i.e. P = 4, of the sentiment

shocks ν̂t and the first difference of the endogenous variable ∆yt. In addition,

when h > 0, we also control for the residual ût+1,t+h estimated in the previ-

ous regression and forwarded by one period.12 The right panels of Figure 1

illustrate the responses of both the log of real GDP and the forecast revisions

to a one standard deviation increase in sentiments. As a way of comparison,

the left panels show the responses to a one standard deviation increase in the

forecast revisions. We compute 80% and 90% confidence intervals using het-

eroskedasticity and autocorrelation-consistent standard errors by Newey and

West (1987). Two patterns emerge. First and foremost, the response of GDP

depends on whether or not we remove the fundamental component from fore-

11 The R-squared increases to 52% if we also control for Romer and Romer (2004) monetary policy
shocks, Ramey (2011) military spending shocks, Mertens and Ravn (2012) unanticipated and
anticipated tax shocks, and Kilian (2008) oil price shocks. Meaning that up to 48% of variation
in analysts’ forecast revisions is due to sentiments.

12 The inclusion of the residuals from the previous regression increases the efficiency of the esti-
mator. The reason is that the term ût+1,t+h captures part of the forecast error at horizon h−1.
Figure 10 in Appendix D shows the impulse responses without the residuals.

9



Figure 1: GDP response to a forecast revisions shock and sentiment shock

Note: Impulse responses to a one-standard deviation forecast revision shock (first column) and
sentiment shock (second column). Sample period: 1970Q3–2020Q1. Blue lines indicate the
point estimates and the shaded areas indicate 80% and 90% confidence bands calculated with
heteroskedasticity and autocorrelation-consistent standard errors (Newey and West, 1987).
Horizontal axes measure quarters and vertical axes measure percentage points (forecast re-
vision) and percent deviations from pre-shock trend (real GDP). In the second row, the x mark
is the expected Real GDP growth implied by the impact response of the forecast revision. See
Appendix A for further details on the variables.

cast revisions. The left panels show a transitory but persistent increase in the

real GDP in response to a positive change in forecast revisions. The right pan-

els, in contrast, show boom-bust dynamics in response to a sentiment shock.

A positive sentiment shock predicts a gradual increase in the real GDP which

remains elevated for about three years, and significantly falls below trend af-

terward. Second, the cross in the bottom panels marks analysts’ forecast of real

GDP that they made at the time the shock hit the economy. Interestingly, while

analysts tend to underreact in response to a change in forecast revisions – con-

sistent with the findings of Bordalo et al. (2020) – their forecast conditional on

sentiment shocks is within the confidence bands of realized GDP, meaning that
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there is no significant underreaction in response to a sentiment shock. We take

the lack of underreaction conditional to sentiment shocks as informative for the

model that we offer in Section 2.

1.1 Robustness checks

We now show that the results documented in Figure 1 are robust to different

specifications. In the interest of space, Figure 2 plots only the responses of real

GDP to a sentiment shock. The solid red line along with shaded areas are the

responses under the alternative specification, whereas the blue line with cir-

cular markers is the baseline response. We address six major concerns. First,

the sentiment shocks series may contain the forecast revisions induced by fun-

damental shocks other than technology, including policy and oil prices shocks.

Thus, the first panel plot the GDP response to a sentiment shock ν̂t obtained af-

ter adding to the right-hand side of Equation (1) the Romer and Romer (2004)

monetary policy shocks series extended by Wieland (2021), Ramey (2011) mil-

itary spending, unanticipated and anticipated tax shocks by Mertens and Ravn

(2012), and the oil price shocks estimated in Kilian (2008). Remarkably, results

are largely unvaried despite the sensible loss of observations – the restricted

sample ranges from 1971Q1 to 2004Q3. The second source of concern is the

choice of the SPF forecast series and its aggregation. In the baseline, we take

the mean of the analysts’ forecast on real GDP growth. In the second and third

panel of the first row, we show results, respectively, using the median analysts’

forecast on real GDP growth, and the first principal component of the analysts’

forecast of unemployment rate, industrial production, and real GDP. A third im-

portant check consists in the treatment of the left-hand side variable in the local

projections. Our baseline does not distinguish between business cycles and low

frequency fluctuations induced by sentiment shocks. Yet, we find that the real

GDP response is transitory. Nevertheless, we can extract the business cycle fluc-

tuations only. To do so, we detrend the real GDP series and estimate its response

to sentiment shocks from the following modified version of Equation (3):
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ydet
t+h = θhν̂t +

P∑
p=1

[
δpν̂t−p +λp ydet

t−p

]
+1h>0ût+1,t+h +ut,t+h

for h = 0,1, . . . ,H

(4)

Figure 2: GDP responses to a sentiment shock using different specifications

Note: Impulse responses of real GDP to a one-standard deviation sentiment shock using dif-
ferent specifications. The red line is the point estimate and the shaded areas indicate 80%
and 90% confidence bands calculated with heteroskedasticity and autocorrelation-consistent
standard errors (Newey and West, 1987). Circled and dashed blue lines are the point esti-
mates and the 80% confidence bands, respectively, of the baseline specification presented in
Figure 1. Horizontal axes measure quarters and vertical axes measure percent deviations from
pre-shock trend. In the first row, the specification in the first panel controls for monetary pol-
icy shocks (Romer and Romer, 2004), unanticipated and anticipated tax shocks (Mertens and
Ravn, 2012), government spending shocks (Ramey, 2011), and oil shocks (Kilian, 2008); sec-
ond panel shows a specification that uses the median of the expected real GDP growth from
the SPF; specification in the third panel uses the first principal component of the mean of the
expected real GDP growth, industrial production growth, and unemployment rate from the
SPF. Specifications in the fourth panel (first row) and first panel (second row) detrend the en-
dogenous variable using a linear trend and a High-Pass filter that excludes periodicities over
200 quarters, respectively, and then estimate the responses according to Equation (4). In the
second row, in the specification of the second panel the sample period ranges from 1982Q1 to
2020Q1; third and fourth panels show a specification that controls for eight lags of the con-
trols presented in Equation (3) and for news shocks as estimated by Barsky and Sims (2011),
respectively.
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where ydet
t stands for the detrended log of real GDP. Figure 2 shows results

after removing a linear trend, or using a High-Pass filter which excludes fluc-

tuations with periodicities over 200 quarters. Since filtering removes long run

fluctuations, estimates are more accurate at longer horizons, resulting in nar-

rower confidence bands. As a fourth robustness we restrict the sample to the

post-Volcker disinflation period, from 1982Q1 to 2020Q1. The overall pattern

doesn’t change but the initial boom is less pronounced and the bust occurs few

quarters earlier than in our baseline estimates. Fifth, we check that results are

robust to increasing the number of lags P in Equation (3) to eight. As a last

exercise, we control for news shocks in TFP to better isolate the sentiments

component. Following Barsky and Sims (2011), we estimate a VAR(4) with

log of real GDP, consumption, hours, and TFP using our data sample, and ex-

tract news shocks as the shocks orthogonal to current TFP that maximizes the

40-quarter forecast error variance of future TFP. We then insert the estimated

news shock as an additional control on the right-hand side of Equation (1).

In conclusion, Figures 1 and 2 suggest the presence of a pervasive component

induced by expectation changes unrelated to fundamentals. Such component,

that we label sentiments, drives boom-bust dynamics on real GDP.

1.2 Responses of other variables and variance decomposition

We now extend the analyses to the estimation of the responses of other key

macroeconomic indicators. The objective is to trace out the dynamics induced

by sentiments so as to inform models of business cycles and learn more about

the predictability of boom-bust episodes.

