The Long-Term Effects of Unexpected Interruptions in Compulsory Schooling

> Angélique Bernabé Analysis Group

Boubacar Diop Université de Sherbrooke

Martino Pelli Université de Sherbrooke, CIREQ, CIRANO

> Jeanne Tschopp University of Bern

2022 EEA Conference

August 22 - August 26, 2022

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

# Motivation

- Reported losses from natural disasters are projected to increase from \$195 billion a year to \$234 billion a year by 2040 (Reuters, 2020)
- Studying the economic effects of natural disasters has become a central research question in several fields of economics

# Motivation

- Extensive literature looking at the impacts of natural disasters on economic growth
  - (e.g. Cavallo & Noy, 2010; Strobl, 2011; Cavallo et al., 2013; Dell et al., 2014)
    - agreement on the negative short-term effects
    - little empirical consensus on the long-term effects
- Majority of studies relates the path of GDP growth to physical capital construction and potential technological upgrading
- Little causal evidence on the long-term effects on human capital formation, which is also an important determinant of economic growth

# Research question

What are the long-run effects of natural disasters (tropical storms) on education?

• We quantify the long-run effects of unexpected interruptions in regular schooling in rural and urban India on

educational attainments / delays

**2** the type of activity performed by individuals in young adulthood

#### • Identification:

- measure of childhood exposure to storms
- constructed from exogenous variations in wind exposure across birth-year cohorts and districts during compulsory schooling
- Exogenous shocks: tropical storms • Exogeneity

# Preview of results

Tropical storms cause:

- schooling delays
  - an increase by up to 18 percentage points in the probability to either repeat a year or drop out
  - a decrease of up to 8 percentage points in the probability of completing post-secondary education
  - $\rightarrow\,$  for super storms, these estimates translate into a lifelong fall in returns of 2.1%-3.3%
- a decrease of up to 16 percentage points in the probability of accessing regular salaried jobs

Investigation of the channels suggests:

• educational delays result not only from infrastructure damages but also from sharp declines in income

# )ata

- Twofold data requirement:
  - current outcomes educational attainment and labor market outcomes in young adulthood
  - past outcomes whether individuals observed today were exposed to storms during childhood
- We combine two sources of data:
- Indian Periodic Labour Force Survey (PLFS), 2018 release
  - 2 Historical storms best tracks data from the NOAA

# PLFS

- Individual- and household-level representative survey of the population
- District of residence and age:
  - childhood exposure to storms varies by birth-year cohort and district
  - assumption: individuals completed compulsory schooling in the district where they currently live

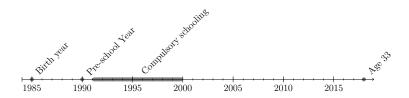
 $\rightarrow$  low rate of out-of-district migration (official stats.; Topalova, 2010)

- Labor market outcomes:
  - Hours worked and earnings
  - Principal activity
    - \* formal work w. empl. contract (22%)
    - \* casual work w. periodic contract only (12%)
    - \* self-empl. (15%)
    - \* unpaid family business (9%)
    - \* performing domestic duties (41%)

# PLFS: education

|                                                 |                            | Duration<br>(1) | Cumulated Years<br>of Education<br>(2) |
|-------------------------------------------------|----------------------------|-----------------|----------------------------------------|
|                                                 | Lower education:           |                 |                                        |
| <i>// C</i> · · · · · · · · · · · · · · · · · · | Primary                    | 5               | 5                                      |
| • # of years individual $i$                     | Middle                     | 3               | 8                                      |
| spent at school $(N_i)$                         | Secondary                  | 2               | 10                                     |
| spent at senser (11)                            | Higher secondary           | 2               | 12                                     |
| • Level of educational                          | Higher education:          |                 |                                        |
| • Level of educational                          | Path 1:                    |                 |                                        |
| attainment of $i$                               | Diploma/certificate course | 1               | 13                                     |
|                                                 | Path 2:                    |                 |                                        |
| $\rightarrow$ infer # of years                  | Graduate                   | 3               | 15                                     |
| typically needed to reach                       | Path 3:                    |                 |                                        |
| 01 0                                            | Diploma/certificate course | 1               | 13                                     |
| the educ. level reported                        | Graduate                   | 3               | 16                                     |
| by $i (N_{Educ_i})$                             | Path 4:                    |                 |                                        |
| 5 ( Educ <sub>i</sub> )                         | Graduate                   | 3               | 15                                     |
|                                                 | Postgraduate and above     | 2               | 17                                     |
|                                                 | Path 5:                    |                 |                                        |
|                                                 | Diploma/certificate course | 1               | 13                                     |
|                                                 | Graduate                   | 3               | 16                                     |
|                                                 | Postgraduate and above     | 2               | 18                                     |

