Job Mobility Within and Across Occupations

Attila Gyetvai

Bank of Portugal & IZA

ESEM 2022

Research Questions

How do occupations capture diverging wage trajectories?

How does occupational mobility impact life cycle wage inequality?

I document large occupational differences in wage trajectories

• Hungarian linked administrative data across employers and occupations

I document large occupational differences in wage trajectories

• Hungarian linked administrative data across employers and occupations

I model mobility in an occupationally segmented labor market

• Opportunities vs. choices using conditional choice probabilities

I document large occupational differences in wage trajectories

• Hungarian linked administrative data across employers and occupations

I model mobility in an occupationally segmented labor market

• Opportunities vs. choices using conditional choice probabilities

I uncover substantial occupational heterogeneity in sources of mobility

• Wage offers, labor market frictions, compensating difft'ls, switching costs

I document large occupational differences in wage trajectories

• Hungarian linked administrative data across employers and occupations

I model mobility in an occupationally segmented labor market

• Opportunities vs. choices using conditional choice probabilities

I uncover substantial occupational heterogeneity in sources of mobility

• Wage offers, labor market frictions, compensating difft'ls, switching costs

I tie occupational mobility to life cycle wage inequality

• 94% fit of inequality profile via crossing expected wage trajectories

Occupational ladders and skill levels

Individuals work in a job (occupation a, wage i), enjoy flow utility u_{ai}

Individuals work in a job (occupation a, wage i), enjoy flow utility u_{ai}

They may receive promotions/demotions to another wage w at rate χ^{aw}_{ai}

Individuals work in a job (occupation a, wage i), enjoy flow utility u_{ai}

They may receive promotions/demotions to another wage w at rate χ^{aw}_{ai}

They may separate from their job at rate δ_a

Individuals work in a job (occupation a, wage i), enjoy flow utility u_{ai}

They may receive promotions/demotions to another wage ${\it w}$ at rate $\chi^{\it aw}_{\it ai}$

They may separate from their job at rate δ_a

They may receive a job offer from occupation b at rate λ_a^b

- Wage offer is drawn from $f^b(\cdot)$
- Stochastic switching cost $\tilde{c}_a^b \implies \text{Accept offer if } V_{bj} \tilde{c}_a^b > V_{ai}$

Value functions

Employed in occupation a earning wage i:

$$\left(\sum_{o} \lambda_{a}^{o} + \sum_{w} \chi_{ai}^{aw} + \delta_{a} + \rho\right) V_{ai} = \mathbf{u}_{ai} + \mathbb{E}_{w} \left[\chi_{ai}^{aw} V_{aw}\right] + \delta_{a} V_{N} + \mathbb{E}_{o,w,\tilde{c}} \left[\lambda_{a}^{o} \max\{V_{ow} - \tilde{c}_{a}^{o}, V_{ai}\}\right]$$

Value functions

Employed in occupation a earning wage i:

$$\begin{split} \left(\sum_{o} \lambda_{a}^{o} + \sum_{w} \chi_{ai}^{aw} + \delta_{a} + \rho\right) \mathbf{V}_{ai} &= \mathbf{u}_{ai} + \mathbb{E}_{w} \left[\chi_{ai}^{aw} \mathbf{V}_{aw}\right] + \delta_{a} \mathbf{V}_{N} \\ &+ \mathbb{E}_{o,w,\tilde{c}} \left[\lambda_{a}^{o} \max\{\mathbf{V}_{ow} - \tilde{\mathbf{c}}_{a}^{o}, \mathbf{V}_{ai}\}\right] \end{split}$$

Not employed:

$$\left(\sum_{o} \lambda_{N}^{o} + \rho\right) V_{N} = \mathbf{u}_{N} + \mathbb{E}_{o, w, \tilde{c}} \left[\lambda_{N}^{o} \max\{V_{ow} - \tilde{c}_{N}^{o}, V_{N}\}\right]$$

Identification in a nutshell

Identifying assumption: (cf. Arcidiacono, Gyetvai, Jardim, and Maurel, 2021)

• $ilde{c}_a^o \sim \operatorname{Logistic}(c_a^o) \longrightarrow \operatorname{I}$ express the model in terms of CCPs

Identification in a nutshell

Identifying assumption: (cf. Arcidiacono, Gyetvai, Jardim, and Maurel, 2021)

