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Abstract	

We	experimentally	 examine	 how	 individuals	 commit	 to	 a	 cutoff	 stopping	 rule	 when	 facing	 a	

sequence	of	independent	lotteries.	We	identify	two	main	behavior	patterns:	(1)	a	small	share	of	

participants	consistently	choose	stopping	rules	whose	gain	bound	(i.e.,	the	accumulated	gain	at	

which	the	sequence	stops)	is	larger	than	the	loss	bound,	and	(2)	a	larger	share	of	participants	

consistently	 choose	 rules	 whose	 loss	 bound	 is	 larger	 than	 the	 gain	 bound.	 We	 introduce	 a	

procedural	decision-making	model	that	accounts	for	these	patterns	and	show	that	the	behavior	

of	most	of	our	participants	is	inconsistent	with	prominent	theories	of	decision-making	under	risk.	
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1.	Introduction		
Stopping	problems	appear	 in	numerous	 contexts	 in	 economics	 and	 finance,	 ranging	 from	

option	 pricing	 and	 job	 search	 to	 experimentation,	 technology	 adoption,	 and	 gambling.	 In	

these	problems,	an	individual	observes	a	sequence	of	realizations	of	a	stochastic	process	and	

has	to	decide	when	to	stop	it.	According	to	several	prominent	theories	of	decision-making	

under	 risk	 (e.g.,	 expected	utility),	 an	optimal	 stopping	plan	 can	be	described	by	 a	 simple	

cutoff	rule,	namely,	stopping	the	process	once	an	individual’s	payoff	reaches	a	threshold.	

	 Our	 main	 research	 objective	 is	 to	 experimentally	 examine	 how	 individuals	 make	

binding	 stopping	plans	and	what	 forces	 shape	 these	plans.	Understanding	 to	which	plans	

individuals	commit	is	important	not	only	because	such	commitment	is	relevant	in	practice	

but	also	because	it	reveals	individuals’	preferences	over	the	induced	outcomes	of	dynamic	

play	in	situations	where	there	is	no	commitment	(e.g.,	casino	gambling).	To	see	this,	note	first	

that	commitment	to	a	cutoff	rule	turns	a	dynamic	stopping	problem	into	a	static	one,	which	

may	 simplify	 it	 and	 help	 individuals	 better	 understand	 certain	 aspects	 of	 the	 problem.	

Second,	 such	 commitment	 enables	 individuals	 to	 choose	 their	 preferred	 stopping	 plan	

without	 worrying	 about	 their	 ability	 to	 implement	 it.	 Finally,	 from	 the	 researcher’s	

perspective,	 observing	 an	 individual’s	 binding	 stopping	 plan	 enables	 learning	 about	 her	

preferences	without	 the	data	being	 contaminated	by	biases	 and	 inconsistencies	 that	may	

arise	during	a	dynamic	play.1		

	 In	order	to	understand	our	setting,	consider	a	decision-maker	(DM)	who	faces	an	infinite	

sequence	of	lotteries,	where	each	lottery	pays	1	with	probability	𝑝	and	−1	with	probability	1 − 𝑝.	

Under	various	 theories	of	decision-making	under	 risk,	 the	DM’s	optimal	 stopping	plan	can	be	

described	by	an	upper	bound	ℎ > 0	and	a	lower	bound	𝑙 ≤ 0	such	that	the	DM	stops	the	process	

once	her	payoff	hits	one	of	these	bounds.		The	higher	ℎ	is,	the	less	likely	the	process	is	to	reach	ℎ	

before	it	reaches	𝑙;	the	lower	𝑙	is,	the	less	likely	the	process	is	to	reach	𝑙	before	it	reaches	ℎ.	Thus,	

when	choosing	these	bounds,	the	DM	trades	off	between	two	aspects:	the	probability	of	winning	

and	the	size	of	the	potential	gain/loss.2		This	tradeoff	is	at	the	heart	of	our	experimental	design.	

	 As	an	illustration,	consider	the	two	cutoff	rules	given	in	Figure	1.	Under	both	rules,	the	

sequence	stops	once	the	DM	accumulates	a	net	loss	of	20.	Under	𝑎	(resp.,	𝑏),	the	sequence	stops	

once	the	DM	accumulates	a	gain	of	10	(resp.,	30).	We	refer	to	cutoff	rules	for	which	the	upper	

bound	is	smaller	(resp.,	larger)	in	absolute	value	than	the	lower	bound	as	left-biased	(resp.,	right-

 
1 For	example,	the	negative	feelings	associated	with	realizing	losses	may	lead	investors	to	hold	on	to	
badly	performing	stocks	(Shefrin	and	Statman,	1985). 
2 When	𝑝 ≠ 0.5,	the	probability	of	stopping	the	process	at	a	gain	is	 !"#

!"

!"##!"
,	where	𝑞 = !"$

$
	(Feller,	1970).	 



 
3 

biased).	The	likelihood	that	the	sequence	ends	with	a	loss	is	smaller	under	the	left-biased	rule	𝑎,	

while	 the	potential	 gain	 is	 greater	under	 the	 right-biased	 rule	𝑏.	 Thus,	when	 the	DM	chooses	

between	the	two	rules,	she	trades	off	between	the	potential	gain	and	the	probability	of	a	gain.			

	

Rule	 Lower	bound	 Upper	bound	

a	 -20	 +10	

b	 -20	 +30	
	

Figure	1.	Two	cutoff	rules	with	the	same	lower	bound.	

	

To	gain	intuition,	consider	a	risk-neutral	expected	utility	maximizer	who	has	to	choose	

between	stopping	rules	with	a	 fixed	 lower	bound,	as	 in	Figure	1.	When	the	baseline	 lottery	 is	

unfavorable	(i.e.,	𝑝 < 0.5),	she	will	obtain	a	higher	expected	utility	under	the	left-biased	rule.	To	

see	this,	note	that	the	left-biased	rule	induces	a	smaller	expected	number	of	negative	expected	

value	 lotteries:	 the	 two	rules	 induce	 the	same	number	of	 lotteries	 if	 the	process	 reaches	−20	

before	reaching	+10	and	rule	𝑏	results	in	a	larger	number	of	lotteries	otherwise.3	In	a	symmetric	

manner,	when	the	baseline	lottery	is	favorable	(i.e.,	𝑝 > 0.5),	she	will	choose	the	right-biased	rule	

b.	Now	consider	the	case	of	a	risk-neutral	expected	utility	maximizer	who	has	to	choose	between	

two	cutoff	rules	that	share	the	same	upper	bound,	as	in	Figure	2.	She	will	prefer	the	left-biased	

rule	𝑑	if	𝑝 > 0.5	and	the	right-biased	rule	𝑐	if	𝑝 < 0.5	as	she	would	like	to	maximize	the	expected	

number	of	baseline	lotteries	in	the	former	case	and	minimize	it	in	the	latter	case.	We	can	conclude	

that	expected	value	maximization	can	lead	to	a	choice	of	left-biased	rules	or	right-biased	rules,	

depending	on	the	context.	

