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Abstract

I study the design of regulation using banks’ internal risk models. Specifically, I explore the
optimal combination of capital requirements and penalties to ensure truthful reporting. I first
characterize optimal regulatory capital and penalties when banks have private information
about their risk. I find that penalties in practice could be rationalized provided sufficient
variation in banks’ preferences. I then use hand-collected data on risk model revisions to
show that actual penalties provide only weak incentives for model improvements and fail to
deter misreporting. In addition, my model suggests that recent changes in regulation may
further impair truthful disclosure.
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1 Introduction

This paper examines the design of bank regulation using banks’ internal risk models. In particular,

I investigate whether the existing rules are effective at revealing true risk of banks.

To understand bank risk, it is essential to grasp the concept of bank capital and its importance.

Suppose that there is Bank A that gets $100 (recorded as debt) from one person, gives this $100 to

another person and earns money from the difference in rates. If the latter fails, Bank A cannot pay

back the former and fails itself. In order to survive, Bank A must have its own funds, i.e., capital,

to cover possible losses. The regulator monitors banks to ensure that they have sufficient capital

for the risks that they are taking, offering them two ways to link capital to risk: (i) using the “one-

size-fits-all” regulatory framework, or potentially more risk-sensitive (ii) using their internal risk

models upon the supervisory approval. Under (ii), banks face a trade-off between underreporting

of risks to get lower capital requirements ex ante and having higher regulatory penalties ex post

for the detected misrepresentation of risks. This in particular applies to market risk that arises

from banks’ trading activities. Many banks hold large trading portfolios and in particular, those

of U.S. banks jointly constitute about $2 trillion and 10% of total assets (as of 2017) relative to

2.5% and 5% in the early 1990s and 2000s (Falato et al., 2019). The failure to correctly manage

market risk led to large losses for many banks during the global financial crisis (BCBS, 2019b).

Yet there are only few theoretical (Prescott, 2004; Cuoco and Liu, 2006; Colliard, 2019; Leitner

and Yilmaz, 2019) and empirical (Begley et al., 2017; Mariathasan et al., 2022) studies concerning

the use of internal models for market risk.

I model how the regulator should jointly determine optimal capital requirements and penalties

under banks’ private information about true risk so that to ensure truthful reporting. Under the

trade-off between lower capital ex ante and potentially higher penalties ex post, banks should find

it optimal to disclose their risk truthfully in fear of risk-based penalties which depend therefore on

banks’ risk aversion. In practice, these penalties comprise additionally required capital (up to 1/3

more) and possibly a model revision. To test whether actual penalties are set optimally, I use risk

model revisions as more risk-averse banks should revise their models more to better estimate risk

that they face and decrease uncertainty about penalties if the current model does not perform well.
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To address identification concerns regarding the use of banks’ self-reported data, I first employ

an instrumental variable approach to recover exogenous variation in the past-year number of risk

underreporting incidences. The exclusion restriction rests on the fact that this number is the one

and only criterion for a supervisor to disallow the use of a risk model. Moreover, I exploit the

change in market risk capital regulation for U.S. banks in 2013 as a plausibly exogenous shock

to their market risk reporting requirements (Federal Register, 2012). I also analyze time-varying

additional capital requirements using data from the World Bank’s Bank Regulation and Supervision

Survey (BRSS) and data on the global systemically important banks (G-SIBs) published by the

Financial Stability Board. Finally, I study the ex post risk model outcomes in the presence of

the additional market risk capital requirement and supervisory scrutiny to further inform on the

policy side.

I hand-collect information on the reported incidences of risk model revisions and classify them

(where possible) into those that ceteris paribus imply higher or lower capital requirements. I use

the sample from Mariathasan et al. (2022) for the remaining banks’ self-reported data which covers

17 banks from the U.S., Canada and Europe from 2002 to 2019. I complement this self-reported

data with supervision data from the BRSS to better examine the role of supervision in market risk

capital regulation.

My model illustrates that optimal penalties decrease with banks’ risk aversion for all true risk

levels. This is different from existing models of capital regulation in which penalties are either

fixed (Prescott, 2004) or serve as an unlimited reward to those banks whose losses do not breach a

certain threshold (Colliard, 2019). In the data, I find that banks are less likely to report switching

to a model that implies higher capital requirements with more underreporting of risk in the past.

Moreover, using these risk models corresponds to worse model outcomes ex post. Similarly, the

change in regulation intended to better capture market risk of U.S. banks is followed by 50% more

underreporting of risk, but also by 35% lower reported risk among these banks and even lower

among those with larger trading activities. This result complements Begley et al. (2017) who find

that banks with larger trading operations at the beginning of 2006 tend to underreport risk more

over the period from 2006 to 2013. Thus, penalties in practice are set suboptimally and built on
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assuming banks being more risk-averse than they really are as the empirical results demonstrate.

My findings indicate that banks can still use tricks to hide their risk despite many post-crisis

reforms. Basel III, however, seems to be more detrimental for truthful reporting: additional market

risk capital requirements are halved (BCBS, 2019a, see also Table 1), whereas the estimated impact

of Basel III revisions is a 22% increase in the share of market risk in bank capital requirements as

of 2022 (BCBS, 2019b). These changes seem to only help banks to look safer than they really are

as they did in the global financial crisis. Nevertheless, my analysis suggests that higher quality

supervision can reduce the inefficiency.

This paper provides several contributions to the literature. First, I contribute to the existing

theoretical work on incentive problems in the market risk capital regulation (Prescott, 2004; Cuoco

and Liu, 2006; Colliard, 2019; Leitner and Yilmaz, 2019). Inspired by the design of regulation at

place, I consider a simple model setup where the regulator jointly determines the optimal capital

requirements and penalties which are set to achieve the truthful reporting of risk and the optimal

amount of risk-based capital. Second, using a hand-collected sample which is twice as large as the

sample in Begley et al. (2017), I provide evidence on underreporting of bank risk as well as assess

regulation with respect to promoting strong incentives among banks to improve their models.

The rest of the paper is organized as follows. Section 2 describes the theoretical model and its

numerical application. Section 3 discusses the data and empirical strategy. Section 4 presents the

empirical results and Section 5 concludes.

2 Model

Capital regulation using banks’ internal models for market risk consists of two major elements: (i)

a capital requirement, and (ii) a penalty which includes an additional capital charge that increases

with underreporting of risk, and a potential model revision (see Table 1)1. Ceteris paribus, the
1According to Basel rules, market risk capital requirements (similar to those for credit and operational risk)

constitute 8% of market risk-weighted assets. If risk weights are determined internally by banks, their market risk-
weighted assets can be represented as 12.5×(3+∆Capital)×f(Reported Risk), where f is an increasing function of
risk reported by banks that changes along Basel I, II and III. The corresponding values of ∆Capital are given in
Table 1.
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lower the risk reported by banks is, the lower is the corresponding capital requirement. This

implies that banks would always prefer to report the lowest risk possible when they have private

information about their risk. Thus, regulatory penalties for underreporting of risk are key to ensure

a correct mapping between bank risk and bank capital. To evaluate the existing regulation, it is

therefore necessary to build a model where the regulator jointly determines capital requirements

and penalties, and where penalties are used as an incentivizing mechanism to mitigate misreporting

of bank risk and thus suboptimal capital requirements ex ante.

To find the optimal combination of regulatory capital and penalties to ensure truthful reporting

of bank risk, I consider a simple model setup in the style of Prescott (2004), albeit with a few

changes in an attempt to get closer to actual regulation. First, I consider risk-based penalties

that are charged to banks when they misreport risk and are equal to zero, otherwise. This is

useful because according to the existing capital regulation, banks incur zero penalties when they

assess their risks well and their losses do not exceed their own risk estimates. Also, the empirical

evidence suggests that banks’ misreporting incentives around the threshold when penalties stop

being zero are different from those around any other thresholds due to, for example, more close

supervision (Begley et al., 2017). The resembling practice design of penalties in this model is

different from that in existing models of capital regulation in which penalties are either fixed

(Prescott, 2004) or serve as an unlimited reward to those banks whose losses do not exceed a

certain threshold (Colliard, 2019). Second, in contrast to Prescott (2004) and Colliard (2019), I

consider different attitudes towards risk among banks that will ultimately affect their choice of

what risk to report to the regulator given the true risk that they face. This is particularly relevant

for actual internal model-based regulation as this design feature allows to have the range of optimal

regulatory capital and penalties instead of the “one-size-fits-all” solution. Third, different from

Prescott (2004) and similar to Colliard (2019), I include a participation condition for banks that

determines the maximum feasible combination of regulatory capital and penalties. Similar to

Prescott (2004) and Colliard (2019), I keep the information asymmetry which is highly relevant in

practice, letting the regulator observe only a signal about banks’ true risk.

There are two types of agents in the model: banks and a regulator. Each bank makes a risky
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investment of size one. The investment may succeed or fail depending on the random failure

probability ω ∈ [ω, ω] with 0 ⩽ ω < ω ⩽ 1. This probability is drawn by nature from the

cumulative distribution function F (ω) and density f(ω). Banks are assumed to perfectly observe

ω. The regulator does not observe ω, but ω′ ∈ [ω, ω] which is reported by banks (and is therefore

non-random). When ω′ < ω, true risk ω is underreported by banks, and when ω′ > ω, true risk ω

is overstated.

Banks can finance their risky investment with either deposits or capital. K(ω′) ∈ [0, 1] denotes

the amount of capital that is held by banks for a given reported risk ω′. Then, since bank size is

normalized to one, the respective amount of deposits is 1 − K(ω′). U(ω′, ω) denotes the banks’

payoff if the true risk is ω and risk ω′ is reported to the regulator. Banks are assumed to participate

in regulation:

Assumption 1. U(ω′, ω) ⩾ 0 ∀ (ω′, ω) ∈ [ω, ω]2.

There is a conflict of interest between banks and the regulator. Banks prefer to finance the

investment with deposits rather than with capital2. The regulator thus sets a risk-sensitive capital

requirement K(ω′). The less capital K is held by banks, the more deposits the regulator needs to

cover ex post in case the investment fails. The corresponding value loss to society is denoted by

V (K) ⩽ 0 (V ′ > 0, V ′′ < 0) which takes value zero when K = 1. Figure 2 illustrates the function

V . Formally,

Assumption 2. V
(
K
)
⩽ 0 ∀K ∈ [0, 1] with V

(
1) = 0.

Since banks have private information about the true risk ω, they would always prefer to report the

lowest possible risk ω and hold the lowest possible amount of capitalK(ω). Therefore, to incentivize

banks to report truthfully, the regulator additionally sets risk-sensitive penalties T (ω′) ∈ [0, 1].

They reflect the degree of regulatory scrutiny for a given signal ω′. Penalties T are imposed on

banks in case the investment fails which happens with probability ω, while there is probability

1− ω where there are no penalties. The regulation works as follows:
2This preference can stem, for example, from tax treatment and subsidized safety net protections, including

deposit insurance and too-big-to-fail subsidies that benefit bank debt more than bank equity (Dagher et al., 2016).
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t = 0: The regulator specifies formulae linking any reported risk ω′ to capital requirement K(ω′)

and penalties T (ω′) in case the investment fails.

t = 1: Banks observe true risk ω ∈ [ω, ω] drawn by nature from F (ω) and report ω′ ∈ [ω, ω] to

the regulator.

t = 2: Banks make their investment financed with K(ω′) capital.

t = 3: The investment fails and banks are charged penalties T (ω′) with probability ω, and final

payoffs are realized.

The regulator wants to achieve a proper link between bank capital and bank risk, and uses penalties

to incentivize truthful reporting among banks. It is therefore not in the regulator’s interest to

maximize the capital requirement. Instead, consistent with the literature on optimal bank capital

(Miles et al., 2013), the regulator’s objective is to maximize social welfare balancing between

benefits and costs of increasing the capital requirement. On one hand, the benefits appear because

a larger buffer of truly-absorbing capital reduces the economic costs in case of failure measured by

V . On the other hand, the offset to any such benefits comes in the form of higher costs of bank

funding as equity replaces debt, and as a consequence, higher costs of intermediation. These costs

are measured by the per unit cost of capital c. Thus, the regulator is searching for capital and

penalty schedules which solve the following problem applying the revelation principle:

max
K(ω)∈[0,1]

∫ ω

ω

(
ωV

(
K(ω)

)
− cK(ω)

)
dF (ω)

subject to

∀ (ω′, ω) ∈ [ω, ω]2 U(ω, ω) ⩾ U(ω′, ω), (IC)

∀ω ∈ [ω, ω] U(ω, ω) ⩾ 0. (PC)

The first term in the regulator’s payoff ωV
(
K(ω)

)
represents the expected failure loss to society,

which the regulator needs to cover for a given capital amount K held by banks. The second term

cK(ω) is the bank cost of issuing capital for a given risk ω. Penalties T do not represent value to

society other than from incentivizing truthful reporting, therefore, do not enter the payoff.
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The regulator maximizes the payoff to society subject to two constraints: (i) the constraint that

the banks’ payoff when ω′ = ω, i.e., when risk is reported truthfully, is at least as much as when

any other ω′ is reported (incentive compatibility (IC) constraint), and (ii) the constraint that for

no value of ω is the banks’ payoff negative (participation (PC) constraint).