Responses of other variables We characterize the macroeconomic responses

to a sentiment shock by estimating Equation (3) for several macroeconomic in-

dicators. Figure 3 considers a one standard deviation shock in sentiments and

shows the responses of the log of real investment, real total consumption, real

durable consumption, real non-durable consumption, total hours, labor pro-

ductivity, and utilization-adjusted TFP. First, the response of TFP is never statis-

tically different from zero, which indicates that we are controlling for enough

leads and lags in Equation (1). Second, investment, consumption, and total
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Figure 3: Responses of macro-variables to a sentiment shock

Note: Impulse responses of macro-variables to a one-standard deviation sentiment shock. Sam-
ple period: 1970Q3–2020Q1. Blue lines indicate the point estimate and the shaded areas in-
dicate 80% and 90% confidence bands calculated with heteroskedasticity and autocorrelation-
consistent standard errors (Newey and West, 1987). Horizontal axes measure quarters and
vertical axes measure percent deviation from pre-shock trend. All the variables (with the ex-
ception of TFP) are log-transformed and are downloaded (in April 2022) from the quarterly
dataset by McCracken and Ng (2020). TFP is from Fernald (2014).

hours comove and display the same boom-bust dynamics observed for real GDP

in Figure 1. Third, the positive response of CPI and the comovement among

variables suggest that sentiments are a source of demand shocks. Last, labor

productivity decreases during the boom, while it increases during the bust, al-

beit the estimated response is inaccurate. This pattern is particularly informa-

tive from a model standpoint. In fact, as we shall discuss in Section 2, the

fall in labor productivity falsifies models of production externalities and aggre-

gate increasing returns to scale as candidate explanations of sentiments-driven

fluctuations.

Forecast error variance decomposition How much do sentiments explain of

the business cycle? We follow Gorodnichenko and Lee (2020) and compute
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the forecast error variance decomposition of all variables examined in Figures

1 and 3.13 Table 1 reports the estimated share of the forecast error variance

explained by sentiment shocks at four, eight, and twenty quarters. The numbers

in parentheses are one standard deviation intervals.14 Sentiment shocks explain

almost one third of the variation of GDP over the first two years. A similar patter

4 quarters 8 quarters 20 quarters

Real GDP 32.6 30.5 15.7
(25.8,39.3) (26.7,34.4) (4.6,26.8)

Forecast revision 47.7 28.3 28.8
(40.9,54.5) (19.2,37.5) (16.0,41.5)

Investment 30.8 28.6 21.0
(24.9,36.7) (21.1,36.1) (4.6,37.4)

Consumption 16.3 8.6 12.8
(10.9,21.8) (6.1,11.1) (-0.5,26.1)

Durable C 14.0 6.5 17.3
(11.8,16.2) (2.3,10.7) (-0.5,35.1)

Non-durable C 7.6 6.9 18.1
(6.5,8.8) (3.5,10.4) (-3.9,40.2)

Total hours 27.8 25.6 17.6
(23.5,32.1) (20.3,30.9) (-0.7,36.0)

CPI 9.3 14.6 19.9
(7.1,11.6) (10.7,18.5) (15.0,24.8)

Labor productivity 1.5 5.0 3.4
(-4.4,7.4) (1.5,8.6) (-0.5,7.3)

TFP 0.1 0.1 1.1
(-2.2,2.4) (-1.8,2.0) (-1.9,4.1)

Table 1: Forecast error variance explained by sentiment shocks

Notes: Numbers in parentheses are one standard deviation confidence intervals. Forecast error
variance shares are computed as in Gorodnichenko and Lee (2020) (see Equation 10, page
923). See Appendix E for additional details.

13 For additional details on the implementation, see Appendix E.
14 Table 4 in Appendix E shows the forecast error variance decomposition of sentiment shocks

obtained after adding to the right-hand side of Equation (1) the Romer and Romer (2004)
monetary policy shocks series extended by Wieland (2021), Ramey (2011) military spending,
unanticipated and anticipated tax shocks by Mertens and Ravn (2012), and the oil price shocks
estimated in Kilian (2008).
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emerges for real investment and total hours. For real consumption and CPI the

variance explained is somewhat lower and around 10%-15%.

1.3 Technology shocks and conditional spectral densities

We now analyze the difference between sentiment and fundamental shocks,

and discuss the implications for the business cycle literature.

Responses to a technology shock It is extensively documented that TFP fol-

lows a near random-walk process and is the main contributor to long-run fluc-

tuations. Thus, the specification in Equation (3) is not suitable in this case as

it would inevitably capture both the permanent and the transitory effects of

a TFP shock. Suppose, indeed, that TFP shocks transitory generated oscilla-

tory dynamics while also affecting the long-run level of output, then, impulse

responses estimated using Equation (3) would not cross the zero line and we

would erroneously conclude that TFP shocks do not account for boom-bust dy-

namics at business cycle frequencies. Thus, we choose to study the responses on

the detrended variables, so as to isolate the transitory effects of TFP shocks from

the permanent ones.15 We begin by estimating an innovation in TFP growth us-

ing a modified version of Equation (2), that is:

∆ log(TFPt)=
M∑

m=1
αm∆ log(TFPt−m)+

Q∑
q=1

βqPCt−q +εt (5)

where εt takes the interpretation of a technology shock. The number of lags

M and Q is equal to four. Next, we estimate the business cycle responses by

detrending the macroeconomic variables using a High-Pass filter that excludes

periodicities over 200 quarters. The responses are estimated following Equa-

tion (4). Figure 4 reports the impulse responses of several macroeconomic

aggregates. A technology shock brings about a significant comovement of all

variables examined. The responses are hump shaped, but there is no significant

undershooting, unlike the responses to a sentiment shock. The response of CPI

15 Estimating permanent and transitory shocks in TFP requires to impose additional structure to
the identification strategy. Since we want to design a strategy which is as close as possible to
the treatment for sentiment shocks, we opt for investigating the business cycle effects of an
innovation in TFP.
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is negative and significant confirming the supply-side nature of the shock, and

the response of labor productivity is positive and significant unlike in the case

of sentiment shock where we found labor productivity to be countercyclical.

Figure 4: Responses of macro-variables to a technology shock

Note: Impulse responses of macro-variables to a one-standard deviation technology shock. Sam-
ple period: 1970Q3–2020Q1. Green lines indicate the point estimate and the shaded areas in-
dicate 80% and 90% confidence bands calculated with heteroskedasticity and autocorrelation-
consistent standard errors (Newey and West, 1987). Horizontal axes measure quarters and
vertical axes measure percent deviation from pre-shock trend. All the variables (with the ex-
ception of TFP) are log-transformed and are downloaded (in April 2022) from the quarterly
dataset by McCracken and Ng (2020). TFP is from Fernald (2014).
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Overall, results on technology shocks are not surprising. In fact, there is

ample evidence on the effects of technology shocks consistent to what we find

(see for example Gali, 1999 and Basu et al., 2006). However, they highlight

remarkable differences in the nature and propagation dynamics between non-

fundamental and fundamental shocks.

Discussion There are two important corollaries of our findings. First, busi-

ness cycles should be predictable, at least in part. Second, recessions are more

likely to occur after an expansion that has a dominant non-fundamental source.

Beaudry et al. (2020) documents the predictability of boom-bust cycles. Specif-

ically, the authors show that the spectral densities of U.S. macroeconomic in-

dicators display a peak at business cycle frequencies.16 They then show that

standard models of business cycles cannot reproduce the spectral density peak.

