Joint Search over the Life Cycle

Annika Bacher¹ Philipp Grübener² Lukas Nord³

¹BI Norwegian Business School

²Goethe University Frankfurt

³European University Institute

June 2022

Motivation

- Individual earnings/unemployment risk is large & varies by age
- Insurance margin for couples: Spousal labor supply
- Added Worker Effect (AWE):

Labor force entry of spouse upon job loss of primary earner

Motivation

- Individual earnings/unemployment risk is large & varies by age
- Insurance margin for couples: Spousal labor supply
- Added Worker Effect (AWE):

Labor force entry of spouse upon job loss of primary earner

This Paper:

- Document heterogeneity in the AWE by age from U.S. micro data
 - AWE larger for young than for old
- Construct a life-cycle model of couples
 - frictional labor market, human capital formation, asset accumulation
- Counterfactuals: No need for AWE among old or no opportunity?

- Main earner job loss raises prob. of spouse joining labor force by 6pp
- Effect very heterogeneous by age
 - Age 25-35: 7.5pp
 - Age 56-65: 1.4pp

- Main earner job loss raises prob. of spouse joining labor force by 6pp
- Effect very heterogeneous by age
 - Age 25-35: 7.5pp
 - Age 56-65: 1.4pp
- Age differential robust
 - across education groups
 - across genders
 - across family types (children, excluding retired)
 - over the business cycle
 - across datasets (CPS, SIPP)

- Main earner job loss raises prob. of spouse joining labor force by 6pp
- Effect very heterogeneous by age
 - Age 25-35: 7.5pp
 - Age 56-65: 1.4pp
- Age differential robust
 - across education groups
 - across genders
 - across family types (children, excluding retired)
 - over the business cycle
 - across datasets (CPS, SIPP)
- Reason for age differential? Different needs or opportunities?

- Life cycle search model with couple households who differ in
 - their labor market status: employed, searching, not searching
 - labor market experience: human capital accumulation
 - asset holdings: consumption-savings choice

- Life cycle search model with couple households who differ in
 - their labor market status: employed, searching, not searching
 - labor market experience: human capital accumulation
 - asset holdings: consumption-savings choice
- Firms post vacancies in markets characterized by household states
 - Age differential in arrival rates

- Life cycle search model with couple households who differ in
 - their labor market status: employed, searching, not searching
 - labor market experience: human capital accumulation
 - asset holdings: consumption-savings choice
- Firms post vacancies in markets characterized by household states
 - Age differential in arrival rates
- Model reproduces age differential in added worker effect

- Life cycle search model with couple households who differ in
 - their labor market status: employed, searching, not searching
 - labor market experience: human capital accumulation
 - asset holdings: consumption-savings choice
- Firms post vacancies in markets characterized by household states
 - Age differential in arrival rates
- Model reproduces age differential in added worker effect
- Model counterfactuals
 - $-\,$ significant role for differential asset holdings across age groups
 - smaller roles for differential arrival rates and human capital

Literature

Evidence

- US data from Current Population Survey (CPS) IPUMS CPS (Flood, King, Rodgers, Ruggles, and Warren 2020)
 - Monthly rotating panel
 - $-\,$ Waves from 1994 to 2020

- US data from Current Population Survey (CPS) IPUMS CPS (Flood, King, Rodgers, Ruggles, and Warren 2020)
 - Monthly rotating panel
 - Waves from 1994 to 2020
- Restrict sample to couples (primary earner + spouse)
 - Both members between 25 and 65 years old
 - Focus on one employed and one out of labor force

The Added Worker Effect

	Primary ear	Primary earner transition	
	EE	EU	
Cond. prob. of spousal NE transition	6.03%	8.01%	
Cond. prob. of spousal NU transition	1.63%	5.55%	
Cond. prob. of spousal NN transition	92.34%	86.44%	

▶ With EN

The Added Worker Effect

	Primary earner transition	
	EE	EU
Cond. prob. of spousal NE transition	6.03%	8.01%
Cond. prob. of spousal NU transition	1.63%	5.55%
Cond. prob. of spousal NN transition	92.34%	86.44%

▶ With EN

- Conditional on primary earner transitioning to unemployment
 - Higher probability of spouse entering labor force as employed
 - Higher probability of spouse entering labor force as unemployed
- Increase of roughly 6pp

Regression of spousal labor market transition on head's transition to U:

$$\Delta LFS_{it}^{sp} = \alpha_j + \beta_j \Delta ES_{it+j}^h + \gamma_j X_{it} + \epsilon_{jit}$$

- \blacksquare Repeat analysis for $j=\{-2,-1,0,1,2\}$
- ΔLFS_{it}^{sp} : Change in labor force status of spouse from $t-1 \rightarrow t$
- ΔES_{it}^h : Change in employment status of head from $t 1 \rightarrow t$

 $i=\text{couple};\,t=\text{month};\,h=\text{head};\,\text{sp}=\text{spouse};\,X=\text{add. controls}~(\text{Unemployment Rate, month FE, year FE, state FE, sex, race, education, children})$

The Added Worker Effect

Reasons for unemployment

Added Worker Effect: Heterogeneity by Age

	Primary earner transition		
	EE	EU	
Young (25-35):			
Cond. prob. of spousal NE transition	6.66%	9.30%	
Cond. prob. of spousal NU transition	2.00%	6.89%	
Cond. prob. of spousal NN transition	91.34%	83.81%	
Old (56-65):			
Cond. prob. of spousal NE transition	4.29%	3.73%	
Cond. prob. of spousal NU transition	0.90%	2.75%	
Cond. prob. of spousal NN transition	94.81%	93.52%	