• $ilde{c}_a^o \sim \operatorname{Logistic}(c_a^o) \longrightarrow \operatorname{I}$ express the model in terms of CCPs

I match observed hazards of switching jobs to the structural parameters:

$$hazard = Pr(offer arrives) \times Pr(acceptance)$$

Separating offers from choices:

- If offers arrive fast, workers wait for a better-paying job
 ⇒ more transitions at high wages
- If workers prefer an occupation, they switch to any job regardless of wage
 ⇒ transitions at all wages

High-skill: more & better offers than low-skill

Out of labor force

Job separations

Total

0.21 0.24 0.25 0.43 0.34 0.33 0.99

Simulating ex ante wage trajectories

Research Questions

How do occupations capture diverging wage trajectories?

Wage offers
Labor market frictions
Non-wage amenities
Non-pecuniary job switching costs

How does occupational mobility impact life cycle wage inequality?

It fits wage dispersion via diverging paths

attilagyetvai.com

Literature

Occupational mobility and wage inequality

Juhn, Murphy, and Pierce (1993); Kambourov and Manovskii (2009a,b); Groes, Kircher, and Manovskii (2015); Bayer and Kuhn (2020)

Occupational choice

Miller (1984); Siow (1984); McCall (1990); Antonovics and Golan (2012)

Heterogeneity in job search

Postel-Vinay and Robin (2002); Cahuc, Postel-Vinay, and Robin (2006); Jolivet, Postel-Vinay, and Robin (2006); Sullivan (2010); Sullivan and To (2014); Taber and Vejlin (2020)

Compensating differentials

Rosen (1986); Sorkin (2018); Arcidiacono, Hotz, Maurel, and Romano (2020)

References L

- Antonovics, K. and L. Golan (2012). Experimentation and Job Choice. <u>Journal of Labor Economics</u> 30(2), 333–366.
- Arcidiacono, P., A. Gyetvai, E. Jardim, and A. Maurel (2021). Conditional Choice Probability Estimation of Continuous-Time Job Search Models. Working Paper.
- Arcidiacono, P., V. J. Hotz, A. Maurel, and T. Romano (2020). *Ex Ante* Returns and Occupational Choice. Journal of Political Economy 128(12), 4475–4522.
- Bayer, C. and M. Kuhn (2020). Which Ladder to Climb? Decomposing Life Cycle Wage Dynamics. Working Paper.
- Cahuc, P., F. Postel-Vinay, and J.-M. Robin (2006). Wage Bargaining with On-the-job Search: Theory and Evidence. Econometrica 74(2), 323–364.
- DellaVigna, S., A. Lindner, B. Reizer, and J. F. Schmieder (2017). Reference-dependent Job Search: Evidence from Hungary. <u>Quarterly Journal of Economics</u> 132(4), 1969–2018.
- Groes, F., P. Kircher, and I. Manovskii (2015). The U-Shapes of Occupational Mobility. Review of Economic Studies 82(2), 659–692.
- Harasztosi, P. and A. Lindner (2019). Who Pays for the Minimum Wage? <u>American Economic Review</u> 109(8), 2693–2727.

References II

- Jolivet, G., F. Postel-Vinay, and J.-M. Robin (2006). The Empirical Content of the Job Search Model: Labor Mobility and Wage Distributions in Europe and in the US. <u>European Economic Review</u> 50(4), 877–907.
- Juhn, C., K. M. Murphy, and B. Pierce (1993). Wage Inequality and the Rise in Returns to Skill. <u>Journal of Political Economy</u> 101(3), 410–442.
- Kambourov, G. and I. Manovskii (2009a). Occupational Mobility and Wage Inequality. <u>Review of Economic Studies 76(2)</u>, 731–759.
- Kambourov, G. and I. Manovskii (2009b). Occupational Specificity of Human Capital. <u>International Economic Review 50(1)</u>, 63–115.
- McCall, B. P. (1990). Occupational Matching: A Test of Sorts. Journal of Political Economy 98(1), 45-69.
- Miller, R. A. (1984). Job Matching and Occupational Choice. <u>Journal of Political Economy 92</u>(6), 1086–1120.
- Postel-Vinay, F. and J.-M. Robin (2002). Equilibrium Wage Dispersion with Worker and Employer Heterogeneity. Econometrica 70(6), 2295–2350.
- Rosen, S. (1986). The Theory of Equalizing Differences. In <u>Handbook of Labor Economics</u>, Volume 1, Chapter 12, pp. 641–692.
- Siow, A. (1984). Occupational Choice Under Uncertainty. <u>Econometrica</u> <u>52(3)</u>, 631–645.
- Sorkin, I. (2018). Ranking Firms Using Revealed Preference. <u>Quarterly Journal of Economics</u> 133(3), 1331–1393.