	

Rule	 Lower	bound	 Upper	bound	

c	 -10	 +20	

d	 -30	 +20	
	

Figure	2.	Two	cutoff	rules	with	the	same	upper	bound.	

 
3	Formally,	when	𝑝 ≠ 0.5	the	expected	number	of	lotteries	played	given	a	lower	bound	of	𝑙	and	an	upper	
bound	of	ℎ	is	 "%

!"&$
− "%'(

!"&$
∗ !"#!"

!"##!"
,	where	𝑞 = !"$

$
	(Feller,	1970).		
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In	 our	 experiment,	 each	 participant	 faced	 36	 choice	 problems	 in	 this	 spirit.	 In	 each	

problem,	the	participants	had	to	choose	one	rule	out	of	five	rules:	 two	right-biased	ones,	two	

left-biased	ones,	and	a	symmetric	rule.	The	problems	varied	in	the	probability	of	winning	in	

the	baseline	 lottery	(𝑝 < 0.5	 in	 the	 first	part	of	 the	experiment	and	𝑝 > 0.5	 in	 the	second	

part),	and	whether	the	upper	bound,	the	lower	bound,	or	neither	of	them	was	fixed	within	a	

problem.	We	 ran	 two	 treatments:	 in	 our	main	 treatment,	𝑇!,	 the	 stopping	 rules’	 induced	

winning	 probabilities	 were	 not	 provided	 to	 the	 participants,	 whereas	 in	 the	 second	

treatment,	𝑇",	they	were	provided.	We	now	focus	on	𝑇!	and	later	discuss	the	findings	in	𝑇"	

and	their	implications.	

Our	main	finding	is	a	general	tendency	to	either	consistently	choose	left-biased	rules	or	

consistently	 choose	 right-biased	 ones,	 across	 qualitatively	 and	 quantitatively	 different	 choice	

problems.	We	find	a	larger	share	of	participants	who	consistently	choose	left-biased	rules	than	of	

participants	who	consistently	choose	right-biased	ones.	The	participants’	 choices	suggest	 that	

many	of	them	categorize	the	rules	into	right-	and	left-biased	rules:	they	tend	to	choose	either	a	

left-	or	a	right-biased	rule,	but	not	necessarily	the	most	biased	rule	in	the	respective	direction.	

This	apparent	categorization	is	in	the	spirit	of	the	binary	bias,	which	suggests	that	people	tend	to	

categorize	 items	 into	two	main	distinct	categories,	 for	example,	positive	and	negative	reviews	

(for	recent	documentation	of	this	bias	in	the	psychology	literature	see	Fisher	and	Keil,	2018,	and	

Fisher	et	al.,	2018).	This	binary	categorization	seems	natural	in	our	setting	due	to	the	simplicity	

of	splitting	the	set	of	rules	according	to	 their	directional	bias	(i.e.,	 right-biased	or	 left-biased).	

Moreover,	as	expressed	in	the	participants’	written	explanations	of	their	choices,	each	category	

reflects	 prioritizing	 one	 of	 the	 two	main	 aspects	 of	 the	 problem:	 choosing	 right-biased	 rules	

reflects	 prioritizing	 high	 prizes	 while	 choosing	 left-biased	 rules	 reflects	 prioritizing	 the	

probability	of	winning.	

The	participants’	behavior,	together	with	their	explanations,	suggests	that	most	of	them	

try	to	solve	a	simple	tradeoff	between	the	likelihood	of	winning	or	losing	and	the	size	of	the	prizes.	

The	particular	way	in	which	this	tradeoff	 is	solved	depends	on	the	favorability	of	the	baseline	

lottery.	Indeed,	choices	of	left-biased	rules	are	more	common	in	problems	in	which	the	baseline	

lottery	is	unfavorable,	whereas	choices	of	right-biased	rules	are	more	common	in	problems	in	

which	the	baseline	lottery	is	favorable.	A	potential	explanation	for	this	pattern	is	that	when	the	

baseline	lottery	becomes	favorable,	participants	feel	that	they	are	more	likely	to	finish	with	a	gain	

and	hence	they	shift	their	attention	from	the	probability	of	not	losing	to	the	size	of	the	potential	

gain.	
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Although	the	participants’	choices	differ	between	the	two	parts	of	the	experiment	(i.e.,	

favorable	 vs.	 unfavorable	 baseline	 lotteries),	 they	 are	 strongly	 correlated.	 In	 fact,	 for	 most	

participants	 in	 our	main	 treatment,	 the	 solution	 of	 the	 prize–probability	 tradeoff	 is	 virtually	

unaffected	by	the	specific	details	of	each	problem	(e.g.,	the	exact	probabilities	and	expected	value	

of	the	stopping	rules’	induced	lotteries).	In	Section	5,	we	show	that	participants	have	a	qualitative	

understanding	of	the	prize–probability	tradeoff	that	arises	in	stopping	problems	and	suggest	that	

this	understanding	makes	them	reason	in	qualitative	terms,	focusing	on	this	tradeoff	rather	than	

considering	the	fine	details	of	the	decision	problem.	

In	 light	 of	 the	 above	 findings,	we	 treat	 left-biased	 rules	 and	 right-biased	 rules	 as	 two	

distinct	categories,	and	study	the	participants’	behavior	within	each	category.	We	find	that	there	

are	 three	groups	of	participants	of	 (roughly)	equal	size:	participants	who	tend	to	consistently	

choose	the	extreme	stopping	rule	within	each	category	(i.e.,	the	most	right-biased	rule	or	the	most	

left-biased	 rule),	 participants	 who	 tend	 to	 consistently	 choose	 the	 moderate	 rule	 within	 a	

category	 (i.e.,	 the	 second-most	 right-	 or	 left-biased	 rule),	 and	participants	who	diversify	with	

different	intensities	between	extreme	and	moderate	rules	across	problems.		

To	account	 for	the	experimental	results,	we	suggest	a	decision	procedure	according	to	

which	 individuals	 operate	 in	 two	 stages.	 They	 begin	 with	 “the	 big	 picture”:	 resolving	 the	

fundamental	 prize–probability	 tradeoff	 between	 the	 two	 categories	 of	 left-biased	 and	 right-

biased	 rules.	They	 then	 continue	 to	 the	 “finer	details”:	 resolving	 the	more	 incremental	prize–

probability	tradeoff	within	a	category	between	extreme	and	moderate	rules.	We	formalize	the	

procedure	using	a	 simple	qualitative	model	 that	 consists	of	 two	key	parameters	 (and	a	noise	

term):	one	parameter	that	captures	a	participant’s	tendency	to	choose	left-	or	right-biased	rules,	

and	one	parameter	that	captures	their	tendency	to	choose	extreme	or	moderate	rules	within	a	

category.	We	 refer	 to	 this	procedure	 as	 the	 two-stage	qualitative	 tradeoff	 resolution	 (2S-QTR)	

model.	

