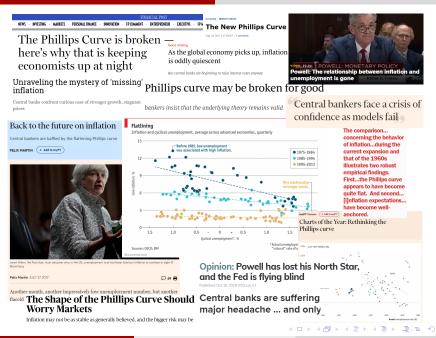
Did Monetary Policy Kill The Phillips Curve? – Some Simple Arithmetics –

Drago Bergholt[†], Francesco Furlanetto[†], Etienne Vaccaro-Grange[‡]

[†]Norges Bank, [‡]NYU Abu Dhabi

EEA-ESEM conference, Milan August 23, 2022


Disclaimer: the views expressed in this presentation are those of the authors and do not necessarily reflect the views of Norges Bank.

BFV (Norges Bank)

The US Phillips curve

로▶ ◀ Ē▶ Ē|ె ∕) ९. 여 August, 2022 1/25

Introduction

What has happened to the US Phillips curve?

1.2

∃ ► < ∃</p>

The US price Phillips curve

A Friedman (1968)-type, expectations-augmented price Phillips curve:

 $\pi_t = \pi_{t+1}^e + \kappa y_t + s_t$

Widely held view: the Phillips curve has flattened or even died

- Ball and Mazumder (2011), Blanchard (2016), Stock and Watson (2019), Del Negro, Lenza, Primiceri and Tambalotti (2020)
- Open economy factors: Forbes (2019), Obstfeld (2020), Heise, Karahan and Sahin (2020), Ascari and Fosso (2021)

Recently, this view has been questioned

- Coibion and Gorodnichenko (2015), Barnichon and Mesters (2020), Hazell, Herreno, Nakamura, Steinsson (2021), McLeay and Tenreyro (2020), Jorgensen and Lansing (2022)

What we do

Fundamental decomposition of the unconditional data

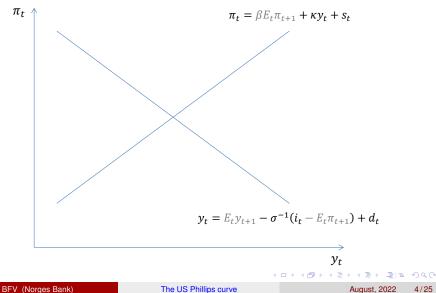
$$\pi_t = \pi_{t|d} + \pi_{t|s}$$
$$y_t = y_{t|d} + y_{t|s}$$

三日 のへの

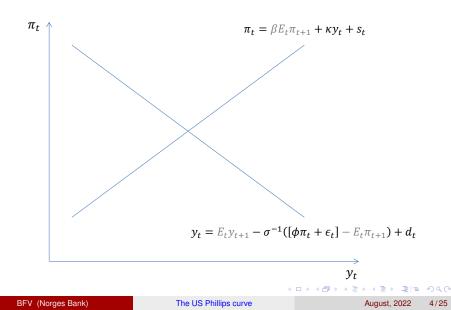
What we do

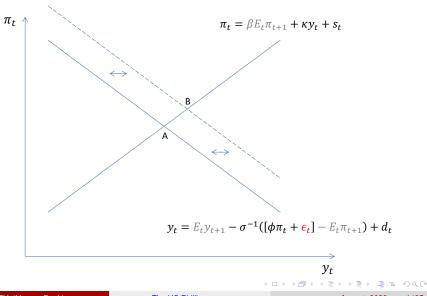
Fundamental decomposition of the unconditional data

 $\pi_t = \pi_{t|d} + \pi_{t|s}$ $y_t = y_{t|d} + y_{t|s}$

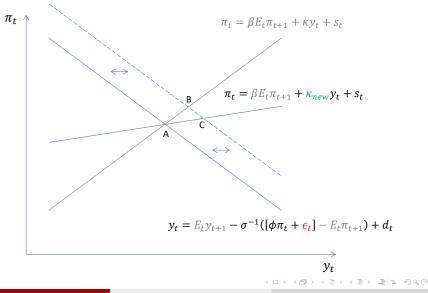

Why?