 $\Rightarrow$  We define educational delay as  $N_i - N_{Educ_i}$ 


1 4 1 37

0

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

#### PLFS: sample

- Our focus: 81,542 individuals aged 23 to 33
- Young adulthood: 23 years old in 2018 (~ master degree)
   → youngest cohort born in 1995 and completes compulsory schooling in 2010
- Oldest cohort: 33 years old in 2018, due to reliability of satellite data  $\rightarrow$  oldest cohort born in 1985 and completes compulsory schooling in 2000



• Thus, we focus on storms that took place between 1990 and 2010

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへの

# Childhood exposure to storms

- Accounts for the intensity of winds to which children of a given cohort and district were exposed during compulsory schooling
- Focus on winds (not flood or surges), because
  - exogenous nature
  - position and wind speed of the eye of a storm can be used to obtain wind speed in all the areas around the eye of a storm



• Constructed in three steps

### District wind speed

• For each storm h, we compute wind speed  $(w_{dh})$  in each district d using storms' best tracks (NOAA)

 $\rightarrow$  contains coordinates, date, windspeed of the eye at 6 hours intervals

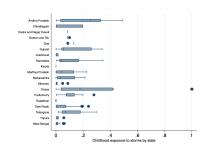


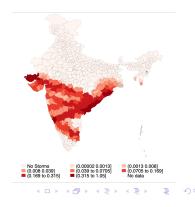
Source: National Hurricane Center (NOAA).

Index of yearly district exposure  $x_{dt}$ 

 Convert winds into an index of yearly district exposure using the following damage function

$$x_{dt} = \sum_{h \in H_t} \frac{(w_{dh} - 50)^2}{(w^{max} - 50)^2}$$
 if  $w_{dh} > 50$ 


- w: wind speed
- $w^{max}$ : maximum wind speed in the sample
- 50: windspeed threshold in knots
- square accounts for the force exerted by winds on built structures


▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ■ - のへで

#### Birth-year cohort b and district d exposure index

Sum district exposure index over the period of time during which a birth-year cohort was attending compulsory school

$$C_{bd} = \sum_{t=b+5}^{t=b+15} x_{dt}$$





# Identification

$$Y_i = \alpha_0 + \alpha_1 C_{bd} + \mathbf{X}'_i \boldsymbol{\beta} + \delta_d + \delta_b + \epsilon_i$$

• where:

- i = (b, d): individual in birth-year cohort b and district d
- Y<sub>i</sub>: education delay / labor market outcomes
- C<sub>bd</sub>: childhood exposure to tropical storms
- $\mathbf{X}'_{\mathbf{i}}$ : vector of individual characteristics (gender, first-born, Hindu)
- $\delta_d$  : district fixed effects
- $\delta_b$  : birth-year cohort fixed effects
- Identification is achieved using two sources of data variation:



educational delays of cohorts with different exposures within districts
 same birth-year cohort across districts with different exposures

• Two-way clustering: state level and district-birth year level

# Main results – educational delay

|                       | Educational delay |              |             |              |  |  |
|-----------------------|-------------------|--------------|-------------|--------------|--|--|
|                       | (1)               | (2)          | (3)         | (4)          |  |  |
| Panel A:              |                   |              |             |              |  |  |
| # of years            |                   |              |             |              |  |  |
| Childhood exposure    | $0.31^{***}$      | $0.27^{**}$  | 0.20        | $0.29^{***}$ |  |  |
|                       | (0.079)           | (0.13)       | (0.15)      | (0.097)      |  |  |
| Panel B:              |                   |              |             |              |  |  |
| yes=1, no=0           |                   |              |             |              |  |  |
| Childhood exposure    | $0.18^{***}$      | $0.20^{***}$ | $0.20^{**}$ | $0.19^{***}$ |  |  |
| · · · · · · · · ·     | (0.052)           | (0.067)      | (0.082)     | (0.065)      |  |  |
| Individual controls   | Yes               | Yes          | Yes         | Yes          |  |  |
| District FE           | Yes               | Yes          | Yes         | Yes          |  |  |
| Birth-year FE         | Yes               | Yes          | Yes         | Yes          |  |  |
| State trends          | No                | Yes          | No          | No           |  |  |
| State-(birth)-year FE | No                | No           | Yes         | No           |  |  |
| State-period FE       | No                | No           | No          | Yes          |  |  |
| Observations          | 77,737            | 77,737       | 77,737      | 77,737       |  |  |