To eliminate possible corner solutions, I make two additional assumptions:

Assumption 3.
(
ωV

(
K(ω)

)
− cK(ω)

)
dF (ω) > ωV (0)dF (ω).

Assumption 4.
(
ωV

(
K(ω)

)
− cK(ω)

)
dF (ω) > −c.

Assumption 3 ensures that even under the most favorable risk distribution F (ω) it should never

be optimal for the regulator to set K = 0 due to high expected social losses in case of failure

ωV (0)dF (w). Assumption 4 makes sure that setting K = 1 is never optimal either due to the high

social cost of issuing capital even under the most unfavorable risk distribution F (ω).

If the regulator had full information about true risk ω, the first-order condition from solving the

regulator’s problem combined with Assumption 3 and Assumption 4 would define the interior

first-best capital requirement Kf (ω) as given in Proposition 1:

∀ω ∈ [ω, ω] ωV ′(K(ω)
)
= c. (1)

Here the marginal benefit of capital equates its marginal cost. Since V ′ > 0, c > 0, (1) implies

that K(ω) is increasing in ω, i.e., the capital requirement is increasing in the true risk. This

positive relationship between risk and capital is consistent with the risk-based capital regulation

in practice.

Proposition 1. The first-best regulatory capital Kf (ω) is defined as:

Kf (ω) = argmax
K

∫ ω

ω

(
ωV

(
K(ω)

)
− cK(ω)

)
dF (ω).

Kf (ω) is increasing in ω.

The regulator who observes only a signal about the true risk is looking for the second-best capital
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Ks(ω) and penalties T s(ω) that satisfy (IC) and (PC) conditions on banks’ payoff U . Therefore,

each type of banks’ preferences would be associated with a corresponding pair of optimal regulatory

capital K and penalties T . Penalties in practice, as depicted in Figure 1, vary with the degree

of risk misreporting, supporting the use of different banks’ attitude towards risk. In addition,

recent empirical evidence suggests that disparities in banks’ attitude towards risk matter for how

banks value risk given the amount of risk that they face (Camba-Méndez and Mongelli, 2021).

This finding is consistent with preceding theoretical work which treats banks as risk-averse agents

(see e.g. Ratti, 1980; Sealey, 1980; Ho and Saunders, 1981; Koppenhaver, 1985; Angbazo, 1997).

A risk aversion assumption in this literature rests on the traditional explanations for risk-averse

behavior including (i) incentive problems such as adverse selection and moral hazard related to

regulation (e.g., deposit insurance, bank resolution mechanisms, etc.) requiring banks which enjoy

protection to limit risk, (ii) bankruptcy cost from partial or complete default, (iii) management’s

inability to diversify its human capital, and (iv) insufficient owner diversification. Thus, drawing

on actual regulation and the existing studies of banks’ risk-related behavior, I assume that banks

have different attitudes towards risk and can be either risk-neutral or risk-averse. If banks are

risk-neutral (as in e.g. Prescott, 2004; Colliard, 2019), their expected payoff URN(ω′, ω) is3:

URN(ω′, ω) = (1− ω)
(
1−K(ω′)

)
+ ω

(
1−K(ω′)− T (ω′)

)
= 1−K(ω′)− ωT (ω′). (2)

With probability 1−ω, the investment succeeds and banks derive utility from the deposit amount

1−K(ω′). With probability ω, the investment fails and banks are additionally charged penalties

T (ω′). To define the expected payoff for the rest of bank population which is not risk-neutral, I

use CRRA preferences with a risk aversion parameter γ ∈ (0, 1). In choosing CRRA preferences, I

follow Cuoco and Liu (2006) who use this type of preferences in their model of market risk capital

regulation. Similar to the expected payoff of risk-neutral banks URN(ω′, ω), the expected payoff
3I follow Prescott (2004) in modelling banks’ preferences over capital by 1 −K rather than formally including

the cost of capital because it has no impact on the model results (banks would still prefer less capital to more)
and simplifies the analysis. Also, under this functional form, K may be interpretable as capital net of potentially
required penalties.
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of risk-averse banks URA(ω′, ω) is4:

URA(ω′, ω) = (1− ω)

(
1−K(ω′)

)1−γ

1− γ
+ ω

((
1−K(ω′)

)1−γ

1− γ
−

(
T (ω′)

)1−γ

1− γ

)
=

=

(
1−K(ω′)

)1−γ − ω
(
T (ω′)

)1−γ

1− γ
,

(3)

with URA(ω′, ω) = 1−K(ω′)− ωT (ω′) = URN(ω′, ω) when γ = 0.

Banks’ payoffs as defined in (2) and (3) are decreasing in K and T (URN ′
K < 0, URN ′

T < 0, URA′
K <

0, URA′
T < 0), meaning that banks are better off from facing lower capital requirements and lower

penalties independent of banks’ preferences over risk. Moreover, URA′′
T > 0 (URA′′

K < 0) which

implies that an increase in penalties (capital requirements) when they are relatively low is more

(less) costly for risk-averse banks than when they are relatively high. The observation about

penalties is consistent with the result in Begley et al. (2017) that banks tend to strategically

underreport risk near the threshold at which penalties stop being zero, but not when penalties are

relatively high.

(IC) condition requires that reporting true risk ω is the solution of banks’ maximization problem:

∂URN(ω′, ω)

∂ω′ = −K ′(ω′)− ωT ′(ω′),

K ′(ω) = −ωT ′(ω); (4)

∂URA(ω′, ω)

∂ω′ = −
(
1−K(ω′)

)−γ
K ′(ω′)− ω

(
T (ω′)

)−γ
T ′(ω′),

(
1−K(ω)

)−γ
K ′(ω) = −ω

(
T (ω)

)−γ
T ′(ω). (5)

(4) and (5) are the first-order conditions that must hold for ω′ = ω for risk-neutral and risk-averse

banks, respectively. According to (4)
(
(5)

)
, the marginal change in capital requirements (for a

given amount of deposits) should be set equal to the expected marginal change in penalties (for

a given level of penalties) for risk-neutral (risk-averse) banks. Also, since from (1) K ′ > 0, (4)
4Different timing of banks’ financing decision and penalties allows me to consider banks’ disutility from penalties

separately from their deposit-driven utility. This modelling decision does not significantly alter the findings, but
simplifies the algebra. More detailed discussion of the effects of this modelling choice and possible alternatives is in
Appendix A.

9



and (5) imply that T (ω) decreases in ω, i.e, penalties decrease in the true risk. This negative

relationship between the true risk and penalties reflects the fact that misreporting of risk is more

undesirable from the social perspective when true risk ω is low together with the corresponding

capital requirement K(ω) and the investment fails.

(4) and (5) are the differential equations that pin down capital requirements and penalties such

that it is in the interest of banks to report risk truthfully. To ensure that these values are feasible

for the regulator, they must satisfy (PC) condition which requires that banks’ payoff never goes

below zero:

∀ω ∈ [ω, ω], ∀ γ ∈ [0, 1) U(ω, ω) =

(
1−K(ω)

)1−γ − ω
(
T (ω)

)1−γ

1− γ
⩾ 0.

This constraint puts a limit on the maximum feasible regulatory capital K(ω) and penalties T (ω):

∀ω ∈ [ω, ω], ∀ γ ∈ [0, 1) K(ω) ⩽ 1− ω
1

1−γ T (ω), (6)

i.e., the maximum amount of capital that the regulator can ask banks to hold is equal to the

amount of banks’ assets net of the expected penalties.

The conditions (1), (4), (5) and (6) jointly describe the second-best solution for regulatory capi-

tal Ks(ω) and penalties T s(ω). Particularly, the regulator’s first-order condition (1) reflects the

trade-off between implementing the first-best capital requirements Kf (ω) and saving on costs of

issuing capital c. Under full information, the regulator would perfectly observe ω and could assign

banks a unique risk-based capital amount K(ω) according to (1). Under incomplete information

instead, the regulator would bear the social cost of failure only with an unobserved probability

ω. This implies that in the presence of information asymmetry the regulator could be better off

saving on the cost of issuing capital by marginally reducing K for very high values of ω. Therefore,

the capital requirement for the highest possible failure risk K = K(ω) may not be unique in the

second-best and there would exist an interval in the upper tail of risk distribution such that over

this interval the capital requirement stays constant at K (see Figure 3)5.
5Prescott (2004) and Colliard (2019) also find that regulatory capital remains constant at the upper tail of risk
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Thus, there exists a threshold ω̂ such that banks with any ω ∈ [ω̂, ω] get the same capital require-

ment K. As a consequence, these banks would have incentives to report the highest possible risk ω

to get the lowest possible penalties T = T (ω), because T ′ < 0 and because banks’ payoff decreases

in penalties (URN ′
T < 0, URA′

T < 0). To be incentive-compatible, penalties should therefore be fixed

at T for any ω ∈ [ω̂, ω] similar to the capital requirement over the same interval K.

Proposition 2 formally describes regulatory capital and penalties which are optimal under banks’

private information about the true risk:

Proposition 2. The second-best regulatory capital Ks(ω) and penalties T s(ω) are:

Ks(ω) =


K(ω) if ω ⩽ ω̂,

K if ω > ω̂,

T s(ω) =


T (ω) if ω ⩽ ω̂,

T if ω > ω̂,

with K(ω), T (ω), K, T and ω̂ characterized by:

∀ω ∈ [ω, ω̂] ωV ′(K(ω)
)
= c, ∀ γ ∈ [0, 1)

(
1−K(ω)

)−γ
K ′(ω) = −ω

(
T (ω)

)−γ
T ′(ω);

T (ω) ⩽ 1−K(ω)

ω
1

1−γ

K = K(ω̂) ⩽ 1− ω
1

1−γ T (ω) T = T (ω̂).

Regulatory capital Ks(ω) is increasing in ω for all ω ⩽ ω̂ and is constant for all ω > ω̂, penalties

T s(ω) are decreasing in ω for all ω ⩽ ω̂ and are constant for all ω > ω̂.

In the second-best contract, when true risk ω is relatively high (ω > ω̂), there is no risk variation

in either capital requirement K or penalties T . In this case, banks are required to hold the highest

possible capital amount K. On the other hand, when true risk ω is relatively low (ω ⩽ ω̂), capital

requirement K as well as penalties T are risk-sensitive and defined by the first-order conditions

(1), (4) and (5). Because different banks’ payoffs URN and URA decrease in both K and T , whereas

K ′ > 0 and T ′ < 0, banks deciding on what risk to report face a trade-off between lower capital

requirement K and potentially higher penalties T .

distribution. In their models of credit risk capital regulation, the regulator faces a similar trade-off between saving
on auditing costs and implementing capital requirements close to the first-best due to the slightly altered payoff in
the second-best compared to the first-best.
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2.1 Numerical Analysis of Optimal Regulatory Capital and Penalties

I illustrate the model solution as defined in Proposition 2 with a numerical example. I assume a

simple quadratic loss function V : V (K) = −(1 − K)2 with V (1) = 0, V ′ > 0 and V ′′ < 0 (see

Figure 2). Assuming this form for regulatory function V allows to define the first-best regulatory

capital Kf using (1):

Kf (ω) = 1− c

2ω
, (7)

where K ′ = c
2ω2 > 0, i.e., Kf is increasing in ω as in the model.

The regulator aims at implementing the full-information capital requirement Kf for any ω ⩽ ω̂

which is feasible only if there exists T such that (4)
(
(5)

)
and (6) hold for risk-neutral (risk-averse)

banks. When banks are risk-neutral, optimal penalties TRN can be found from the differential

equation (4):

TRN(ω) =
c

4ω2
+ c1, (8)

where TRN ′
ω = − c

2ω3 < 0, i.e., T is decreasing in ω as in the model.

