Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation

> H. Peter Boswijk (with Roger Laeven and Evgenii Vladimirov)

UNIVERSITY OF AMSTERDAM Amsterdam School of Economics

EEA-ESEM Congress 2022, Bocconi University, Milano, August 24, 2022

Introduction

- Option price (panel) data contain valuable information about (risk-neutral) distribution and dynamics of underlying asset.
- Econometric methods for parametric option pricing models (with latent state vector):
 - (penalized) NLS: Bakshi, Chao & Chen (1997); Andersen, Fusari & Todorov (2015);
 - EMM: Chernov & Ghysels (2000); Andersen, Benzoni & Lund (2002);
 - implied-state GMM methods: Pan (2002); Boswijk, Laeven, Lalu & Vladimirov(2021);
 - MCMC: Eraker (2004); Eraker, Johannes & Polsen (2003);
 - > particle filtering: Johannes, Polson & Stroud (2009); Bardgett, Gourier & Leippold (2019).
- Such methods typically compare observed (transformed) option prices with theoretical (parametric) counterparts, using Fourier- or simulation-based methods.
- This involves using cross-sectional information to back out latent states;
 - exceptions: Feunou & Okou (2018), Aït-Sahalia, Li & Li (2021).

Example: Heston (1993) model

$$dS_t = rS_t dt + \sqrt{v_t} S_t dW_{1t},$$

$$dv_t = \kappa (\overline{v} - v_t) dt + \sigma \sqrt{v_t} dW_{2t}, \qquad dW_{1t} dW_{2t} = \rho dt.$$

• Calibration approach to get parameters $\theta = (\kappa, \overline{\nu}, \sigma, \rho)$ and latent v_t :

$$\left(\{\widehat{\mathbf{v}}_t\}_{t=1,\ldots,T},\widehat{\theta}\right) = \operatorname*{argmin}_{\theta,\{\mathbf{v}_t\}_{t=1},\ldots,T} \sum_{t=1}^T \sum_{i=1}^N \left(O_t^{market}(\mathbf{K}_i) - O_t^{model}(\mathbf{K}_i;\theta,\mathbf{v}_t)\right)^2.$$

- Evaluation $O_t^{model}(K_i; \theta)$ non-trivial: FFT/COS pricing methods in practice;
- *T* + 4 parameters to calibrate;
- $\bullet \Rightarrow$ computationally intensive, time-series dependence not exploited.

This paper

Approach:

- Transform option prices to (non-parametric) empirical characteristic function (based on Carr & Madan, 2001; Todorov, 2019).
- Assume affine jump diffusion (AJD; Duffie, Pan & Singleton, 2000) for state vector, implying log-conditional characteristic function that is affine in state vector.
- Couple steps 1 and 2 to obtain measurement / observations equation in state space model; state transition equation is time-discretised SDE of AJD.
- Sestimate model parameters by Gaussian QML based on (collapsed) Kalman filter.

Properties:

- Does not require numerical option pricing methods;
- Exploits both cross-sectional and time-series dependence;
- Based on the standard Kalman filter, computationally fast;
- Exploits all probabilistic information via characteristic function.

Payoff spanning

• Breeden & Litzenberger (1978): put option with strike K and time to expiration $\tau = T - t$:

$$P_t(K,T) = e^{-r\tau} \mathbb{E}^{\mathbb{Q}}[\max(K-S_T,0)|\mathcal{F}_t] = e^{-r\tau} \int_0^K (K-x)q_t(x,T)dx,$$

implies risk-neutral density

$$q_t(x,T) = e^{r\tau} P_t''(x,T) = e^{r\tau} \left. \frac{\partial^2 P_t(K,T)}{\partial K^2} \right|_{K=x}.$$

• Carr and Madan (2001): European-style derivative with payoff function $g(S_T)$:

$$egin{aligned} e^{-r au}\mathbb{E}^{\mathbb{Q}}[g(\mathcal{S}_{\mathcal{T}})|\mathcal{F}_{t}]&=e^{-r au}g(\mathcal{F}_{t})+\int_{0}^{\mathcal{F}_{t}}g''(\mathcal{K})\mathcal{P}_{t}(\mathcal{K},\mathcal{T})\mathsf{d}\mathcal{K}+\int_{\mathcal{F}_{t}}^{\infty}g''(\mathcal{K})\mathcal{C}_{t}(\mathcal{K},\mathcal{T})\mathsf{d}\mathcal{K} \ &=e^{-r au}g(\mathcal{F}_{t})+\int_{0}^{\infty}g''(\mathcal{K})\mathcal{O}_{t}(\mathcal{K},\mathcal{T})\mathsf{d}\mathcal{K}. \end{aligned}$$

with futures price $F_t = \mathbb{E}^{\mathbb{Q}}[S_T | \mathcal{F}_t]$ and OTM option prices $O_t(K, T)$.