In	 Section	 4,	 we	 examine	 the	 extent	 to	 which	 the	 2S-QTR	 model	 can	 explain	 our	

participants’	 behavior.	 To	 this	 end,	we	performed	 a	 leave-one-out	 prediction	 exercise	 for	 each	

participant	 separately:	 we	 estimated	 the	model	 using	 35	 problems	 and	 used	 the	 estimate	 to	

predict	her	behavior	in	the	remaining	problem.	A	participant’s	behavior	is	considered	consistent	

with	the	2S-QTR	model	if	the	number	of	correct	predictions	across	the	36	problems	is	sufficiently	

large	 (the	 specific	 threshold	 was	 set	 such	 that	 the	 probability	 of	 classifying	 as	 consistent	 a	

participant	who	chooses	at	random	is	less	than	1%).	In	our	main	treatment,	roughly	75%	of	the	

participants	exhibited	behavior	consistent	with	the	model.	We	then	estimated	the	model	for	these	

participants	using	the	36	problems	and	classified	them	as	types	based	on	their	tendency	to	choose	
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left-biased	 rules,	 right-biased	 rules,	 moderate	 rules,	 or	 extreme	 rules.	 The	 most	 common	

tendencies	are	toward	left-biased	rules	and	extreme	rules.	

Our	experimental	design	enabled	us	to	test	whether	the	above	findings	can	be	explained	

by	 standard	 “off-the-shelf”	 theories	 of	 decision-making	 under	 risk.	 We	 examined,	 for	 each	

participant,	whether	her	behavior	 fits	 the	predictions	of	 several	 prominent	decision	 theories:	

(constant	 relative)	 risk	aversion,	 cumulative	prospect	 theory	 (Kahneman	and	Tversky,	1992),	

disappointment	aversion	(Gul,	1991),	 regret	aversion	(Bell,	1982;	Loomes	and	Sugden,	1982),	

and	 salience	 theory	 (Bordalo	 et	 al.,	 2012).	 	 To	 do	 so,	 we	 ran	 a	 leave-one-out	 prediction	

competition	between	all	of	these	theories	and	the	2S-QTR	model.	We	classified	a	participant	into	

a	theory	if	(i)	the	theory	was	able	to	predict	a	sufficiently	large	number	of	the	participant’s	choices	

(the	threshold	was	identical	to	the	one	chosen	for	the	2S-QTR	model)	and	(ii)	no	other	theory	was	

able	to	predict	a	larger	number	of	choices.		In	this	more	conservative	exercise,	the	2S-QTR	model	

accounts	 for	 the	 behavior	 of	 69%	of	 the	 participants	 in	 the	main	 treatment.	 Prospect	 theory	

accounts	for	the	behavior	of	33%	of	the	participants.	None	of	the	other	theories	we	examined	

accounts	for	the	behavior	of	more	than	3%	of	the	participants.		

Studying	our	second	treatment,	𝑇",	in	which	the	rules’	induced	probabilities	are	provided,	

sheds	light	on	the	extent	to	which	the	choice	patterns	observed	in	𝑇!	are	due	to	the	participants’	

lack	of	knowledge	of	these	induced	probabilities.	While	the	literature	on	stopping	problems	is	not	

insubstantial,	 to	 the	 best	 of	 our	 knowledge	 the	 difference	 between	 these	 two	 conditions	 is	

underexplored.	 In	𝑇",	 the	2S-QTR	model	accounts	 for	 the	behavior	of	74%	of	 the	participants	

(51%	 in	 the	 prediction	 competition	 exercise).	 Here	 again,	 the	 most	 common	 tendencies	 are	

toward	left-biased	rules	and	extreme	rules.	The	tendency	toward	extreme	rules	is	significantly	

greater	in	𝑇"	than	in	𝑇!.	We	suggest	that	the	knowledge	of	the	rules’	induced	probabilities	makes	

participants	 in	𝑇"	 more	 sensitive	 to	 the	 fine	 details	 than	 the	𝑇!	 participants,	 which	 leads	 to	

different	 choices	 in	 some	 of	 the	 problems.	 In	 particular,	 they	 are	 better	 able	 to	 recognize	

situations	in	which	there	is	a	clear-cut	way	of	resolving	the	tradeoff	and	choose	accordingly.	For	

example,	in	situations	where	a	minor	deduction	of	a	winning	probability	leads	to	a	major	increase	

in	prizes,	they	tend	to	opt	for	the	extreme	right-biased	rule.		These	findings	suggest	that	knowing	

the	induced	probabilities	changes	individuals’	behavior	by	making	them	consider	the	finer	details	

of	the	problem.	However,	it	does	not	change	the	way	they	perceive	the	big	picture,	namely,	their	

directional	bias.		
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1.1	Related	literature 

The	present	 paper	 is	 related	 to	 a	 recent	 strand	of	 the	 literature	 that	 investigates	planning	 in	

dynamic	decision-making	under	risk.	Fischbacher	et	al.	(2017)	show	that	stop-loss	and	take-gain	

strategies	mitigate	the	disposition	effect	in	dynamic	play.	Dertwinkel-Kalt	et	al.	(2020)	conduct	a	

lab	experiment	in	which	they	find	that	plans	and	dynamic	behavior	in	a	stopping	problem	are	

consistent	with	the	predictions	of	Bordalo	et	al.’s	(2012)	salience	theory.	Alaoui	and	Fons-Rosen	

(2021)	 find	 that	 grittier	 individuals	 have	 a	 higher	 tendency	 to	 over-gamble	 relative	 to	 their	

original	plans.	Perhaps	closest	to	our	paper	is	Heimer	et	al.	(2021)	who	document	a	discrepancy	

between	investors’	initial	plans	and	their	actual	behavior:	most	investors	choose	stopping	rules	

that	are	right-biased	(the	modal	strategy	of	46%	of	the	investors	is	right-biased	while	the	modal	

strategy	of	32%	is	left-biased)	ex	ante,	but	their	subsequent	choices	follow	the	reverse	pattern.	

To	pin	down	the	mechanism	behind	this	discrepancy,	they	perform	an	online	experiment	in	which	

individuals	stop	a	finite	sequence	of	fair	binary	lotteries.	In	particular,	one	of	their	treatments,	

dubbed	“hard	plan,”	examines	how	individuals	commit	to	a	stopping	rule	in	this	situation.	

While	 Heimer	 et	 al.’s	 (2021)	 elegant	 design	 allows	 them	 to	 pin	 down	 the	 mechanism	

underlying	 the	 discrepancy	 between	 planning	 and	 playing,	 we	 focus	 on	 individual	 decision-

making	with	commitment,	which	requires	a	richer	dataset	at	the	individual	level.	To	this	end,	we	

recorded	36	choices	of	a	stopping	rule	(in	different	contexts)	per	individual	rather	than	the	single	

choice	recorded	in	their	hard	plan	treatment.	In	addition	to	the	different	focus,	there	are	several	

differences	between	the	hard	plan	treatment	and	our	setting,	which	may	explain	the	differences	

in	the	tendency	to	choose	right-biased	rules.	Perhaps	the	most	significant	difference	is	that	the	

baseline	lotteries	in	Heimer	et	al.	have	an	expected	value	of	zero	while	ours	have	either	a	strictly	

positive	or	a	strictly	negative	expected	value.4	Observe	that,	given	a	stopping	rule,	an	“almost	fair”	

baseline	lottery	such	as	the	ones	used	in	our	experiment	is	likely	to	induce	winning	probabilities	

that	are	very	far	from	fair,	which	means	that	the	decision	problems	the	participants	faced	in	the	

two	experiments,	ours	and	Heimer	et	al.’s,	are	quite	different.	For	example,	the	rule	(−15,+15)	

induces	a	fair	lottery	if	the	baseline	lottery	is	fair,	but	it	induces	a	probability	of	winning	of	30.7%	

when	𝑝 = 18/37,	as	in	the	first	part	of	our	experiment.	

