MARKET POWER IN THE U.S. AIRLINE INDUSTRY, 1990-2019

Germán Bet

UNIVERSITY OF FLORIDA

August 22, 2022

- Recent work: markups and concentration have increased across many agg. sectors of the U.S. and global economy
 - Key concern in industrial organization and competition policy
 - Macro: pervasive effects may extend to other markets and the aggregate economy

- Different potential explanations: demand, costs, and conduct
 - Industry-level research focused on trends in markups is needed to understand where they are rising and why

• **This paper:** studies evolution of market power in the U.S. airline industry and causes behind this evolution

• U.S. airline industry has become much more concentrated in recent years:

- U.S. airline industry has become much more concentrated in recent years:
 - Higher concentration ⇒ greater market power (e.g., potential competition, technology)
 - Trade-off between efficiencies and market power

- U.S. airline industry has become much more concentrated in recent years:
 - Higher concentration ⇒ greater market power (e.g., potential competition, technology)
 - Trade-off between efficiencies and market power

- Airline markets are vulnerable to collusion
 - Fewer number of firms facilitates collusion
 - American-US Airways merger raised concerns about coordinated effects (Olley and Town 2019, Porter 2020)

- U.S. airline industry has become much more concentrated in recent years:
 - Higher concentration ⇒ greater market power (e.g., potential competition, technology)
 - Trade-off between efficiencies and market power

- Airline markets are vulnerable to collusion
 - Fewer number of firms facilitates collusion
 - American-US Airways merger raised concerns about coordinated effects (Olley and Town 2019, Porter 2020)

• Highly volatile environment (agg. demand and supply shocks), expansion of low-cost carriers (LCC)

This Paper: Part I

1. Document the evolution of market power in the industry for the period 1990:Q1-2019:Q4

This Paper: Part I

- 1. Document the evolution of market power in the industry for the period 1990:Q1-2019:Q4
 - Obtain estimates of markups (i.e., P/MC) for each airline-time
 - Use production data and production approach to markup estimation (Hall 1988 and De Loecker and Warzynski 2012)
 - allows me to overcome the weak instruments problem when estimating conduct/markups using a demand approach

· Assess role of technology vs. profitability in evolution of markups

This Paper: Part II

- 2. Study the role of coordinating behavior
 - Test if airline carriers have experienced a *change* in conduct (coordinating behavior) in recent years
 - Employ:
 - demand data \rightarrow demand for air travel
 - structural modeling \rightarrow price competition w/ the possibility of internalizing pricing externalities
 - markup estimates from production data (to identify conduct)

This Paper: Part II

- 2. Study the role of coordinating behavior
 - Test if airline carriers have experienced a *change* in conduct (coordinating behavior) in recent years
 - Employ:
 - demand data \rightarrow demand for air travel
 - structural modeling \rightarrow price competition w/ the possibility of internalizing pricing externalities
 - markup estimates from production data (to identify conduct)

- 3. Compare approaches to markup estimation
 - 1990-2019: production approach vs. demand approach under Nash-Bertrand competition

Data

Data

- 1. **Production Data:** T-100 Domestic Segment and Air Carrier Financial Reports (Form 41 Financial Data)
 - Information on output (avialable seat miles), inputs, revenue, costs, network characteristics, etc.
 - Period 1990:Q1-2019:Q4
 - Carriers operating scheduled passenger service

- 2. Demand Data: DB1B 10% Fare Sample
 - Market level prices, quantities, and itinerary characteristics
 - Period 1993:Q2-2019:Q2
 - Markets between the 100 largest metropolitan areas (123 airports)
 - pprox 75% of total air passengers traffic
 - Nonstop and 1-stop round-trip products

MARKUP ESTIMATES

PRODUCTION APPROACH TO MARKUP ESTIMATION

- Originates in the work of Hall (1988) and De Loecker and Warzynski (2012)
- Cost minimization conditions for any variable (flexible) input V^x_{it} provide:

$$\mu_{it} = \frac{P_{it}}{MC_{it}} = \theta_{it}^{V^{\times}} \frac{P_{it}Q_{it}}{P_{it}^{V^{\times}}V_{it}^{\times}}$$
(1)

•
$$\theta_{it}^{V^{x}} = \frac{\partial Q_{it}}{\partial V_{it}^{x}} \frac{V_{it}^{x}}{Q_{it}}$$
 is the output elasticity of variable input V_{it}^{x}

- $\frac{P_{it}Q_{it}}{P_{it}^{VX}V_{it}^{X}}$ = share of variable input expenditure in total revenue (observed in data)
- $\theta_{it}^{V^{\times}}$ needs to be estimated