■ Added worker effect larger for young: 7.53% vs. 1.29%

Added Worker Effect: Heterogeneity by Age

9/17

Added Worker Effect: Heterogeneity by Age

Overall: Strong AWE for young, weaker for old

9/17

Model

Two-member households with **five states**:

Two-member households with five states: (t,

1. Age:

- T periods: work for $T_W < T$, retired for $T - T_W$

Two-member households with five states: (t, jk,

1. Age:

- T periods: work for $T_W < T$, retired for $T T_W$
- 2. Joint Labor Market Status:
 - employed (E), unemployed with benefits (U), unemployed without benefits (S) or non-participating (N)
 - joint labor status $jk \in \mathcal{J} = \{E, U, S, N\} \times \{E, U, S, N\}$

Two-member households with five states: (t, jk, z,

1. Age:

- T periods: work for $T_W < T$, retired for $T T_W$
- 2. Joint Labor Market Status:
 - employed (E), unemployed with benefits (U), unemployed without benefits (S) or non-participating (N)
 - joint labor status $jk \in \mathcal{J} = \{E, U, S, N\} \times \{E, U, S, N\}$
- 3. Match Quality $(z = (z_1, z_2))$:
 - only for employed members Exogenous Process

Two-member households with five states: (t, jk, z, h,

1. Age:

- T periods: work for $T_W < T$, retired for $T T_W$
- 2. Joint Labor Market Status:
 - employed (E), unemployed with benefits (U), unemployed without benefits (S) or non-participating (N)

Transitions

- joint labor status $jk \in \mathcal{J} = \{E, U, S, N\} \times \{E, U, S, N\}$
- 3. Match Quality $(z = (z_1, z_2))$:
 - only for employed members Exogenous Processes
- 4. Human Capital $(h = (h_1, h_2))$:
 - accumulate while E, de-cumulate while U, S, N

Exogenous Processes

Two-member households with five states: (t, jk, z, h, a)

1. Age:

- T periods: work for $T_W < T$, retired for $T T_W$
- 2. Joint Labor Market Status:
 - employed (E), unemployed with benefits (U), unemployed without benefits (S) or non-participating (N)

Transitions

- joint labor status $jk \in \mathcal{J} = \{E, U, S, N\} \times \{E, U, S, N\}$
- 3. Match Quality $(z = (z_1, z_2))$:
 - only for employed members Exogenous Processes
- 4. Human Capital $(h = (h_1, h_2))$:
 - accumulate while E, de-cumulate while U,S,N

Exogenous Processes

5. **Assets:**

- risk free bond at interest rate \boldsymbol{r}

Consumption-Savings Choice

$$V_t^{jk}(z, h, a) = \max_{a'} u(c^{jk}(z, h, a, a')) + \psi_t^{jk} + \beta \Theta_{t+1}^{jk}(z, h, a')$$

• Value consumption u(c) (pooled within HH)

Consumption-Savings Choice

$$V_t^{jk}(z,h,a) = \max_{a'} u(c^{jk}(z,h,a,a')) + \psi_t^{jk} + \beta \Theta_{t+1}^{jk}(z,h,a')$$

• Value consumption u(c) (pooled within HH)

■ Additional instantaneous utility ψ_t^{jk} ⇒ Utility of staying at home and dis-utility of search

Consumption-Savings Choice

$$V_t^{jk}(z,h,a) = \max_{a'} u(c^{jk}(z,h,a,a')) + \psi_t^{jk} + \beta \Theta_{t+1}^{jk}(z,h,a')$$

• Value consumption u(c) (pooled within HH)

- Additional instantaneous utility ψ_t^{jk}
 ⇒ Utility of staying at home and dis-utility of search
- Continuation value $\Theta^{jk}_t(z,h,a')$ · Continuation Value · Choice Sets

Vacancy Posting and Arrival Rates

- Output of a match and wages
 - $\ \operatorname{Output}\, y\left(z,h\right) = zh$
 - $\ \, {\rm Wage} \ \, w\left(z,h\right) = \chi y\left(z,h\right)$

Vacancy Posting and Arrival Rates

- Output of a match and wages
 - $\text{ Output } y\left(z,h\right) = zh$
 - $\text{ Wage } w\left(z,h\right) = \chi y\left(z,h\right)$
- Endogenous arrival rates
 - Vacancy posting problem of single worker firm
 - Free entry with vacancy posting cost κ
 - Markets conditional on household state variables

Vacancy Posting and Arrival Rates

- Output of a match and wages
 - Output y(z,h) = zh
 - $\text{ Wage } w\left(z,h\right) = \chi y\left(z,h\right)$
- Endogenous arrival rates
 - Vacancy posting problem of single worker firm
 - Free entry with vacancy posting cost κ
 - Markets conditional on household state variables
- Scaled by search intensity
 - Equal intensities $\lambda_U = \lambda_S$ for unemployed
 - Lower intensity λ_N for out of the labor force

Firm Problem

Calibration: Joint Labor Market States

- Model period is a month: 40 years of working life \rightarrow 480 periods
- Target joint labor market states, income/asset profiles, flows,

Calibration: Joint Labor Market States

- Model period is a month: 40 years of working life \rightarrow 480 periods
- Target joint labor market states, income/asset profiles, flows, ...