Our results complement the findings of Beaudry et al. (2020). In particular, it is

possible to compute the spectral densities implied by sentiment and technology

shocks, separately. Let the estimated structural moving average conditional to

shock ε̂t be

yt =
H∑

h=0
θ̂hε̂t−h

where H is a truncation horizon that we set equal to 36 quarters.17 Then, the

estimated conditional spectral density of y at frequency ω implied by the shock

ε̂ is

ŝk(ω)= σ̂2
ε

2π

[ H∑
h=0

θ̂(h)eihω
][ H∑

h=0
θ̂(h)e−ihω

]
.

Figure 5 plots the spectral densities of real GDP implied by sentiment and tech-

nology shocks. The x-axis depicts the periodicity defined as the inverse of the

frequency ω. The spectral density of GDP conditional on sentiment shocks ex-

hibits a peak at a periodicity of about 40 quarters, consistent to what Beaudry

16 The spectral density is a useful diagnostic tool of boom-bust dynamics because it decomposes
the autocovariance function at different frequencies. A spectral density peak occurring at a
given frequency means that the economy oscillates according to a predictable cycle with a
length equal to the frequency of the peak.

17 In Appendix F.1 we show that our conclusions do not rely on the truncation horizon.
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Figure 5: Spectral density of GDP conditional to sentiment and technology
shocks

Note: Spectral density of real GDP conditional to sentiment shocks (left panel) and technology
shocks (right panel). Sample period: 1970Q3-2020Q1. Blue line indicates the point estimate
for sentiment shocks, green line the point estimate for technology shocks, and the shaded areas
indicate 80% and 90% confidence bands calculated using block-bootstrap (see Appendix F.1
for details). Horizontal axes measure periodicities 4 to 60 quarters.

et al. (2020) finds in the reduced form data. The spectral density conditional on

technology shocks, in contrast, is monotonically increasing in the periodicity. A

similar contrasting figure appears when we consider other macroeconomic in-

dicators (see Figure 12 in Appendix F.2).

Taken together our findings provide new discipline for models of business

cycles. As in Beaudry et al. (2020), our results favour models of business cy-

cles that embed a strong endogenous mechanism able to reproduce predictable

boom-bust dynamics and the spectral density peak. However, the predictability

must be stronger conditional on disturbances unrelated to fundamentals. In

the remaining part of the paper, we propose a model that can rationalize the

conditional emergence of boom-bust dynamics.
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2 A model of conditional cycles

We now seek to write a model that can rationalize our main findings. At the very

minimum, the model should embed both fundamental and non-fundamental

disturbances. Modelling technology shocks is rather trivial as we can assume an

exogenous process for technology. To model sentiment shocks, instead, there

is not an unambiguous way. As shown in Figure 1, we find no evidence of

deviations from rational expectations. In fact, analysts correctly predict the fu-

ture increase in output conditioning on sentiment shocks. Thus, we draw from

the class of models with self-fulfilling (rational) expectations wherein there are

sunspot shocks, that is surprise changes in expectations, that drive business cy-

cle fluctuations. In this setting, we model sentiment shocks as sunspot shocks,

or more precisely, the part of sunspot shocks that is orthogonal to fundamentals.

The workhorse model in this class is the real business cycle model by Benhabib

and Farmer (1994) in which equilibrium indeterminacy arises due to a positive

production externality resulting in aggregate increasing returns to scale.18 Due

to the aggregate increasing returs to scale, these models predict procyclical la-

bor productivity in response to both sunspot and technology shocks. However,

Figures 3 and 4 above show that labor productivity falls in response to a positive

sentiment shock, while it rises after an improvement in technology. To match

this evidence, we depart from the model of Benhabib and Farmer (1994) and

offer a different foundation of equilibrium indeterminacy.

2.1 Firms sector

There is a continuum i ∈ [0,1] of firms with gross revenue function F(zt,kt,nt)=
ztkθt n1−θ

t . The variable zt is the stochastic level of technology common to all

firms, nt is the labor input, and kt is the capital input which we assume to be

constant and equal to one for simplicity. The revenue function then reduces to

yt ≡ F(zt,1,nt). We assume that firms issue noncontingent bonds bt+1 at a price

bt+1/r t that can be purchased by the households. In addition, they receive a

tax advantage such that given the interest rate r t, the effective gross interest

rate paid by the firm is Rt = 1+ r t(1−τ) where τ is the tax benefit. Thus, for

18 Other examples are Wen (1998) and Benhabib and Wen (2004).

20



τ > 0, firms are effectively more impatient than households so that if financial

markets are not too tight, the stock of debt will be positive in equilibrium.

Besides the intertemporal debt, firms raise funds with an intraperiod loan, `t, to

finance working capital. Because revenues are realized at the end of the period,

working capital is required to cover the intraperiod cash flow mismatch. The

loan `t is paid at the end of the period with no interest.19

The timing of the events is as follows. Firms enter the period with outstand-

ing debt equal to bt. They first observe the realizations of shocks, and then

choose labor expenses wtnt, the new intertemporal debt bt+1, and the amount

of dividends dt to distribute. Since payments are made before the realization

of revenues, the intraperiod loan is

`t = wtnt +χ(dt)+bt −bt+1/Rt.

The term χ(dt) = dt +κ(dt −d)2, where d is the steady state value of dividends

and κ ≥ 0, introduces distribution cost of dividends and captures documented

evidence of preferences for dividend smoothing (Lintner, 1956). The end of

period firms’ budget constraint is

bt+1/Rt + yt = wtnt +χ(dt)+bt. (6)

From the budget constraint and the expression for the intraperiod loan above,

it follows that firm revenues are equal to the intraperiod loan, that is `t = yt.

Incentive compatible constraint When revenues realize, firms decide whether

or not to repay the intraperiod loan they owe to households. Consistent with

recent evidence on the procyclicality of unsecured debt (see Azariadis et al.,

2015), we assume that contract enforcement is imperfect so that firms have

incentives to default. If a firm defaults, it can divert its end of period revenues

yt. However, a defaulting firm can be caught with probability γ, in which case

its assets will be liquidated and will cease to operate. If a firm is not caught,

19 The assumption of two types of debt is made for analytical convenience. In particular, the
intratemporal debt can be replaced with cash that firms carry from the previous period. Cash
would then be used to finance working capital and pay part of dividends.
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instead, it will continue to retain access to credit in future periods.20 Thus, a

firm defaults if the expected value of defaulting is greater than the expected

value of non defaulting, or

yt + (1−γ)E t[mt,t+1Vt+1]> E t[mt,t+1Vt+1]

where mt,t+1 is the households’ stochastic discount factor, and Vt+1 is the firm

future value defined as the net present value of future dividends.

Since shocks realize at the beginning of period, there is no intraperiod uncer-

tainty, so that households can lend an amount that deters default in equilibrium.

Using the expression above, the incentive compatible constraint is

γE t[mt,t+1Vt+1]≥ yt. (7)

The incentive compatible constraint effectively limits both types of firm’s debt.

The left-hand side is equal to γ times the firm market value and decreases with

the amount of intertemporal debt bt+1. Whereas the right-hand side is equal to

the end-of-period revenues yt which are equal to the firm’s intraperiod loan `t.

Firm’s optimization problem The problem of the individual firm can be writ-

ten recursively as

Vt = max
dt,nt,bt+1

{
dt +E t

[
mt,t+1Vt+1

]}
(8)

subject to (6) and (7).