PRODUCTION IN THE AIRLINE INDUSTRY

• Technology $s = \{M, R\}$ specific production function:

$$Q_{it} = \min \left[H_{s,t}(I_{it}, k_{it}, g_{it}; \beta) e^{\omega_{it}}; \beta_{mit} M_{it} \right] e^{\epsilon_{it}} = H_{s,t}(I_{it}, k_{it}, g_{it}; \beta) e^{\omega_{it} + \epsilon_{it}}$$

where:

- Q_{it} =output (available seat-miles)
- *m_{it}* = logged jet fuel (1,000 gallons)
- *l_{it}* = logged labor (number of employees)
- k_{it} = logged aircraft utilization (minutes)
- g_{it} = logged ground, property and equipment (stock value)
- $\omega_{it} = \text{productivity}$

•
$$\epsilon_{it}$$
 = unexpected shock to output; $E_t(\epsilon_{it} \mid I_{it}) = 0$

PRODUCTION IN THE AIRLINE INDUSTRY

- $H_{s,t}(.)$ assumed to be translog:
 - output elasticities w.r.t inputs are a function of input usage
 - include time controls to the production function

PRODUCTION IN THE AIRLINE INDUSTRY

- $H_{s,t}(.)$ assumed to be translog:
 - output elasticities w.r.t inputs are a function of input usage

include time controls to the production function

Productivity evolves:

$$\omega_{it+1} = \rho \omega_{it} + \xi_{it+1}$$

 Estimation by dynamic panel techniques (after ρ-differencing the model)

INDUSTRY MARKUP

• Industry markup: $\mu_t^I = \sum_i s_{it} \mu_{it}$ with $s_{it} = q_{it} / \sum_i q_{it}$

MARKUPS: DOMINANT AIRLINES

DISCUSSION

- i. Trend is driven by dominant carriers
- ii. Changes in industry markup are mostly driven by changes in the distribution of markups over time (more)
- iii. Rise in markups is not explained by proportionally higher fixed costs or a larger scale elasticity
- iv. Rise in markups is explained by higher profit rates <a>www.

 \Rightarrow Findings point to an increase in market power

Robustness

• Robustness to alternative specifications:

- i. Production function estimation
 - Control function approach
- ii. Factor shares approach
- iii. Cost function estimation

STRUCTURAL ANALYSIS

STRUCTURAL ANALYSIS

• Goals:

- 1. Test whether the recent increase in markups can be explained by a change in conduct (coordinating behavior)
 - Focus on 2012:Q2-2019:Q2

- 2. Compare markups from production approach (imposes no assumptions on conduct) against markups from demand data + Bertrand-Nash competition
 - Focus on 1993:Q2-2019:Q2

MODEL OVERVIEW

• 2 essential components:

- 1. Demand for Differentiated Products
- 2. Supply: pricing equation

- Random coeff. nested logit model with two nests g: 0 (outside good) and 1 (airline travel)
 - Two consumer types, $au \in \{1,2\}$ (i.e., business and leisure travelers)

- Two-step GMM estimation
 - Instruments for prices and shares: variables that affect costs and Gandhi and Houde (2019) differentiation instruments based on product characteristics and its interactions

SUPPLY

• Max. problem for product *j* in market *m* at time *t*:

$$\max_{p_{j}:j\in\Omega_{amt}} (p_{jmt} - mc_{jmt})q_{jmt} + \sum_{k\neq j\in J_{mt}} O_{jkt}(p_{kmt} - mc_{kmt})q_{kmt}$$

- mc_{jmt}: marginal cost
- $q_{jmt} = s_{jmt} \times M_{mt}$ represents the number of enplaned passengers
- Ω_{amt}: set of product offerings of airline a in market m
- J_{mt}: set of products in market m

O(κ) is an ownership matrix with:

$$O_{jkt} = \left\{ \begin{array}{ccc} 1 & \text{if } (j,k) \in \Omega_{amt} \text{ for any a} \\ \kappa_{a,b,t} \in [0,1] & \text{if } j \in \Omega_{amt} \ \& \ k \in \Omega_{bmt}, \text{ for any a} \ \& \ a \neq b \end{array} \right.$$

• κ measures the degree of cooperation among firms when making their pricing decisions

ESTIMATION SUPPLY

• Equilibrium prices satisfy:

$$\hat{mc}_{mt}(\tilde{\kappa}, \hat{\theta}_d) = p_{mt} + \left[O_{mt}(\tilde{\kappa}) \odot \left(\frac{\partial s_{mt}(p_{mt}; \hat{\theta}_d)}{\partial p_{mt}} \right)^T \right]^{-1} s_{mt}(p_{mt})$$

ESTIMATION SUPPLY

• Equilibrium prices satisfy:

$$\hat{mc}_{mt}(\tilde{\kappa}, \hat{\theta}_d) = p_{mt} + \left[O_{mt}(\tilde{\kappa}) \odot \left(\frac{\partial s_{mt}(p_{mt}; \hat{\theta}_d)}{\partial p_{mt}} \right)^T \right]^{-1} s_{mt}(p_{mt})$$