The Added Worker Effect in the Model

Joint Labor Market Transitions	by	Age	(Model vs.	Data
--------------------------------	----	-----	------------	------

	Primary earner transition	
	EE	EU/ES
Young (25-35):		
Cond. prob. of spousal NE transition	2.26%	3.12%
	6.66%	9.30%
Cond. prob. of spousal NS transition	0.40%	5.28%
	2.00%	6.89%
Cond. prob. of spousal NN transition	97.34%	91.60%
	91.34%	83.81%
Old (55-65):		
Cond. prob. of spousal NE transition	1.95%	2.24%
	4.29%	3.73%
Cond. prob. of spousal NS transition	0.11%	1.16%
	0.90%	2.75%
Cond. prob. of spousal NN transition	97.95%	96.60%
	94.81%	93.52%
The Added Worker Effect in the Model

Joint Labor Market Tra	ansitions by Age	(Model vs.	Data
------------------------	------------------	------------	------

	Primary ear	ner transition
	EE	EU/ES
Young (25-35):		
Cond. prob. of spousal NE transition	2.26%	3.12%
	6.66%	9.30%
Cond. prob. of spousal NS transition	0.40%	5.28%
	2.00%	6.89%
Cond. prob. of spousal NN transition	97.34%	91.60%
	91.34%	83.81%
Old (55-65):		
Cond. prob. of spousal NE transition	1.95%	2.24%
	4.29%	3.73%
Cond. prob. of spousal NS transition	0.11%	1.16%
	0.90%	2.75%
Cond. prob. of spousal NN transition	97.95%	96.60%
	94.81%	93.52%

AWE for young: 5.74% 7.53%

The Added Worker Effect in the Model

Joint Labor Market Tra	ansitions by Age	(Model vs.	Data
------------------------	------------------	------------	------

	Primary ear	ner transition
	EE	EU/ES
Young (25-35):		
Cond. prob. of spousal NE transition	2.26%	3.12%
	6.66%	9.30%
Cond. prob. of spousal NS transition	0.40%	5.28%
	2.00%	6.89%
Cond. prob. of spousal NN transition	97.34%	91.60%
	91.34%	83.81%
Old (55-65):		
Cond. prob. of spousal NE transition	1.95%	2.24%
	4.29%	3.73%
Cond. prob. of spousal NS transition	0.11%	1.16%
	0.90%	2.75%
Cond. prob. of spousal NN transition	97.95%	96.60%
	94.81%	93.52%

AWE for old: 1.35% 1.29%

Which factors explain the change in the AWE over the life cycle?

- Three candidates: arrival rates, human capital, assets
- Compute average values of old and young along each dimension
- Adjust every young household's state such that
 - On average, young have characteristics of old
 - Preserves within young position in distribution

The AWE over the Life Cycle: Counterfactuals

	Primary ear	Primary earner transition	
	EE	EU/ES	
Young (25-35):			
Cond. prob. of spousal NE transition	2.26%	3.12%	
Cond. prob. of spousal NS transition	0.40%	5.28%	
Cond. prob. of spousal NN transition	97.34%	91.60%	
Counterfactual assets			
Cond. prob. of spousal NE transition	1.04%	1.73%	
Cond. prob. of spousal NS transition	0.30%	3.31%	
Cond. prob. of spousal NN transition	98.66%	94.96%	

Higher asset holdings

■ AWE: 3.70% vs. 5.74%

The AWE over the Life Cycle: Counterfactuals

	Primary ear	Primary earner transition	
	EE	EU/ES	
Young (25-35):			
Cond. prob. of spousal NE transition	2.26%	3.12%	
Cond. prob. of spousal NS transition	0.40%	5.28%	
Cond. prob. of spousal NN transition	97.34%	91.60%	
Counterfactual human capital			
Cond. prob. of spousal NE transition	1.70%	3.02%	
Cond. prob. of spousal NS transition	0.24%	3.09%	
Cond. prob. of spousal NN transition	98.06%	93.89%	

- Approximately same human capital for out of labor force spouse
- Higher human capital for primary earner
- AWE: 4.17% vs. 5.74%

The AWE over the Life Cycle: Counterfactuals

	Primary earner transition	
	EE	EU/ES
Young (25-35):		
Cond. prob. of spousal NE transition	2.26%	3.12%
Cond. prob. of spousal NS transition	0.40%	5.28%
Cond. prob. of spousal NN transition	97.34%	91.60%
Counterfactual meeting probabilities		
Cond. prob. of spousal NE transition	2.14%	2.93%
Cond. prob. of spousal NS transition	0.41%	5.36%
Cond. prob. of spousal NN transition	97.46%	91.71%

- Reduced meeting probabilities for young, but small effect
- New version: Larger role for arrival rates
 - Vacancy posting after exogenous separations

Conclusion

Summary

- Evidence: AWE stronger for young than for old
- Model: Life-cycle search model of two-member households
- $-\,$ Similar contributions of "no need" and "no opportunity" channels
- Next steps
 - Model estimation of new version
 - Age-dependent unemployment insurance

comments and questions very welcome: lukas.nord@eui.eu

Appendix

References

- Bardóczy, Bence (2022). "Spousal Insurance and the Amplification of Business Cycles". Working Paper.
- Birinci, Serdar (2021). "Spousal Labor Supply Response to Job Displacement and Implications for Optimal Transfers". Working Paper.
- Blundell, Richard, Luigi Pistaferri, and Itay Saporta-Eksten (2016). "Consumption inequality and family labor supply". The American Economic Review 106.2, pp. 387–435.
- Chéron, Arnaud, Jean-Olivier Hairault, and François Langot (2011). "Age-dependent employment protection". The Economic Journal 121.557, pp. 1477–1504.
- (2013). "Life-cycle equilibrium unemployment". Journal of Labor Economics 31.4, pp. 843–882.
- Choi, Sekyu and Arnau Valladares-Esteban (2020). "On households and unemployment insurance". Quantitative Economics 11.1, pp. 437–469.