A super storm would:

- delay a child by 0.31 years on average, or ~ 13 weeks (3 months)
- cause an 18 percentage points increase in the probability of accumulating a delay
- → this estimate implies that the share of kids with a delay would  $\uparrow$  by 69% if states with zero exposure were hit by a super storm

# Main results – educational attainment (ordered logit)

|                                                     | Logit<br>estimates       | No formal<br>schooling   | Primary<br>school        | Middle<br>school                                      | Secondary<br>education    | Above-secondary<br>education |
|-----------------------------------------------------|--------------------------|--------------------------|--------------------------|-------------------------------------------------------|---------------------------|------------------------------|
|                                                     | (1)                      | (2)                      | (3)                      | (4)                                                   | (5)                       | (6)                          |
| Childhood exposure                                  | $-0.48^{***}$<br>(0.130) | $0.048^{***}$<br>(0.012) | $0.028^{***}$<br>(0.008) | $\begin{array}{c} 0.031^{***} \\ (0.009) \end{array}$ | $-0.026^{***}$<br>(0.007) | -0.081***<br>(0.022)         |
| Individual controls<br>District FE<br>Birth-year FE | Yes<br>Yes<br>Yes        | Yes<br>Yes<br>Yes        | Yes<br>Yes<br>Yes        | Yes<br>Yes<br>Yes                                     | Yes<br>Yes<br>Yes         | Yes<br>Yes<br>Yes            |
| Observations                                        | 77,737                   | 77,737                   | 77,737                   | 77,737                                                | 77,737                    | 77,737                       |

- A super storm increases by 4.8 percentage points the probability of no formal education
- A super storm decreases by 8.1 percentage points the probability of going above secondary education
- Suggest a deskilling of the regions affected by storms in the long run

# Main results – type of activity

|                     | Regular work | Casual labor | Self-employed | Unpaid family work | Domestic duties |
|---------------------|--------------|--------------|---------------|--------------------|-----------------|
|                     | (1)          | (2)          | (3)           | (4)                | (5)             |
| Childhood exposure  | -0.16**      | -0.059       | -0.12***      | 0.046              | 0.18**          |
|                     | (0.069)      | (0.049)      | (0.020)       | (0.045)            | (0.073)         |
| Individual controls | Yes          | Yes          | Yes           | Yes                | Yes             |
| District FE         | Yes          | Yes          | Yes           | Yes                | Yes             |
| Birth-year FE       | Yes          | Yes          | Yes           | Yes                | Yes             |
| State trends        | Yes          | Yes          | Yes           | Yes                | Yes             |
| Observations        | 77,737       | 77,737       | 77,737        | 77,737             | 77,737          |

 $\Rightarrow\,$  A super storm decreases by 16 percentage points the probability of being a regular salaried worker

▶ Wages and Hours Worked

# Robustness and heterogeneity analysis

- Robustness tests:
  - Placebo 1: randomization of the childhood exposure measure over our sample
  - Placebo 2: assign childhood exposure to older cohorts Placebo
  - Control for predicted educational attainments and level of parental education Parent
  - Drop extreme values and Orissa (because of super storm)
     Extremes
  - Alternative specification of the storm index (changes in threshold and coefficient of wind on structures) 

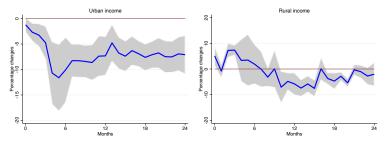
     Alternatives
- Heterogeneity analysis:



Education Activity

# Channels

- Childhood exposure to storms has detrimental long-term consequences both in terms of educational attainments and labor market prospects
- Worrisome as deskilling of the population can hinder economic growth
  - e.g. our results imply a lifelong fall in returns of 2.1%-3.3% for super storms and 0.13%-0.21% for average storms
- In order to formulate policy recommendations, it is important to understand the channels through which storms affect education
  - Households experience a **negative income shock** (e.g. kids may have to work, could be removed from schools)
  - School facilities are damaged
  - $\bigcirc$  Psychological stress hard to identify and disentangle from (1) & (2)
- Next: evaluate whether (1) & (2) are at play and how they are mirrored in kids scholastic outcomes in primary and middle school


# Income channel

- Consumer Pyramids dx:
  - panel of  $\sim 200,000$  households
  - detailed information on monthly income for the period 2014-2019
- We uncover the short-term dynamic income effects of storms using local projections over 24 months