CCF option spanning

• Todorov (2019): Conditional characteristic function (CCF) of log-returns:

$$\phi_t(\boldsymbol{u},\tau) = \boldsymbol{e}^{-r\tau} \mathbb{E}^{\mathbb{Q}} \left[\left. \boldsymbol{e}^{i\boldsymbol{u}\log(F_T/F_t)} \right| \mathcal{F}_t \right]$$

corresponds to payoff function $g(x) = e^{iu \log(x/F_t)}$, hence

$$\phi_t(u,\tau) = e^{-r\tau} - (u^2 + iu) \int_0^\infty \frac{1}{K^2} e^{iu(\log K - \log F_t)} O_t(T,K) \mathrm{d}K$$

with $\phi_t(u, \tau) \in \mathbb{C}$ and $u \in \mathbb{R}$.

$$\widehat{\phi}_t(u,\tau) = \phi_t(u,\tau) + \zeta_t(u,\tau).$$

 $\zeta_t(u, \tau)$ reflects truncation, discretisation and measurement errors $(\widehat{O}_t - O_t)$.

Affine jump diffusion

• State vector $X_t \in \mathbb{R}^d$ satisfies, under \mathbb{Q} :

$$\mathsf{d}X_t = \mu(X_t;\theta)\mathsf{d}t + \sigma(X_t;\theta)\mathsf{d}W_t + J_t\mathsf{d}N_t,$$

where $\mu(\cdot; \theta), \sigma(\cdot; \theta)\sigma(\cdot; \theta)'$ and jump intensity $\lambda(\cdot; \theta)$ are affine functions.

X_t includes observable and latent variables; e.g., stochastic volatility: *X_t* = (log *F_t*, *v_t)'.
Implies CCF*

$$\phi_{X_t}(\mathbf{u},\tau) = e^{-r\tau} \mathbb{E}^{\mathbb{Q}}[e^{i\mathbf{u}\cdot X_{t+\tau}} | \mathcal{F}_t] = e^{\alpha(\mathbf{u},\tau;\theta) + \beta(\mathbf{u},\tau;\theta) \cdot X_t}, \qquad \mathbf{u} \in \mathbb{R}^d,$$

with $\alpha(\mathbf{u}, \tau; \theta) \in \mathbb{C}, \ \beta(\mathbf{u}, \tau; \theta) \in \mathbb{C}^d$ solutions to the ODE system.

- Hence marginal CCF for log-returns from $\mathbf{u}_1 := (u, 0, \dots, 0)'$.
- Large model class: Heston (1993), Pan (2002), Duffie et al. (2000), Andersen et al. (2017), *inter alia*.

Marrying two CCFs

• For true model with continuum of strikes:

$$\underbrace{\log \phi_t(u,\tau)}_{\text{model-free}} = \underbrace{\alpha(\mathbf{u}_1,\tau;\theta) + \beta(\mathbf{u}_1,\tau;\theta) \cdot X_t}_{\text{model-dependent}}, \quad u \in \mathbb{R}.$$

• Due to observation errors and approximation with discrete set of strikes:

$$\log \widehat{\phi}_t(u,\tau) = \alpha(\mathbf{u_1},\tau;\theta) + \beta(\mathbf{u_1},\tau;\theta) \cdot \mathbf{X}_t + \xi_t(u,\tau), \quad u \in \mathbb{R}.$$

Continuum of complex-valued linear measurement equations;

- if X_t were observable, could estimate θ by (continuum) non-linear least squares;
- since X_t is (partially) latent \Rightarrow Kalman filter-based QML estimation.
- Note that $\xi_t(u, \tau) = \zeta_t(u, \tau) / \phi_t(u, \tau) +$ "log-linearisation error".

State transition equation

• $X_t = (w'_t, x'_t)'$, where w_t is observable and x_t contains latent states.