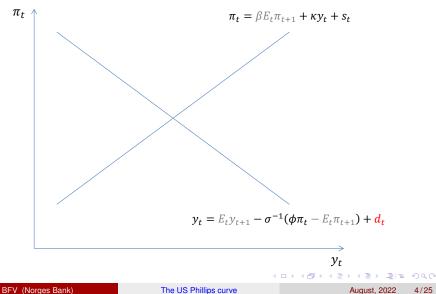
(A) Explicit account of supply-side variation in data. Helps to address


- ... the bias in estimated slopes
- ... weak identification

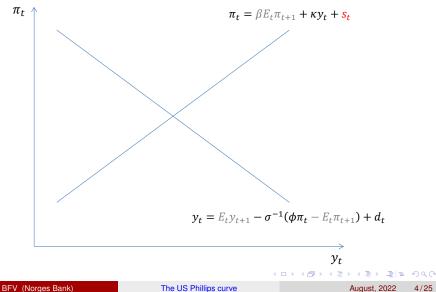

(B) Disentangle and quantify the main, competing explanations

- Slope story: the Phillips curve has flattened
- Policy story: the Fed has become a stricter inflation targeter
- Shocks story: supply shocks have become more important over time

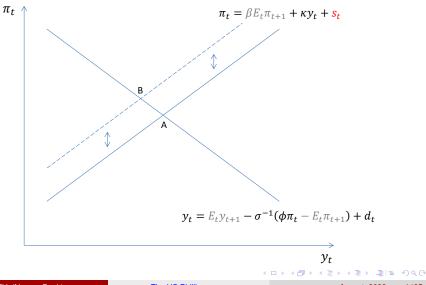

4/25


BFV (Norges Bank)

August, 2022 4/25

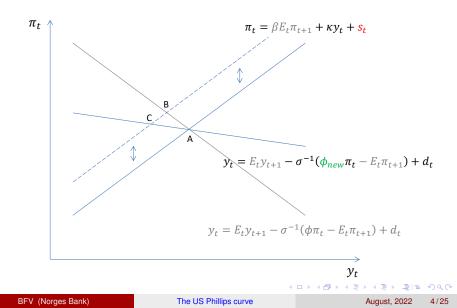

BFV (Norges Bank)

August, 2022 4/25


4/25

Our paper: supply shock \Rightarrow demand slope

4/25


Our paper: supply shock \Rightarrow demand slope

BFV (Norges Bank)

August, 2022 4/25

Our paper: supply shock \Rightarrow demand slope

Main findings

- Little evidence of a flatter supply curve. The PC is alive and well!
- 2 The demand curve, instead, has flattened substantially.
- Slope tests and variance tests consistent with a stricter policy focus on inflation stability.

Theoretical discussion

BFV (Norges Bank)

The US Phillips curve

August, 2022 5/25

-

A baseline framework

The canonical textbook model, see Galí (2015):

$$y_t = \mathbb{E}_t y_{t+1} - \sigma^{-1} \left(i_t - \mathbb{E}_t \pi_{t+1} \right)$$

$$\pi_t = \beta \mathbb{E}_t \pi_{t+1} + \kappa y_t + s_t$$

$$i_t = \phi_\pi \pi_t + \phi_y y_t + d_t$$

Remarks:

- (a) *y_t* is the output gap from *steady state* or trend (the flex-price gap is a different concept not discussed here)
- (b) s_t may be an entire vector of supply shocks.