 
4	Additional	noteworthy	differences	are	that	(1)	Heimer	et	al.’s	participants	choose	a	stopping	rule	freely	
while	in	our	setting,	to	better	understand	the	tradeoffs	that	participants	make	and	to	distinguish	between	
the	predictions	of	prominent	theories,	we	let	our	participants	choose	from	various	fixed	sets	of	five	rules,	
and	(2)	the	participants	in	our	experiment	were	STEM	and	management	students,	who	are presumably	
more	familiar	with	basic	statistics	and	may	have	a	better	understanding	of	the	implications	of	different	
stopping	rules	compared	to	the	typical	online	subject	pool. 
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Other	papers	study	stopping	decisions	without	planning.	In	Strack	and	Viefers	(2021),	the	

participants	choose	when	to	stop	a	multiplicative	random	walk	and	exhibit	history-dependent	

behavior,	which	is	consistent	with	regret	aversion	and	inconsistent	with	cutoff	rules.5	Sandri	et	

al.	 (2010)	 examine	 exit	 decisions	 and	 find	 that	 most	 individuals	 tend	 to	 hold	 on	 to	 a	 badly	

performing	asset	longer	than	is	consistent	with	real	option	reasoning.	

Stopping	 plans	 have	 been	 studied	 indirectly	 in	 the	 experimental	 literature	 on	 dynamic	

inconsistency,	which	focuses	on	deviations	from	planning	when	individuals	face	a	small	number	

of	lotteries.	Barkan	and	Busmeyer	(1999,	2003)	and	Ploner	(2017)	find	evidence	of	dynamically	

inconsistent	behavior	in	settings	where	individuals	decide	whether	to	participate	in	an	additional	

lottery	 after	 experiencing	 one	 outcome.	 Cubitt	 and	 Sugden	 (2001)	 do	 not	 reject	 the	 dynamic	

consistency	 hypothesis	when	participants	 have	 to	 decide	 how	many	 all-or-nothing	 additional	

gambles	to	participate	in	after	winning	in	four	mandatory	rounds.			

Our	 work	 also	 relates	 to	 the	 literature	 on	 skewness-seeking	 and	 prudent	 behavior.	

Skewness	corresponds	to	our	notion	of	left/right-biased	stopping	rules.	The	more	right-biased	a	

rule	 is,	 the	 greater	 is	 the	 skewness	 of	 its	 induced	 lottery.6	 Golec	 and	 Tamarkin	 (1998)	 find	

evidence	of	skewness-seeking	behavior	 in	horse-race	betting.	Brunner	et	al.	 (2011),	Deck	and	

Schlesinger	 (2010,	2014),	Ebert	and	Wiesen	 (2011,	2014),	Ebert	 (2015),	Grossman	and	Eckel	

(2015),	 Maier	 and	 Rüger	 (2012),	 and	 Noussair	 et	 al.	 (2014)	 provide	 evidence	 for	 skewness-

seeking	and/or	prudent	behavior	 in	 lab	experiments.	Bleichrodt	and	van	Bruggen	(2018)	 find	

prudent	behavior	in	the	gain	domain	and	imprudent	behavior	in	the	loss	domain.		

There	are	several	differences	between	our	setting	and	the	typical	setting	in	this	strand	of	

the	 literature.	The	experiments	on	 skewness-seeking	and	prudent	behavior	 typically	 examine	

choices	between	lotteries	with	identical	means	and	variance.	By	contrast,	the	stopping	rules	in	

our	 setting	 induce	 compound	 lotteries	with	different	means	and	variance	 such	 that	prudence	

does	not	imply	a	tendency	to	choose	right-biased	rules	(e.g.,	facing	the	two	rules	in	Figure	1,	a	

prudent	individual	may	choose	the	left-biased	rule	when	𝑝 < 0.5	as	it	induces	a	greater	expected	

value	and	a	smaller	variance	than	the	right-biased	rule).	Moreover,	the	stopping	rules’	framing	is	

different	from	the	standard	lottery	framing,	even	when	participants	are	provided	with	the	rules’	

induced	 probabilities	 (as	 in	 our	 second	 treatment).	 The	 dynamic	 story	 underlying	 stopping	

 
5	This	type	of	behavior	is	also	consistent	with	other	theories	of	decision-making	under	risk	such	as	cautious	
stochastic	choice	(Hendeson	et	al.,	2022).	
6 It	should	be	noted	that	a	left-biased	rule	can	induce	a	positively	skewed	lottery	when	𝑝 < 0.5	and	a	right-
biased	rule	can	induce	a	negatively	skewed	lottery	when	𝑝 > 0.5.	
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problems	and	the	participants’	qualitative	understanding	of	the	prize–probability	tradeoff	in	this	

context	may	encourage	reasoning	in	qualitative	terms,	which	is	less	likely	to	be	triggered	when	

choosing	between	standard	binary	lotteries.		

Recent	 theoretical	 work	 by	 Ebert	 and	 Karehnke	 (2021)	 characterizes	 the	 skewness	

preferences	implied	by	a	large	number	of	theories	of	decision-making	under	risk.	In	particular,	

they	find	that	prudent	expected	utility,	disappointment	aversion,	regret	aversion,	and	salience	

theory	imply	skewness-seeking	(of	different	orders),	and	that	cumulative	prospect	theory	with	

the	 conventional	 S-shaped	 value	 function	 can	 imply	 both	 skewness-seeking	 and	 skewness	

aversion,	depending	on	the	parameters.		These	findings	suggest	that,	relative	to	other	prominent	

theories	of	decision-making	under	risk,	cumulative	prospect	theory	has	the	greatest	potential	to	

explain	the	behavior	of	a	large	share	of	our	participants.	The	econometric	estimation	performed	

in	 Section	 4	 confirms	 this	 intuition.	 Yet,	 it	 indicates	 that	 the	 behavior	 of	 the	majority	 of	 the	

participants	is	inconsistent	with	cumulative	prospect	theory.	

Finally,	our	finding	that	many	participants	use	qualitative	decision	rules	contributes	to	the	

behavioral	 literature	 that	aims	 to	 identify	and	model	 individuals’	decision-making	procedures	

instead	of	assuming	that	choices	are	guided	by	some	utility	maximization	(see,	for	example,	Güth	

et	 al.,	 2009;	 Arieli	 et	 al.,	 2011;	 Salant,	 2011;	 Halevy	 and	 Mayraz,	 2021).	 In	 particular,	 our	

participants’	 category-based	 behavior	 is	 reminiscent	 of	 the	 decision	 procedure	 suggested	 in	

Manzini	and	Mariotti	(2012).	