• If model is also affine under \mathbb{P} , then $\mathbb{E}^{\mathbb{P}}[x_{t+1}|\mathcal{F}_t]$ and $\operatorname{Var}^{\mathbb{P}}(x_{t+1}|\mathcal{F}_t)$ are affine in x_t :

$$\mathbb{E}^{\mathbb{P}}[x_{t+1}|\mathcal{F}_t] = c_t + Tx_t, \qquad \mathsf{Var}^{\mathbb{P}}(x_{t+1}|\mathcal{F}_t) = Q(x_t),$$

with effect of w_t absorbed in c_t . Hence transition equation

$$x_{t+1} = c_t + Tx_t + \eta_{t+1}, \qquad \mathbb{E}^{\mathbb{P}}[\eta_{t+1}|\mathcal{F}_t] = 0, \quad \text{Var}^{\mathbb{P}}(\eta_{t+1}|\mathcal{F}_t) = Q(x_t).$$

- Functional form of c_t(θ), T(θ), Q(·; θ) can sometimes be obtained in closed form; in general, by numerical methods.
- Different parameter values under \mathbb{P} and $\mathbb{Q} \Rightarrow$ need to extend θ by risk-premia.

Measurement equation

• Turn complex function-valued measurement equation

$$\log \widehat{\phi}_t(u,\tau) = \alpha(\mathbf{u}_1,\tau;\theta) + \beta_w(\mathbf{u}_1,\tau;\theta) \cdot w_t + \beta_x(\mathbf{u}_1,\tau;\theta) \cdot x_t + \xi_t(u,\tau),$$

into real vector-valued measurement equation by:

- stacking real and imaginary parts;
- stacking these 2 × 1 vector equations for (u_i, τ_j) , i = 1, ..., q; j = 1, ..., k.
- Hence measurement equation is

$$y_t = d_t + Z_t x_t + r_{t,n} + \varepsilon_t,$$

where $r_{t,n}$ is a remainder term (discussed below), and, e.g.,

$$y_{t} = \begin{pmatrix} y_{1t} \\ \vdots \\ y_{kt} \end{pmatrix}, \qquad y_{jt} = \begin{pmatrix} y_{1j,t} \\ \vdots \\ y_{qj,t} \end{pmatrix}, \qquad y_{ij,t} = \begin{pmatrix} \operatorname{Re}\log\widehat{\phi}_{t}(u_{i},\tau_{j}) \\ \operatorname{Im}\log\widehat{\phi}_{t}(u_{i},\tau_{j}) \end{pmatrix}$$

Effect of observed states w_t absorbed in d_t .

State space representation

Assumptions

- X_t is Markov, affine jump diffusion, with "admissible" $\theta \in \Theta$ under \mathbb{P} and \mathbb{Q} .
- Observation errors ζ_t(τ, m) = Ô_t(τ, m) O_t(τ, m) are F_t-conditionally independent along τ, m = log(K/F_t) and t,

$$\mathbb{E}[\zeta_t(\tau,m)|\mathcal{F}_t] = 0, \qquad \text{Var}(\zeta_t(\tau,m)|\mathcal{F}_t) = \sigma_{\varkappa}^2 \kappa_t^2(\tau,m) \nu_t^2(\tau,m),$$

with $\kappa_t(\tau, m)$ and $\nu_t(\tau, m)$ the Black-Scholes implied volatility and vega, resp. **9** $\mathbb{E}^{\mathbb{Q}}[\mathcal{F}^2_{t+\tau}|\mathcal{F}_t] < \infty$ and $\mathbb{E}^{\mathbb{Q}}[\mathcal{F}^{-2}_{t+\tau}|\mathcal{F}_t] < \infty$ for $\tau > 0$.

• Log-moneyness grid $\underline{m} = m_1 < \ldots < m_n = \overline{m}$ satisfies

$$e^{m_1} = \mathcal{O}(n^{-\underline{\alpha}}), \quad e^{m_n} = \mathcal{O}(n^{\overline{\alpha}}), \qquad \underline{\alpha} > 0, \overline{\alpha} > 0,$$

$$\eta \Delta m \leq \inf_{2 \leq j \leq n} (m_j - m_{j-1}) \leq \sup_{2 < j < n} (m_j - m_{j-1}) \leq \Delta m,$$

where $\lim_{n\to\infty}\Delta m = 0$ and $\eta \in (0, 1)$.

State space representation

Proposition

Under Assumptions 1-4,

$$y_t = d_t + Z_t x_t + r_{t,n} + \varepsilon_t, \qquad \qquad \mathbb{E}[\varepsilon_t \varepsilon_t' | \mathcal{F}_t] = H_t, \\ x_{t+1} = c_t + T x_t + \eta_{t+1}, \qquad \qquad \mathbb{E}[\eta_{t+1} \eta_{t+1}' | \mathcal{F}_t] = Q(x_t),$$

where:

•
$$r_{t,n} = \mathcal{O}_P(n^{-2(\underline{\alpha} \wedge \overline{\alpha})} \vee n^{-1} \log n) \text{ and } \varepsilon_t = \mathcal{O}_P(\sqrt{n^{-1} \log n}).$$