The OLS estimate of κ

Suppose d_t and s_t are iid shocks with variances σ_d^2 and σ_s^2 , respectively. The case of persistent shocks

Closed form solution:

$$y_t = \frac{1}{\sigma + \phi_y + \kappa \phi_\pi} (d_t - \phi_\pi s_t)$$
$$\pi_t = \frac{1}{\sigma + \phi_y + \kappa \phi_\pi} [\kappa d_t + (\sigma + \phi_y) s_t]$$

Implied OLS estimator:

$$\hat{\kappa} = \frac{\kappa - \phi_{\pi} \left(\sigma + \phi_{y}\right) \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}}{1 + \phi_{\pi}^{2} \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}} < \kappa$$

- A. Unconditional:
- B. Conditional on demand:
- C. Conditional on supply:

$$\hat{\kappa}_{u} = \frac{\kappa - \phi_{\pi} \left(\sigma + \phi_{y}\right) \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}}{1 + \phi_{\pi}^{2} \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}} < \kappa$$
$$\hat{\kappa}_{d} = \kappa$$
$$\hat{\kappa}_{s} = -\frac{\sigma + \phi_{y}}{\phi_{\pi}}$$

Implications:

- κ-estimators:
 - $\hat{\kappa}_{u} < \kappa$ is downward biased
 - $\hat{\kappa}_d = \kappa$ is unbiased
 - $\hat{\kappa}_{s} <$ 0 is unrelated to κ and depends instead on policy

BFV (Norges Bank)

The US Phillips curve

August, 2022 8/25

- A. Unconditional:
- B. Conditional on demand:
- C. Conditional on supply:

$$\hat{\kappa}_{u} = \frac{\kappa - \phi_{\pi} \left(\sigma + \phi_{y}\right) \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}}{1 + \phi_{\pi}^{2} \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}} < \kappa$$
$$\hat{\kappa}_{d} = \kappa$$
$$\hat{\kappa}_{s} = -\frac{\sigma + \phi_{y}}{\phi_{\pi}}$$

If the "slope story" is true ($\kappa \downarrow$):

- Should observe a flattening of
 ^ˆ_d
- ... combined with unchanged κ̂_s

- A. Unconditional:
- B. Conditional on demand:
- C. Conditional on supply:

$$\hat{\kappa}_{u} = \frac{\kappa - \phi_{\pi} \left(\sigma + \phi_{y}\right) \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}}{1 + \phi_{\pi}^{2} \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}} < \kappa$$
$$\hat{\kappa}_{d} = \kappa$$
$$\hat{\kappa}_{s} = -\frac{\sigma + \phi_{y}}{\phi_{\pi}}$$

If the "policy story" is true ($\phi_{\pi} \uparrow$):

- ... combined with a flattening of κ̂_s

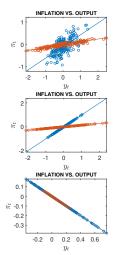
A. Unconditional:

$$\hat{\kappa}_{u} = \frac{\kappa - \phi_{\pi} \left(\sigma + \phi_{y}\right) \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}}{1 + \phi_{\pi}^{2} \frac{\sigma_{s}^{2}}{\sigma_{d}^{2}}} < \kappa$$
$$\hat{\kappa}_{d} = \kappa$$
$$\hat{\kappa}_{s} = -\frac{\sigma + \phi_{y}}{\phi_{\pi}}$$

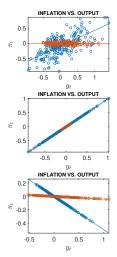
- B. Conditional on demand:
- C. Conditional on supply:

- If the "shocks story" is true $(\sigma_s^2/\sigma_d^2\uparrow)$:
 - Only the "shocks story" implies unchanged $\hat{\kappa}_d$ and $\hat{\kappa}_s$ over time
 - Should instead see greater (smaller) movements along the supply (demand) curve

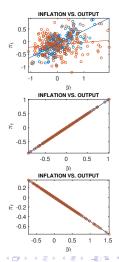
From unconditional to conditional variances


We also show that:

- Changes in unconditional variances are not informative about the different explanations
- However, the (relative) importance of supply shocks for output gap volatility
 - (a) should decline if the slope story is dominant
 - (b) should rise if the policy story is dominant


BA 4 BA

Simulated data


(a) Slope story

(b) Policy story

(c) Shock story

BFV (Norges Bank)

August, 2022 10/25

Empirical Methodology

BFV (Norges Bank)

The US Phillips curve

August, 2022 10/25

Step I: the VAR model

• Consider the following reduced form VAR:

$$Y_t = C + A_1 Y_{t-1} + A_2 Y_{t-2} + \dots + A_p Y_{t-p} + u_t$$

where $u_t \sim N(0, \Sigma)$, $u_t = S\epsilon_t$, and $\epsilon_t \sim N(0, I)$.