References III

- Sullivan, P. (2010). A Dynamic Analysis of Educational Attainment, Occupational Choices, and Job Search. International Economic Review 51(1), 289–317.
- Sullivan, P. and T. To (2014). Search and Non-wage Job Characteristics. <u>Journal of Human Resources</u> 49(2), 472–507.
- Taber, C. and R. Vejlin (2020). Estimation of a Roy/Search/Compensating Differential Model of the Labor Market. Econometrica 88(3), 1031–1069.
- Verner, E. and G. Gyöngyösi (2020). Household Debt Revaluation and the Real Economy: Evidence from a Foreign Currency Debt Crisis. <u>American Economic Review</u>, forthcoming.

2003–2010, 50 percent de facto random sample of population

- 5 million individuals, 900 thousand firms
- Data come from various administrative branches
- Sample: males, age 22–50 \longrightarrow 2 million spells
- 1 (Virtually) continuous-time data
- $oldsymbol{2}$ Reliable occupational classification \longrightarrow high vs. low-skill occupations

Used in DellaVigna, Lindner, Reizer, and Schmieder (QJE 2017), Harasztosi and Lindner (AER 2019), Verner and Gyöngyösi (AER 2020)

Skill levels and most frequent occupations

Data

1-Managers College+HS	Dept. managers, wholesale Supervisors, manufacturing General managers, bus. orgs.	4–Commercial Primary	Shop assistants Security guards Waiters
2-Professionals College	Sales representatives Engineers Software developers	5–Industry Primary	Metal workers Stock clerks Mechanics
3-Technicians High school	Wholesale clerks Technical assc. professionals Computer assc. professionals	6–Machine operators Primary	Heavy truck drivers Assemblers Forklift operators
		7–Elementary None	Laborers and helpers Janitors

Manual material movers

Observed job-to-job transitions

Data

Occupations capture diverging wage trajectories

Data

Continuous-time on-the-job search across occupations with random offers

Workers in occupation a making wage i receive offers from (o, w)

<u> Opp</u>	<u>ortunities</u>	<u>Choi</u>	ces
λ_a^o	offer arrival rates	u_{ai}	flow utilities
f^{ow}	pmf. of offered wages	$ ilde{c}_a^o$	switching costs
δ_{a}	job separation rates		

<u>Identifying variation</u> Hazards across destination jobs

<u>Identifying variation</u> Hazards across destination jobs

<u>Identifying variation</u>

Hazards across origin and destination occupations at high wages

<u>Identifying variation</u>

Hazards across origin and destination occupations at high wages

Identification

Identifying variation Hazards across origin and destination jobs

Identification

Hazards across origin and destination occupations at all wages

Hazards across origin and destination occupations at all wages

Note that $p_{ai}^{ai} = p_{ai}^{aj}$ for all a, i, j:

$$p_{ai}^{ai} = \frac{\exp(V_{ai} - V_{ai} - c_a^a)}{1 + \exp(V_{ai} - V_{ai} - c_a^a)} = \frac{\exp(-c_a^a)}{1 + \exp(-c_a^a)}$$

Therefore

$$rac{h_{ai}^{ai}}{h_{aj}^{ai}} = rac{\lambda_a^a p_{ai}^{ai} f^{ai}}{\lambda_a^a p_{aj}^{ai} f^{aj}} = rac{f^{ai}}{f^{aj}}$$
 $\implies f^{ai} = rac{h_{ai}^{ai}}{\sum_w h_{aw}^{aw}}$

Idea: the odds of accepting an offer plus its reverse needs to be equal for all wages

Log odds of accepting offers can be written in two ways:

1 Plugging in structural parameters for CCPs:

$$\tilde{\lambda}_{ai}^{bj} = \log\left(\frac{p_{ai}^{bj}}{1 - p_{ai}^{bj}}\right) = \log\left(\frac{h_{ai}^{bj}}{\lambda_a^b f^{bj} - h_{ai}^{bj}}\right)$$