→ Local projections (Jorda) → Local projections

- Unit of observation: **month-district** level, so we reconstruct the measure of storm exposure using monthly wind exposures
- $\rightarrow\,$  Storms act as a negative income shock, particularly so for urban areas which do not seem to have recovered after 24 months

# Income channel



• Urban: average exposure causes a fall in household income

- peaks at 5 months, slight recovery up to a year and then stabilizes at levels
   8% below the no-disaster counterfactual
  - $\rightarrow~$  consistent with a  $\downarrow$  in hours of work or loss of job of a household member (mirrored in a  $\downarrow$  of monthly wages)

#### Oural:

- sharp increase peaking at 3 months, then a gradual fall
  - $\rightarrow\,$  immediate help + destruction of a gricultural land may be felt in the next growing season
- at 10 months income is 8% lower, then slowly recovers to pre-disaster level
  - $\rightarrow~\downarrow$  in wages compensated by an  $\uparrow$  in rural business profits

▶ Income by source

# School infrastructure channel

- DISE data from the Ministry of Education in India:
  - virtually all schools with formal education up to middle school
  - physical infrastructure, teachers, enrollment, examination results at the school level with exact location information
- We aggregate the school information at the pincode level and re-construct our measure of storm using pincode(-year) wind exposures
- Focus: **2010-2018**

# Damages to school facilities

|                                | Avg. # of classrooms  | # 0                    | of schools with        |
|--------------------------------|-----------------------|------------------------|------------------------|
|                                | in good conditions    | electricity            | unreliable electricity |
|                                | (1)                   | (2)                    | (3)                    |
| Storm exposure                 | $-0.29^{*}$<br>(0.17) | $-5.28^{**}$<br>(2.43) | $1.40^{*}$<br>(0.82)   |
| Pincode FE<br>District-year FE | yes<br>yes            | yes<br>yes             | yes<br>yes             |
| Observations                   | 153794                | 153789                 | 153789                 |

• Storms damage facilities: avg. # of classrooms in good conditions declines and the # of schools with electricity falls

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へぐ

# School destruction

|                                | Net                    | entry                   |                         | uildings<br>nstruction |
|--------------------------------|------------------------|-------------------------|-------------------------|------------------------|
|                                | (1)                    | (2)                     | (3)                     | (4)                    |
| Storm exposure                 | $-5.03^{**}$<br>(2.24) | $-1.29^{***}$<br>(0.23) | $-2.29^{***}$<br>(0.62) | $-1.69^{**}$<br>(0.39) |
| Storm $exposure_{(t-1)}$       |                        | $-1.12^{***}$<br>(0.20) |                         | -1.16 $(1.22)$         |
| Storm $exposure_{(t-2)}$       |                        | $0.49 \\ (0.71)$        |                         | $0.79 \\ (1.27)$       |
| Storm $exposure_{(t-3)}$       |                        | $1.65^{*}$<br>(0.97)    |                         | $2.53^{***}$<br>(0.84) |
| Pincode FE<br>District-year FE | yes<br>yes             | yes<br>yes              | yes<br>yes              | yes<br>yes             |
| Observations $R^2$             | $136780 \\ 0.54$       | $72168 \\ 0.71$         | $153785 \\ 0.80$        | $91074 \\ 0.88$        |

#### Scholastic outcomes

- Both the drop in household income and damages to school facilities can affect academic outcomes
  - school closures
  - kids may drop out and work to financially provide for the household
  - they may be involved in reconstruction activities and have less time to concentrate on their homework
- Using the DISE data, we evaluate whether both channels are mirrored in scholastic outcomes school attendance and academic performance
- Interestingly, responses are strikingly different depending on whether kids attend primary or middle school at the time of the disaster
  - primary school kids only respond by dropping out
  - middle school kids only tend to perform worse

# School attendance

|                               |                 |                 | vg. # of<br>primary s | Avg. $\#$ of kids<br>in middle school |                        |                 |                 |                 |
|-------------------------------|-----------------|-----------------|-----------------------|---------------------------------------|------------------------|-----------------|-----------------|-----------------|
|                               | C1              | C2              | C3                    | C4                                    | C5                     | C6              | C7              | C8              |
|                               | (1)             | (2)             | (3)                   | (4)                                   | (5)                    | (6)             | (7)             | (8)             |
| Storm exposure                | -2.21<br>(2.03) | -2.86<br>(2.10) | $-2.46^{*}$<br>(1.42) | $-2.66^{***}$<br>(0.97)               | $-2.73^{**}$<br>(1.11) | -0.62<br>(1.85) | -1.02<br>(1.82) | -1.98<br>(2.36) |
| Pincode FE<br>Distict-year FE | yes<br>yes      | yes<br>yes      | yes<br>yes            | yes<br>yes                            | yes<br>yes             | yes<br>yes      | yes<br>yes      | yes<br>yes      |
| Observations                  | 143579          | 143579          | 143579                | 143579                                | 143579                 | 143579          | 143579          | 143579          |