Ellieroth, Kathrin (2022). "Spousal Insurance, Precautionary Labor Supply, and the Business Cycle". Working Paper.

Fang, Hanming and Andrew J. Shephard (2019). "Household labor search, spousal insurance, and health care reform". Working paper.

References (cont.)

Fernández-Blanco, Javier (2022). "Unemployment risks and intra-household insurance". Journal of Economic Theory, p. 105477.

- Flood, Sarah, Miriam King, Renae Rodgers, Steven Ruggles, and J. Robert Warren (2020). "Integrated Public Use Microdata Series, Current Population Survey: Version 8.0 [dataset]. Minneapolis, MN: IPUMS". Dataset.
- Griffy, Benjamin S. (2021). "Search And The Sources Of Life-Cycle Inequality". International Economic Review 62.4, pp. 1321–1362.
- Guler, Bulent, Fatih Guvenen, and Giovanni L. Violante (2012). "Joint-search theory: New opportunities and new frictions". Journal of Monetary Economics 59.4, pp. 352–369.
- Guner, Nezih, Yuliy Kulikova, and Arnau Valladares-Esteban (2021). "Does the Added Worker Effect Matter?". Working Paper.
- Haan, Peter and Victoria L. Prowse (2020). "Optimal social assistance and unemployment insurance in a life-cycle model of family labor supply and savings". Working Paper.
- Jung, Philip and Moritz Kuhn (2019). "Earnings losses and labor mobility over the life cycle". Journal of the European Economic Association 17.3, pp. 678–724.

References (cont.)

- Lundberg, Shelly (1985). "The added worker effect". Journal of Labor Economics 3.1, Part 1, pp. 11–37.
- Maloney, Tim (1987). "Employment constraints and the labor supply of married women: A reexamination of the added worker effect". Journal of Human Resources, pp. 51–61.
- (1991). "Unobserved variables and the elusive added worker effect". Economica, pp. 173-187.
- Mankart, Jochen and Rigas Oikonomou (2016). "Household search and the aggregate labour market". The Review of Economic Studies 84.4, pp. 1735–1788.
- Menzio, Guido, Irina A. Telyukova, and Ludo Visschers (2016). "Directed search over the life cycle". Review of Economic Dynamics 19, pp. 38–62.
- Michelacci, Claudio and Hernán Ruffo (2015). "Optimal life cycle unemployment insurance". The American Economic Review 105.2, pp. 816–59.
- Morazzoni, Marta and Danila Smirnov (2021). "Labor and Family Dynamics in a Joint-Search Framework". Working Paper.
- Ortigueira, Salvador and Nawid Siassi (2013). "How important is intra-household risk sharing for savings and labor supply?". Journal of Monetary Economics 60.6, pp. 650–666.

- Stephens, Melvin (2002). "Worker displacement and the added worker effect". Journal of Labor Economics 20.3, pp. 504–537.
- Toohey, Desmond (2012). "The Added Worker Effect in Late Career". Working Paper.
- Wang, Haomin (2019). "Intra-household risk sharing and job search over the business cycle". Review of Economic Dynamics 34, pp. 165–182.
- Wu, Chunzan and Dirk Krueger (2021). "Consumption insurance against wage risk: Family labor supply and optimal progressive income taxation". American Economic Journal: Macroeconomics 13.1, pp. 79–113.

Related Literature

Empirical work on the added worker effect

Lundberg (1985), Maloney (1987, 1991), Stephens (2002), Toohey (2012), Mankart and Oikonomou (2016), Guner, Kulikova,

and Valladares-Esteban (2021)

 \Rightarrow AWE over the entire life cycle

Search models with two-member households

Guler, Guvenen, and Violante (2012), Mankart and Oikonomou (2016), Fang and Shephard (2019), Wang (2019), Choi and Valladares-Esteban (2020), Birinci (2021), Morazzoni and Smirnov (2021), Bardóczy (2022), Ellieroth (2022), Fernández-Blanco (2022)

\Rightarrow Life cycle, endogenous arrival rates

■ Life-cycle search models

Chéron, Hairault, and Langot (2011, 2013), Michelacci and Ruffo (2015), Menzio, Telyukova, and Visschers (2016), Jung and Kuhn (2019), Griffy (2021)

Life-cycle family labor supply

Ortigueira and Siassi (2013), Blundell, Pistaferri, and Saporta-Eksten (2016), Haan and Prowse (2020), Wu and Krueger (2021)