The	paper	proceeds	as	follows.	Section	2	presents	our	experimental	design	and	Section	3	

describes	the	results	at	both	the	aggregate	and	individual	levels.	In	Section	4,	we	introduce	the	

two-stage	qualitative	tradeoff	resolution	model	and	classify	the	𝑇!	participants	into	theory-based	

types	according	to	their	choices.	In	Section	5,	we	examine	the	extent	to	which	the	participants	are	

able	to	estimate	the	stopping	rules’	induced	probabilities	and	investigate	the	influence	of	lack	of	

probabilities	in	𝑇!	by	analyzing	behavior	in	𝑇".	Section	6	concludes.		

	

2.	Experimental	Design	
The	experiment	was	carried	out	in	the	Interactive	Decision-Making	Lab	at	Tel	Aviv	University	in	

April–May	 2017.	 The	 participants	 were	 114	 Tel	 Aviv	 University	 undergraduate	 students	 in	

management	and	STEM,	44%	of	whom	were	women.	The	average	age	was	25.	Recruitment	of	

participants	was	done	via	ORSEE	(Greiner,	2004).		

Each	participant	received	55	NIS	(roughly	$15)	at	the	beginning	of	the	experiment.	In	an	

attempt	to	make	the	participants	internalize	this	endowment,	one	week	prior	to	the	session	we	
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notified	them	that	they	would	receive	this	amount	and	could	lose	part	of	it	(at	most	30	NIS)	or	

win	an	additional	amount,	depending	on	their	choices	in	the	experiment.	A	reminder	of	that	was	

sent	on	the	day	before	the	session	as	well.	The	experiment	included	57	computerized	decision	

problems	(we	refer	to	these	decision	problems	as	Questions	1–57	or	Q1–Q57),	one	of	which	was	

randomly	selected	at	the	end	of	the	experiment	to	determine	the	payment	for	the	participants.	

The	amount	won	(or	lost)	in	that	game	was	added	to	(or	subtracted	from)	the	initial	endowment.	

In	practice,	each	participant	could	win	at	most	an	additional	45	NIS	and	could	lose	at	most	28	NIS	

of	her	initial	endowment.	All	sessions	were	completed	within	an	hour.	

	

2.1	Detailed	description	of	the	experiment	

In	each	session,	the	participants	were	randomly	assigned	to	two	treatments,	denoted	by	𝑇!	and	

𝑇",	each	with	four	parts,	which	are	described	below.	Of	the	114	participants,	67	participants	were	

assigned	to	our	main	treatment,	𝑇!,	and	47	were	assigned	to7	𝑇".	The	complete	questionnaire	can	

be	found	in	Appendix	B.	In	short,	Part	A	(respectively,	Part	B)	examines	the	choice	of	a	stopping	

rule	when	the	baseline	lottery	has	a	negative	(respectively,	positive)	expected	value,	and	Part	C	

explores	the	participants’	ability	to	estimate	the	rules’	induced	probabilities.	Part	D	studies	the	

participants’	behavior	in	a	simpler	setting	to	identify	whether	their	choices	in	Parts	A	and	B	are	

related	to	a	pure	taste	for	skewed	lotteries.		

	

Part	A.	In	this	part,	participants	faced	a	sequence	of	computerized	lotteries,	each	with	an	18/37	

probability	of	winning	1	NIS	and	a	19/37	probability	of	losing	1	NIS.	These	probabilities	resemble	

the	win/loss	probability	in	the	“Red	or	Black”	European	roulette	game.	In	each	decision	problem,	

the	participants	were	asked	to	choose	a	cutoff	stopping	rule.	The	participants	faced	18	decision	

problems,	in	each	of	which	they	chose	one	out	of	five	alternative	cutoff	stopping	rules.	If	one	of	

these	problems	was	randomly	selected	for	payment,	 then	the	stopping	rule	was	automatically	

and	instantaneously	implemented	by	the	computer.	

The	 only	 difference	between	 the	 two	 treatments	was	 that	 in	𝑇"	 the	participants	were	

informed	about	the	probability	of	ending	the	game	with	a	gain	given	each	of	the	five	stopping	

rules,	whereas	in	𝑇!	they	were	not	(in	both	treatments	the	participants	were	informed	about	the	

winning	probability	in	the	baseline	lottery).	 	This	difference	allows	us	to	explore	the	extent	to	

 
7	Participants	were	assigned	to	the	main	treatment	with	probability	0.6. 
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which	 the	patterns	 in	𝑇!	 result	 from	 the	participants’	 lack	of	knowledge	of	 the	 rule’s	 induced	

probability.	

We	considered	three	types	of	decision	problems,	which	are	illustrated	in	Figure	3.		In	Q1–

Q6	(fixed	loss),	the	participants	were	required	to	choose	between	five	stopping	rules	that induce	

the	same	potential	loss	and	vary	in	the	potential	gains	that	they	induce.	In	Q7–Q12	(fixed	gain),	

the	 participants	 were	 required	 to	 choose	 between	 five	 stopping	 rules	 that	 induce	 the	 same	

potential	 gain	 and	 vary	 in	 the	 potential	 losses	 that	 they	 induce.	 In	 Q13–Q18	 (not	 fixed),	 the	

stopping	rules	vary	in	both	the	potential	gains	and	the	potential	losses	that	they	induce.		

In	each	decision	problem,	there	were	two	rules	in	which	the	potential	loss	was	greater	

than	the	potential	gain,	two	rules	in	which	the	potential	gain	was	greater	than	the	potential	loss,	

and	one	rule	in	which	the	potential	gain	and	the	potential	loss	were	equal.	We	refer	to	these	rules	

as	left-biased,	right-biased,	and	symmetric	rules,	respectively.	We	refer	to	the	most	left-biased	

rule	(i.e.,	with	the	largest	loss	and	the	smallest	gain)	as	Rule	ll,	the	second-most	left-biased	rule	as	

Rule	 l,	 the	 symmetric	 rule	 as	Rule	 s,	 the	most	 right-biased	 rule	 (i.e.,	with	 the	 largest	 gain	and	

smallest	loss)	as	Rule	rr,	and	the	second-most	right-biased	rule	as8	Rule	r.	The	five	stopping	rules	

were	presented	to	the	participants	either	in	order	from	the	left-biased	rule	with	the	largest	loss	

and	smallest	gain	to	the	right-biased	rule	with	the	largest	gain	and	smallest	loss	(as	in	Figure	3)	

or	in	the	reverse	order.9	Thus,	the	five	stopping	rules	were	always	ordered	either	from	the	highest	

probability	of	a	gain	to	the	lowest	probability	of	a	gain	or	the	other	way	around.		
	

Part	B.	This	part	consisted	of	18	decision	problems	(Q19–Q36)	and	was	similar	in	structure	to	

Part	A.	The	main	difference	between	the	two	parts	was	that	the	probabilities	of	gain	and	loss	in	

the	baseline	lottery	were	reversed	in	Part	B	(i.e.,	the	probability	of	winning	in	a	single	lottery	was	

19/37).	 In	addition,	we	tried	to	diversify	 the	problems	 in	Parts	A	and	B	to	prevent	a	sense	of	

repetition.	Thus,	the	stopping	rules	in	Part	B	were	similar	to	the	ones	in	Part	A,	yet	they	were	not	

identical.	
	