- $lackbox{ Only unknown is } \lambda_a^b \implies \tilde{\lambda}_{ai}^{bj} \equiv \tilde{\lambda}_{ai}^{bj}(\lambda_a^b)$
- Plugging in value functions for CCPs:

$$ilde{\lambda}_{ai}^{bj} = \log\left(rac{p_{ai}^{bj}}{1 - p_{ai}^{bj}}
ight) = V_{bj} - V_{ai} - c_a^b$$

First, offer arrives from same occupation:

$$egin{aligned} & ilde{\lambda}_{ai}^{aj} = \mathsf{V}_{aj} - \mathsf{V}_{ai} - c_a^a \ \implies & ilde{\lambda}_{ai}^{aj} + ilde{\lambda}_{aj}^{ai} = ilde{\lambda}_{ak}^{a\ell} + ilde{\lambda}_{a\ell}^{ak} & \Longrightarrow & ilde{\lambda}_a^a \ \ \mathrm{identified} \ \mathrm{from} \ \mathrm{any} \ (i,j,k,\ell) \ \mathrm{4-tuple} \end{aligned}$$

Next, offer arrives from another occupation:

$$\begin{split} \tilde{\lambda}_{ai}^{bj} &= \mathsf{V}_{bj} - \mathsf{V}_{ai} - c_a^b \\ &\Longrightarrow \ \tilde{\lambda}_{ai}^{bj} + \tilde{\lambda}_{bj}^{ai} = \tilde{\lambda}_{ak}^{b\ell} + \tilde{\lambda}_{b\ell}^{ak} \quad \Longrightarrow \quad \lambda_a^b, \, \lambda_b^a \text{ identified from any two } (i,j,k,\ell), \\ (i',j',k',\ell') \text{ 4-tuples} \end{split}$$

CCPs (choices) Identification

Idea: having identified the offered wages and arrival rates, CCPs map to hazards

By the hazard definition,

$$h_{ai}^{bj} = \lambda_a^b p_{ai}^{bj} f^{bj}$$
 $\implies p_{ai}^{bj} = rac{h_{ai}^{bj}}{\lambda_a^b f^{bj}}$

Idea: remaining parameters come from changes across wages vs. occ's

Plug the structural parameters in the values in the log odds:

$$\begin{split} \tilde{\lambda}_{ai}^{bj} &= V_{bj} - V_{ai} - c_a^b \\ &= \frac{1}{\rho + \delta_b} \left(u_{bj} - \sum_{o,w} \lambda_b^o \log(1 - p_{bj}^{ow}) f^{ow} \right) \\ &- \frac{1}{\rho + \delta_a} \left(u_{ai} - \sum_{o,w} \lambda_a^o \log(1 - p_{ai}^{ow}) f^{ow} \right) \\ &+ \frac{\delta_b - \delta_a}{(\rho + \delta_b)(\rho + \delta_a)} V_N - c_a^b \end{split}$$

This expression is linear in u_{bi} , u_{ai} , V_N , and c_a^b

We can write this in matrix form as

$$\kappa = \mathbf{A}\theta \implies \mathbf{\theta} = \mathbf{A}^+ \kappa$$

Switching costs (choices)

Additional structure: relative symmetry along skill content

I estimate the structural parameters by MLE

Likelihood

Competing risks model with exponential hazards and two-sided censoring

I impose the model structure on the hazards:

$$L(h, \delta) = L\left(\underbrace{\lambda f}_{\text{Pr(offer arrives)}} \times \underbrace{p(\lambda, f, u, c, \delta)}_{\text{Pr(acceptance)}}, \delta\right)$$

CCPs come from iterating the value functions to a fixed point

I add more structure to flow utilities

- Common log wage profile, shifted by occupations
- I translate the estimates to compensating differentials

Likelihood contribution of worker n's spell s with duration t_s :

$$L_{ns}(h,\delta) = \prod_{a,i} \prod_{b,j} \left[\left(h_{ai}^{bj} \right)^{\mathbb{1}(b_s = b, j_s = j)} \exp\left(-h_{ai}^{bj} t_s \right) \right]^{\mathbb{1}(a_s = a, i_s = i)}$$

$$\times \prod_{a} \left[(\delta_a)^{\mathbb{1}(EN_s)} \exp\left(-\delta_a t_s \right) \right]^{\mathbb{1}(a_s = a)}$$