• The errors satisfy

$$\mathbb{E}[\varepsilon_t \varepsilon'_s] = 0, \mathbb{E}[\eta_t \eta'_s] = 0 \text{ for all } t \neq s$$

$$\mathbb{E}[\varepsilon_t \eta'_s] = 0 \text{ for all } t \text{ and } s;$$

$$\mathbb{E}[\varepsilon_t x'_t] = 0, \mathbb{E}[\eta_{t+1} x'_t] = 0 \text{ for all } t.$$

• H_t is \mathcal{F}_t -measurable and estimable, involving a single unknown parameter σ_{\varkappa}^2 .

Collapsed Kalman filter

Recall

$$y_t = d_t + Z_t x_t + \varepsilon_t, \qquad \mathbb{E}[\varepsilon_t \varepsilon_t' | \mathcal{F}_t] = H_t,$$

where $\dim(y_t) \gg \dim(x_t) = d$.

• Collapsed Kalman filter of Jungbacker & Koopman (2015):

$$y_t \quad \mapsto \quad A_t y_t = \begin{bmatrix} A_t^* \\ A_t^+ \end{bmatrix} y_t = \begin{pmatrix} y_t^* \\ y_t^+ \end{pmatrix} = \begin{pmatrix} d_t^* \\ d_t^+ \end{pmatrix} + \begin{pmatrix} x_t \\ 0 \end{pmatrix} + \begin{pmatrix} \varepsilon_t^* \\ \varepsilon_t^+ \end{pmatrix},$$

with $A_t^* = (Z_t'H_t^-Z_t)^{-1}Z_t'H_t^-$, $A_t^+ = L_tH_t^-(I_p - Z_tA_t^*)$ and $\operatorname{cov}(\varepsilon_t^*, \varepsilon_t^+) = 0$.

- H_t might be singular, hence generalised inverse H_t^- .
- If A_t is non-singular, all information about the state vector x_t is contained in y^{*}_t ∈ ℝ^d (same dimension as x); hence proceed with

$$y_t^* = d_t^* + x_t + \varepsilon_t^*, \qquad \qquad \mathbb{E}[\varepsilon_t^* \varepsilon_t^{*\prime} | \mathcal{F}_t] = H_t^*, \\ x_{t+1} = c_t + Tx_t + \eta_{t+1}, \qquad \qquad \mathbb{E}[\eta_{t+1} \eta_{t+1}' | \mathcal{F}_t] = Q(x_t).$$

QML estimation

- If $Q(\cdot)$ does not vary with x_t , Kalman filter delivers minimum MSE predictor $\hat{x}_{t|t-1}$ of x_t .
- This is the basis for consistency of the Gaussian QML estimator.
- For the heteroskedastic case, de Jong (2000) and others have suggested a modified Kalman filter, replacing Q(x_t) by Q(x
 _{t|t-1}) in the Kalman filter recursions.
- Athough this methods invariably works well in Monte Carlo simulations, no formal asymptotic justification is available.
- Alternatively, we may apply particle filtering or MCMC / importance sampling, sacrificing the computational advantage of the approach.

Monte Carlo experiment: SVCDEJ

$$d \log F_t = (-\frac{1}{2}v_t - \mu\lambda_t) dt + \sqrt{v_t} dW_{1t} + Z_t dN_t, dv_t = \kappa(\overline{v} - v_t) dt + \sigma\sqrt{v_t} dW_{2t} + Z_t^v \mathbf{1}_{\{Z_t < 0\}} dN_t,$$

where:

- $dW_{1t}dW_{2t} = \rho dt;$
- N_t is jump counter, with intensity $\lambda_t = \delta v_t$;
- simultaneous jumps in volatility with negative jumps in returns, with $exp(1/\mu_v)$ distribution;
- distribution of jump size Z_t is double exponential with pdf

$$f_{Z}(z) = \frac{1-p^{-}}{\eta^{+}}e^{-z/\eta^{+}}\mathbf{1}_{\{z\geq 0\}} + \frac{p^{-}}{\eta^{-}}e^{z/\eta^{-}}\mathbf{1}_{\{z< 0\}},$$

with p^- probability of negative jump, and η^+ and η^- the means of positive and negative jump sizes.