- Storms reduce the average number kids attending primary school levels C3-C5 (ages 8-11)
  - $\rightarrow\,$  consistent with a story where the income shock causes parents to remove their kids from school
  - $\rightarrow\,$  kids below the age of 8 are too young to work or lack the physical strength to work in reconstruction activities
  - $\rightarrow~$  in middle school, the share of kids from wealthier households is higher

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 りへぐ

# Examination results

|                                | Appeared       |                         | Pa             | ssed                    | $\mathrm{Grade} > 60\%$ |                         |
|--------------------------------|----------------|-------------------------|----------------|-------------------------|-------------------------|-------------------------|
|                                | C5             | C8                      | C5             | C8                      | C5                      | C8                      |
|                                | (1)            | (2)                     | (3)            | (4)                     | (5)                     | (6)                     |
| Storm exposure                 | 16.1<br>(10.0) | $-3.05^{***}$<br>(1.00) | 15.9<br>(9.96) | $-3.05^{***}$<br>(0.92) | $15.0^{*}$<br>(8.21)    | $-2.72^{***}$<br>(0.88) |
| Pincode FE<br>District-year FE | yes<br>yes     | yes<br>yes              | yes<br>yes     | yes<br>yes              | yes<br>yes              | yes<br>yes              |
| Observations                   | 126760         | 65195                   | 126758         | 65195                   | 126737                  | 65195                   |

• No impact for kids in primary school

• Worsening of academic performances at the end of middle school

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へぐ

# Conclusion

- Our findings suggest that the estimated long-term educational delays result not only from infrastructure damages but also from sharp declines in income
- The negative income effects translate in a drop of school attendance for kids at the primary level and a deterioration of academic performances
- Highlights the need for better social safety nets and expanding post-disaster policies beyond reconstruction activities
- Policies should couple financial transfers with educational policies, e.g. cash transfers conditional on school attendance and stronger school support

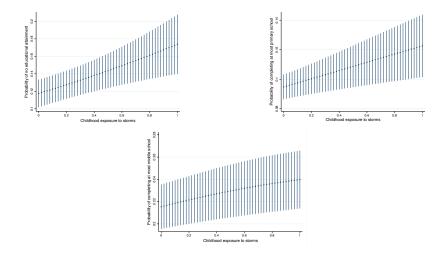
# Thank you for your attention

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Exogeneity of storms and storms in India

• Storms are unpredictable:

- Frequency of occurrence of Storms is stationary [e.g. Elsner and Bossak (2001), Pielke et al. (2005)].
- Storms are erratic phenomena.

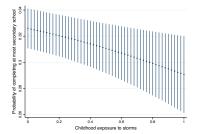

2 Do we observe violent storms in India?

- 7,516 km of coastline make it the most affected country in the world.
- Exposed to 10% of the world's cyclones.
- In India, every year, over 370 million people are affected by cyclones.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

▶ return

# No formal schooling, primary and middle school




・ロト ・日下・ ・ヨト・

э

▶ Logit

### Secondary and above-secondary education



Fundamental states secondary and secondary a

・ロト ・日下・・日下・・

æ

э

▶ Logit

# Main results – wages and hours worked

|                     | Log hourly wages | Hours of work |
|---------------------|------------------|---------------|
|                     | (1)              | (2)           |
| Childhood exposure  | -0.021           | 5.72          |
| -                   | (0.19)           | (4.55)        |
| Individual controls | Yes              | Yes           |
| District FE         | Yes              | Yes           |
| Birth-year FE       | Yes              | Yes           |
| State trends        | Yes              | Yes           |
| Observations        | 31,534           | 31,534        |