At	the	end	of	Parts	A	and	B,	 the	participants	were	asked	to	explain	the	principles	 that	

guided	them	in	their	choices.	We	examined	the	participants’	explanations	 in	order	to	obtain	a	

better	understanding	of	their	reasoning	process.	
	

 
8 The	notation	𝑙𝑙, 𝑙, 𝑠, 𝑟, 𝑟𝑟	is	for	the	reader’s	convenience	and	was	not	presented	to	the	participants.	 
9 The	randomly	selected	order	was	used	consistently	throughout	Parts	A	and	B.		The	results	suggest	that	
the	order	did	not	affect	the	choices	in	the	experiment	and	hence	we	merged	the	data	from	the	two	variations	
in	the	analysis.	
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Type	(i):	Fixed	loss	

	 Loss	 Gain Probability	of	gain	

Rule	𝑙𝑙	 -21	 +9	 52%	

Rule	𝑙	 -21	 +15	 35%	

Rule	𝑠	 -21	 +21	 24%	

Rule	𝑟	 -21	 +27	 17%	

Rule	𝑟𝑟	 -21	 +33	 12%	

	

Type	(ii):	Fixed	gain	

	 Loss	 Gain Probability	of	gain	

Rule	𝑙𝑙	 -20	 +12	 42%	

Rule	𝑙	 -16	 +12	 39%	

Rule	𝑠	 -12	 +12	 34%	

Rule	𝑟	 -8	 +12	 28%	

Rule	𝑟𝑟	 -4	 +12	 18%	

	

Type	(iii):	Not	fixed	

	 Loss	 Gain Probability	of	gain	

Rule	𝑙𝑙	 -27	 +15	 38%	

Rule	𝑙	 -24	 +18	 31%	

Rule	𝑠	 -21	 +21	 24%	

Rule	𝑟	 -18	 +24	 19%	

Rule	𝑟𝑟	 -15	 +27	 14%	
	

	
Figure	3.	The	three	types	of	questions	in	Part	A.	The	probability	of	a	gain	for	each	stopping	rule	is	provided	
for	the	reader’s	convenience.	Only	participants	in	Tp	received	information	on	the	probability	of	a	gain	and	
a	loss	for	each	stopping	rule,	which	was	presented	in	a	sentence	below	the	description	of	the	rule’s	upper	
and	lower	cutoffs	(see	Appendix	B).	
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Part	C.	This	part	included	three	problems	(Q37–Q39),	where	each	problem	presented	a	different	

stopping	rule.	In	each	of	the	three	problems,	the	participants	were	asked	to	consider	a	baseline	

lottery	that	paid	1	NIS	with	probability	18/37	and	-1	NIS	with	probability	19/37	(as	in	Part	A)	

and	to	estimate	the	probability	that	the	game	would	end	with	a	gain,	given	the	stopping	rule.	In	

particular,	in	the	first	problem,	they	had	to	gauge	the	probability	of	finishing	the	game	with	a	gain	

of	25,	given	that	the	stopping	rule	was	(-25,	+25).	The	second	and	third	problems	were	similar	

except	that	the	stopping	rules	were	(-25,	+50)	and	(-25,	+100),	respectively.	The	correct	answers	

to	these	three	questions	were	roughly	20.5%,	5%,	and	0.3%,	respectively.	The	payment	for	each	

of	the	problems	in	Part	C	(in	case	one	of	these	problems	was	selected	for	payment)	was	40	NIS	

minus	 the	 size	 (in	 absolute	 terms)	 of	 the	 error	 in	 the	 participant’s	 estimation.	 There	was	 no	

difference	between	the	two	treatments	in	this	part.	

	

Part	D.	In	this	part,	the	participants	faced	18	decision	problems	(Q40–Q57).	In	each	problem	they	

chose	between	two	binary	 lotteries	with	known	probabilities	of	 loss	and	gain,	as	 illustrated	in	

Figure	4.	 In	each	problem,	the	two	lotteries	were	a	“mirror	image”	of	each	other	(i.e.,	– 𝑥	with	

probability	𝑝	and	+𝑦	with	probability	1 − 𝑝	vs.	– 𝑦	with	probability	1 − 𝑝	and	+𝑥	with	probability	

𝑝),	and	had	an	expected	value	of	roughly	0.	In	fact,	we	chose	the	prizes	and	the	probabilities	of	

the	lotteries	to	reflect	two	stopping	rules,	one	right-biased	rule	and	one	left-biased	rule,	with	a	

baseline	lottery’s	winning	probability	of10	0.5.	When	the	baseline	lottery	is	fair,	right-biased	rules	

induce	positively	skewed	 lotteries	and	 left-biased	rules	 induce	negatively	skewed	 lotteries.	 In	

each	problem,	 the	order	of	 appearance	of	 the	 two	 lotteries	was	 randomly	 and	 independently	

determined.	There	was	no	difference	between	the	two	treatments	in	this	part.	

The	participants’	decisions	in	this	part	were	simpler	than	those	in	Parts	A	and	B	in	two	

main	dimensions:	the	winning	probabilities	were	given	and	the	lotteries	were	not	presented	as	

stopping	rules.	The	lotteries’	mirror	structure	together	with	the	simplicity	of	the	setting	allowed	

us	to	better	understand	the	participants’	preference	for	skewed	prospects	and	connect	it	to	their	

choices	between	stopping	rules	in	the	main	parts	of	the	experiment	(Parts	A	and	B).	This	analysis	
can	be	found	in	Appendix	A.2.		

	

	

 
10 We	structured	the	lotteries	as	follows:	we	simulated	a	stopping	problem	with	a	repeated	lottery	that	
yielded	+1	with	probability	0.5	 and	−1	with	probability	0.5.	We	examined	what	would	be	 the	 induced	
probabilities	of	a	stopping	rule	with	the	bounds	−𝑦	and	+𝑥,	and	rounded	the	probabilities	to	make	the	
problem	seem	simpler.	Then,	we	did	the	same	for	−𝑥	and	+𝑦. 
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Part	D:	Game	2	
	

Choose	your	preferred	lottery	from	the	following	two	lotteries:		
 

a. 

 

 

b. 

 

	
	

Figure	4.	An	example	of	a	decision	problem	in	Part	D.	

	

	

Discussion:	Choosing	from	restricted	sets	of	rules	

In	each	of	the	decision	problems	in	Parts	A	and	B,	the	participants	chose	one	out	of	five	stopping	

rules.	Alternatively,	we	could	have	asked	them	to	make	a	single	choice	of	the	stopping	rule’s	upper	

and	lower	bounds	within	a	range	[𝑋, 𝑌],	where	𝑋 < 0	and	𝑌 > 0.	We	decided	to	let	the	participants	

face	many	problems	and	varied	the	sets	of	rules	they	faced	for	two	reasons.	First,	this	enabled	us	

to	focus	on	the	effects	of	some	fundamental	properties	of	the	stopping	rules	(e.g.,	the	effect	of	the	

favorability	of	the	baseline	lotteries,	how	the	choices	differed	given	a	fixed	loss/gain,	etc.)	on	the	

participants’	choices	while	keeping	the	decision	problems	relatively	simple.	Second,	observing	

choices	from	varied	sets	of	rules	reveals	more	information	on	the	participants’	preferences	than	

a	single	choice	when	all	rules	are	available.	This	additional	information	improves	our	ability	to	

disentangle	different	theoretical	explanations	of	the	observed	behavior.	