 \Rightarrow Joint labor supply decisions with search frictions over life cycle

17/17

	EE	EU (by reasons for U)			
		Layoff	Job Loser	Temp. Job ended	Job Leaver
NE	6.03%	6.13%	8.81%	7.56%	10.47%
NU	1.63%	3.51%	6.66%	6.59%	7.68%
NN	92.34%	90.35%	84.53%	85.85%	81.86%

◀ Back

	EE	EU (by reasons for U)				
		Layoff	Job Loser	Temp. Job ended	Job Leaver	
NE	6.03%	6.13%	8.81%	7.56%	10.47%	
NU	1.63%	3.51%	6.66%	6.59%	7.68%	
NN	92.34%	90.35%	84.53%	85.85%	81.86%	

■ Layoff, potentially temporary => small AWE

	EE	EU (by reasons for U)				
		Layoff	Job Loser	Temp. Job ended	Job Leaver	
NE	6.03%	6.13%	8.81%	7.56%	10.47%	
NU	1.63%	3.51%	6.66%	6.59%	7.68%	
NN	92.34%	90.35%	84.53%	85.85%	81.86%	

■ Layoff, potentially temporary => small AWE

■ Job loss, more permanent => larger AWE

	EE	EU (by reasons for U)				
		Layoff	Job Loser	Temp. Job ended	Job Leaver	
NE	6.03%	6.13%	8.81%	7.56%	10.47%	
NU	1.63%	3.51%	6.66%	6.59%	7.68%	
NN	92.34%	90.35%	84.53%	85.85%	81.86%	

■ Layoff, potentially temporary => small AWE

- Job loss, more permanent => larger AWE
- Temp. job ended, more permanent => larger AWE

	EE	EU (by reasons for U)				
		Layoff	Job Loser	Temp. Job ended	Job Leaver	
NE	6.03%	6.13%	8.81%	7.56%	10.47%	
NU	1.63%	3.51%	6.66%	6.59%	7.68%	
NN	92.34%	90.35%	84.53%	85.85%	81.86%	

■ Layoff, potentially temporary => small AWE

- Job loss, more permanent => larger AWE
- Temp. job ended, more permanent => larger AWE
- Quits => joint optimization

	Primary earner transition		
	EE EU EN		
Cond. prob. of spousal NE transition	6.03%	8.01%	16.79%
Cond. prob. of spousal NU transition	1.63%	5.55%	1.33%
Cond. prob. of spousal NN transition	92.34%	86.44%	81.88%

	Primary earner transition		
	EE	EU	EN
Young (25-35):			
Cond. prob. of spousal NE transition	6.66%	9.30%	26.93%
Cond. prob. of spousal NU transition	2.00%	6.89%	2.02%
Cond. prob. of spousal NN transition	91.34%	83.81%	71.05%
Old (56-65):			
Cond. prob. of spousal NE transition	4.29%	3.73%	8.69%
Cond. prob. of spousal NU transition	0.90%	2.75%	0.56%
Cond. prob. of spousal NN transition	94.81%	93.52%	90.76%

Heterogeneity by Age: Other Age Groups

	Primary earner transition		
	EE	EU	EN
Age Spouse 36-45:			
Cond. prob. of spousal NE transition	6.73%	9.32%	26.69%
Cond. prob. of spousal NU transition	1.86%	6.37%	2.00%
Cond. prob. of spousal NN transition	91.41%	84.31%	71.30%
Age Spouse 46-55:			
Cond. prob. of spousal NE transition	6.13%	7.96%	16.62%
Cond. prob. of spousal NU transition	1.62%	4.79%	1.72%
Cond. prob. of spousal NN transition	92.25%	87.25%	81.66%

CPS vs. SIPP – Full Sample

 Δ Pr(Spouse enters LF) this month

 Δ Pr(Spouse enters LF) this month

CPS vs. SIPP - Age 56 to 65

 Δ Pr(Spouse enters LF) this month

Added Worker Effect by Net Liquid Wealth

Regression add. controls for age; Net Liquid Wealth = total wealth - home equity - vehicle equity - unsec. debt; Data Source: SIPP

Added Worker Effect by Net Liquid Wealth

Δ Pr(Spouse enters LF) this month

Stronger AWE for low wealth households

Regression add, controls for age: Net Liquid Wealth = total wealth - home equity - vehicle equity - unsec, debt; Data Source; SIPP

Heterogeneity by Age and Education

College				
	Prim	ary earner tra	insition	
	EE	EU	EN	
Spouse Young:				
Cond. prob. of spousal NE transition	7.31%	13.25%	33.25%	
Cond. prob. of spousal NU transition	1.70%	7.22%	1.29%	
Cond. prob. of spousal NN transition	90.99%	79.53%	65.46%	
Spouse Old:				
Cond. prob. of spousal NE transition	6.04%	7.72%	11.81%	
Cond. prob. of spousal NU transition	1.35%	4.87%	0.86%	
Cond. prob. of spousal NN transition	92.61%	87.41%	87.33%	

A Back
Sack
S

Heterogeneity by Age and Education

-

No College

	Primary earner transition		
	EE	EU	EN
Spouse Young:			
Cond. prob. of spousal NE transition	6.30%	8.34%	21.76%
Cond. prob. of spousal NU transition	2.01%	6.28%	2.21%
Cond. prob. of spousal NN transition	91.69%	85.37%	76.03%
Spouse Old:			
Cond. prob. of spousal NE transition	4.19%	4.20%	9.41%
Cond. prob. of spousal NU transition	0.99%	2.83%	0.80%
Cond. prob. of spousal NN transition	94.82%	92.97%	89.79%