The range of optimal penalties for risk-averse banks TRA can be obtained by solving the differential

equation (5) for different values of γ:

∀ γ ∈ (0, 1) TRA(ω) = c

(
1− γ

8ω2

) 1
1−γ

+ c2, (9)

where TRA′
ω = −

(
(1− γ)γ2−2−γc1−γω−3+γ

) 1
1−γ < 0.

Importantly, knowing regulatory function V and the corresponding capital requirement K allows

to infer the relation between penalties TRA′
ω and banks’ attitude towards risk captured by γ.

TRA′
γ = c

8ω2 (1 − γ)
1

1−γ
−2
(
log(1 − γ) − 1

)
< 0 for any γ ∈ (0, 1), i.e., penalties T are decreasing in

banks’ risk aversion parameter γ.

Table 2 demonstrates the numerical solution with risk-neutral (γ = 0) and risk-averse (γ = 0.25)

cases depicted in Figure 3. I consider two scenarios for the lower bound of T denoted by T = T (ω)

following penalties in practice (see Figure 1 and Table 1): T = 0.4 and T = 0.2. (6), (7), (8) and

(9) define the feasible sets of parameters given both values of T . Accordingly, the following two
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sets of parameters are chosen: ω = 0.25, ω = 0.5, c = 0.19 if T = 0.4 and ω = 0.25, ω = 0.7,

c = 0.19 if T = 0.2. For these sets of parameters, Table 2 reports the selection of results and

provides further details on how the regulator should optimally choose capital requirement Ks and

penalties T s, including on how to determine the threshold ω̂.

Figure 3 illustrates several crucial implications of the model. First, the lower is ω, the lower is

the corresponding capital requirement K(ω), but the higher are penalties T (ω). This is consistent

with the trade-off that banks face in practice when deciding on what risk to report. Second,

comparing the results for two values of T , if penalties become lower, the regulator must also

optimally adjust capital requirements, making them higher. In the light of recent changes in

regulation that make one of penalty components two times smaller (an additional capital charge

for the detected misrepresentation of risk), this implies that such changes should be accompanied

by an increase in capital requirements, or alternatively by tightening the other penalty component

(supervisory scrutiny). Finally, penalties T are lower for more risk-averse banks. Because penalties

in practice are heterogeneous and depend on how banks report risk, I test whether actual penalties

successfully implement such dependencies and are therefore effective in the sections to follow.

3 Empirical Framework

3.1 Data

To study the effect of market risk capital regulation on banks’ reporting behavior, I combine banks’

self-reported information with accounting, national supervision and global volatility data as well

as data on the global systemically important banks (G-SIBs). I use hand-collected data from

publicly available quarterly, annual and Pillar III reports. I extract information on the disclosed

incidences of risk model revisions (New Model) and classify them (where possible) into those that

ceteris paribus imply higher (Tight Model) or lower (Loose Model) capital requirements. The clas-

sification is primarily done based on the information from the market risk management section of

a particular filing. Also, starting from 2013Q4 in the light of the Basel III regime implementation,

some banks begin to report quarterly changes in market risk-weighted assets and its drivers in-
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cluding model revisions. These values, being either positive or negative, allow to detect additional

cases of model revisions and to more explicitly classify those as either Tight or Loose6. Both the

number and the distribution of risk model revisions vary significantly across banks and over time

(see Figure 4). There are on average more model revisions that imply lower capital requirements,

especially right before and after the global financial crisis. However, banks seem to switch more

actively to more stringent risk models during economic turmoil, i.e., during 2007-2008 as well as

in 2020. Thus, banks tend to adopt more lenient standards for their market risk exposures dur-

ing normal times and use stricter standards during crisis times. This observation is in line with

the literature on credit risk, arguing that lenders choose lax lending standards during booms and

switch to tight lending standards during busts (see e.g. Mariathasan and Zhuk, 2018; Farboodi

and Kondor, 2021).

For the remaining self-disclosed bank data to study model outcomes, I use the sample from

Mariathasan et al. (2022). The sample selection updates and extends Begley et al. (2017) and

the final sample covers 17 banks7 from the U.S., Canada and Europe who provide sufficient quar-

terly information on market risk models, estimated risk exposures and the number of days when

the realized daily loss of a bank exceeds its risk estimate from 2002Q1 to 2019Q48. The final sam-

ple comprises 920 bank-quarter observations and, when bank balance sheet information is taken

into account, 842 bank-quarter observations9.

Table 3 shows summary statistics on self-reported model revisions, reported risk exposures10, its

underreporting cases and corresponding additional capital charges. All 17 banks change their

model at least once during the sample period. There are 252 risk model revisions in total, with
6Market risk capital requirements are proportional to market risk-weighted assets, constituting 8% of the latter.
7In contrast to Begley et al. (2017), I exclude PNC and SunTrust Bank from the final sample because they

follow the standardized approach for market risk and hence do not use their internal models to self-determine their
capital requirements.

82020 data is excluded from the sample because of extreme market volatility caused by COVID-19 and the
respective actions of national supervisors including Fed, ECB and FINMA that disregard underreporting of risk
during 2020Q1 for the computation of capital requirements during 2020.

9Accounting data is obtained from S&P Global Market Intelligence (former SNL Financial), Orbis Bank Focus
and Fitch, whereas data to measure exchange rate, interest rate, market and commodity volatilities is from the St.
Louis Fed, International Financial Statistics and Eikon (Mariathasan et al., 2022).

10Regulatory 10-day 99% Value-at-Risk is considered as banks’ self-reported risk exposure which represents the
maximum potential loss over a 10-day horizon that should not be exceeded in 99% cases. In case it is unavailable,
a one-day 99% Value-at-Risk scaled by a square root of 10 is used.
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the vast majority constituting model revisions that imply lower capital requirements (146 out of

252)11. Non-U.S. banks tend to change their models more frequently with Credit Suisse doing so

most often (36 times). Only three banks out of 17 (Deutsche Bank, Société Générale and Toronto-

Dominion Bank) opted for a stricter model more often than for a more optimistic one during

2002-2019. All other banks, especially U.S. banks, seem to do more frequently model revisions

that imply lower capital requirements.

The average number of risk underreporting incidences in the sample is 0.38. To further interpret

this statistic note that using a risk model of a 99% confidence level, daily risk estimates may be

exceeded by realized daily losses once in every 100 trading days on average, or around 0.63 times

per quarter. Therefore, risk models in the sample seem to be on average rather conservative. That

being said, there is substantial variation in the number of risk underreporting cases over time: be-

tween 2002 and 2006 it is around 0.1, between 2007 and 2010 it is approximately 1.1, and between

2011 and 2019 it is nearly 0.2. Thus, risk tends to be overreported during normal times, whereas

underreporing of risk is concentrated in crisis times, i.e., when truthful risk reporting matters the

most.

Based on risk underreporting data, I determine the additionally required capital multiplier∆Capital

as outlined in the Basel framework (see Table 1). Moreover, the product of ∆Capital and self-

reported risk exposures represents the minimum quarterly monetary cost of penalties12. The

average ∆Capital in the sample is 0.08, the average self-reported risk exposure is just below $150

million which results in at least $11 million monetary cost of penalties on average per quarter.

The estimated lower bound for pecuniary penalties varies a lot across banks from zero for five

banks who face no additional market risk capital requirement over the sample period13 to nearly

$50 million on average per quarter for Morgan Stanley.
1140 model revisions more occur in 2020 as depicted in Figure 4 (not included in the final sample).
12Under Basel I, market risk capital requirements are determined as the product of the quarterly average 10-day

Value-at-Risk (unless the quarter-end Value-at-Risk exceeds the quarterly average) and the multiplier that includes
∆Capital given in Table 1. Basel II and III use a more complex measure for market risk capital requirements which
is still based on the 10-day Value-at-Risk and if anything takes a value further in the tail of risk distribution. These
changes in the Basel approach to market risk unfortunately make it impossible to accurately estimate the penalties,
but its lower bound can be reasonably determined.

13These five banks include Bank of New York Mellon, Canadian Imperial Bank of Commerce, Citi, Bank of Nova
Scotia and Toronto-Dominion Bank.
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As mentioned above, data on changes in capital requirements due to model revisions becomes

available for some banks starting from 2013Q4. Tight (Loose) ($M) in Table 3 represents the

average quarterly positive (negative) change in capital requirements attributed to model revisions.

Drawing on the available data, banks tend to lower their capital requirements when relaxing their

risk models significantly more than to increase them when switching to a more stringent model.

The average quarterly reduction in market risk capital requirements due to model revisions exceeds

$125 million whereas the average quarterly increase in those is just above $50 million. Only two

banks out of 11 for which the data is available experience a larger change in their capital require-

ments when switching to a more conservative model than to a more optimistic one, but do so at

a lower frequency14. Moreover, comparing how much capital banks tend to save from relaxing a

model Loose ($M) to how much addditional capital they are required to hold in case of detected

misrepresentation of risk ∆Capital ($M), I conclude that the monetary cost of penalties seems to

be negligibly small (if not zero) for most banks. This suggests that the non-pecuniary component

of penalties, which manifests itself in a supervisory action, is crucial in ensuring truthful reporting

of bank risk.

3.2 Empirical Strategy

In the model, it is optimal to penalize more risk-averse banks less for all true risk levels (see

Figure 3). To test whether penalties in practice are set optimally, we need a measure for banks’

risk aversion. However, according to the recent literature, the existing direct proxies for banks’

risk aversion are weak. In the context of credit risk, Camba-Méndez and Mongelli (2021) handle

this by using an implicit approach to study how much of the observed heterogeneity in bank loan

pricing is explained by disparities in banks’ attitude towards risk. The authors’ approach is based

on disentangling the amount of risk faced by banks and the price they charge for holding that risk.

Similarly but for market risk, one would ideally want to observe how banks differently assess their

market risk when producing their own risk estimates which eventually means to observe their mar-

ket risk internal models. As these models are proprietary, banks disclose publicly a limited amount
14These are two Canadian banks: Canadian Imperial Bank of Commerce and Royal Bank of Canada.
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of related information, but they do disclose when they make some model adjustments. Using this

information, I am able to test whether banks are more likely to revise their models if the current

model does not predict risk well, in order to assess risks better. Critically, this pattern is expected

to be more prevalent among more risk-averse banks. To understand whether the heterogeneity in

penalties proposed by the Basel Committee effectively aligns with disparities in banks’ preferences,

I proceed in two steps. First, I examine whether banks indeed revise their models if the current

model does not perform well. To do that, I use the number of risk underreporting cases in the

preceding year which is the main model performance criterion according to the Basel framework.

Second, I investigate whether risk prediction improves when banks revise their models.

A key identification challenge stems from the fact that underreporting of risk, albeit over the

past year, is self-reported by banks and is hence potentially endogenous to model revisions. To

alleviate this concern, I use an instrumental variable (IV) approach where I exploit the product

of a supervisory enforcement index and the past-year S&P 500 index volatility as an instrument.

The supervisory enforcement index is based on the number of enforcement powers available to

the supervisory agency according to the World Bank’s Bank Regulation and Supervision Survey

(BRSS) (World Bank, 2019). The magnitude of the supervisory enforcement index depends on the

answer to the following question: 11.1 Please indicate whether the following enforcement powers are

available to the supervisory agency15. I ensure that the coefficient for the instrument is statistically

significant in the first-stage regressions (t-statistic = 4.35 and F -statistic = 18.94 in the first-stage
15These include the supervisory powers to “(a) cease and desist-type orders for imprudent bank practices, (b)

forbearance (i.e. to waive regulatory and supervisory requirements), (c) require a bank to meet supervisory re-
quirements (e.g. capital, liquidity etc.) that are stricter than the legal or regulatory minimum, (d) require bank to
enhance governance, internal controls and risk management systems, (e) require bank to apply specific provisioning
and/or write-off policies, (f) require banks to constitute provisions to cover actual or potential losses, (g) restrict
or place conditions on the types of business conducted by bank, (h) withdraw the bank’s license, (i) require banks
to reduce/restructure their operations (e.g. via asset sales and branch closures) and adjust their risk profile, (j)
require banks to reduce or suspend dividends to shareholders, (k) require banks to reduce or suspend bonuses and
other remuneration to bank directors and managers, (l) suspend or remove bank directors, (m) suspend or remove
managers, (n) require commitment/action from controlling shareholder(s) to support the bank with new equity (e.g.
capital restoration plan)” (World Bank, 2019). Using other supervision strength proxies for the instrument based
on the 2019 BRSS, e.g., disclosure power of supervisors (“10.10 Do supervisors require banks to publicly disclose
. . . ”), supervisory frequency (“12.23.2 How frequently are onsite inspections conducted in a year in the 10 largest
banks by asset size?”), supervisory training hours (“12.43 How many hours of training (at the supervisory agency
or elsewhere) on average have supervisors had in the last year?”), number of supervisors per bank (“12.39 How
many professional bank supervisors are there in total (excluding all support functions and management)?”), yield
qualitatively similar estimates.
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regressions in columns (5) and (7) of Table 4), hence indicating that the chosen instrument is rel-

evant. Moreover, I select the instrument based on the economic argument (exclusion restriction)

that the number of past-year risk underreporting incidences is the one and only criterion for the

supervisor to disallow the use of a model (see Table 1), and the supervisory decision to enforce a

model revision critically depends on the supervision strength combined with the origin of observed

underreporting of risk given market volatility16.