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

• Type of Activity

## Robustness – falsification, education

|                    | Share o   | Placebo<br>f estimati |           | Older cohort |
|--------------------|-----------|-----------------------|-----------|--------------|
|                    | statistic | cal signific          | cance at: | assignment   |
|                    | 1%        | 5%                    | 10~%      | + 10 years   |
|                    | (1)       | (2)                   | (3)       | (4)          |
| Panel A:           |           |                       |           |              |
| Educ. delay: # of  | years     |                       |           |              |
| Childhood exposure | 0.026     | 0.079                 | 0.128     | -0.040       |
|                    |           |                       |           | (0.12)       |
| Panel B:           |           |                       |           |              |
| Educ. delay: yes=  | 1, no=0   |                       |           |              |
| Childhood exposure | 0.024     | 0.079                 | 0.132     | -0.038       |
|                    |           |                       |           | (0.064)      |
| Panel C:           |           |                       |           |              |
| Educ. attainment   |           |                       |           |              |
| Childhood exposure | 0.012     | 0.060                 | 0.108     | -0.370       |
|                    |           |                       |           | (0.410)      |
| ndividual controls | Yes       | Yes                   | Yes       | Yes          |
| District FE        | Yes       | Yes                   | Yes       | Yes          |
| Birth-year FE      | Yes       | Yes                   | Yes       | Yes          |
| Observations       | 77,737    | 77,737                | 77,737    | 67,765       |

# Robustness – education controls, education

|                            | Baseline     | Predicted<br>educ. attainment | Sub-sample   | Parental<br>education |  |
|----------------------------|--------------|-------------------------------|--------------|-----------------------|--|
|                            | (1)          | (2)                           | (3)          | (4)                   |  |
| Panel A:                   |              |                               |              |                       |  |
| Educ. delay: # of years    |              |                               |              |                       |  |
| Childhood exposure         | $0.31^{***}$ | $0.31^{***}$                  | $0.36^{**}$  | $0.36^{**}$           |  |
|                            | (0.079)      | (0.079)                       | (0.15)       | (0.15)                |  |
| Panel B:                   |              |                               |              |                       |  |
| Educ. delay: yes=1, no=    | 0            |                               |              |                       |  |
| Childhood exposure         | $0.18^{***}$ | $0.18^{***}$                  | $0.21^{***}$ | $0.21^{***}$          |  |
|                            | (0.052)      | (0.051)                       | (0.075)      | (0.075)               |  |
| Individual controls        | Yes          | Yes                           | Yes          | Yes                   |  |
| District FE                | Yes          | Yes                           | Yes          | Yes                   |  |
| Birth-year FE              | Yes          | Yes                           | Yes          | Yes                   |  |
| Predicted educ. attainment | No           | Yes                           | No           | No                    |  |
| Parental education         | No           | No                            | No           | Yes                   |  |
|                            |              |                               |              |                       |  |

### Robustness – extreme values, education

|                               | Baseline      | Excluding<br>Orissa | Interaction:<br>Orissa × $C_{bd}$ | Excluding<br>extreme winds |
|-------------------------------|---------------|---------------------|-----------------------------------|----------------------------|
|                               | (1)           | (2)                 | (3)                               | (4)                        |
| Panel A:                      |               |                     |                                   |                            |
| Educ. delay: # of years       |               |                     |                                   |                            |
| Childhood exposure $(C_{bd})$ | $0.31^{***}$  | 0.30***             | $0.30^{***}$                      | 0.20***                    |
|                               | (0.079)       | (0.10)              | (0.10)                            | (0.067)                    |
| Orissa × $C_{bd}$             |               |                     | 0.016                             |                            |
| orison in oba                 |               |                     | (0.10)                            |                            |
| Panel B:                      |               |                     |                                   |                            |
| Educ. delay: yes=1, no:       | =0            |                     |                                   |                            |
| Childhood exposure $(C_{bd})$ | $0.18^{***}$  | $0.16^{**}$         | $0.16^{**}$                       | $0.10^{**}$                |
|                               | (0.052)       | (0.061)             | (0.061)                           | (0.040)                    |
| Orissa × $C_{bd}$             |               |                     | 0.055                             |                            |
|                               |               |                     | (0.061)                           |                            |
| Panel C:                      |               |                     |                                   |                            |
| Educ. attainment              |               |                     |                                   |                            |
| Childhood exposure $(C_{bd})$ | $-0.48^{***}$ | $-0.53^{***}$       | $-0.55^{***}$                     | -0.32***                   |
|                               | (0.13)        | (0.18)              | (0.19)                            | (0.10)                     |
| Orissa × $C_{bd}$             |               |                     | 0.23                              |                            |
| 010001 000                    |               |                     | (0.19)                            |                            |
| Individual controls           | Yes           | Yes                 | Yes                               | Yes                        |
| District FE                   | Yes           | Yes                 | Yes                               | Yes                        |
| Birth-year FE                 | Yes           | Yes                 | Yes                               | Yes                        |
| Observations                  | 77,737        | 75,192              | 77,737                            | 77,737                     |