Firm’s first order conditions are

(1+µtγ)E t

[
mt,t+1

χ′(dt)
χ′(dt+1)

]
= 1

Rt
(9)

wt

1−µtχ′(dt)
= (1−θ)

yt

nt
(10)

where µt is the Lagrange multiplier associated to the incentive constraint. Equa-

tion (9) is the first order condition for new intertemporal debt bt+1. The term

in squared brackets is the firm’s effective discount factor, that is the product be-

20 Assuming that in the case of being caught a firm would also lose its revenues does not quanti-
tatively alter our results.
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tween the household’s discount factor, mt,t+1, and the expected decrease in the

cost of adjusting dividends. Equation (10) is the first order condition for labor

input. It shows that financial frictions introduce a time varying labor wedge

that depends positively on µt. Conditions (9) and (10) highlight the key propa-

gation mechanism of the model. During a boom, equity prices are elevated and

the stochastic discount factor is high, thus µt decreases according to Equation

(9). A decrease in µt, in turn, shifts the labor demand outward as firms can

finance more labor.

2.2 Households sector and general equilibrium

There is a continuum of homogeneous utility-maximizer households. House-

holds are the owners of firms. They hold equity shares and noncontingent

bonds issued by firms. Households’ utility function is

U(ct,nt)=
c1−σ

t −1
1−σ −αn1+φ

t

1+φ

where the parameters σ and φ are both strictly greater than zero. The house-

hold’s budget constraint is

ct + st+1 pt + bt+1

1+ r t
= wtnt +bt + st(dt + pt)−Tt (11)

where st is the equity shares and pt is the market price of shares. The gov-

ernment finances the tax benefits to firms through lump-sum taxes equal to

Tt = Bt+1/[1+ r t(1−τ)]−Bt+1/(1+ r t), where Bt+1 is the aggregate stock of firms

bonds.

Household’s optimization problem The household problem is standard. The

household maximizes its utility function subject to the budget constraint in

Equation (11). The first order conditions with respect to nt, bt+1, and st are

wt =αcσt nφt (12)

c−σt =β(1+ r t)E t[c−σt+1] (13)
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pt =βE t

{(
ct+1

ct

)−σ
(dt+1 + pt+1)

}
. (14)

The first two conditions determine the labor supply and the interest rate. The

last condition pins down the price of shares.21 Firm’s optimization is consistent

with households’ optimization. Thus, the stochastic discount factor is mt,t+1 =
β(ct/ct+1)σ.

General equilibrium Given the aggregate states s, that are technology z and
aggregate bonds B, a recursive competitive equilibrium is defined as a set of func-
tions for (i) households’ policies ch(s,b), nh(s,b) and bh(s,b); (ii) firms’ policies
d(s,b), n(s,b), and b(s,b); (iii) firms’ value V (s,b); (iv) aggregate prices w(s), r(s),
and m(s′,s); (v) law of motion for the aggregate states s′ = ψ(s). Such that: (i)
household’s policies satisfy Conditions (12) and (13); (ii) firm’s policies are opti-
mal and V (s,b) satisfies the Bellman’s Equation (8); (iii) the wage and the interest
rate clear the labor and bond markets; (iv) the law of motion ψ(s) is consistent
with individual decisions and stochastic processes for technology.

2.3 Inspecting the mechanism

We now turn to the explanation of the model and derive a number of proposi-

tions. For analytical simplicity, assume there are no dividend adjustment costs,

i.e. κ = 0, and work with the loglinearized equilibrium equations around the

steady state.22

Amplification and indeterminacy Consider the loglinearized labor market

clearing condition that equates the labor supply to the labor demand

φn̂t +σĉt = ẑt −θn̂t − µ

1−µµ̂t (15)

where hats denote variables expressed as loglinear deviations from the steady

state, and µ = τ(1−β)
γ(1−τ+τβ) is the steady state value of the Lagrange multiplier µt.

Note that when the tax benefit parameter τ is equal to zero, µ is also equal to

21 We normalize the quantity of shares to be equal to 1 in equilibrium.
22 Appendix G.1 derives the steady state and shows it is unique. Appendix G.2 shows the loglin-

earized system of equations.
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zero, so that the financial constraint is slack, the last term on the right-hand side

of Equation (15) vanishes, and the model reduces to the standard RBC model.

When τ is positive, instead, µ is positive so that the financial constraint binds

in the steady state. In this case, time variations in µ̂t shift the labor demand,

potentially leading to self-fulfilling changes in autonomous consumption. To

see this, rearrange the loglinearized first order condition for the intertemporal

debt as follows

µ̂t =−(1+µγ)
βσ

1−β [ĉt −E(ĉt+1)]. (16)

From Equation (16), an increase in current consumption decreases µ̂t which,

in turn, increases the labor demand in Equation (15). Then, higher labor de-

mand leads to higher consumption, further decreasing µ̂t. The intuition is that

expectations of a temporary boom increase households’ saving desire which re-

laxes the financial constraint and leads to higher supply of credit. By borrowing

more, firms increase their labor demand, output increases and so households’

(labor) income.

Combine Equations (15) and (16) to get

φn̂t +σĉt = ẑt −θn̂t + µ(1+µγ)
1−µ

βσ

1−β︸ ︷︷ ︸
≡ζ

[ĉt −E t(ĉt+1)]. (17)

The term ζ is the elasticity of labor demand to the inverse of expected consump-

tion growth, and captures the strength of the amplification channel induced by

financial frictions. In fact, ζ increases with the tax advantage τ and decreases

with the probability of being caught γ. Note that when ζ is zero, Equation (17)

becomes static. When ζ is strictly positive the transmission mechanism relies

on expectations of future consumption and the model can admit local indeter-

minacy of equilibria for sufficiently large values of ζ. The following proposition

formally solves for the emergence of self-fulfilling equilibria.

Proposition 1 Let κ= 0. The model admits local indeterminacy around the steady
state if and only if ζ> ζ̄, where ζ̄≡ σ(1−θ)+φ+θ

2(1−θ) .
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Proof. Rearrange Equation (17) using the production function and the resource

constraint, as

E t(ĉt+1)= ζ(1−θ)−σ(1−θ)−φ−θ
ζ(1−θ)︸ ︷︷ ︸

≡λ

ĉt + 1+φ
ζ(1−θ)

ẑt (18)

then local indeterminacy obtains if and only if |λ| < 1. Thus, two conditions

must be satisfied

(i) θ+σ(1−θ)+φ> 0

(ii) ζ> φ+σ(1−θ)+θ
2(1−θ) .

Condition (i) is always satisfied because the parameters θ, σ, and φ are all

positive by assumption.

The proposition above states that when financial frictions are severe, so that ζ

is large, changes in relative consumption are self-fulfilling. Condition (ii) is in-

structive. Consider a one percent increase in consumption, keeping technology

at steady state. Using the fact that ĉt = ŷt = (1−θ)n̂t, the effective labor supply

increases by φ

1−θ +σ. The labor demand, instead, decreases by θ
1−θ as in the

standard RBC, while it increases by ζ(1−E(ĉt+1)) due to the amplification from

financial frictions. Thus, in equilibrium, φ

1−θ +σ= ζ(1−E t(ĉt+1))− θ
1−θ . However,

future consumption cannot fall more than one percent otherwise the dynamics

will be explosive. It follows that 2ζ− θ
1−θ > ζ(1−E t(ĉt+1))− θ

1−θ = φ

1−θ +σ which

results in condition (ii) after solving for ζ.

Indeterminacy and boom-bust dynamics We now turn to the discussion

about boom-bust dynamics. As it is apparent from Equation (18) above, the

model admits a simple univariate autoregressive representation. This occurs

because we assumed no dividend adjustment costs, so that the amount of out-

standing debt can be absorbed by firm’s equity issuance without affecting real

outcomes in equilibrium. The proposition below provides conditions for the

emergence of boom bust dynamics in this simple case. The same intuition car-

ries through in the presence of dividend adjustment costs. We operationalize
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the notion of boom-bust dynamics as a negative autocorrelation function of

consumption (and output).