By exploiting exogenous variation in the number of risk underreporting cases in the preceding

year, I examine whether worse risk model performance makes model revisions more likely and

what is the nature of these model revisions. As a dependent variable, I consider two indicators:

one for a model revision by bank i at quarter t (NewModelit) and another for a switch by bank

i at quarter t to a model that ceteris paribus implies higher capital requirements (TightModelit).

The endogenous regressor is
∑s=4

s=1#Underreportit−s which is the number of days from quarter

t − 4 to quarter t − 1 on which the actual daily loss of bank i exceeds its risk estimate. Thus,∑s=4
s=1 #Underreportit−s captures the total number of risk underreporting cases in the past year

which is a key model performance criterion for a supervisor according to the Basel framework.

Given a binary outcome variable and a discrete endogenous regressor, the model choice is between

the IV 2SLS estimator and the maximum likelihood estimator (probit). The former allows an en-

dogenous regressor to take any form, however, the predicted values below zero and above one can

be encountered which is not the case for probit. Also, the IV 2SLS estimator produces constant

marginal effects. Instead, the probit model with an endogenous regressor can be used to com-

pute marginal effects at certain values of the regressor, but generally requires that the regressor

is continuous. Therefore, I consider both the IV probit and IV 2SLS regressions of the following

form:

Yit = β
s=4∑
s=1

#Underreportit−s + γXit + θVit−1 + αt + εit. (10)

Here the outcome variable Yit is either NewModelit or TightModelit. β is hence the coefficient of

interest. Xit represents controls for several bank characteristics including bank size (proxied by
16The exclusion restriction assumption is further supported by the recent actions taken by national supervisors

seeing extreme market volatility due to COVID-19 to disregard underreporting of risk during 2020Q1 for the
computation of capital requirements.
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total assets), leverage (proxied by the equity ratio) and profitability (proxied by the ratio of the

net income to total assets). Vit−1 represents lagged volatility measures to control for interest rate,

exchange rate and commodity volatilities to account for time-varying sources of market risk across

countries17. αt represents year-quarter fixed effects that capture the effect of period-specific global

shocks on risk model performance (including especially the crisis).

The next step is to analyze risk model outcomes following model changes. Even if banks revise

their risk models when it is necessary, it is not clear whether these revisions lead to the improved

reporting of bank risk ex post. In order to assess the ex-post model performance, I look at how

many times true risk is underreported after a model change. Similar to Begley et al. (2017), I

construct a variable #Underreportit measuring the number of days during quarter t on which the

actual daily loss of bank i exceeds its risk estimate. #Underreport is therefore a variable which

represents positive discrete counts. Since OLS assumes normally distributed residuals and can-

not rule out having negative and non-integer predicted values for a dependent variable, I choose

another model that is more suitable for count data. More specifically, I consider a zero-inflated

negative binomial (ZINB) regression model18. I use the natural logarithm of VIX to distinguish

between two latent groups of #Underreport observations which can unconditionally take zero val-

ues, or reflect the realization of the negative binomial distribution and constitute either zero or

positive integers.

Observing underreporting of risk does not necessarily mean that the model is per se bad unless it

is associated with systematically lower risk estimates. To study whether such intentional underre-

porting of risk takes place, I analyze self-reported banks’ risk exposures ReportedRisk in addition

to #Underreport. ReportedRiskit is the natural logarithm of the 10-day 99% Value-at-Risk self-

reported by bank i at quarter t. In case it is unavailable, a one-day 99% Value-at-Risk scaled by

a square root of 10 is used instead.

To study model outcomes #Underreport and ReportedRisk, I first exploit the change in market
17Volatility variables are one-period lagged because risk model information comes from banks’ financial reports

as well as the other accounting data and is hence disclosed ex post for the quarter that just passed. Also, I include
the S&P 500 index volatility as a market volatility control in the other regressions, but exclude it from volatility
controls in (10) because it is used in the instrument.

18χ2-test rejects the use of the Poisson model, an alternative popular model for count data. Vuong test supports
the use of the zero-inflated model over the regular model.
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risk capital regulation in the U.S. as a plausibly exogenous shock to banks’ risk reporting require-

ments. In particular, I look at the introduction of the Market Risk Capital Rule (MRCR) enforced

by Fed in 201319. Starting from January 2013, 30 U.S. banks have been required to report more

detailed market risk information to Fed (Federal Register, 2012). All six U.S. banks in the sample

have been affected by the MRCR. I construct a variable MRCRit which is an indicator for bank

i being affected by the MRCR at quarter t from 2013Q1 onwards. I estimate the regression:

Yit = βMRCRit + γXit + θVit−1 + αt + αi + εit. (11)

Here the outcome variable Yit is either #Underreport or ReportedRiskit and αi represents bank

fixed effects. If the new regulation is effective, banks should enhance their reporting standards and

have less incentives to underreport risk. This in particular applies to banks with significant trading

activities that the MRCR targets. Hence, to better understand how related bank characteristics

affect the MRCR implementation, I also include bank-specific interaction variables Ii, capturing

banks’ trading exposure pre-MRCR and the additional capital requirements set out for the G-SIBs

by the Financial Stability Board in November 201220. In these cases, the model therefore becomes:

Yit = β1MRCRit + β2MRCRit × Ii + γXit + θVit−1 + αt + αi + εit. (12)

I consider three variables for Ii: (i) TAi2012Q1 which is the ratio of trading assets to total as-

sets of bank i freezed at 2012Q1 level, i.e., one year before the MRCR comes into force; (ii)

HighTAi2012Q1 = 1 if the ratio of trading assets to total assets of bank i as of 2012Q1 is above

the sample mean and (iii) G-SIBBucketi2012 which is the additional capital requirement (in %)

according to the G-SIB list disclosed by the Financial Stability Board in November 2012.

The key identification assumption is that all changes observed in outcome variables for U.S. banks

post-MRCR attribute to the change in regulation. In an attempt to capture some of cross-sectional

variation, I include interaction variables Ii constructed as pre-MRCR intensity measures. Never-
19The press release by Fed can be consulted here.
20The G-SIB list published by the Financial Stability Board in November 2012 was the first G-SIB list where

bank-specific additional capital requirements (“buckets”) ranging from 1% to 3.5% were announced.
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theless, to improve further upon the identification when studying risk model outcomes, I further

exploit additional capital charges imposed on different banks at different moments of time. More

specifically, I consider time-varying interaction variables Iit, capturing the introduction of supervi-

sory tools to oversee more closely additional capital requirements in general, and of the additional

capital requirements for the G-SIBs. First, I construct an indicator SupervisoryOversightit based

on the answer to the question 12.34.1 in the 2019 BRSS where additional capital requirements are

selected and the respective date of introduction is specified (12.34.1 Does the banking supervisor

have any tools to oversee more closely and/or limit the activities of large/interconnected institu-

tions?). Second, I further explore data on the G-SIBs and their additional capital requirements

published by the Financial Stability Board using two variables: (i) GSIBit = 1 if bank i is in a

G-SIB list disclosed by the Financial Stability Board at quarter t, and (ii) G-SIBBucketit which is

the additional capital requirement (in %) according to G-SIB lists published during 2014-201721.

To examine the effect of the additional capital burden on risk model outcomes also in times when

banks revise their models NewModel, I consider the following model:

Yit = β1NewModelit + β2Iit + β3NewModelit × Iit + γXit + θVit−1 + αt + αi + εit. (13)

In the last part of the empirical analysis, I zoom in at the additional capital burden and supervisory

attention directly related to market risk. To understand how a model revision relates to underre-

porting of risk in the presence of the additional capital requirement for market risk ∆Capital, I

consider the interaction with an indicator variable 1∆Capital
it−1 for ∆Capital of bank i taking non-zero

values at quarter t− 1. I run the regression:

#Underreportit = β1Modelit+[β21
∆Capital
it−1 +β3Modelit×1∆Capital

it−1 ]+γXit+θVit−1+αt+αi+εit, (14)

where Modelit is either NewModelit or TightModelit. In the first set of regressions (14), I include

only one of Model indicators and β1 is the coefficient of interest. If model revisions lead to a

better reporting of bank risk, they should be associated with lower number of risk underreporting
21I choose this time period because there is a 14-month gap between the G-SIB list publication date and the

actual implementation date, and G-SIB buckets have been implemented since 2016.
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cases, especially those model revisions that imply higher capital requirements (TightModel). In

the second set of regressions (14), I additionally include the interaction between one of Model

indicators and 1
∆Capital
it−1 . β3 thus captures the effect on #Underreport of those model revisions

that occur in line with the recommendations from the Basel Committee.

Finally, to understand how a model revision affects model outcomes in the presence of the additional

capital requirement for market risk given supervisory scrutiny, I also include interaction variables

Ii, capturing the number of supervisors per bank and the number of hours of supervisory training

obtained from the 2019 BRSS (12.39 How many professional bank supervisors are there in total

(excluding all support functions and management)?; 12.43 How many hours of training (at the

supervisory agency or elsewhere) on average have supervisors had in the last year (2016)?). In

these cases, the model becomes:

Yit = β1NewModelit+β21
∆Capital
it−1 +β3NewModelit×1

∆Capital
it−1 +β4NewModelit×Ii+β51

∆Capital
it−1 +

+ β6NewModelit × 1
∆Capital
it−1 × Ii + γXit + θVit−1 + αt + αi + εit, (15)

where Ii is either #Supervisors per Banki or #Hours of Supervisory Trainingi.

4 Results

Table 4 reports the findings from examining the relation between the past-year performance of

banks’ risk model and their willingness to revise it. Columns (1)-(4) present results for the IV

probit estimation and columns (5)-(8) present results for the IV 2SLS estimation. I find that

both the coefficient on NewModel and the coefficient on TightModel are significantly negative.

This indicates that banks are less likely to revise their risk models and in particular switch to

more stringent risk models as the past-year number of risk underreporting cases increases. More

specifically, the average marginal effects of having one more incidence of risk underreporting in the

past year on the probability of switching to a new or more stringent risk model are -10% and -4%,

respectively (columns 5 and 7). Provided that the additional market risk capital requirement is

imposed in approximately 10% cases in the sample, the results suggest that, on one hand, national
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supervisors seem to be more lenient towards banks than the Basel Committee proposes with regard

to banks’ internal models, and on the other hand, banks’ own incentives to revise their risk models

when it is probably necessary seem to be rather weak.

Table 5 reports the results from examining the effect of a plausibly exogenous shock to bank risk

estimation and reporting requirements on risk model outcomes. In particular, I look at the new

regulation (MRCR) enforced by Fed in 2013 (Federal Register, 2012). The MRCR targets U.S.

banks with significant trading activities to adjust their capital requirements to better capture

market risk of those activities as well as to enhance their risk computation and disclosures. The

effect of the MRCR is expected to be negative on the number of risk underreporting incidences

#Underreport and positive on the reported risk ReportedRisk provided banks should better ac-

count for different sources of market risk after the change in regulation. Instead, I find that

the coefficient on #Underreport is significantly positive (columns 1-4), whereas the coefficient on

ReportedRisk is significantly negative (columns 5-8). More specifically, U.S. banks tend to have

1.5 times more risk underreporting incidences after the shock (incidence-rate ratio for column 1).

Moreover, following the implementation of the MRCR, U.S. banks tend to report approximately

35% lower risk exposure than non-U.S. banks (column 5). These results indicate that the Fed

enforcement of Basel post-crisis rules is inefficient, suggesting that additional complexity from the

MRCR allows for more misreporting by banks.