Monte Carlo experiment: SVCDEJ

Simulation set-up:

- Initial values: $F_0 = 100$ and $v_0 = 0.015$;
- $T = 500, \ \Delta t = 1/250;$
- *p*⁻ fixed at 0.7 (not estimated);
- Times to maturity: $\tau = 10, 30$ and 60 days;
- Finite set of strikes with $\Delta K = 0.01 F_t$;
- Add observation errors $\widehat{O}_t(\tau, m) O_t(\tau, m) \sim N(0, 0.02^2 \kappa_t^2(\tau, m) \nu_t^2(\tau, m));$
- Interpolation-extrapolation scheme applied to $\widehat{O}_t(\tau, m)$.

Monte Carlo results: SVCDEJ

parameter	σ	κ	\overline{V}	ρ	δ	η^+	η^-	μ_{v}	σ_{\varkappa}			
$u = 1, \dots, 10$												
true value	0.450	8.000	0.015	-0.950	100.00	0.020	0.050	0.050	0.020			
mean	0.440	8.779	0.014	-0.997	136.20	0.023	0.045	0.043	0.035			
std dev	0.017	0.310	0.001	0.012	13.32	0.001	0.002	0.002	0.006			
q10	0.427	8.409	0.013	-1.000	118.64	0.022	0.043	0.041	0.027			
q50	0.437	8.836	0.013	-1.000	139.08	0.023	0.045	0.043	0.036			
q90	0.451	9.102	0.014	-1.000	150.73	0.024	0.047	0.046	0.042			
$u = 1, \dots, 20$												
true value	0.450	8.000	0.015	-0.950	100.00	0.020	0.050	0.050	0.020			
mean	0.455	8.143	0.015	-0.956	110.73	0.022	0.048	0.046	0.023			
std dev	0.007	0.205	0.000	0.013	4.85	0.001	0.001	0.001	0.006			
q10	0.449	7.919	0.014	-0.971	105.19	0.021	0.047	0.045	0.018			
q50	0.454	8.142	0.015	-0.956	110.69	0.021	0.048	0.046	0.022			
q90	0.461	8.389	0.015	-0.943	116.72	0.022	0.049	0.047	0.027			

Empirical application

Data:

- S&P 500 index options from the CBOE;
- From May 1, 2017 to April 1, 2021 (978 trading days);
- At each day keep option with 6 different tenors less than 60 days;
- Data filters and extrapolation-interpolation scheme are applied.

SVCDEJ parameter estimates										
	σ	κ	\overline{V}	ρ	δ	η^+	η^-	μ_{v}	σ_{\varkappa}	
$\hat{ heta}$	0.5051	8.325	0.0153	-0.997	157.51	0.0204	0.0424	0.0519	0.253	
s.e	0.0075	0.207	0.0005	0.012	7.28	0.0005	0.0007	0.0009	0.004	

SVCDEJ filtered volatility

SVCDEJ with external factor

- The 2020 volatility increase may by driven by external factor: the Covid-19 pandemic.
- Does the spread of the virus affect the volatility and the likelihood of jumps in the stock market?
- Embed the reproduction number R_0 into the SVCDEJ model.
- Assume no prior knowledge on the dynamics of *R*₀: assumed constant throughout option life-time;
 - for a persistent process, this is a reasonable assumption;
 - similar to treatment of interest rates in option prices.

SVCDEJ with external factor

$$d \log F_t = (-\frac{1}{2}V_t - \mu\lambda_t) dt + \sqrt{v_t} dW_{1,t} + q\sqrt{R_t} dW_{3,t} + Z_t dN_t, dv_t = \kappa(\overline{v} - v_t) dt + \sigma\sqrt{v_t} dW_{2,t} + Z_t^v \mathbf{1}_{\{Z_t < 0\}} dN_t,$$

with

$$V_t = v_t + q^2 R_t, \qquad \lambda_t = \delta v_t + \gamma R_t.$$

SVCDEJ estimation with reproduction number as external factor

	σ	κ	\overline{V}	ho	δ	η^+	η^-	μ_{v}	γ	q	σ_{\varkappa}
$\hat{ heta}$	0.568	11.55	0.014	-1.00	130.1	0.018	0.041	0.067	2.64	0.0003	0.245
s.e.	0.018	0.646	0.001	0.02	11.93	0.001	0.001	0.003	0.25	0.0001	0.004

Intensity for SVCDEJ with reproduction number

Conclusion

- Develop a new estimation and filtering procedure for AJD option pricing models.
- Based on linear relationship between option-implied log-CCF and state vector, following from AJD assumption.
- Linearity of measurement and transition equations allows the use of Kalman filter.
- Estimation procedure is fast and easy to implement.
- Monte-Carlo results suggest good finite-sample performance for different AJD models;
 - stronger identification of risk premia may require bringing in high-frequency information.
- Application to S&P 500 index options during the pandemic.