Proposition 2 Let κ = 0 and ẑt = 0. The model features negative consumption
(and output) autocorrelation if and only if −1<λ< 0, that is, iff

σ(1−θ)+φ+θ
2(1−θ)

< ζ< σ(1−θ)+φ+θ
1−θ .

Proof. The autocorrelation function of consumption is Γ(h)=λh, with h = 0,1, ..,

if the model features indeterminacy of equilibria, otherwise Γ(h)= 0, ∀ h. Then

Γ(h) is negative at some horizons if and only if −1<λ< 0.

In words, Proposition 2 states that the degree of financial frictions should be

strong enough to obtain indeterminacy of equilibria – so that consumption is a

persistent process – but not too large in order to feature boom-bust dynamics

in equilibrium. The reason why ζ is bounded from above can be seen again

from the labor clearing in Equation (15). For sufficiently small values of ζ an

increase in current consumption is an equilibrium only if future consumption

falls.

Conditional boom-bust dynamics Under indeterminacy, the model solution

becomes

ĉt+1 =λĉt + 1+φ
ζ(1−θ)

ẑt +εs
t+1 +ψεz

t+1 (19)

where εs is a sentiment shock, defined as ĉt+1 −E t(ĉt+1), and εz is a technology

shock. The parameter ψ governs the impact response of consumption to a tech-

nology shock which we assume being positive, i.e. ψ> 0. Equation (19) states

that under indeterminacy of equilibria, not only consumption depends upon its

past value – effectively introducing an additional state variable to the system –

but also from the past value of technology zt. Importantly, since the loading of

current consumption on past technology is positive, the autocorrelation of con-

sumption conditional on technology shocks can be positive even if counsump-

tion is negatively autocorrelated in response to sentiments. This is the central

result of the model. The intuition is that during an expansion equity prices are

elevated, so that the financial constraint relaxes and current economic activ-
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ity improves. However, the nature of the increase in equity prices matters a

great deal for the dynamics. During sentiment-driven expansions equity prices

are elevated because the temporarily higher current consumption relative to

future consumption raises households’ stochastic discount factor. Technology

improvements, in contrast, increase equity prices because of higher firms’ prof-

itability. As the expansion unfolds households will decide the amount of firm

assets to sell depending on the nature of the expansion. If the expansion is

sentiment-driven, households liquidate firms assets in expectation of a future

recession. Then a recession results from households’ failure of internalizing the

adverse effects of their asset sales on the financial constraint. If the expansion is

technology-driven, in contrast, households are aware that equity prices are ele-

vated because of higher profitability and not because of a bout of optimism, as a

consequence, they will not reduce credit to firms and a recession will not occur.

The proposition below provides the parameters conditions for the emergence

of conditional boom-bust dynamics.

Proposition 3 Let κ = 0, zt ∼ i.i.d., and −1 < λ < 0. The autocorrelation of con-
sumption conditional on technology shocks is positive if and only if −λ<ψζ(1−θ)

1+φ <
− 1
λ
.

Proof. The proof is relegated to the Appendix G.3.

2.4 Parametrization and impulse responses

Let the dividend adjustment costs be positive and technology follow an au-

toregressive process with persistence parameter ρz > 0. We first describe the

parametrization and then show the theoretical impulse responses to technol-

ogy and sunspot shocks.

Parametrization We calibrate the model to a quarterly frequency and set β to

match a 3% annual interest yield on bonds. The utility parameter α is such that

the steady state value of hours worked equal to .3. As in Jermann and Quadrini

(2012), the tax shield τ and capital’s share of income θ are equal to .35 and

.36, respectively. We set the inverse of households’ intertemporal elasticity of

substitution σ to 1.06, a value between the log-utility case and the estimates

of 1.4-1.5 obtained by Evans (2005) and Groom et al. (2019). We set φ equal
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to 10 which implies a Frisch elasticity equal to 0.1, that is within the range of

the microeconometric estimates by MaCurdy (1981) and Altonji (1986). The

probability of being caught γ is equal to 0.085, and the degree of adjustment

cost to dividends κ to 20. As per the shock processes, we set ψ equal to .2364

in order to match the impact response of output to a technology shock, the

parameter ρz governing the persistence of the technology process is set equal

to .93 consistent with the estimated law of motion of detrended TFP. Finally,

the standard deviation ratio between sentiment and technology shocks is equal

0.94 so as to match the forecast error variance of output explained by sentiment

shocks relative to the share explained by technology shocks.

Theoretical impulse responses Figure 6 shows the theoretical impulse re-

sponses to a sunspot shock and to a technology shock. The dividend adjust-

Figure 6: Model-implied impulse responses to a technology shock and sunspot
shock

Note: Model-implied impulse responses to a one-standard deviation sunspot shock (solid blue
lines) and a one-standard deviation technology shock (dashed green lines). Horizontal axes
measure quarters and vertical axes measure percent deviation from the steady state.
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ment cost smooths out the dynamics so that the model’s deterministic solution

features a pair of complex eigenvalues. In response to a positive sunspot shock,

the economy displays boom-bust dynamics qualitatively in line to what we find

in the data. A positive sunspot shock originates from agents’ expectations of

a temporary boom. Due to the temporary nature of the boom, households in-

crease their demand for firms’ assets, thereby relaxing the financial constraint

and leading to an initial fall in µt. As a consequence, firms borrow more and

hire more labor. Since technology doesn’t change, the increase in labor input

leads to a fall in labor productivity, consistent with the empirical findings por-

trayed by Figure 3. Unlike in models of noisy signals about future TFP, house-

holds are well aware that technology has not changed and that equity prices

will fall, that the financial constraint will tighten and the economy will enter in

a recession. In fact, boom-bust dynamics result from agents’ failure of internal-

izing the effects of their coordinated actions on the financial constraint. As the

expectation-led expansion unfolds, households sell firms assets inadvertently

tightening the financial constraint and driving the recession.

The dynamics to a surprise improvement in technology are very different

from those in response to a sunspot shock. As in the data, a positive technology

shock generates hump-shaped dynamics in all the main macroeconomic vari-

ables. Importantly, both the Lagrange multiplier µt and the intertemporal debt

increase, meaning that even though firms can borrow more, financial frictions

dampen the responses to technology shocks. As we showed in Proposition 3,

the technology-driven expansion does not culminate in a bust because the in-

crease in firm value is due to higher firms’ profitability and relatively less by the

expectation component.

Conditional spectral density To compare the model performance with the

results presented in Section 1.3, Figure 7 shows the model-implied spectral

density of output conditional to sunspot and technology shocks. The oscillatory

dynamics implied by sunspot shocks are associated with a pronounced peak in

the conditional spectral density of output. As in the data counterpart, technol-

ogy shocks don’t generate a spectral density peak.
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Figure 7: Spectral density of output y conditional to sunspot and technology
shocks

Note: Spectral density of output y conditional to sentiment shocks (left panel) and technology
shocks (right panel). To estimate the theoretical spectral density we employ the same procedure
described in Section 1.3 using the model-implied impulses responses from Figure 8 (truncation
horizon is 20). Horizontal axes measure periodicities from 4 to 60 quarters.