To study the heterogeneity of U.S. banks’ response to the change in regulation, I additionally

investigate the range of relevant cross-sectional characteristics in Table 5. In particular, I take into

account banks’ relative trading exposure pre-MRCR (columns 2-3 and 6-7) and the global systemic

importance of banks captured by the additional capital requirements initially set out by the Finan-

cial Stability Board in November 2012 (columns 4 and 8). If the MRCR is effective, those banks

who have larger trading operations should respond more to it by having lower #Underreport and

higher ReportedRisk. Also, the G-SIB regulation is supposed to address the systemic and moral

hazard risks associated with the selected institutions: the higher the G-SIB bucket is, the more

such risks are present in the G-SIB itself. According to columns (2)-(3) and (6)-(7), banks with

larger trading operations tend to have less underreporting of risk, but also lower risk estimates,

23



resulting in lower capital requirements for these banks post-MRCR. On the other hand, the effect

of the G-SIB bucket is significantly positive (column 8), suggesting that those banks who have

relatively more complex portfolios in general22 tend to report higher risk arising from their trading

activities as well. If banks with higher trading exposure indeed became less risky post-MRCR as

columns (6)-(7) suggest, this effect would translate into the G-SIB result as well. Thus, observing

lower reported risk among U.S. banks with larger trading operations raises concerns about the

effectiveness of MRCR.

Table 6 presents the results from examining the effect of time-varying additional capital burden for

different banks on their model outcomes. Columns (1) and (4) capture the introduction of super-

visory tools to oversee more closely additional capital requirements according to the 2019 BRSS,

whereas columns (2)-(3) and columns (5)-(6) focus on the G-SIB designation and the respective

additional capital requirements. In accordance with the guidance from the Financial Stability

Board, G-SIBs “are required to meet higher supervisory expectations for risk management func-

tions, data aggregation capabilities, risk governance and internal controls.” Therefore, the expected

effect of additional supervisory oversight and G-SIB regulation is negative on underreporting of

risk, particularly when a new model is adopted. The results in columns (1) and (2) seem to be

consistent with this prediction: banks tend to have around 0.4 times less underreporting incidences

when revising their model once their national supervisor starts to more closely oversee their capital

requirements or once they are included in the G-SIB list. However, more underreporting and lower

reported risk are observed when the model remains unchanged despite the additional regulatory

attention. Consistent with the results in Table 4, these findings further illustrate that banks’ own

incentives for the improvement of their risk models and of risk reporting are very weak.

Table 7 reports the findings from examining the relation between risk model revisions and the

number of risk underreporting incidences in the presence of the additional capital requirement

for market risk. Here I focus on the effects of revising a model in general NewModel (columns

1-2) and of switching to a more stingent model TightModel (columns 3-4). Both NewModel and

TightModel are expected to be associated with lower numbers of risk underreporting cases among
22The G-SIB designation is based on 12 indicators including size and the complexity of banks’ portfolios (Degryse

et al., 2020).
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banks, especially after facing the penalty in terms of the additionally required capital. Consistent

with this prediction, the coefficients on NewModel and TightModel in columns (1)-(4) are signif-

icantly negative (incidence-rate ratios are 0.7 and 0.6, respectively). However, the effects of model

revisions turn the opposite once the additional capital requirement is imposed. More specifically,

revising a risk model after that is associated with 4 times more risk underreporting incidences

on average and switching to a more stringent risk model is associated with 5 times more risk

underreporting incidences on average. These results suggest that even though model adjustments

tend to correspond to less underreporting of risk on average, misrepresentation of true risk persists

when it is most concerning from the regulatory perspective, i.e., after having more than 4 risk

underreporting incidences in the preceding year.

To better understand the role of supervision in market risk capital regulation, I consider a specifi-

cation similar to the one in column (3) of Table 7 but with a triple interaction including supervision

strength measures, and present the corresponding findings in Table 8. I employ the data from the

2019 BRSS on the number of supervisors per bank (columns 1 and 3) and on the number of hours

of supervisory training (columns 2 and 4). I use these two variables to proxy how strict supervision

is in terms of enforcing Basel rules for market risk which cannot be directly observed, but plays a

crucial role in how regulation ultimately works (see Table 1). Overall, I conclude that supervision

seems to decrease underreporting of risk both on the extensive (the amount of supervision) and

intensive margins (the quality of supervision). Importantly, the significantly lower #Underreport

and significantly higher ReportedRisk is observed for the interaction New Model × #Supervisors

per Bank without the additionally imposed capital requirement. This prompts some doubts about

its relevance for truthful reporting of bank risk given the results in Table 7. Nevertheless, the

supervisory training seems to alleviate the inefficiency (column 2), suggesting that the supervisory

expertise is a potential avenue for improving existing regulation.

Table 9 presents the results from numerous robustness tests to exclude potential concerns about

the identification. First, I show that the main result in Table 7 (column 3) is robust when using

OLS (column 1), including country fixed effects (column 2) and clustering the standard errors at

the bank level (column 3). In column 4, I drop 2008Q4 data, which follows Lehman Brothers’
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collapse and find that the results are not solely driven by 2008Q4 events. For the same specifica-

tion, I run the placebo test with the interaction between having a new model and the additionally

required capital five quarters before, which should have no effect in contrast to the additional

capital charge imposed a quarter before based on the past-year outcomes (column 5). I also run

the placebo test for the introduction of the MRCR and falsely assume that it was enforced in

2005 when actually Basel II pre-crisis rules for market risk were set (BCBS, 2005) (column 6).

Finally, the result from examining the relation between the past-year risk model performance and

the probability of switching to a less optimistic risk model using OLS seem to be consistent with

the results in Table 4 (column 7).

5 Conclusion

This paper investigates the design of bank regulation using banks’ internal models for market risk

stemming from banks’ trading activities. Banks may use their internal models to measure market

risk subject to supervisory approval. This creates an asymmetric information problem where the

regulator has to rely on banks’ declared risk exposures while banks are better off reporting more

optimistically because of lower capital requirements. In case of detected misrepresentation of risk,

banks may incur penalties during the quarterly supervisory review. The penalties are set by the

Basel Committee “to maintain strong incentives for the continual improvement of banks’ internal

risk measurement models” (BCBS, 1996). However, the question whether current penalties are

sufficient to ensure truthful reporting by banks and improvement of risk models remains open.

I contribute to the literature by examining the incentive conflicts between banks and the regulator

who relies on banks’ internal risk models, evaluating the efficiency of existing regulation concern-

ing truthful reporting, and providing empirical evidence on the deteriorating quality of models

using hand-collected data on banks’ self-reported risk exposures, model revisions and penalties.

Drawing on the recent finding in Begley et al. (2017) that the shape of penalties amplifies strate-

gic underreporting of bank risk, I build a theoretical model in the style of Prescott (2004). The

theoretical contribution of this paper is to consider a simple model where the regulator jointly
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determines optimal capital requirements and penalties given the risk reported by banks and their

risk aversion. This allows me to gauge the heterogeneity in regulatory penalties given the degree

of risk misreporting.

My empirical findings indicate that the current combination of regulatory capital requirements and

penalties is ineffective at eliciting truthful reporting and at improving risk model quality. In turn,

Basel III revisions seem to go in the other direction with incentivizing banks to report their risk

truthfully and if anything make it only more tempting for banks to mask their risks. While the

additional capital requirement for market risk will be halved as of 2022 (BCBS, 2019a), supervision

will still play a major role in how regulation works in practice. My results show that the interplay

between supervision and additional capital charges can possibly reduce the inefficiency but what

probably matters more then is not how much there is supervision, but its quality.
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A Model
1. The form of banks’ payoff when the investment fails.

Banks’ utility U(ω′, ω) can be represented as:

U(ω′, ω) = (1− ω)× U(ω′, ω | investment does not fail) + ω × U(ω′, ω | investment fails),

where ω is the probability of failure. Penalties T are imposed when the investment fails and
depending on their interpretation one can choose between different forms of banks’ payoff:

(*) the current version - because of different timing, penalties can be separated from the
rest and the specific (same as for deposits) utility function is assumed for them:

U(ω′, ω | investment fails) =
(
1−K(ω′)

)1−γ

1− γ
−

(
T (ω′)

)1−γ

1− γ
.

(i) alternative 1 - penalties are in the same units as capital and cannot be separated:

U(ω′, ω | investment fails) =
(
1−K(ω′)− T (ω′)

)1−γ

1− γ
.

(ii) alternative 2 - penalties are future costs of foregone opportunites, e.g. due to stricter
supervision; no specific utility function is assumed, so this form can be seen as the
generalization of the current version and potentially less controversial:

U(ω′, ω | investment fails) =
(
1−K(ω′)

)1−γ

1− γ
− T (ω′).

The choice of either (i) or (ii) implies slightly different incentive compatibility constraints
compared to (*). The participation/limited liability condition change as well, the discussion
of this is below - for now, let us focus on the incentive compatibility constraint. In the
current version:

U(ω′, ω) = (1− ω)

(
1−K(ω′)

)1−γ

1− γ
+ ω

((
1−K(ω′)

)1−γ

1− γ
−

(
T (ω′)

)1−γ

1− γ

)
=

=

(
1−K(ω′)

)1−γ − ω
(
T (ω′)

)1−γ

1− γ
,

∂U(ω′, ω)

∂ω′ = −
(
1−K(ω′)

)−γ
K ′(ω′)− ω

(
T (ω′)

)−γ
T ′(ω′).

The first order condition is: :
∂U(ω′, ω)

∂ω′

∣∣∣∣
ω′=ω

= 0.

This translates to: (
1−K(ω)

)−γ
K ′(ω) = −ω

(
T (ω)

)−γ
T ′(ω). (16)
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Considering (i) results in a slightly different FOC:

U1(ω
′, ω) = (1− ω)

(
1−K(ω′)

)1−γ

1− γ
+ ω

(
1−K(ω′)− T (ω′)

)1−γ

1− γ
,

∂U1(ω
′, ω)

∂ω′ = −(1− ω)
(
1−K(ω′)

)−γ
K ′(ω′)− ω

(
1−K(ω′)− T (ω′)

)−γ(
K ′(ω′) + T ′(ω′)

)
,

FOC:
(
1−K(ω)

)−γ
K ′(ω) = − ω

1− ω

(
1−K(ω)− T (ω)

)−γ(
K ′(ω) + T ′(ω)

)
. (17)

Similar to (16), (17) implies that T ′ < 0. For different values of γ, the difference between
(16) and (17) is determined by the difference in the order of functions K(ω) and T (ω) with
respect to ω. For instance, when γ = 0 for (16) and (17) to yield similar solutions for K and
T it is sufficient that K ′(ω)/T ′(ω) is linear in ω - as it is in the current numerical example
where K(ω) = 1− c

2ω
, K ′ = c

2ω2 , T (ω) = c
4ω2 , T ′ = − c

2ω3 .

Now considering (ii) we get:

U2(ω
′, ω) = (1− ω)

(
1−K(ω′)

)1−γ

1− γ
+ ω

((
1−K(ω′)

)1−γ

1− γ
− T (ω′)

)
=

=

(
1−K(ω′)

)1−γ

1− γ
− ωT (ω′),

∂U2(ω
′, ω)

∂ω′ = −
(
1−K(ω′)

)−γ
K ′(ω′)− ωT ′(ω′),

FOC:
(
1−K(ω)

)−γ
K ′(ω) = −ωT ′(ω). (18)

From (18), we get T ′ < 0 and the same solution for γ = 0 as from (16). (18) is also easier to
solve than (16) for different values of γ. As T → 1, the closer (18) gets to (16).

2. Limited liability constraint vs. participation constraint.
In the current version, I have the participation constraint ensuring that banks’ utility in
ω′ = ω is non-negative:

U(ω, ω) =

(
1−K(ω)

)1−γ − ω
(
T (ω)

)1−γ

1− γ
⩾ 0.

Rearranging terms, we get:
T (ω) ⩽ 1−K(ω)

ω
1

1−γ

(19)

(19) is the constraint introduced in the current version of the model (see Proposition 2).
The potential concern here is that (19) is not restrictive enough and in certain cases banks
may have not enough money to pay penalties. Assuming limited liability on banks’ side,
penalties could not take values higher than what banks have when the investment fails such
that banks have money to pay penalties. This implies that banks’ payoff when penalties are
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imposed (i.e., when the investment fails) should be non-negative. From (*) for ω′ = ω, we
get:

U(ω, ω | investment fails) =
(
1−K(ω)

)1−γ

1− γ
−

(
T (ω)

)1−γ

1− γ
⩾ 0.