 Identification with sign restrictions a la Arias, Rubio-Ramirez and Waggoner (2018).

• Baseline data:

$$Y = \begin{bmatrix} \mathsf{CBO} \text{ output gap} \\ \mathsf{GDP} \text{ deflator} \end{bmatrix}$$

Sample 1: 1969Q4-1994Q4. Sample 2: 1995Q1-2019Q4

BFV (Norges Bank)	
-------------------	--

Step I: theory consistent sign restrictions

A. Baseline Inflation Output gap	Demand ↑ + +	Supply ↓ + -	
B. Interest rate	Demand ↑	Supply \downarrow	Monetary Policy ↑
Inflation	+	+	+
Output gap	+	-	+
Interest rate	+	*	-
C. Inflation expectations	Demand \uparrow	Supply \downarrow	Residual
Inflation	+	+	+
Output gap	+	-	*
Inflation expectations	+	+	-

Note: Restrictions are imposed on impact. * means no restriction is imposed.

- Sign restrictions in small-scale NK-model
- Sign restrictions in medium-scale NK-model

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三回日 のへ⊙

Step II: Empirical tests

Step IIA: conditional correlations (slope regressions)

- A joint test: we compare results from unconditional data with results conditional on supply and demand
- We compare the estimated *κ* across different sub-samples

Step IIB: conditional variances

 Check whether supply shocks have become less (slope story) or more (policy story) important for real economic activity

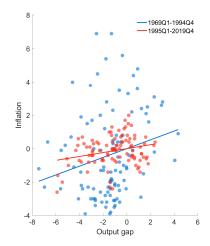
Results

BFV (Norges Bank)

The US Phillips curve

3 13/25 August, 2022

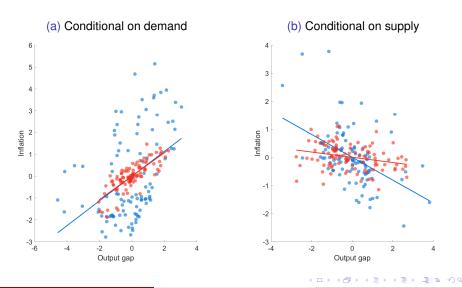
12



Q: Has the Phillips curve flattened (or even died)?

1 =

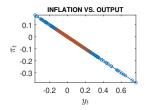
- (注) (注) (注) ()


Unconditional data: the PC has flattened

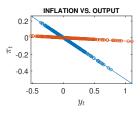
ъ

Results

Conditional: unchanged supply slope, flatter demand


BFV (Norges Bank)

The US Phillips curve


August, 2022 15/25

Supply only: the relationship has disappeared!

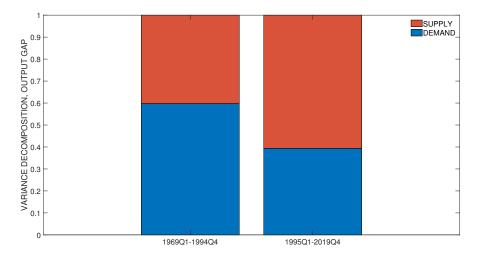
This is inconsistent with a flattening of the structural PC...

... but very much in line with stricter inflation targeting

BFV (Norges Bank)

The US Phillips curve

August, 2022 16/25


Q: Have supply shocks become more important for output?

-

3 → 4 3

Results

The CBO output gap more driven by supply

ъ

Robustness

BFV (Norges Bank)

The US Phillips curve

3 August, 2022 17/25

3 1 4 3

Robustness I: measurement

- Cyclically sensitive inflation (Stock and Watson, 2020) as a measure of inflation
- Unemployment rate as a measure of real economic activity
- Unemployment gap from u* (trend) as a measure of real economic activity

Robustness II: accounting for interest rates and monetary policy shocks

- The Federal funds rate
- The shadow rate as computed by Wu and Xia (2016)

Robustness III: Alternative sample periods

- Sample split in 1998Q4 as in Jorgensen and Lansing (2022)
- End estimation after 2008Q4 in order to leave out the ZLB