2.5 Sentiments and recession probability

The results presented so far bolster the argument that expansions and reces-

sions should not be studied separately, rather, they are a figment of an endoge-

nous propagation mechanism. Here we broaden the scope of our analysis and

look for evidence of recession predictability in the reduced form data. After all,

our results suggest that we should be able to detect at least some predictability

of recessions without having to identify the sources of variations. Thus, we take

the U.S. quarterly real GDP series used in the foregoing analyses, and estimate

the following linear probability model

RECt+h =β0,h +β1,hEX Pt +ut+h

where, on the left-hand side, RECt is a recession indicator that takes value

equal to one when the real GDP growth falls into the bottom quintile of its dis-

tribution for at least two consecutive quarters, and zero otherwise. Likewise, on
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Figure 8: Probability of a recession after an expansion

Note: Probability of a recession in a two-quarter window after an expansion. Sample period:
1970Q3-2020Q1. The black line indicates the point estimate and the shaded areas indicate 80%
and 90% confidence bands calculated with heteroskedasticity and autocorrelation-consistent
standard errors (Newey and West, 1987). Horizontal axis measures quarters and vertical axis
measures the probability of a recession. Other solid lines are obtained using simulated data
from a series of workhorse macro models and from our model (red solid line).

the right-hand side, EX Pt is an expansion indicator that equals one when the

real GDP growth is above the top quintile for at least two consecutive quarters.

The black line in Figure 8 shows the estimated probability β̂0,h + β̂1,h that the

economy will be in a recession in a two-quarter window around time t+h, given

an expansion at time t. The conditional probability of a recession increases after

an expansion and peaks approximately after two years, after which it converges

to its long run value in an oscillatory fashion.

Additionally, Figure 8 shows the prediction using data simulated from three

business cycle models: the textbook RBC model, the medium-scale DSGE model

of Smets and Wouters (2007), and the incomplete information model buffeted

with noise shocks of Blanchard et al. (2013). As a benchmark, we plot the re-

sults from a simulated random walk process for the real GDP. For each model,
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we run a Monte Carlo simulation where we set the number of observations

equal to the sample size of the real GDP series. The figure shows the mean esti-

mates. The three models predict that recessions are effectively unforecastable.

In fact, results are virtually indistinguishable from the predictions of a random

walk. The conditional probability of a recession quickly converges to its un-

conditional mean after an expansion, failing to replicate neither the spike nor

the oscillation that we see in the data. The reason is that these models do

not feature an endogenous boom-bust propagation mechanism, and recessions

originate from negative shocks only. The red line reports the predictions of

our model. Remarkably, the model captures both the spike in the conditional

probability of a recession and the overall oscillatory dynamics fairly well.

3 Conclusion

Much of the business cycle literature focuses on models featuring no connec-

tion between expansions and recessions. A smaller literature, instead, proposes

models of limit cycles and chaos wherein cycles occur after any perturbation,

in fact, the economy always oscillates even absent of shocks. In this paper

we have uncovered new empirical findings that call for business cycle theo-

ries where these two views coexist. In particular, we have shown that changes

in sentiments propagate in a way consistent with endogenous cycles theories.

Technology shocks, on the other hand, are not responsible of boom-bust cycles,

thus in line with the predictions of the dominant view on business cycles.
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A Data Appendix

Variable Code Source Transform

TFP dtfp_util Fernald (2014) Cumulated
Forecast xt+h−2|t RGDPh, h = 1,2, . . . ,6 Croushore (1993) Mean across forecasters
GDP GDPC1 McCracken and Ng (2020) Logarithmic
Investment GPDIC1 McCracken and Ng (2020) Logarithmic
Consumption PCECC96 McCracken and Ng (2020) Logarithmic
Durable C PCDGx McCracken and Ng (2020) Logarithmic
Non-durable C PCNDx McCracken and Ng (2020) Logarithmic
Total hours HOANBS McCracken and Ng (2020) Logarithmic
CPI CPIAUCSL McCracken and Ng (2020) Logarithmic
Labor productivity OPHNFB McCracken and Ng (2020) Logarithmic

Table 2: Details on aggregate US data

B Sentiment shock series

Figure 9: Sentiment shocks and forecast revisions

Note: Time series of sentiment shocks ν̂t (solid blue line) and forecast revisions St (dashed
black line).
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C Regressions table

Model Equation 1 Equation 2 Equation 5
Dep. variable St TFPt+3 −TFPt−1 ∆TFPt

Constant 1.3007 Constant 0.0062 Constant 0.0022
(0.2246) (0.0011) (0.0007)

∆TFPt+12 -1.5560 ∆TFPt 1.0074 ∆TFPt−1 -0.1638
(9.1808) (0.1281) (0.0771)

∆TFPt+11 29.8681 PC1,t 0.0027 PC1,t−1 0.0060
(8.7799) (0.0045) (0.0027)

∆TFPt+10 10.1871 PC2,t 0.0125 PC2,t−1 0.0035
(8.7509) (0.0069) (0.0041)

∆TFPt+9 18.6346 PC3,t -0.0019 PC3,t−1 0.0053
(8.5785) (0.0053) (0.0032)

∆TFPt+8 13.9804 PC4,t -0.0001 PC4,t−1 -0.0082
(8.5914) (0.0087) (0.0052)

∆TFPt+7 -5.9716 ∆TFPt−1 0.1202 ∆TFPt−2 0.0637
(8.4714) (0.1293) (0.0779)

∆TFPt+6 -2.6921 PC1,t−1 -0.0057 PC1,t−2 -0.0047
(8.5199) (0.0059) (0.0036)

∆TFPt+5 0.6398 PC2,t−1 0.0054 PC2,t−2 0.0092
(8.4315) (0.0079) (0.0048)

∆TFPt+4 27.6713 PC3,t−1 -0.0011 PC3,t−2 -0.0012
(8.5753) (0.0062) (0.0038)

∆TFPt+3 16.1045 PC4,t−1 0.0135 PC4,t−2 0.0030
(8.4910) (0.0087) (0.0053)

∆TFPt+2 3.0221 ∆TFPt−2 -0.0213 ∆TFPt−3 0.0625
(8.6210) (0.1271) (0.0764)

∆TFPt+1 -8.2908 PC1,t−2 0.0072 PC1,t−3 0.0058
(8.9840) (0.0060) (0.0036)

∆TFPt 84.1349 PC2,t−2 -0.0003 PC2,t−3 -0.0009
(18.3563) (0.0078) (0.0046)

∆TFPt−1 76.1585 PC3,t−2 -0.0007 PC3,t−3 -0.0064
(18.9226) (0.0062) (0.0037)

∆TFPt−2 63.6017 PC4,t−2 0.0028 PC4,t−3 0.0068
(18.8968) (0.0087) (0.0052)

∆TFPt−3 28.1657 ∆TFPt−3 -0.0627 ∆TFPt−4 -0.0237
(18.3682) (0.1239) (0.0744)

∆TFPt−4 49.6124 PC1,t−3 0.0039 PC1,t−4 -0.0008
(18.0212) (0.0053) (0.0032)

bt -67.4753 PC2,t−3 -0.0010 PC2,t−4 -0.0021
(17.6801) (0.0057) (0.0034)

bt−1 -61.6620 PC3,t−3 0.0095 PC3,t−4 0.0073
(18.3102) (0.0057) (0.0034)

bt−2 -53.2164 PC4,t−3 -0.0147 PC4,t−4 0.0013
(18.6462) (0.0079) (0.0047)

bt−3 -30.1458
(18.2893)

bt−4 -51.9177
(17.5731)

R-squared 0.4074 0.3346 0.1690
F-test 0.0000 0.0000 0.0273

N observations 179 193 195

Table 3: Estimates of Equation (1), Equation (2), and Equation (5)

Notes: Standard errors in parenthesis. TFP is log transformed.
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D Additional robustness checks