Rearranging terms, we get:
T (ω) ⩽ 1−K(ω). (20)

Note that one arrives at the same inequality as (20) if chooses (i) instead of (*) for banks’
payoff when the investment fails. Instead, if one interprets penalties as the costs of foregone
opprotunities and opts for (ii), he should include the participation constraint and not limited
liability:

U2(ω, ω) =

(
1−K(ω)

)1−γ

1− γ
− ωT (ω) ⩾ 0,

Rearranging terms, we get:

T (ω) ⩽
(
1−K(ω)

)1−γ

ω(1− γ)
(21)

Thus, the only change that the choice of either (20) or (21) over (19) would imply is the
change of maximum feasible capital requirement compared to the current version of the
model:

K∗ ⩽ 1− ω
1

1−γ T (ω)

K1 or LL for * ⩽ 1− T (ω)

K2 ⩽ 1− ω
1

1−γ (1− γ)
1

1−γ T (ω)
1

1−γ

For the model solution, this implies that the only thing that is affected is ω̂, i.e., the point
where there is a kink in both K and T functions when it is no longer possible to implement
the risk-sensitive capital requirement under the second best. The optimal regulatory capi-
tal and penalty functions remain the same for all [ω, ω] when K and T are monotonically
increasing and decreasing, respectively. The numerical solution and its more detailed de-
scription under Table 2 further demonstrate that functional forms of non-constant K and T
are independent on K and ω̂. The feasible set of exogenous parameters {ω, ω, c, T} may get
adjusted correspondingly.
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B Figures

Figure 1: Number of Risk Underreporting Cases and Basel Additional Capital Requirements.
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This figure visualizes Basel additional capital requirements for market risk (see Table 1) given the number of days on which
risk is underreported over the preceding year. The additionally required capital multipliers ∆Capital according to Basel I
and II are marked with black top half circles, whereas ∆Capital multipliers according to Basel III are marked with white
top half circles. According to Basel rules, market risk capital requirements (similar to those for credit and operational risk)
constitute 8% of market risk-weighted assets. If risk weights are determined internally by banks, their market risk-weighted
assets can be represented as 12.5×(3+∆Capital)×f(Reported Risk), where f is an increasing function of risk reported by
banks that changes along Basel I, II and III. The additional capital requirement for a given underreporting of risk is halved
under Basel III (BCBS, 2019a). Ceteris paribus, the lower is risk reported by banks, the higher is #Underreport due to the
higher probability of the reported risk being exceeded by an actual loss.

Figure 2: Regulatory Loss Function V .

0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

K

V (K)

V (K) = −(1−K)2

This figure illustrates the regulator’s utility function V of capital requirement K used in the numerical analysis and rep-
resenting the respective social loss in case of failure. The function is non-positive with V (1) = 0, increasing (V ′ > 0) and
concave (V ′′ < 0). The corner values of capital requirement K = 0 and K = 1 are excluded in line with Assumption 3 and
Assumption 4.
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Figure 3: Optimal Regulatory Capital K and Penalties T .
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(c) Penalties T when T = 0.4 (d) Penalties T when T = 0.2

These four figures visualize the numerical results for optimal capital requirements K (Figures 3a and 3b) and penalties T
(Figures 3c and 3d) selectively reported in Table 2. Figures 3a and 3c illustrate the solution characterized in Proposition 2
for the minimum penalty size of 0.4, and Figures 3b and 3d show the solution for the minimum penalty size of 0.2. The
black dashed line represents the case when banks are risk-neutral (γ = 0). The red solid line represents the case when banks
are risk-averse with the risk-aversion parameter γ = 0.25. The blue dotted line represents the first-best solution for capital
requirements. The respective sets of parameters are ω = 0.25, ω = 0.5, c = 0.19 when T = 0.4 and ω = 0.25, ω = 0.7,
c = 0.19 when T = 0.2 which are feasible under (6), (7), (8) and (9).
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Figure 4: Risk Model Revisions.
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This figure plots the yearly time series of sample banks’ risk model revisions over the period from 2002 to 2020. I extract
information from banks’ financial reports on the disclosed incidences of model revisions and classify them (where possible)
into those that ceteris paribus imply higher or lower capital requirements. Red bars marked with half-filled circles represent
a total number of model revisions in a given year that imply lower capital requirements (Loose Model). Blue bars marked
with filled circles represent a total number of model revisions in a given year that imply higher capital requirements (Tight
Model). Black bars marked with empty circles represent a total number of model revisions in a given year that have no
clear effect on capital requirements (Other). Red, blue and black bars stacked together represent a total number of model
revisions in a given year (New Model). The classification is primarily done based on the information from the market risk
management section of a particular filing. Also, starting from 2013Q4 in the light of the Basel III regime implementation,
some banks begin to report quarterly changes in market risk-weighted assets and its drivers including model revisions. These
values, being either positive or negative, allow to detect additional cases of model revisions and to precisely classify those as
either Tight or Loose. 2020 data is excluded from the sample because of extreme market volatility caused by COVID-19 and
the respective actions of national supervisors including Fed, ECB and FINMA that disregard underreporting of risk during
2020Q1 for the computation of capital requirements during 2020.
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C Tables

Table 1: Basel Framework for Market Risk - Traffic Light Approach (BCBS, 1996, 2019a).

Risk Model
Quality Class

Annual Number of Risk
Underreporting Cases

∆Capital
Basel I & II

∆Capital
Basel III Supervisory action

0 0.00 0.00
1 0.00 0.00

Green 2 0.00 0.00 None
3 0.00 0.00
4 0.00 0.00

5 0.40 0.20
6 0.50 0.26 May disallow

Yellow 7 0.65 0.33 use of the model
8 0.75 0.38
9 0.85 0.42

Red ⩾ 10 1.00 0.5 Disallows use of the model

This table reports the framework proposed by the Basel Committee for the supervisory assessment of banks’ internal models
for market risk (so called “Traffic Light Approach”). The first column represents three risk model quality classes: green,
yellow and red. A bank’s risk model is assigned to one of them on a quarterly basis upon the supervisory review. The
classification is based on the number of cases when risk is underreported over the preceding year. More specifically, it is
a yearly number of trading days when the actual daily loss of a bank exceeds its risk estimate (Value-at-Risk) for that
particular day. The third and fourth columns represent the additionally required capital multipliers ∆Capital according to
Basel I and II, and Basel III, respectively. According to Basel rules, market risk capital requirements (similar to those for
credit and operational risk) constitute 8% of market risk-weighted assets. If risk weights are determined internally by banks,
their market risk-weighted assets can be represented as 12.5×(3+∆Capital)×f(Reported Risk), where f is an increasing
function of risk reported by banks that changes along Basel I, II and III. The last column presents an additional supervisory
action with respect to a bank’s risk model given its quality class.
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Table 2: Optimal Regulatory Capital K and Penalties T .

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
ω T T T T T K K K K K maxK maxK maxK maxK maxK

γ = 0 γ = 0.1 γ = 0.25 γ = 0.5 γ = 0.75 γ = 0 γ = 0.1 γ = 0.25 γ = 0.5 γ = 0.75 γ = 0 γ = 0.1 γ = 0.25 γ = 0.5 γ = 0.75

T = 0.4

ω = 0.25 0.97 0.69 0.67 0.58 0.41 0.62 0.62 0.62 0.62 0.62 0.76 0.80 0.76 0.71 0.71
ω̂0.75 = 0.28 0.82 0.61 0.59 0.40 0.40 0.66 0.66 0.66 0.66 0.66 0.77 0.81 0.77 0.79 0.71
ω̂0.5 = 0.33 0.65 0.52 0.50 0.40 0.40 0.71 0.71 0.71 0.71 0.66 0.79 0.81 0.78 0.77 0.70
ω̂0.25 = 0.39 0.52 0.46 0.40 0.40 0.40 0.76 0.76 0.76 0.71 0.66 0.80 0.80 0.80 0.75 0.68
ω̂0.1 = 0.44 0.46 0.40 0.40 0.40 0.40 0.78 0.78 0.76 0.71 0.66 0.80 0.81 0.78 0.73 0.67
ω̂0 = 0.47 0.40 0.40 0.40 0.40 0.40 0.80 0.78 0.76 0.71 0.66 0.81 0.80 0.77 0.73 0.67
ω = 0.50 0.40 0.40 0.40 0.40 0.40 0.80 0.78 0.76 0.71 0.66 0.80 0.79 0.76 0.72 0.66

T = 0.2

ω = 0.25 0.86 0.53 0.51 0.39 0.21 0.62 0.62 0.62 0.62 0.62 0.78 0.85 0.82 0.81 0.85
ω̂0.75 = 0.51 0.29 0.24 0.23 0.21 0.20 0.81 0.81 0.81 0.81 0.81 0.85 0.87 0.86 0.85 0.83
ω̂0.5 = 0.56 0.25 0.22 0.22 0.20 0.20 0.83 0.83 0.83 0.83 0.81 0.86 0.87 0.86 0.85 0.83
ω̂0.25 = 0.62 0.23 0.21 0.20 0.20 0.20 0.85 0.85 0.85 0.83 0.81 0.86 0.86 0.86 0.84 0.82
ω̂0.1 = 0.65 0.22 0.20 0.20 0.20 0.20 0.85 0.85 0.85 0.83 0.81 0.86 0.86 0.86 0.84 0.82
ω̂0 = 0.67 0.20 0.20 0.20 0.20 0.20 0.86 0.85 0.85 0.83 0.81 0.87 0.86 0.85 0.84 0.82
ω = 0.70 0.20 0.20 0.20 0.20 0.20 0.86 0.85 0.85 0.83 0.81 0.86 0.85 0.85 0.83 0.82

This table reports the selection of numerical results. Cases γ = 0 and γ = 0.25 are visualized in Figure 3. Columns (1)-(5) show the optimal values of penalties T for
different levels of banks’ risk aversion from γ = 0 (risk-neutral case) to γ = 0.75. Similarly, columns (6)-(10) report the optimal values of capital requirements K, whereas
columns (11)-(15) demonstrate the maximum feasible levels of capital requirements as defined by (PC). The top panel reports the values when the minimum penalty size
is 0.4 and the bottom panel shows the values when the minimum penalty size is 0.2. The respective sets of parameters are ω = 0.25, ω = 0.5, c = 0.19 when T = 0.4 and
ω = 0.25, ω = 0.7, c = 0.19 when T = 0.2 which are feasible under (6), (7), (8) and (9). The optimal second-best values of K and T are determined using the following
algorithm:

1. The first-best capital requirements Kf (ω) are calculated for the chosen range [ω, ω] and the equity cost c.

2. The upper bounds for K are determined from (PC) for each value of the risk aversion parameter γ given the predefined values of ω and T (these upper bounds
are reported in the last row of top and bottom panels in columns (11)-(15)).

3. If K does not exceed an upper bound with a associated risk aversion, then the first-best capital requirements Kf (ω) can be achieved for all ω ∈ [ω, ω] and the
optimal second-best values of capital requirements Ks(ω) are set equal to Kf (ω). The corresponding penalties T s(ω) are then determined from (9) given c, γ, ω,
c1 and c2, where c1 = T − c

4ω2 if γ = 0 and c2 = T − c
(
1−γ
8ω2

) 1
1−γ for all γ ∈ (0, 1).

4. If K exceeds an upper bound with a associated risk aversion, the highest K(ω) < K needs to be found such that it does not happen. The corresponding ω is ω̂.
The second-best values of Ks(ω) are set equal to Kf (ω) for all ω ∈ [ω, ω̂] and K(ω̂) for all ω ∈ [ω̂, ω]. The corresponding penalties T s(ω) are then set equal to T

for all ω ∈ [ω̂, ω] and for all ω ∈ [ω, ω̂] they are determined from (9) given c, γ, ω, c1 and c2, where c1 = T − c
4ω̂2 if γ = 0 and c2 = T − c

(
1−γ
8ω̂2

) 1
1−γ for all γ ∈ (0, 1).
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Table 3: Summary Statistics.