Our	restricted	sets	of	rules	resemble	risk	questionnaires	that	investment	banks	often	use	

to	 elicit	 investors’	 preferences	 over	 investment	 strategies.	 In	 these	 questionnaires,	 individual	

investors	 often	 have	 to	 choose	 pairs	 of	 cutoffs	 that	 represent	 the	maximal	 loss	 that	 they	 are	

willing	to	bear	in	a	given	time	period	and	the	gains	that	they	expect	to	obtain	in	that	period.	In	

practice,	 investors	are	often	given	a	 fixed	set	of	cutoffs	 to	choose	from	rather	than	allowed	to	

choose	the	cutoffs	freely.	Fixing	the	set	of	cutoffs	allows	the	bank	to	classify	the	investors	into	a	

manageable	 number	 of	 categories	 and	 implement	 an	 investment	 strategy	 suitable	 for	 each	

category.		

	

	

probability	 24%	 76%	

amount	 -25	 +8	

probability	 76%	 24%	

amount	 -8	 +25	
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3.	General	Description	of	the	Participants’	Choices	
We	now	focus	on	the	main	treatment,	𝑇!,	in	which	the	participants	were	not	provided	with	the	

rules’	induced	probabilities.	In	Section	5.2	we	shall	present	the	results	obtained	in	𝑇",	in	which	

the	 rules’	 induced	 probabilities	 were	 provided,	 and	 compare	 them	 to	 the	 results	 in	𝑇!.	 	 We	

categorized	the	participants’	choices	into	(i)	left-biased	rules	(𝑙	and	𝑙𝑙)	and	right-biased	rules	(𝑟	

and	 𝑟𝑟),	 and	 into	 (ii)	 extreme	 rules	 (𝑙𝑙	and	 𝑟𝑟)	 and	 moderate	 rules	 (𝑙	and	 𝑟).	 An	 additional	

potential	category	is	of	symmetric	rules.	However,	such	rules	were	not	frequently	chosen.	These	

categorizations	enabled	us	to	present	the	participants’	choice	patterns	succinctly.	We	describe	

the	behavior	in	Part	A	and	Part	B	side	by	side,	which	allows	us	to	observe	both	differences	and	

similarities	in	choice	patterns.	

	

3.1	Aggregate-level	data	

At	the	aggregate	 level,	 in	each	part	of	 the	experiment	there	were	1,206	choices	(67 × 18).	We	

found	that	66%	of	the	choices	 in	Part	A	were	of	 left-biased	rules	and	only	25%	were	of	right-

biased	ones.	Remarkably,	only	9%	of	the	choices	were	of	the	symmetric	rule.	In	Part	B,	46%	of	

the	chosen	rules	were	left-biased	whereas	35%	were	right-biased	(see	Table	1).	The	symmetric	

rule	was	 chosen	 in	 19%	of	 the	 cases.	 Thus,	 the	 choices	 in	 Part	 B	 reflect	 a	 somewhat	weaker	

tendency	 to	 choose	 left-biased	 rules	 than	 those	 in	 Part	 A.	 Finally,	 in	 each	 part,	 extreme	 and	

moderate	rules	were	chosen	with	roughly	similar	proportions.	

	

	 Part	A	(𝒑 < 𝟎. 𝟓)	 Part	B	(𝒑 > 𝟎. 𝟓)	

Rule	𝑙𝑙	 31%	 23%	

Rule	𝑙	 35%	 23%	

Rule	𝑠	 9%	 19%	

Rule	𝑟	 10%	 19%	

Rule	𝑟𝑟	 15%	 16%	

Table	1.	The	proportions	of	choices	in	𝑇),	out	of	1,206	(67 × 18)	choices	that	were	made	in	each	part.		

	
3.2	Individual-level	analysis		

Examining	 the	 participants’	 choices	 at	 the	 individual	 level	 reveals	 that	 many	 of	 them	 were	

consistent	in	their	tendency	to	choose	either	left-biased	rules	or	right-biased	rules.	To	measure	
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the	extent	of	this	tendency,	we	consider	the	number	of	times	each	participant	chose	a	left-biased	

rule,	which	ranges	from	0	to	18	in	each	of	the	main	parts	of	the	experiment,	A	and	B.	We	refer	to	

this	measure	as	the	number	of	left-biased	choices.		In	a	similar	manner,	we	consider	the	number	

of	 times	each	participant	chose	a	right-biased	rule	and	refer	to	this	measure	as	the	number	of	

right-biased	choices.	It	turns	out	that	70%	of	the	participants	in	Part	A	and	63%	of	the	participants	

in	Part	B	chose	the	same	category	of	rules	in	more	than	two-thirds	of	the	decision	problems.	That	

is,	for	these	participants,	either	the	number	of	left-biased	choices	or	the	number	of	right-biased	

choices	 was	 13	 or	 higher	 (out	 of	 18).	 The	 probability	 of	 observing	 such	 a	 pattern	 when	 a	

participant	chooses	uniformly	at	random	is	less	than	1%.	

The	 number	 of	 left-biased	 choices	 is	 higher	 on	 average	 in	 Part	 A	 than	 it	 is	 in	 Part	 B,	

according	 to	a	paired-samples	 t-test11	 (11.9	vs.	8.3,	𝑡(66) = 4.44, 𝑝 < 0.001).	Figure	5a	 shows	

that	 the	 cumulative	distribution	of	 the	number	of	 left-biased	 choices	per	 individual	 in	Part	A	

stochastically	dominates	the	corresponding	distribution	 in	Part	B.	The	number	of	right-biased	

choices	is	higher	on	average	in	Part	B	than	it	is	in	Part	A	(6.31	vs.	4.54,	𝑡(66) = −2.57,	𝑝 = 0.012).	

Figure	 5b	 shows	 that	 the	 cumulative	 distribution	 of	 the	 number	 of	 right-biased	 choices	 per	

individual	in	Part	B	first-order	stochastically	dominates	the	corresponding	distribution	in	Part	A.		

	

	
	

	

	

	

 
11	All	the	statistical	results	in	Section	3	are	robust	to	non-parametric	testing.	

Figure	5a.	Cumulative	distribution	of	the	number	
of	left-biased	choices	per	participant	in	Part	A	vs.	
Part	B.		

Figure	5b.	Cumulative	distribution	of	the	number	
of	right-biased	choices	per	participant	in	Part	A	vs.	
Part	B.		
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Despite	the	differences	in	the	participants’	behavior	in	Parts	A	and	B,	their	choices	in	these	

two	parts	are	highly	correlated	in	terms	of	the	number	of	left-biased	choices	(Pearson’s	𝑟 = 0.56,	

𝑝 < 0.001)	and	in	terms	of	the	number	of	right-biased	choices	(Pearson’s	𝑟 = 0.64,	𝑝 < 0.001).	