# Robustness – alternative measures, education

|                     | Baseline | $50,  \mathrm{cubic}$ | 64, square    | 64, cubic     | All winds | HURRECON     |
|---------------------|----------|-----------------------|---------------|---------------|-----------|--------------|
|                     | (1)      | (2)                   | (3)           | (4)           | (5)       | (6)          |
| Panel A:            |          |                       |               |               |           |              |
| Educ. delay: # of   | years    |                       |               |               |           |              |
| Childhood exposure  | 0.31***  | $0.47^{***}$          | $0.42^{***}$  | $0.50^{***}$  | 0.0033    | $0.33^{***}$ |
|                     | (0.079)  | (0.12)                | (0.094)       | (0.17)        | (0.0079)  | (0.090)      |
| Panel B:            |          |                       |               |               |           |              |
| Educ. delay: yes=   | 1, no=0  |                       |               |               |           |              |
| Childhood exposure  | 0.18***  | $0.28^{***}$          | $0.25^{***}$  | $0.31^{***}$  | 0.0006    | $0.21^{***}$ |
|                     | (0.052)  | (0.052)               | (0.049)       | (0.070)       | (0.0042)  | (0.054)      |
| Panel C:            |          |                       |               |               |           |              |
| Educ. attainment    |          |                       |               |               |           |              |
| Childhood exposure  | -0.48*** | -0.60***              | $-0.58^{***}$ | $-0.54^{***}$ | 0.006     | -0.60***     |
|                     | (0.13)   | (0.20)                | (0.15)        | (0.21)        | (0.013)   | (0.15)       |
| Individual controls | Yes      | Yes                   | Yes           | Yes           | Yes       | Yes          |
| District FE         | Yes      | Yes                   | Yes           | Yes           | Yes       | Yes          |
| Birth-year FE       | Yes      | Yes                   | Yes           | Yes           | Yes       | Yes          |
| Observations        | 77,737   | 77,737                | 77,737        | 77,737        | 77,737    | 77,737       |

# Education

|                              | Educati                 | Educational delay Category of schooling completed: yes=1, no |                          | no=0                     |                                                       |                           |                         |
|------------------------------|-------------------------|--------------------------------------------------------------|--------------------------|--------------------------|-------------------------------------------------------|---------------------------|-------------------------|
|                              | # of years              | yes=1, no=0                                                  | No educ.                 | Primary                  | Middle                                                | Secondary                 | Above                   |
|                              | (1)                     | (2)                                                          | (3)                      | (4)                      | (5)                                                   | (6)                       | (7)                     |
| <u>Panel A:</u><br>Male      |                         |                                                              |                          |                          |                                                       |                           |                         |
| Childhood exposure           | $0.41^{***}$<br>(0.13)  | 0.23***<br>(0.061)                                           | $0.028^{**}$<br>(0.011)  | $0.025^{**}$<br>(0.010)  | $0.038^{**}$<br>(0.015)                               | $-0.014^{**}$<br>(0.0056) | $-0.077^{*}$<br>(0.031) |
| Observations                 | 39,272                  | 39,272                                                       | 39,272                   | 39,272                   | 39,272                                                | 39,272                    | 39,272                  |
| Panel B:<br>Female           |                         |                                                              |                          |                          |                                                       |                           |                         |
| Childhood exposure           | $(0.25^{**})$<br>(0.12) | $0.14^{***}$<br>(0.049)                                      | $0.078^{***}$<br>(0.028) | $0.031^{***}$<br>(0.012) | $0.025^{***}$<br>(0.0095)                             | $-0.040^{***}$<br>(0.015) | -0.095**<br>(0.034)     |
| Observations                 | 38,465                  | 38,465                                                       | 38,465                   | 38,465                   | 38,465                                                | 38,465                    | 38465                   |
| <u>Panel C:</u><br>Rural     |                         |                                                              |                          |                          |                                                       |                           |                         |
| Childhood exposure           | $0.27^{**}$<br>(0.10)   | $0.19^{***}$<br>(0.060)                                      | $0.054^{**}$<br>(0.024)  | $0.038^{**}$<br>(0.016)  | $(0.059^{**})$<br>(0.025)                             | $0.0030^{**}$<br>(0.0014) | $-0.15^{**}$<br>(0.066) |
| Observations                 | 42,281                  | 42,281                                                       | 35,456                   | 35,456                   | 35,456                                                | 35,456                    | 35456                   |
| <u>Panel D:</u><br>Urban     |                         |                                                              |                          |                          |                                                       |                           |                         |
| Childhood exposure           | $0.33^{***}$<br>(0.12)  | $0.10^{**}$<br>(0.046)                                       | $0.051^{**}$<br>(0.022)  | $0.025^{**}$<br>(0.011)  | $\begin{array}{c} 0.020^{**} \\ (0.0086) \end{array}$ | $-0.045^{**}$<br>(0.019)  | -0.052*<br>(0.023)      |
| Observations                 | $35,\!454$              | 35,454                                                       | 42,281                   | $42,\!281$               | 42,281                                                | 42,281                    | 42,281                  |
| Individual controls          | Yes                     | Yes                                                          | Yes                      | Yes                      | Yes                                                   | Yes                       | Yes                     |
| District FE<br>Birth-year FE | Yes<br>Yes              | Yes<br>Yes                                                   | Yes<br>Yes               | Yes<br>Yes               | Yes<br>Yes                                            | Yes<br>Yes                | Yes<br>Yes              |