▶ ∢ ≣

Robustness IV: the role of expectations

- Expectations in the Survey of Professional Forecasters
- Michigan expectations
- Consumer prices and household expectations

Robustness: results

	$\hat{\gamma}_{u}$		$\hat{\gamma}_{d}$		Ŷ	$\hat{\gamma}_s$		VD(y s)	
	S1	S2	S1	S2	S1	S2	S1	S2	
(a)	0.26	0.12	0.56	0.53	-0.41	-0.09	0.40	0.61	
(b)	0.23	0.21	0.43	0.79	-0.40	0.12	0.28	0.78	
(C)	0.14	0.11	0.39	0.50	-0.21	-0.04	0.47	0.71	
(d)	0.39	0.14	0.81	0.63	-0.15	-0.04	0.51	0.70	
(e)	0.26	0.12	0.40	0.38	-0.62	-0.07	0.22	0.47	
			0.77*	0.92*					
(f)	0.26	0.12	0.39	0.35	-0.63	-0.11	0.22	0.45	
			0.76*	0.78*					
(g)	-0.04	0.19	0.25	0.50	-0.36	-0.04	0.43	0.50	
(h)	0.26	-0.01	0.57	0.64	-0.41	-0.14	0.41	0.69	
(i)	0.26	0.12	0.56	0.39	-0.80	0.06	0.19	0.45	
(j)	0.25	0.12	0.50	0.66	-0.46	-0.05	0.19	0.54	
(k)	0.44	0.19	0.81	1.02	-0.88	0.04	0.19	0.60	

*Conditional on identified monetary policy shocks.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Robustness V: set identification

	$\hat{\gamma}_{u}$		$\hat{\gamma}_{c}$	I	ĵ	$\hat{\gamma}_{s}$		
	S1	S2	S1	S2	S1	S2		
(a)	0.26	0.12	0.61 [0.29, 0.89]	0.51 [0.15, 0.83]	-0.59 [-1.32, 0.13]	-0.14 [-0.34, 0.09]		
(b)	0.23	0.21	0.41	0.52 [0.24, 0.81]	-0.54 [-1.26, 0.08]	0.12		
(c)	0.14	0.11	0.18 [0.88, -0.51]	0.43 [0.69, 0.13]	-0.35 [0.42, -1.12]	-0.07 [0.12, -0.21]		
(d)	0.39	0.14	0.59 [1.28, -0.20]	0.54 [0.87, 0.18]	-0.31 [0.54, -1.11]	-0.09 [0.15, -0.26]		
(e)	0.26	0.12	0.34 [0.12, 0.56]	0.34 [0.12, 0.52]	-0.42 [-1.01, 0.14]	-0.10 [-0.27, 0.09]		
(f)	0.26	0.12	0.33	0.34 [0.11,0.54]	-0.41 [-0.99, 0.14]	-0.12 [-0.32, 0.09]		
(g)	-0.04	0.19	0.12 [-0.16, 0.40]	0.54 [0.24, 0.76]	-0.51 [-1.08, 0.06]	-0.07 [-0.29, 0.17]		
(h)	0.26	-0.01	0.62 [0.29, 0.91]	0.33 [0.02, 0.62]	-0.59 [-1.29, 0.12]	-0.11 [-0.29, 0.10]		
(i)	0.26	0.12	0.49 [0.21, 0.77]	0.40 [0.11, 0.66]	-0.56 [-1.17, 0.01]	0.02 [-0.14, 0.19]		
(j)	0.25	0.12	0.43 [0.24, 0.61]	0.49 [0.15, 0.79]	-0.14 [-0.60, 0.34]	-0.07 [-0.24, 0.10]		
(k)	0.44	0.19	0.90 [0.41, 1.35]	0.73 [0.19, 1.25]	-0.28 [-0.86, 0.27]	0.03 [-0.13, 0.22]		

Note: Posterior mean across 10,000 slope estimates. 68% HPD in brackets.