Figure 10: GDP responses to a sentiment shock using different specifications

Note: Impulse responses of real GDP to a one-standard deviation sentiment shock using differ-
ent specifications. The red line is the point estimate and the shaded areas indicate 80% and
90% confidence bands calculated with heteroskedasticity and autocorrelation-consistent stan-
dard errors (Newey and West, 1987). Circled and dashed blue lines are the point estimates
and the 80% confidence bands, respectively, of the baseline specification presented in Figure 1.
Horizontal axes measure quarters and vertical axes measure percent deviations from pre-shock
trend. In the first row, the specification in the first panel controls in Equation (1) for 16 leads
(instead of 12) of the TFP growth; the second specification controls in Equation (1) for eighth
lags (instead of four) of the TFP growth; and the specification in the third panel controls in
the Equation (2) for four lags (M =Q = 5) of the TFP growth and the principal components. In
the second row, the specification in the first panel controls in Equation (2) for three principal
components (instead of four); the second specification excludes estimated residuals from the
regression in Equation (3); and the specification in the third panel controls for 12 lags (instead
of four) of the past of the sentiment shocks and the endogenous variable in Equation (3).
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E Forecast Error Variance Decomposition

Consider the following model,

yt+h − yt−1 = θhεt + ch +
L∑

l=1
(εt−l , ∆yt−l)Γh,l +γr t+1,t+h + r t,t+h (20)

where ch is a scalar; θh is the impulse response to a shock εt of variable yt at

horizon h; L = 4 is the desired number of lags for εt and ∆yt; for any given h
and l; Γh,l is a bi-dimensional row vector; r t+1,t+h is the error in the h−1 stage

forwarded by one period; and r t,t+h is the error in the stage h.

We estimate Equation (20) using OLS techniques. Define matrix X t as,

X t = [εt, ι, εt−1, . . . εt−L, ∆yt−1, . . .∆yt−L, r̂ t+1,t+h]

where ι is a (T−h+1) constant vector and r̂ t+1,t+h is the estimator of r t+1,t+h, i.e.,

the residual of the regression at horizon h−1 forwarded by one period. Note

that when h = 0, r t+1,t+h cannot be estimated and therefore it is not included in

X t. At this point, the vector of estimated coefficients B̂h = (θ̂h, ĉh, Γ̂h,1, . . . , Γ̂h,L, γ̂)

of dimension Q = 3+2×L is estimated as follows,

B̂h = (
X ′

tX t
)−1(X ′

t(yt+h − yt−1)
)

where r̂ t,t+h is defined as (yt+h − yt−1)− X tB̂h. From B̂h we obtain θ̂h, the em-

pirical impulse responses shown in the main text of the paper.

To estimate the variance decomposition, our procedure closely follows the

LP-B method (Equation 10, page 923) by Gorodnichenko and Lee (2020). First

of all, consider the augmented counterpart of Equation (20):

yt+h − yt−1 = θhεt + ch +
L∑

l=1
(εt−l , ∆yt−l , xt−l)ΓV D

h,l + rV D
t,t+h (21)

where xt is a set of additional stationary controls of size (T, J) that we define as

the first 5 principal components of the large dataset of US macro variables build

by McCracken and Ng (2020). It follows that the main differences between
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Equation (20) and Equation (21) are that ΓV D
h,l is now a J+2 row vector and that

the error term “r t+1,t+h” from the regression at horizon h−1 is not anymore on

the right-hand size. Given those changes, at the net of εt, we can now interpret

the error term rV D
t,t+h as the forecast error of yt+h− yt−1. This is what we want to

estimate in the next step.

As before, we estimate Equation (21) using standard OLS techniques. Define

matrix XV D
t as,

XV D
t = [εt, ι, εt−1, . . . εt−L, yt−1, . . . yt−L, xt−1, . . . xt−L],

and the vector of estimated coefficients B̂V D
h of dimension Q = 2+ (J +2)×L is

estimated as follows,

B̂V D
h = [(XV D

t )′XV D
t ]−1[(XV D

t )′(yt+h − yt−1)]

where r̂V D
t,t+h is defined as (yt+h − yt−1)− XV D

t B̂V D
h . Define then X̃V D

t equal to

XV D
t without the first column vector εt,

X̃V D
t = [ι, εt−1, . . . εt−L, yt−1, . . . yt−L, xt−1, . . . xt−L],

and obtain

ε⊥t = εt − X̃V D
t B̃V D

h

where

B̃V D
h = [(X̃V D

t )′ X̃V D
t ]−1[(X̃V D

t )′εt].

Finally, the estimated forecast error is f̂et,t+h of variable yt+h − yt−1 with infor-

mation up to t−1 equal to,

f̂et−1,t+h = r̂V D
t,t+h + θ̂0ε

⊥
t .23

23 Note that θ̂0 as well as θ̂h in the definition of the estimato ŝh is the one estimated using Equation
(20).
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An estimator for the forecast error variance decomposition is,

ŝh =
∑H

h=0 θ̂
2
hσ̂

2
ε∑H

h=0 θ̂
2
hσ̂

2
ε +

∑T−h
t=L

(
f̂et−1,t+h −

∑H
h=0 θ̂H−hεt+h

)2
/(T −L−h)

where σ̂ε is the estimator of the variance of the shock σε and is equal to

σ̂2
ε =

1
T −1

T∑
t=0

(εt)2.

E.1 Inference

Following Gorodnichenko and Lee (2020), we estimate the confidence intervals

of the estimator sh from the following result:

p
T

(
ŝh − sh

)
d−→N (0,Vh)

where the variance Vh is equal to:

Vh =∆h(Gh)−1Ωh(G′
h)−1∆′

h.

In addition,

1. Matrix Ωh of dimension (K ,K), where K = 2+ (H+1)Q, is equal to

Ωh =
+∞∑

l=−∞
Γ(l)

where Γ(l) is the autocovariance of gt+h(θ0) at lag l, and gt+h(θ0) is a

K-dimensional vector equal to

gt+h(θ0)=



(XV D
t )′(yt − yt−1 − XV D

T BV D
0 )

...

(XV D
t )′(yt+h − yt−1 − XV D

T BV D
h )

ε2
t −σ2

ε

(fet−1,t+h −
∑h

i=0θh−iεt+i)2 −σ2
v,h
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and

σ2
v,h = var

(
fet−1,t+h −

h∑
i=0

θh−iεt+i

)
2. Matrix Gh of dimension (K ,K) is equal to

Gh =−


Ih+1 ⊗ (XV D

t )′XV D
t 0 0

· · · 0 · · · 1 0

· · · 0 · · · 0 1


where Ih+1 is a (h+1)-dimensional identity matrix, and ⊗ is the kronecker

product.

3. ∆h is a k-dimensional row vector equal to

∆h = 1− sh

σ2
f ,h



2θ0σ
2
ε ι1

...

2θhσ
2
ε ι1∑h

i=0θ
2
i

−sh/(1− sh)



T

where ι1 is a Q-dimensional column vector equal to one in the first entry

and zero otherwise, while σ2
f ,h = var(fet−1,t+h).

The objective is to estimate the objects Ωh, Gh, and ∆h using estimators Ω̂h,

Ĝh, and ∆̂h.

1. Estimator Ĝh is equal to

Ĝh =−dial
(
Ih+1 ⊗

1
T −L−h

(XV D
t )′XV D

t , I2

)
where diag(A,B) is the block diagonal matrix whose diagonal components

are A and B in order, and In is the n-dimensional identity matrix.
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2. To derive estimator Ω̂h, we need to define matrix Zt+h of dimension (T,K)

equal to

Zt,h =



(XV D
t )′(yt − XV D

T B̂V D
0 )

...