◀ Back

	Primary earner transition		
	EE	EU	EN
Spouse is a Man (Young) :			
Cond. prob. of spousal NE transition	13.54%	14.07%	44.10%
Cond. prob. of spousal NU transition	6.19%	11.69%	2.59%
Cond. prob. of spousal NN transition	80.27%	74.24%	53.31%
Spouse is a Man (Old):			
Cond. prob. of spousal NE transition	4.50%	4.59%	10.36%
Cond. prob. of spousal NU transition	1.13%	3.23%	0.63%
Cond. prob. of spousal NN transition	94.37%	92.18 %	89.01%

	Primary earner transitior EE EU EN		
Spouse born between 1960-70 (Young):			
Cond. prob. of spousal NE transition	6.98%	8.62%	21.67%
Cond. prob. of spousal NU transition	1.89%	6.70%	2.42%
Cond. prob. of spousal NN transition	91.13%	84.68%	75.92%
Spouse born between 1960-70 (Old)			
Cond. prob. of spousal NE transition	4.28%	2.94%	12.86%
Cond. prob. of spousal NU transition	1.11%	3.68%	1.04%
Cond. prob. of spousal NN transition	94.61%	93.38%	86.10%

▲ Back

Children (Parents below 40)

	Primary earner transition		
	EE	EU	EN
Have Children:			
Cond. prob. of spousal NE transition	6.26%	8.71%	28.30%
Cond. prob. of spousal NU transition	1.75%	6.65%	2.31%
Cond. prob. of spousal NN transition	91.98%	84.64%	69.40%
No Children:			
Cond. prob. of spousal NE transition	9.68%	12.68%	23.69%
Cond. prob. of spousal NU transition	3.40%	8.54%	1.59%
Cond. prob. of spousal NN transition	86.91%	78.78%	74.72%

Young Children (Parents below 40)

	Primary earner transition		
	EE	EU	EN
Have Children below 5:			
Cond. prob. of spousal NE transition	5.63%	8.55%	30.09%
Cond. prob. of spousal NU transition	1.47%	6.14%	1.96%
Cond. prob. of spousal NN transition	92.90%	85.31%	67.95%
No Children below 5:			
Cond. prob. of spousal NE transition	8.08%	9.95%	24.82%
Cond. prob. of spousal NU transition	2.60%	7.80%	2.35%
Cond. prob. of spousal NN transition	89.32%	82.24%	72.82%

Reasons for Non-Participation

	Primary earner transition		
	EE	EU	EN
Excluding Retirement (Young):			
Cond. prob. of spousal NE transition	6.66%	9.32%	27.13%
Cond. prob. of spousal NU transition	2.00%	6.91%	2.06%
Cond. prob. of spousal NN transition	91.33%	83.77%	70.81%
Excluding Retirement (Old):			
Cond. prob. of spousal NE transition	4.95%	4.15%	11.45%
Cond. prob. of spousal NU transition	1.18%	3.33%	1.00%
Cond. prob. of spousal NN transition	93.87%	92.52%	87.54%

◀ Back

Reasons for Non-Participation

	Primary earner transition		
	EE	EU	EN
Excluding Disabled/III (Young):			
Cond. prob. of spousal NE transition	6.55%	9.34%	27.02%
Cond. prob. of spousal NU transition	1.96%	6.94%	2.01%
Cond. prob. of spousal NN transition	91.49%	83.72%	70.97 %
Excluding Disabled/III (Old):			
Cond. prob. of spousal NE transition	4.17%	3.42%	8.53%
Cond. prob. of spousal NU transition	0.88%	2.77%	0.50%
Cond. prob. of spousal NN transition	94.95%	93.81%	90.97%

Reasons for Non-Participation

	Primary earner transitio		
		LU	LIN
Excluding Retired and Disabled/III (Young)):		
Cond. prob. of spousal NE transition	6.55%	9.36%	27.23%
Cond. prob. of spousal NU transition	1.97%	6.96%	2.05%
Cond. prob. of spousal NN transition	91.48%	83.68%	70.72%
Excluding Retired and Disabled/III (Old):			
Cond. prob. of spousal NE transition	4.74%	3.62%	11.20%
Cond. prob. of spousal NU transition	1.16%	3.40%	0.89%
Cond. prob. of spousal NN transition	94.11%	92.99%	87.91%

A Back
A

By State of the Business Cycle

	Primary earner transition		
	EE	EU	EN
NBER Recession, Young			
Cond. prob. of spousal NE transition	6.48%	7.74%	22.38%
Cond. prob. of spousal NU transition	1.98%	8.73%	0.99%
Cond. prob. of spousal NN transition	91.55%	83.53%	76.63%
NBER Recession, Old			
Cond. prob. of spousal NE transition	4.14%	5.43%	7.71%
Cond. prob. of spousal NU transition	0.83%	2.76%	0.68%
Cond. prob. of spousal NN transition	95.03%	91.81%	91.61%
By State of the Business Cycle

	Primary earner transition		
	EE	EU	EN
No NBER Recession, Young			
Cond. prob. of spousal NE transition	6.68%	9.53%	27.45%
Cond. prob. of spousal NU transition	2.00%	6.63%	2.14%
Cond. prob. of spousal NN transition	91.31%	83.85%	70.41%
No NBER Recession, Old			
Cond. prob. of spousal NE transition	4.30%	3.46%	8.80%
Cond. prob. of spousal NU transition	0.91%	2.75%	0.54%
Cond. prob. of spousal NN transition	94.79%	93.79%	90.66%

A Back
A

By Reasons for Unemployment

By Reasons for Unemployment

Other Age Groups

Exogenous Processes

Human Capital:

- E: increases one unit with $Pr(h'_i = h^{j+1} | h_i = h^j) = \phi^{up}(h_i)$
- U, S, N: decreases a unit with $Pr(h'_i = h^{j-1}|h_i = h^j) = \phi^{down}(h_i)$

Match quality:

- Together with job offer receive initial draw from distribution $\pi_0(z)$
- Employed *z* evolves as Markov process.