Full likelihood:

$$L(h,\delta) = \prod_{n} \prod_{s=1}^{S_n} L_{ns}(h,\delta)$$

Imposing structure:

$$L(f,\lambda,u,c,\delta) = \prod_{n} \prod_{i=1}^{S_n} L_{ns} (\lambda f p(\lambda,f,u,c,\delta), \delta)$$

m + 1th iteration:

$$\left(\sum_{o} \lambda_{a}^{o} + \delta_{a} + \rho\right) V_{ai}^{(m+1)} = u_{ai} + \delta_{a} V_{N}^{(m)} + \sum_{o} \lambda_{a}^{o} \left(V_{ai}^{(m)}\right) + \sum_{o,w} \lambda_{a}^{o} \log\left(1 + \exp\left(V_{ow}^{(m)} - V_{ai}^{(m)} - c_{a}^{o}\right)\right) f^{ow}$$

I calculate the CCPs as

$$p_{ai}^{bj} = rac{\exp(V_{bj} - V_{ai} - c_a^b)}{1 + \exp(V_{bj} - V_{ai} - c_a^b)}$$

Offered wages (opportunities)

Offer arrival rates (opportunities)

Mean switching costs (choices)

Estimates

То

How much would a median-wage worker in occupation *a* have to be compensated to become an machine operator?

$$\psi_a + \beta \log \bar{\mathbf{w}}_a = \psi_{\mathsf{MO}} + \beta \log \mathbf{w}_a^{\mathsf{MO}}$$

Occupation	β	ψ_{a}	$w_a^{MO}/ar{w}_a$
Managers	1.42	-1.49	0.26
Professionals		-1.83	0.21
Technicians		-1.21	0.32
Commercial		0.72	1.26
Industry		0.84	1.36
Machine operators		0.40	_
Elementary		5.07	26.52

Value functions Estimates

CCPs (choices) Estimates

Type 1

Type 2

Type 1

Type 2

Solid: offered wages. Dashed: accepted wages.

Offer arrival rates (opportunities)

Job separation rates (opportunities)

Hazards (opportunities and choices)

CCPs (choices) Estimates

Mean switching costs (choices)

Compensating differentials (choices), value functions

	Flow utilities			Values								
Occupation	Type 1		Type 2		Type 1			Type 2				
	β	ψ_{a}	Comp. diff.	β	ψ_a	Comp. diff.	Full	Min	Max	Full	Min	Max
Managers	1.14	-1.78	0.14	1.46	-1.14	0.37	21.3	165.2	167.4	20.9	230.8	235.2
Professionals		-2.18	0.10		-1.43	0.30	22.6	166.2	168.1	21.6	232.5	235.9
Technicians		-1.42	0.19		-0.92	0.43	20.4	165.6	167.8	20.5	231.1	235.1
Commercial		0.80	1.34		0.55	1.18	15.8	163.2	165.3	17.9	227.9	232.3
Industry		0.97	1.56		0.65	1.26	15.6	164.0	166.4	17.9	229.5	234.5
Machine operators		0.46	1.00		0.31	1.00	16.5	164.9	167.4	18.4	229.8	234.5
Elementary		6.06	136.20		4.02	12.58	10.5	163.5	164.6	14.0	228.2	230.7
Out of the labor force		-	_		_	_	84.9	_	_	178.4	-	-

Simulating careers

I simulate workers' wage paths through occupations

- 1 Take the distribution of initial jobs at age 22
- Draw durations using the hazard estimates until age 50
- 3 Calculate the mean and variance of log wages at each age

I run the simulation for various sets of hazards:

Baseline
No occupational heterogeneity

Only wage offers
Only labor market frictions
Only non-wage amenities
Only switching costs

Why do wage trajectories cross?

2. Only labor market frictions

Career paths

Why do wage trajectories cross?

Career paths

Technicians Machine operators Professionals Managers

Ex ante wage trajectories (two types)

Why do wage trajectories cross? (two types)

1. Only wage offers

3. Only amenities

2. Only labor market frictions

4. Only switching costs

Career paths

Elementary **Technicians** Machine operators Professionals Managers Commercial