# Activity

|                                  | Regular<br>work          | $\frac{\begin{array}{c} Casual \\ labor \end{array}}{(2)}$ | Self-<br>employed   | Unpaid<br>family work | $\frac{\text{Domestic}}{(5)}$ |
|----------------------------------|--------------------------|------------------------------------------------------------|---------------------|-----------------------|-------------------------------|
|                                  | (1)                      |                                                            | (3)                 | (4)                   |                               |
| Panel A:<br>Male                 |                          |                                                            |                     |                       |                               |
| Childhood exposure               | -0.29**<br>(0.14)        | -0.025<br>(0.082)                                          | 0.0036<br>(0.056)   | 0.094<br>(0.068)      | $0.025^{*}$<br>(0.013)        |
| Observations                     | 39,272                   | 39,272                                                     | 39,272              | 39,272                | 39,272                        |
| <u>Panel B:</u><br>Female        |                          |                                                            |                     |                       |                               |
| Childhood exposure               | -0.079***<br>(0.028)     | -0.071<br>(0.083)                                          | -0.20***<br>(0.044) | 0.019<br>(0.036)      | $0.29^{**}$<br>(0.12)         |
| Observations                     | 38,465                   | 38,465                                                     | 38,465              | 38,465                | 38,465                        |
| Panel C:<br>Rural                |                          |                                                            |                     |                       |                               |
| Childhood exposure               | $-0.098^{*}$<br>(0.054)  | -0.062<br>(0.058)                                          | -0.18***<br>(0.019) | 0.093<br>(0.065)      | $0.16^{**}$<br>(0.074)        |
| Observations                     | 42,281                   | 42,281                                                     | 42,281              | 42,281                | 42,281                        |
| Panel D:<br>Urban                |                          |                                                            |                     |                       |                               |
| Childhood exposure               | $-0.36^{***}$<br>(0.093) | -0.026<br>(0.033)                                          | (0.028)<br>(0.038)  | -0.045*<br>(0.024)    | $0.24^{***}$<br>(0.043)       |
| Observations                     | $35,\!454$               | $35,\!454$                                                 | $35,\!454$          | 35,454                | 35,454                        |
| Individual controls              | Yes                      | Yes                                                        | Yes                 | Yes                   | Yes                           |
| District FE<br>EducBirth year FE | Yes<br>Yes               | Yes<br>Yes                                                 | Yes<br>Yes          | Yes<br>Yes            | Yes<br>Yes                    |

#### Why Local Projections? (Jorda, 2005)

- We want to produce Impulse Response Functions (IRFs) for the impact of a hurricane. Local projections allow us to do it without specifying and estimating the underlying multivariate dynamic system.
- The central idea consists in estimating local projections at each period of interest rather than extrapolating into increasingly distant horizons from a given model (as in a VAR).
- Advantages of Local Projections:
  - Stimated by simple regression techniques
  - **2** More robust to **misspecification**
  - **3** Joint or point-wise analytic **inference is simple**
  - Easily accommodate experimentation with highly nonlinear and flexible specifications (impractical in a multivariate context)

#### Panel Local Projection

• k-step ahead panel predictive regressions:

$$\Delta X_{d,t+k} = \alpha^k + \gamma_1^k S_{dt} + \sum_p \beta_p \Delta X_{d,t-p} + \delta_{dt} + \eta_h + \epsilon_{d,t+k}$$

• 
$$\Delta X_{c,t+k} \equiv \log X_{c,t+k} - \log X_{c,t-1}$$

- X: household monthly income
- $S_{dt}$ : index of exposure to storms
- Object of interest:  $\gamma_1^k$  , the average response of X at horizon k to a disaster shock at time t

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- $\sum_{p} \Delta X_{d,t-p}$  lag of the dependent variable
- $\delta_{dt}$  and  $\eta_h$  are district-time and household fixed effects

# Income channel, by source



Return