Comparison with the literature

- McLeay and Tenreyro (2020): focus on optimal policy. Here: sub-optimal policy rule.
- Barnichon and Mester (2020): monetary policy shocks as instruments. Here: supply shocks are as informative, if not more.
- Hazell, Herreno, Nakamura and Steinsson (2021) and Jorgensen and Lansing (2022): anchoring of inflation expectations. Here: anchoring induced by more aggressive monetary policy.
- Coibion and Gorodnichenko (2015): oil shocks in 2009-2011. Here: we also stress the joint role of demand and supply shocks for macroeconomic dynamics.
- Good luck vs good policy explanations of the Great Moderation: our results are consistent with the good policy explanation.

Conclusions

We estimate the empirical relationship between output gap and inflation (the Phillips curve slope)

- Unconditional slope has flattened
- But this is not driven by changes in the structural PC
- The demand (IS) curve, instead, has flattened rather substantially
- When *evaluated jointly*, changes in the stance of monetary policy seems a likely source of the disconnect between output and inflation

Did the Fed kill the Phillips curve?

Appendix

BFV (Norges Bank)

The US Phillips curve

August, 2022 26/25

Model with persistent shocks

Suppose shocks follow separate AR(1) process:

$$\begin{aligned} d_t &= \rho_d d_{t-1} + \varepsilon_{d,t} & \varepsilon_{d,t} \sim N\left(0, \sigma_{\varepsilon,d}^2\right) \\ z_t &= \rho_z z_{t-1} + \varepsilon_{z,t} & \varepsilon_{z,t} \sim N\left(0, \sigma_{\varepsilon,z}^2\right) \end{aligned}$$

Model solution:

$$y_{t} = \frac{\sigma \left(1 - \beta \rho_{d}\right) d_{t}}{\Psi_{d}} - \frac{\left(\phi_{\pi} - \rho_{z}\right) z_{t}}{\Psi_{z}}$$
$$\pi_{t} = \frac{\sigma \kappa d_{t}}{\Psi_{d}} + \frac{\left[\sigma \left(1 - \rho_{z}\right) + \phi_{y}\right] z_{t}}{\Psi_{z}}$$

where

$$\Psi_{d} = [\sigma (1 - \rho_{d}) + \phi_{y}] (1 - \beta \rho_{d}) + (\phi_{\pi} - \rho_{d}) \kappa > 0$$

$$\Psi_{z} = [\sigma (1 - \rho_{z}) + \phi_{y}] (1 - \beta \rho_{z}) + (\phi_{\pi} - \rho_{z}) \kappa > 0$$

315

Appendix

OLS estimators with persistent shocks

(a) Unconditional data:

$$\kappa^{OLS} = \frac{\operatorname{cov}\left(\pi_t - \beta \mathbb{E}_t \pi_{t+1}, y_t\right)}{\operatorname{var}\left(y_t\right)}$$
$$= \frac{\left(\frac{\sigma(1-\beta\rho_d)}{\Psi_d}\right)^2 \kappa - \left(\frac{1}{\Psi_z}\right)^2 (\phi_\pi - \rho_z) \left[\sigma\left(1-\rho_z\right) + \phi_y\right] (1-\beta\rho_z) \frac{\sigma_z^2}{\sigma_d^2}}{\left(\frac{\sigma(1-\beta\rho_d)}{\Psi_d}\right)^2 + \left(\frac{\phi_\pi - \rho_z}{\Psi_z}\right)^2 \frac{\sigma_z^2}{\sigma_d^2}} \le \kappa$$

where
$$\sigma_d^2 = \frac{\sigma_{\varepsilon,d}^2}{1-\rho_d^2}$$
 and $\sigma_z^2 = \frac{\sigma_{\varepsilon,z}^2}{1-\rho_z^2}$.

(b) Purged for supply shocks, but ignoring expectations:

$$\kappa^{OLS} = rac{cov(\pi_t, y_t)}{var(y_t)} = rac{\kappa}{1 - \beta
ho_d} \ge \kappa$$

(c) Purged for supply shocks and accounting for expectations:

$$\kappa^{OLS} = \frac{cov\left(\pi_t - \beta \mathbb{E}_t \pi_{t+1}, y_t\right)}{var\left(y_t\right)} = \kappa$$