Bank #New #Tight #Loose Tight ($M) Loose ($M) ∆Capital Reported Risk ($M) ∆Capital ($M) #Underreport
Bank of America 5 2 3 0.09 220.40 20.92 0.47
Bank of Montreal 18 5 13 34.95 61.27 0.09 51.02 4.35 0.38
Bank of NY Mellon 4 1 3 0.00 21.45 0.00 0.13
Canadian IBC 17 7 9 8.62 4.28 0.00 20.27 0.00 0.11
Citi Group 28 10 18 143.75 173.75 0.00 299.65 0.00 0.13
Credit Agricole 7 1 5 0.12 48.08 5.87 0.63
Credit Suisse Group 36 17 18 61.03 81.93 0.14 235.70 33.88 0.70
Deutsche Bank 7 5 2 7.65 24.26 0.05 225.74 11.01 0.62
Goldman Sachs 4 0 2 0.12 279.61 34.41 0.29
ING Group 3 0 3 0.01 59.64 0.78 0.22
JPMorgan Chase 28 4 23 202.67 330.68 0.06 304.22 18.30 0.23
Morgan Stanley 6 1 4 0.15 327.60 49.64 0.25
Royal Bank of Canada 27 11 15 38.43 32.87 0.08 70.43 5.96 0.37
Société Générale 9 7 2 22.90 29.21 0.17 115.19 19.37 0.88
Bank of Nova Scotia 21 10 11 15.55 35.59 0.00 35.56 0.00 0.06
TD Bank 8 5 3 46.93 0.00 57.19 0.00 0.07
UBS Group 24 10 12 17.86 43.68 0.18 217.45 38.29 1.23
Total 252 96 146 51.53 125.57 0.08 148.80 11.21 0.38

This table reports summary statistics for the sample covering 17 banks from the U.S., Canada and Europe over the period
from 2002 to 2019. Data is hand-collected from banks’ quarterly and annual reports as well as Pillar III disclosures. I extract
information on the reported incidences of model revisions (New) and classify them (where possible) into those that ceteris
paribus imply higher (Tight) or lower (Loose) capital requirements. #New is a number of model revisions reported by a
given bank over the sample period. #Tight is a number of model revisions reported by a given bank over the sample period
that imply higher capital requirements. #Loose is a number of model revisions reported by a given bank over the sample
period that imply lower capital requirements. Starting from 2013Q4 in the light of the Basel III regime implementation,
some banks begin to report quarterly changes in market risk-weighted assets and its drivers including model revisions.
These values allow to compute the corresponding changes in capital requirements provided that the capital requirement
constitutes 8% of risk-weighted assets. Tight ($M) represents the average quarterly positive change in capital requirements
attributed to model revisions and expressed in million U.S. dollars. Loose ($M) represents the average quarterly negative
change in capital requirements attributed to model revisions and expressed in million U.S. dollars. ∆Capital represents the
mean values for the additional capital requirement multiplier imposed on a given bank over the sample period according to
the Basel framework (see Table 1). Reported Risk ($M) represents the average 10-day 99% Value-at-Risk self-reported by
a given bank and expressed in million U.S. dollars. In case it is unavailable, a one-day 99% Value-at-Risk self-reported by
a given bank scaled by a square root of 10 is used. 10-day 99% Value-at-Risk is the maximum potential loss over a 10-day
horizon that should not be exceeded in 99% cases. Under Basel I, market risk capital requirements are mostly determined as
the product of Reported Risk and Capital multiplier which includes ∆Capital (if any). Basel II and III use a more complex
measure for market risk capital requirements which is still based on the 10-day Value-at-Risk and if anything takes a value
further in the tail of risk distribution. These changes in the Basel approach to market risk unfortunately make it impossible
to accurately estimate the monetary component of penalties (an additional capital charge for the detected misrepresentation
of risk) over the sample period. Therefore, I compute its lower bound denoted by ∆Capital ($M) as the product of ∆Capital
multiplier and Reported Risk measure. ∆Capital ($M) hence represents the average quarterly U.S. dollar amount of a
minimum additional capital requirement imposed on a given bank over the sample period. #Underreport is the average
number of days in a quarter on which the actual daily loss of a given bank exceeds its daily Value-at-Risk estimate. Thus, it
represents a quarterly number of cases when true risk is underreported. #Underreport is winsorized at 1% and 99% level.
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Table 4: Past-Year Risk Model Performance and Model Revisions.

(1) (2) (3) (4) (5) (6) (7) (8)
New Model New Model Tight Model Tight Model New Model New Model Tight Model Tight Model

∑s=4
s=1 #Underreportt−s -0.19*** -0.28*** -0.16*** -0.28*** -0.10*** -0.30*** -0.04** -0.10**

(0.038) (0.050) (0.052) (0.060) (0.038) (0.098) (0.018) (0.042)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Year-Quarter FE No Yes No Yes No Yes No Yes
Model IV Probit IV Probit IV Probit IV Probit IV 2SLS IV 2SLS IV 2SLS IV 2SLS
Observations 876 748 876 589 876 876 876 876

This table reports the results for the instrumental variable (IV) probit and linear (2SLS) models in columns (1)-(4) and
columns (5)-(8), respectively. I use the product of a supervisory enforcement index and the past-year S&P 500 index
volatility as an instrument. The supervisory enforcement index is based on the number of enforcement powers available to
the supervisory agency according to the World Bank’s Bank Regulation and Supervision Survey (BRSS) completed in 2019.
The magnitude of the supervisory enforcement index depends on the answer to the following question: 11.1 Please indicate
whether the following enforcement powers are available to the supervisory agency. Using other supervision strength proxies
based on the 2019 BRSS, e.g., disclosure power of supervisors (10.10 Do supervisors require banks to publicly disclose . . . ),
supervisory frequency (12.23.2 How frequently are onsite inspections conducted in a year in the 10 largest banks by asset
size?), supervisory training hours (12.43 How many hours of training (at the supervisory agency or elsewhere) on average
have supervisors had in the last year?), number of supervisors per bank (12.39 How many professional bank supervisors
are there in total (excluding all support functions and management)?), yield qualitatively similar estimates. I ensure that
the coefficient for the instrument is statistically significant in the first-stage regressions (t-statistic = 4.35 and F -statistic
= 18.94 in the first-stage regressions in columns (5) and (7) of Table 4), hence indicating that the chosen instrument is
relevant. Moreover, I select the instrument based on an economic argument (exclusion restriction) provided that the number
of past-year risk underreporting incidences is the one and only criterion for the supervisor to disallow the use of a model
(see Table 1), and the decision to enforce a model revision critically depends on the supervision strength combined with the
origin of observed underreporting of risk given market volatility. I run the regression:

Yit = β

s=4∑
s=1

#Underreportit−s + γXit + θVit−1 + αt + εit.

In columns (1), (2), (5) and (6), Yit is NewModelit which equals one if bank i reports a model revision that occurs at quarter
t. In columns (3), (4), (7) and (8), Yit is TightModelit which equals one if bank i reports a model revision that occurs
at quarter t and implies higher capital requirements.

∑s=4
s=1 #Underreportit−s is the number of days from quarter t − 4 to

quarter t−1 on which the actual daily loss of bank i exceeds its risk estimate. Xit represents a vector of bank characteristics
to control for bank size (proxied by total assets), leverage (proxied by the equity ratio) and profitability (proxied by the ratio
of the net income to total assets). Vit−1 is a vector of lagged volatility measures to control for interest rate, exchange rate
and commodity volatilities. αt represents year-quarter fixed effects. The sample covers 17 banks from the U.S., Canada and
Europe over the period from 2002 to 2019. Year-quarter clustered errors are reported in parentheses; *** p<0.01, ** p<0.05,
* p<0.1.
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Table 5: Market Risk Capital Rule and Model Outcomes.

(1) (2) (3) (4) (5) (6) (7) (8)
#Underreport #Underreport #Underreport #Underreport Reported Risk Reported Risk Reported Risk Reported Risk

MRCR 0.43* 4.96*** 2.32*** 3.82** -0.30*** -0.17* -0.29*** -0.58***
(0.261) (0.991) (0.573) (1.604) (0.066) (0.094) (0.069) (0.113)

MRCR × TA2012Q1 -0.25*** -0.01***
(0.075) (0.005)

MRCR × High TA2012Q1 -3.66** -0.31***
(1.446) (0.066)

MRCR × G-SIB Bucket2012 -1.17 0.15***
(0.753) (0.051)

Controls Yes Yes Yes Yes Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank FE No Yes Yes Yes Yes Yes Yes Yes
Model ZINB ZINB ZINB ZINB OLS OLS OLS OLS
Observations 842 787 787 842 842 787 787 842
R-squared 0.908 0.911 0.912 0.908

This table reports the results for the zero-inflated negative binomial and linear models in columns (1)-(4) and columns (5)-(8),
respectively. In columns (1) and (5), I run the regression:

Yit = βMRCRit + γXit + θVit−1 + αt + αi + εit.

MRCRit = 1 if bank i is based in the U.S. and is affected by the Market Risk Capital Rule (MRCR) enforced by Fed
starting from 2013Q1. To understand how different bank characteristics affect the MRCR implementation, I also include
bank-specific interaction variables Ii, capturing banks’ trading exposure pre-MRCR and the additional capital requirements
set out for the global systemically important banks (G-SIBs) in November 2012. In columns (2)-(4) and (6)-(8), the model
therefore becomes:

Yit = β1MRCRit + β2MRCRit × Ii + γXit + θVit−1 + αt + αi + εit.

In columns (1)-(4), Yit is #Underreportit, i.e., the number of days during quarter t on which the actual daily loss of bank i
exceeds its risk estimate. Thus, it represents a quarterly number of cases when true risk is underreported. #Underreportit
is winsorized at 1% and 99% level. In columns (5)-(8), Yit is ReportedRiskit, i.e., the natural logarithm of the 10-day 99%
Value-at-Risk self-reported by bank i at quarter t. In case it is unavailable, a one-day 99% Value-at-Risk self-reported by
bank i at quarter t scaled by a square root of 10 is used. In columns (2) and (6), TAi2012Q1 is the ratio of trading assets to
total assets of bank i freezed at 2012Q1 level. In columns (3) and (7), HighTAi2012Q1 = 1 if the ratio of trading assets to
total assets of bank i as of 2012Q1 is above the sample mean. In columns (4) and (8), G-SIBBucketi2012 is the additional
capital requirement (in %) according to the G-SIB list disclosed by the Financial Stability Board in November 2012. Xit

represents a vector of bank characteristics to control for bank size (proxied by total assets), leverage (proxied by the equity
ratio) and profitability (proxied by the ratio of the net income to total assets). Vit−1 is a vector of lagged volatility measures
to control for market, interest rate, exchange rate and commodity volatilities. αt and αi represent year-quarter and bank
fixed effects, respectively. For the zero-inflated estimation, I use the natural logarithm of VIX to distinguish between two
latent groups of observations which can be always zero by construction, or reflect the realization of the negative binomial
distribution and constitute either zero or positive integers. In column (1), the estimates for the specification without bank
fixed effects are reported, since the ZINB model with two-way fixed effects does not converge in this case. The sample covers
17 banks from the U.S., Canada and Europe over the period from 2002 to 2019. Year-quarter clustered errors are reported
in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Model Revisions, Additional Capital Requirements and Model Outcomes.

(1) (2) (3) (4) (5) (6)
#Underreport #Underreport #Underreport Reported Risk Reported Risk Reported Risk

New Model -0.11 -0.06 -0.27 0.03 0.04 0.03
(0.296) (0.323) (0.272) (0.035) (0.043) (0.033)

New Model × Supervisory Oversight -0.90* 0.02
(0.494) (0.048)

Supervisory Oversight 0.59 -0.11**
(0.491) (0.049)

New Model × G-SIB -0.94* -0.02
(0.512) (0.059)

G-SIB 2.01*** -0.12**
(0.715) (0.057)

New Model × G-SIB Bucket -0.45 0.06*
(0.298) (0.031)

G-SIB Bucket 0.86*** -0.21***
(0.319) (0.035)

Controls Yes Yes Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes
Model ZINB ZINB ZINB OLS OLS OLS
Observations 842 842 842 842 842 842
R-squared 0.905 0.905 0.908

This table reports the results for the zero-inflated negative binomial and linear models in columns (1)-(3) and columns (4)-(6),
respectively. I run the regression:

Yit = β1NewModelit + β2Iit + β3NewModelit × Iit + γXit + θVit−1 + αt + αi + εit.