(XV D
t )′(yt+h − XV D

T B̂V D
h )

ε2
t − σ̂2

ε

(f̂et−1,t+h −
∑h

i=0 θ̂h−iεt+i)2 − σ̂2
v,h



T

σ̂2
v,h =

T−h∑
t=L

(
f̂et−1,t+h −

h∑
i=0

θ̂h−iεt+i

)
/(T −L−h).

The estimator of the long-run variance Ωh is

Ω̂h = Γ̂Zh,0+
1

1+LLNW

(
Γ̂Zh,1+(Γ̂Zh,1)′

)
+·· ·+ LNW

1+LLNW

(
Γ̂Zh,LNW+(Γ̂Zh,LNW )′

)
where

- Γ̂Zh,0 = (Z′
tZt)/(T −L−h)

- Γ̂Zh,i = [(Zt,h)′Zt+i,h]/(T −L− h) (when moving Zt forward, append

zeros at the beginning)

- LNW ≈ 3/4× (T −L−h)
1
3

3. Estimator ∆̂h is equal to

∆h = 1− ŝh

σ̂2
f ,h



2θ̂0σ̂
2
ε ι1

...

2θ̂hσ̂
2
ε ι1∑h

i=0 θ̂
2
i

−ŝh/(1− ŝh)



T

where σ̂2
f ,h =∑T−h

t=L

(
f̂et−1,t+h

)
/(T −L−h).
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The estimator V̂h for Vh is

V̂h = ∆̂h(Ĝh)−1Ω̂h(Ĝ′
h)−1∆̂′

h/(T −L−h),

and confidence intervals are

ŝCI = ŝh ± tα,d f

√
V̂h

where tα,d f is the (100×α)% critical value of a t-distribution with d f = T−L−h
degrees of freedom.

E.2 Additional table

4 quarters 8 quarters 20 quarters

Real GDP 31.7 36.4 28.5
(23.8,39.6) (30.5,42.2) (5.9,51.1)

Forecast revision 35.4 28.2 34.5
(27.5,43.3) (19.0,37.4) (22.9,46.2)

Investment 26.4 32.3 26.3
(21.7,31.1) (24.1,40.4) (-1.3,53.8)

Consumption 14.5 7.5 26.5
(8.3,20.7) (4.7,10.2) (3.0,50.0)

Durable C 6.4 4.0 35.9
(4.1,8.8) (-1.8,9.8) (11.5,60.3)

Non-durable C 3.7 5.6 24.6
(1.1,6.3) (0.9,10.3) (-3.4,52.5)

Total hours 28.1 31.0 25.0
(23.4,32.8) (26.1,35.9) (8.7,41.3)

CPI 6.4 17.1 39.9
(4.3,8.5) (11.2,23.0) (30.0,49.8)

Labor productivity 0.5 5.8 11.3
(-0.5,1.6) (2.6,9.1) (0.6,22.1)

TFP 0.2 0.3 2.6
(-1.7,2.1) (-3.4,4.1) (-9.2,14.3)

Table 4: Forecast error variance explained by sentiment shocks after controlling
for policy and oil price shocks
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F Conditional spectral density

F.1 Inference

We estimate confidence intervals of the conditional spectral density using the

block bootstrap procedure of Kilian and Kim (2011). Define the tuple:

Th = [yt+h − yt−1, εt, ι, εt−1, . . . εt−L, yt−1, . . . yt−L, xt−1, . . . xt−L] (22)

To preserve the correlation in the data, build the set of all Th tuples for h =
0,1, . . . ,H. For each tuple Th, employ the following procedure:

1. Define g = T − l+1 overlapping blocks of Th of length l.24

2. Draw with replacement from the blocks to form a new tuple T b
h of length

T.

3. Obtain θ̂b
h from T b

h using the local projection estimator.

4. Use bootstrapped impulse response θ̂b
h with h = 0,1, . . . ,H to estimate ŝb

k(ω)

as follows

ŝb
k(ω)= σ̂2

ε

2π

[ H∑
h=0

θ̂b
heihω

][ H∑
h=0

θ̂b
he−ihω

]
.

5. Repeat 1. to 4. 2000 times and select confidence intervals for the condi-

tional spectral density.

24 Notice that l = (T − I − J +2)
1
3 is defined following Berkowitz et al. (1999). Results are not

sensitive to alternative choices of l.
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F.2 Additional figures

Figure 11: Spectral density of GDP conditional to sentiment and technology
shocks

Note: Spectral density of real GDP conditional to sentiment shocks (left panel) and technology
shocks (right panel). Sample period: 1970Q3-2020Q1. Solid blue line and solid green line
indicate the baseline point estimates presented in Figure 5. Grey solid lines represent estimates
using truncation horizon from 30 to 50 quarters.
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(a) Sentiment shocks

(b) Technology shocks

Figure 12: Conditional spectral density of macroeconomic variables

Note: Spectral density of investment, consumption, durable consumption, non-durable con-
sumption, total hours, CPI, labor producitivity, and TFP conditional to sentiment shocks (top
panels) and technology shocks (bottom panels). Sample period: 1970Q3-2020Q1. Blue lines
indicate the point estimate for sentiment shocks, green lines the point estimate for technol-
ogy shocks, and the shaded areas indicate 80% and 90% confidence bands calculated with the
block-bootstrap (see Appendix F.1 for details). Horizontal axes measure periodicities 4 to 60
quarters.
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G Model Appendix

G.1 Steady state values

r =β−1 −1 (23)

R = 1+ r(1−τ) (24)

m =β (25)

z = 1 (26)

µ= 1
γ

[
1
βR

−1
]

(27)

n =
[

1
α

(1−µ)(1−θ)
] 1
σ(1−θ)+φ+θ

(28)

w =αnσ(1−θ)+φ (29)

y= zn1−θ (30)

c = y (31)

V = 1
γβ

y (32)

d = (1−β)V (33)

b =
(
1− 1

R

)−1
(y−wn−d) (34)

G.2 Loglinearized equations

E t
[
m̂t,t+1 + V̂t+1

]= ŷt (35)

V̂t = d
V

d̂t +βE t
[
m̂t,t+1 + V̂t+1

]
(36)

µγ

1+µγµ̂t + R̂t +E t(m̂t,t+1)+2κd(d̂t − d̂t+1)= 0 (37)

ŵt = ẑt −θn̂t − µ

1−µ
(
µ̂t +2κdd̂t

)
(38)
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ŷt = ĉt (39)

ŵt =σĉt +φn̂t (40)

E t

[
m̂t,t+1 + R

R−τ R̂t

]
= 0 (41)

ŷt = wn
y

(ŵt + n̂t)+ d
y

d̂t + B
y

B̂t − B/R
y

(
B̂t+1 −Rt

)
(42)

ŷt = ẑt + (1−θ)n̂t (43)

m̂t,t+1 =−σE t (ĉt+1 − ĉt) (44)

ẑt = ρz ẑt−1 +εz
t (45)

E t(ĉt+1)= ĉt +εs
t+1 +ψεz

t+1 (46)

G.3 Proof of Proposition 3

The moving average of consumption conditional on technology shocks is

ĉt =ψεz
t + Aεz

t−1 +λAεz
t−2 + ...

where A ≡ λψ+ 1+φ
ζ(1−θ) . Then Cov(ĉt, ĉt−1) = σ2

z A
(
ψ+ A λ

1−λ2

)
. Since ψ > 0 and

−1 < λ< 0, the first order autocorrelation of consumption conditional on tech-

nology shocks is positive if only if A > 0 and ψ+ A λ
1−λ2 > 0, or

−λ 1+φ
ζ(1−θ)

<ψ<−1
λ

1+φ
ζ(1−θ)

.
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