Labor Market Transitions

▲ Back

Timing

Receive labor income (UI benefits) and asset income \downarrow Consumption-savings choice \downarrow Separation shocks and job offers realize \downarrow Match quality shocks and human capital transitions realize \downarrow Choose joint future labor market state from feasible subset of \mathcal{J}

Continuation value if EE today can be defined in two steps:

1. Expectation over separations and resulting choice sets:

$$\begin{aligned} \Theta_{t+1}^{EE}(z_1, z_2, h_1, h_2, a') &= \\ (1 - \delta(h_1))(1 - \delta(h_2)) \ \widetilde{V}_{t+1}(z_1, z_2, h_1, h_2, a', \mathcal{J}_{XX}^{EE}) \\ + \delta(h_1)(1 - \delta(h_2)) \ \widetilde{V}_{t+1}(z_1, z_2, h_1, h_2, a', \mathcal{J}_{UX}^{XE}) \\ + (1 - \delta(h_1))\delta(h_2) \ \widetilde{V}_{t+1}(z_1, z_2, h_1, h_2, a', \mathcal{J}_{XU}^{EX}) \\ + \delta(h_1)\delta(h_2) \ \widetilde{V}_{t+1}(z_1, z_2, h_1, h_2, a', \mathcal{J}_{UU}^{XX}) \end{aligned}$$

Continuation Value

Continuation value if *EE* today can be defined in two steps:

2. Exogenous processes and labor supply decision:

$$\begin{split} \widetilde{V}_{t+1}(z_1, z_2, h_1, h_2, a, \mathcal{J}_{QR}^{OP}) &= \\ \phi^{up}(h_1)\phi^{up}(h_2) \ \mathbb{E}_{z_1'|z_1} \mathbb{E}_{z_2'|z_2} \ \mathbb{E}_{\epsilon} \max_{\widehat{jk} \in \mathcal{J}_{QR}^{OP}} \left\{ V_{t+1}^{\widehat{jk}}(z_1, z_2, h_1, h_2, a) + \sigma \epsilon^{\widehat{jk}} \right\} \\ &+ \phi^{up}(h_1)(1 - \phi^{up}(h_2)) \ \mathbb{E}_{z_1'|z_1} \mathbb{E}_{z_2'|z_2} \ \mathbb{E}_{\epsilon} \max_{\widehat{jk} \in \mathcal{J}_{QR}^{OP}} \left\{ V_{t+1}^{\widehat{jk}}(z_1, z_2, h_1, h_2, a) + \sigma \epsilon^{\widehat{jk}} \right\} \\ &+ (1 - \phi^{up}(h_1))\phi^{up}(h_2) \ \mathbb{E}_{z_1'|z_1} \mathbb{E}_{z_2'|z_2} \ \mathbb{E}_{\epsilon} \max_{\widehat{jk} \in \mathcal{J}_{QR}^{OP}} \left\{ V_{t+1}^{\widehat{jk}}(z_1, z_2, h_1, h_2, a) + \sigma \epsilon^{\widehat{jk}} \right\} \\ &+ (1 - \phi^{up}(h_1))(1 - \phi^{up}(h_2)) \ \mathbb{E}_{z_1'|z_1} \mathbb{E}_{z_2'|z_2} \ \mathbb{E}_{\epsilon} \max_{\widehat{jk} \in \mathcal{J}_{QR}^{OP}} \left\{ V_{t+1}^{\widehat{jk}}(z_1, z_2, h_1, h_2, a) + \sigma \epsilon^{\widehat{jk}} \right\} \\ &+ (1 - \phi^{up}(h_1))(1 - \phi^{up}(h_2)) \ \mathbb{E}_{z_1'|z_1} \mathbb{E}_{z_2'|z_2} \ \mathbb{E}_{\epsilon} \max_{\widehat{jk} \in \mathcal{J}_{QR}^{OP}} \left\{ V_{t+1}^{\widehat{jk}}(z_1, z_2, h_1, h_2, a) + \sigma \epsilon^{\widehat{jk}} \right\} \\ &+ (1 - \phi^{up}(h_1))(1 - \phi^{up}(h_2)) \ \mathbb{E}_{z_1'|z_1} \mathbb{E}_{z_2'|z_2} \ \mathbb{E}_{\epsilon} \max_{\widehat{jk} \in \mathcal{J}_{QR}^{OP}} \left\{ V_{t+1}^{\widehat{jk}}(z_1, z_2, h_1, h_2, a) + \sigma \epsilon^{\widehat{jk}} \right\} \end{split}$$

where $\epsilon \in \mathbb{R}^{|\mathcal{J}_{nm}^{j\kappa}|}$ is a vector of i.i.d., mean zero extreme value shocks.