In columns (1)-(3), Yit is #Underreportit, i.e., the number of days during quarter t on which the actual daily loss of bank i
exceeds its risk estimate. Thus, it represents a quarterly number of cases when true risk is underreported. #Underreportit
is winsorized at 1% and 99% level. In columns (4)-(6), Yit is ReportedRiskit, i.e., the natural logarithm of the 10-day
99% Value-at-Risk self-reported by bank i at quarter t. In case it is unavailable, a one-day 99% Value-at-Risk self-reported
by bank i at quarter t scaled by a square root of 10 is used. NewModelit = 1 if bank i reports a model revision that
occurs at quarter t. To understand how a model revision affects model outcomes once additional capital burden appears,
I also include interaction variables Iit, capturing the introduction of supervisory tools to oversee more closely additional
capital requirements, and of the additional capital requirements for the global systemically important banks (G-SIBs). In
columns (1) and (4), SupervisoryOversightit is an indicator based on the answer to the question 12.34.1 in the World
Bank’s Bank Regulation and Supervision Survey given additional capital requirements are selected and the respective date
of introduction is specified (12.34.1 Does the banking supervisor have any tools to oversee more closely and/or limit the
activities of large/interconnected institutions?). In columns (2) and (5), GSIBit = 1 if bank i is in a G-SIB list disclosed by
the Financial Stability Board at quarter t. In columns (3) and (6), G-SIBBucketit is the additional capital requirement (in
%) according to G-SIB lists published during 2014-2017. I choose this time period because there is a 14-month gap between
the G-SIB list publication date and the actual implementation date, and G-SIB buckets have been implemented since 2016.
Xit represents a vector of bank characteristics to control for bank size (proxied by total assets), leverage (proxied by the
equity ratio) and profitability (proxied by the ratio of the net income to total assets). Vit−1 is a vector of lagged volatility
measures to control for market, interest rate, exchange rate and commodity volatilities. αt and αi represent year-quarter and
bank fixed effects, respectively. For the zero-inflated estimation, I use the natural logarithm of VIX to distinguish between
two latent groups of observations which can be always zero by construction, or reflect the realization of the negative binomial
distribution and constitute either zero or positive integers. The sample covers 17 banks from the U.S., Canada and Europe
over the period from 2002 to 2019. Year-quarter clustered errors are reported in parentheses; *** p<0.01, ** p<0.05, *
p<0.1.
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Table 7: Model Revisions, Pecuniary Penalties and Underreporting of Risk.

(1) (2) (3) (4)
#Underreport #Underreport #Underreport #Underreport

New Model -0.40* -0.77***
(0.221) (0.268)

Tight Model -0.54* -0.68**
(0.325) (0.301)

New Model × 1
∆Capital
t−1 1.53***

(0.512)
Tight Model × 1

∆Capital
t−1 1.64**

(0.667)
1
∆Capital
t−1 0.41 0.56*

(0.283) (0.292)

Controls Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes
Model ZINB ZINB ZINB ZINB
Observations 842 842 782 782

This table reports the results for the zero-inflated negative binomial model. For the zero-inflated estimation, I use the natural
logarithm of VIX to distinguish between two latent groups of observations which can be always zero by construction, or reflect
the realization of the negative binomial distribution and constitute either zero or positive integers. The dependent variable
is #Underreportit is the number of days during quarter t on which the actual daily loss of bank i exceeds its risk estimate.
Thus, the dependent variable represents a quarterly number of cases when true risk is underreported. #Underreportit is
winsorized at 1% and 99% level. In columns (1)-(2), I run the regression:

#Underreportit = βModelit + γXit + θVit−1 + αt + αi + εit.

To understand how a model revision relates to underreporting of risk in the presence of the additional capital requirement
specifically for market risk, I also consider the interaction with an indicator variable 1∆Capital

it−1 for ∆Capital of bank i taking
non-zero values at quarter t− 1 (see Table 1). In columns (3)-(4), the model therefore becomes:

#Underreportit = β1Modelit + β21
∆Capital
it−1 + β3Modelit × 1

∆Capital
it−1 + γXit + θVit−1 + αt + αi + εit.

Modelit is NewModelit and TightModelit in columns (1) and (3), and columns (2) and (4), respectively. NewModelit = 1
if bank i reports a model revision that occurs at quarter t. TightModelit = 1 if bank i reports a model revision that occurs
at quarter t and implies higher capital requirements. Xit represents a vector of bank characteristics to control for bank size
(proxied by total assets), leverage (proxied by the equity ratio) and profitability (proxied by the ratio of the net income to
total assets). Vit−1 is a vector of lagged volatility measures to control for market, interest rate, exchange rate and commodity
volatilities. αt and αi represent year-quarter and bank fixed effects, respectively. The sample covers 17 banks from the
U.S., Canada and Europe over the period from 2002 to 2019. Year-quarter clustered errors are reported in parentheses; ***
p<0.01, ** p<0.05, * p<0.1.
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Table 8: Model Revisions, Pecuniary Penalties, Supervision Strength and Model Outcomes.

(1) (2) (3) (4)
#Underreport #Underreport Reported Risk Reported Risk

New Model -0.17 -0.50 -0.08 0.09*
(0.447) (0.354) (0.066) (0.049)

New Model × 1
∆Capital
t−1 × #Supervisors per Bank 1.41 -0.28

(1.114) (0.241)
New Model × #Supervisors per Bank -0.95* 0.13*

(0.558) (0.066)
New Model × 1

∆Capital
t−1 × #Hours of Supervisory Training -0.06*** -0.00

(0.020) (0.002)
New Model × #Hours of Supervisory Training -0.00 -0.00

(0.005) (0.001)
New Model × 1

∆Capital
t−1 0.79 2.43*** 0.23 0.08

(0.963) (0.587) (0.209) (0.166)
1
∆Capital
t−1 × #Supervisors per Bank 0.59 0.01

(0.364) (0.082)
1
∆Capital
t−1 × #Hours of Supervisory Training -0.01 -0.00

(0.005) (0.001)
1
∆Capital
t−1 -0.05 1.35*** 0.09 0.18*

(0.405) (0.349) (0.094) (0.090)
#Hours of Supervisory Training 0.00

(0.003)

Controls Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes
Bank FE Yes No Yes Yes
Model ZINB ZINB OLS OLS
Observations 782 782 782 782
R-squared 0.908 0.909

This table reports the results for the zero-inflated negative binomial and linear models in columns (1)-(2) and columns
(3)-(4), respectively. I run the regression:

Yit = β1NewModelit + β21
∆Capital
it−1 + β3NewModelit × 1

∆Capital
it−1 + β4NewModelit × Ii + β51

∆Capital
it−1 +

+ β6NewModelit × 1
∆Capital
it−1 × Ii + γXit + θVit−1 + αt + αi + εit.

In columns (1)-(2), Yit is #Underreportit, i.e., the number of days during quarter t on which the actual daily loss of bank i
exceeds its risk estimate. Thus, it represents a quarterly number of cases when true risk is underreported. #Underreportit
is winsorized at 1% and 99% level. In columns (3)-(4), Yit is ReportedRiskit, i.e., the natural logarithm of the 10-day 99%
Value-at-Risk self-reported by bank i at quarter t. In case it is unavailable, a one-day 99% Value-at-Risk self-reported by
bank i at quarter t scaled by a square root of 10 is used. NewModelit = 1 if bank i reports a model revision that occurs
at quarter t. 1

∆Capital
it−1 is an indicator for ∆Capital of bank i taking non-zero values at quarter t − 1 (see Table 1). To

understand how a model revision affects model outcomes in the presence of the additional capital requirement for market
risk given supervisory scrutiny, I also include interaction variables Ii, capturing the number of supervisors per bank and the
number of hours of supervisory training obtained from the World Bank’s Bank Regulation and Supervision Survey (12.39
How many professional bank supervisors are there in total (excluding all support functions and management)?; 12.43 How
many hours of training (at the supervisory agency or elsewhere) on average have supervisors had in the last year (2016)?) Xit

represents a vector of bank characteristics to control for bank size (proxied by total assets), leverage (proxied by the equity
ratio) and profitability (proxied by the ratio of the net income to total assets). Vit−1 is a vector of lagged volatility measures
to control for market, interest rate, exchange rate and commodity volatilities. αt and αi represent year-quarter and bank
fixed effects, respectively. For the zero-inflated estimation, I use the natural logarithm of VIX to distinguish between two
latent groups of observations which can be always zero by construction, or reflect the realization of the negative binomial
distribution and constitute either zero or positive integers. In column (2), the estimates for the specification without bank
fixed effects are reported, since the ZINB model with two-way fixed effects does not converge in this case. The sample covers
17 banks from the U.S., Canada and Europe over the period from 2002 to 2019. Year-quarter clustered errors are reported
in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Robustness.

(1) (2) (3) (4) (5) (6) (7)
#Underreport #Underreport #Underreport #Underreport #Underreport #Underreport Tight Model

New Model -0.12 -0.65*** -0.77** -0.70*** -0.58***
(0.074) (0.223) (0.308) (0.255) (0.214)

New Model × 1
∆Capital
t−1 1.67* 1.53*** 1.53*** 0.99*

(0.977) (0.550) (0.486) (0.583)
1
∆Capital
t−1 0.64*** 0.72** 0.41 0.41

(0.214) (0.367) (0.318) (0.290)
New Model × 1

∆Capital
t−5 0.85

(0.969)
1
∆Capital
t−5 -0.02

(0.799)
MRCR2005Q3 -0.43

(1.005)∑s=4
s=1#Underreportt−s -0.0003

(0.002)
Controls Yes Yes Yes Yes Yes Yes Yes
Year-Quarter FE Yes Yes Yes Yes Yes Yes Yes
Bank FE Yes No Yes Yes Yes Yes Yes
Country FE No Yes No No No No No
Cluster YQ YQ Bank YQ YQ YQ YQ
Model OLS ZINB ZINB ZINB ZINB ZINB OLS
Period Full Sample Full Sample Full Sample Drop 2008Q4 Full Sample Full Sample Full Sample
Observations 782 782 782 773 736 842 876
R-squared 0.409 0.197

This table reports the results for robustness tests. In columns (1)-(4), I run the regression:

#Underreportit = β1NewModelit + β21
∆Capital
t−1 + β3NewModelit × 1

∆Capital
t−1 + γXit + θVit−1 + αt + αi + εit.

In column (1), I report the OLS estimates. In column (2), I replace bank fixed effects αi with country fixed effects αc. In
column (3), I use standard errors clustered at the bank level. In column (4), I exclude the fourth quarter of 2008 from the
sample, i.e., the quarter following Lehman Brothers’ collapse. In column (5), I run the regression:

#Underreportit = β1NewModelit + β21
∆Capital
t−5 + β3NewModelit × 1

∆Capital
t−5 + γXit + θVit−1 + αt + αi + εit,

where 1∆Capital
t−5 is an indicator for ∆Capital of bank i taking non-zero values at quarter t− 5 (“placebo test” for pecuniary

penalties). In column (6), I run the regression:

#Underreportit = βMRCR2005Q3 + γXit + θVit−1 + αt + αi + εit,

where MRCR2005Q3 = 1 if bank i is based in the US and is exposed to Basel II pre-crisis rules for market risk set in 2005Q3
(BCBS, 2005, “placebo test” for the Market Risk Capital Rule). In column (7), I run the linear regression:

TightModelit = β
∑s=4

s=1 #Underreportit−s + γXit + θVit−1 + αt + αi + εit

to provide support for the IV results in Table 4. #Underreportit is the number of days during quarter t on which the actual
daily loss of bank i exceeds its risk estimate. Thus, it represents a quarterly number of cases when true risk is underreported.
#Underreportit is winsorized at 1% and 99% level.

∑s=4
s=1 #Underreportit−s is the number of days from quarter t − 4 to

quarter t − 1 on which the actual daily loss of bank i exceeds its risk estimate. NewModelit = 1 if bank i reports a model
revision that occurs at quarter t. 1∆Capital

it−1 is an indicator for ∆Capital of bank i taking non-zero values at quarter t− 1 (see
Table 1). Xit represents a vector of bank characteristics to control for bank size (proxied by total assets), leverage (proxied
by the equity ratio) and profitability (proxied by the ratio of the net income to total assets). Vit−1 is a vector of lagged
volatility measures to control for market, interest rate, exchange rate and commodity volatilities. αt represents year-quarter
fixed effects. For the zero-inflated estimation, I use the natural logarithm of VIX to distinguish between two latent groups
of observations which can be always zero by construction, or reflect the realization of the negative binomial distribution and
constitute either zero or positive integers. The sample covers 17 banks from the U.S., Canada and Europe over the period
from 2002 to 2019. Standard errors are reported in parentheses; *** p<0.01, ** p<0.05, * p<0.1.
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