Identification of κ relies on moment conditions:

$$E[\hat{\mathcal{M}}_{ajmt}] - (1 + \dot{\mu}_{at}) E[\hat{\mathcal{M}}_{ajmt-1}] = 0$$

- μ_{at} = markup estimate obtained under the production approach
 M̂_{aimt} = p_{aimt} / m̂c_{aimt}
- \dot{x} denotes the growth rate of variable x

Conduct Parameter Estimates (κ)

	Small Carriers	Large Carriers
Year	(1)	(2)
2013	2.568e-05	0.253
2014	(0.007) 2.647e-04	(0.002) 0.607
2015	(0.009) 8.042e-06	(0.001) 0.740
2016	(0.010) 1.214e-06	(0.001) 0.811
2017	(0.010) 4.899e-07	(0.001) 0.762
2018	(0.005)	(0.001)
2010	(0.005)	(0.002)
2019	(0.004)	(0.002)

Note: This table reports the estimates of the conduct parameters κ . Columns (1) and (2) report, by year, the parameter estimates for small and large carriers, respectively. κ is set to zero in 2012. Standard errors are reported in parentheses.

Counterfactual Simulations: Nash-Bertrand Pricing ($\kappa = 0$)

Variables	Avg. % Change
Consumer Surplus	16.141 (13.490)
Prices (All Airlines)	-9.267 (8.216)
Prices (American)	-10.907 (6.752)
Prices (Delta)	-9.137 (6.591)
Prices (United)	-10.509 (6.858)
Prices (Southwest)	-10.487 (7.703)

- i. Airlines' market power:
 - \downarrow in recessions/crisis but quickly \uparrow as demand grows
 - last decade: industry experienced markups at an all-time high
 - trend is driven by dominant carriers

- i. Airlines' market power:
 - \downarrow in recessions/crisis but quickly \uparrow as demand grows
 - last decade: industry experienced markups at an all-time high
 - trend is driven by dominant carriers
- ii. Rise in markups is:
 - not explained by proportionally higher fixed costs or larger scale elasticity
 - explained by higher profit rates \Rightarrow greater market power

- i. Airlines' market power:
 - \downarrow in recessions/crisis but quickly \uparrow as demand grows
 - last decade: industry experienced markups at an all-time high
 - trend is driven by dominant carriers
- ii. Rise in markups is:
 - not explained by proportionally higher fixed costs or larger scale elasticity
 - explained by higher profit rates \Rightarrow greater market power
- iii. Test and reject hypothesis of no increase in coordinating behavior for dominant carriers in recent years:
 - Counterfactual simulations \Rightarrow prices (CS) are (on avg.) 9% (16%) higher (lower) than it would have been under no change in conduct

- i. Airlines' market power:
 - \downarrow in recessions/crisis but quickly \uparrow as demand grows
 - last decade: industry experienced markups at an all-time high
 - trend is driven by dominant carriers
- ii. Rise in markups is:
 - not explained by proportionally higher fixed costs or larger scale elasticity
 - explained by higher profit rates \Rightarrow greater market power
- iii. Test and reject hypothesis of no increase in coordinating behavior for dominant carriers in recent years:
 - Counterfactual simulations \Rightarrow prices (CS) are (on avg.) 9% (16%) higher (lower) than it would have been under no change in conduct
- iv. 1990-2019: markups recovered under production approach significantly differ from markups obtained under demand data + Bertrand-Nash price competition

THANK YOU!

DISCUSSION: ROLE OF REALLOCATION

DISCUSSION: MARKUPS AND FIXED COSTS

DISCUSSION: MARKUPS, PROFIT RATE, AND SCALE ELASTICITY

•
$$\mu_{it} = \frac{1}{1-\pi_{it}}\nu_{it}$$

• Average (output-weighted) profit rate (π_{it}) and scale elasticity (ν_{it}) for major (red) and regional (blue) airlines

SUPPLY

- To illustrate: market with 4 products
 - first two being offered by American Airlines
 - third and fourth offered by Delta and United, respectively

$$O(\kappa) = \begin{bmatrix} 1 & 1 & \kappa_{AA,DL} & \kappa_{AA,UA} \\ 1 & 1 & \kappa_{AA,DL} & \kappa_{AA,UA} \\ \kappa_{AA,DL} & \kappa_{AA,DL} & 1 & \kappa_{DL,UA} \\ \kappa_{AA,UA} & \kappa_{AA,UA} & \kappa_{DL,UA} & 1 \end{bmatrix}$$

- $\kappa_{AA,DL} = \kappa_{AA,UA} = 0$ under Nash-Bertrand pricing
- $\kappa_{AA,DL} = \kappa_{AA,UA} = 1$ under full cooperation