Labor Supply Choice Sets

Benefit	Job (Offer)			
Eligibility	Both	Member 1	Member 2	None
Both	$ \begin{aligned} \mathcal{J}_{UU}^{EE} &= \\ \{E, U, N\} \\ \times \{E, U, N\} \end{aligned} $	$\begin{array}{l} \mathcal{J}_{UU}^{EX} = \\ \{E,U,N\} \\ \times \{U,N\} \end{array}$	$ \begin{aligned} \mathcal{J}_{UU}^{XE} &= \\ \{U, N\} \\ \times \{E, U, N\} \end{aligned} $	$\begin{array}{l} \mathcal{J}_{UU}^{XX} = \\ \{U, N\} \\ \times \{U, N\} \end{array}$
Member 1	$\begin{array}{l} \mathcal{J}_{UX}^{EE} = \\ \{E, U, N\} \\ \times \{E, S, N\} \end{array}$	$ \begin{array}{l} \mathcal{J}_{UX}^{EX} = \\ \{E, U, N\} \\ \times \{S, N\} \end{array} $	$ \begin{aligned} \mathcal{J}_{UX}^{XE} &= \\ \{U, N\} \\ \times \{E, S, N\} \end{aligned} $	$ \begin{aligned} \mathcal{J}_{UX}^{XX} &= \\ \{U, N\} \\ \times \{S, N\} \end{aligned} $
Member 2	$\begin{array}{l} \mathcal{J}^{EE}_{XU} = \\ \{E,S,N\} \\ \times \{E,U,N\} \end{array}$	$\begin{array}{l} \mathcal{J}^{EX}_{XU} = \\ \{E,S,N\} \\ \times \{U,N\} \end{array}$	$ \begin{array}{l} \mathcal{J}_{XU}^{XE} = \\ \{S,N\} \\ \times \{E,U,N\} \end{array} $	$ \begin{aligned} \mathcal{J}_{XU}^{XX} &= \\ \{S, N\} \\ \times \{U, N\} \end{aligned} $
None	$\begin{array}{l} \mathcal{J}^{EE}_{XX} = \\ \{E,S,N\} \\ \times \{E,S,N\} \end{array}$	$\begin{array}{l} \mathcal{J}^{EX}_{XX} = \\ \{E,S,N\} \\ \times \{S,N\} \end{array}$	$ \begin{aligned} \mathcal{J}_{XX}^{XE} &= \\ \{S, N\} \\ \times \{E, S, N\} \end{aligned} $	$\mathcal{J}_{XX}^{XX} = \\ \{S, N\} \\ \times \{S, N\}$

Firm Problem

Firms' value of employing member *i*:

$$J_t^{jk}(z_i, z_{-i}, h_i, h_{-i}, a) = \pi(z_i, h_i) + \frac{1}{1+r} (1 - \delta(h_1)) \mathbb{E}_{P,R} E J_{t+1}^{jk}(z_i, z_{-i}, h_i, h_{-i}, a', \mathcal{J}_{XR}^{EP})$$

with continuation value

$$\begin{split} EJ_{t+1}^{jk}(z_i, z_{-i}, h_i, h_{-i}, a', \mathcal{J}_{QR}^{OP}) \\ &= \mathbb{E}_{h_i'|h_i} \mathbb{E}_{h_{-i}'|h_{-i}} \mathbb{E}_{z_i'|z_i} \mathbb{E}_{z_{-i}'|z_{-i}} \mathbb{E}_{j\hat{k} \in \mathcal{J}_{QR}^{OP}} \mathbb{I}_{\hat{j} = E|x'} J_{t+1}^{\hat{j}\hat{k}}(z_i', z_{-i}', h_i', h_{-i}', a') \end{split}$$

and per-period profit

$$\pi(z_i, h_i) = y(z_i, h_i) - w(z_i, h_i) = (1 - \chi)z_i h_i$$

Free entry condition determines arrival for member *i*:

 $\kappa = q(\theta_t(h_i, h_{-i}, z_{-i}, a, jk)) \mathbb{E}_{P,R} E J_{t+1}^{jk}(z_i, z_{-i}, h_i, h_{-i}, a', \mathcal{J}_{XR}^{EP})$

- incorporates endogenous acceptances and (future) quits
- \blacksquare depends on labor market transition of spouse -i
- $\Rightarrow\,$ have to solve for arrivals simultaneously if both non-employed

◀ Back

Calibration – Asset Levels

	Model	Data
All	10.4	11.8
Age 25-35	2.8	3.0
Age 35-45	4.9	7.0
Age 45-55	10.6	14.6
Age 55-65	23.3	24.1

Asset Levels

■ Target: Net financial assets (incl. IRA) + vehicle equity

■ 1 unit = \$10,000

Income Levels and Dispersion						
	Level		Standard	deviation		
	Model	Data	Model	Data		
All	0.3596	0.3424	0.1363	0.2374		
Age 25-35	0.3296	0.3020	0.1172	0.2009		
Age 35-45	0.3538	0.3572	0.1341	0.2456		
Age 45-55	0.3752	0.3629	0.1429	0.2486		
Age 55-65	0.3826	0.3400	0.1511	0.2466		

- Target: Labor Income
- 1 unit = \$10,000

Calibration – Individual Labor Market Transitions

17/17

The Added Worker Effect in the Model