The	 combination	 of	 these	 findings	 suggests	 that	 there	 exists	 an	 individual	 tendency	 either	 to	

choose	left-biased	rules	or	to	choose	right-biased	rules,	though	the	favorability	of	the	baseline	

lottery	reduces	the	tendency	to	choose	left-biased	rules.	

	

Comment:	Directional	bias	in	different	types	of	problems.		

Examining	each	of	the	36	decision	problems	in	Parts	A	and	B	separately	suggests	that	left-biased	

choices	are	more	prevalent	than	right-biased	ones	in	all	but	two	of	them.	In	Appendix	A.1,	we	

thoroughly	examine	how	the	type	of	problem	(i.e.,	whether	the	loss	or	gain	is	fixed)	affects	the	

tendency	to	choose	left-biased	rules.	Although	there	are	some	differences	in	behavior	between	

the	problems,	in	all	the	types	of	problems,	there	are	more	participants	who	consistently	choose	

left-biased	rules	than	participants	who	consistently	choose	right-biased	rules.		

	

Moving	on	to	choices	of	extreme	vs.	moderate	rules,	we	consider	the	number	of	times	each	

individual	 chose	an	extreme	rule,	which	 ranges	 from	0	 to	18	 in	each	of	 the	main	parts	of	 the	

experiment,	A	and	B.	We	refer	 to	 this	measure	as	 the	number	of	extreme	choices. 		 In	a	similar	

manner,	we	consider	the	number	of	times	each	individual	chose	a	moderate	rule	and	refer	to	this	

measure	as	the	number	of	moderate	choices.		

Figures	6a	and	6b	show	the	cumulative	distribution	of	these	measures	and	suggest	that	

the	participants’	behavior	 in	Parts	A	and	B	 is	more	similar	 in	 terms	of	extreme	and	moderate	

choices	than	in	terms	of	left-	and	right-biased	choices.	It	turns	out	that	57%	of	the	participants	in	

Part	A	and	47%	of	the	participants	in	Part	B	chose	the	same	category	of	rules	in	more	than	two-

thirds	 of	 the	decision	problems.	That	 is,	 for	 these	participants,	 either	 the	number	of	 extreme	

choices	 or	 the	 number	 of	 moderate	 choices	 was	 13	 or	 higher	 (out	 of	 18).	 	 The	 rest	 of	 the	

participants	 diversified	 between	 extreme	 and	 moderate	 rules.	 As	 before,	 the	 participants’	

behavior	in	the	two	parts	of	the	experiment	is	highly	correlated.	The	number	of	extreme	choices	

in	Part	A	is	correlated	with	the	corresponding	number	in	Part	B	(Pearson’s	𝑟 = 0.75,	𝑝 < 0.001).	

The	number	of	moderate	choices	in	Part	A	is	correlated	with	the	corresponding	number	in	Part	B	

(Pearson’s	𝑟 = 0.58,	𝑝 < 0.001).	
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3.3	Joint analysis	of	Parts	A	and	B	

While	there	are	subtle	differences	between	the	participants’	behavior	in	the	context	of	favorable	

and	unfavorable	baseline	lotteries,	overall,	it	seems	that	their	behavior	across	different	parts	of	

the	experiment	is	highly	correlated.	Thus,	it	makes	sense	to	examine	the	behavior	in	Parts	A	and	

B	jointly.	Figure	7	presents	the	cumulative	distributions	of	the	number	of	choices	of	left-biased	

rules	and	the	number	of	choices	of	right-biased	rules	in	the	two	parts	of	the	experiment	together.	

In	addition	 to	 these	distributions,	 as	a	benchmark,	 the	 figure	presents	 the	distribution	 that	 is	

obtained	if	individuals	choose	a	stopping	rule	uniformly	at	random.	This	comparison	illustrates	

the	participants’	strong	tendency	to	either	consistently	choose	left-biased	rules	or	consistently	

choose	right-biased	rules	across	different	problems.	While	the	probability	of	choosing	at	least	22	

times	a	rule	that	is	biased	in	a	particular	direction	is	less	than	1%	when	choosing	uniformly	at	

random,	the	figure	shows	that	roughly	66%	of	our	participants	chose	either	at	least	22	left-biased	

rules	or	at	least	22	right-biased	rules.	

A	similar	pattern	is	obtained	when	we	consider	the	participants’	tendency	to	choose	an	

extremely	biased	rule	or	a	moderately	biased	rule.	This	is	illustrated	in	Figure	8,	which	presents	

the	distribution	of	the	number	of	choices	of	extreme	and	moderate	rules	against	a	benchmark	of	

choosing	uniformly	at	random.	Here	too,	roughly	66%	of	the	participants	are	at	the	tails	of	the	

benchmark	distribution.	

In	the	next	section,	we	dig	deeper	into	the	individual-level	behavior	and	suggest	a	model	

that	is	based	on	these	categorizations	and	accounts	for	the	above	behavior.		

Figure	 6a.	 Cumulative	 distribution	 of	 the	
number	of	extreme	choices	per	participant	in	
Part	A	vs.	Part	B.		

Figure	 6b.	 Cumulative	 distribution	 of	 the	
number	of	moderate	choices	per	participant	in	
Part	A	vs.	Part	B.		
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Figure	7.	The	percentage	of	participants	with	each	number	of	right-biased	and	left-biased	choices	in	Parts	
A	and	B	together	and	the	probability	of	observing	each	number	(per	participant)	given	a	binomial	process	
with	0.4	probability	of	a	right-	(left-)biased	choice	in	each	problem.		
	
	
	

							 	
Figure	8.	The	percentage	of	participants	with	each	number	of	extreme	and	moderate	choices	in	Parts	A	
and	B	together	and	the	probability	of	observing	each	number	(per	participant)	given	a	binomial	process	
with	a	0.4	probability	of	an	extreme	(moderate)	choice	in	each	problem.		
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4.	A	Model:	Two-Stage	Qualitative	Tradeoff	Resolution	(2S-QTR)	
In	a	stopping	problem,	participants	essentially	choose	a	potential	gain	and	a	potential	loss.	The	

larger	the	gain	is,	the	less	likely	a	participant	is	to	finish	the	game	with	a	gain,	and	the	larger	the	

loss	is,	the	more	likely	she	is	to	finish	the	game	with	a	gain.	Thus,	when	facing	a	stopping	problem,	

individuals	trade	off	between	prizes	and	probabilities.	As	this	qualitative	feature	is	intuitive	and	

easy	to	grasp	(as	we	shall	establish	in	the	discussion	of	Part	C’s	results	in	Section	5.1),	we	suggest	

that	this	tradeoff	is	solved	in	a	qualitative	manner.	Although	the	solution	may	be	affected	by	the	

context,	as	explained	in	the	previous	section,	participants	appear	to	be	consistent	in	the	way	they	

solve	the	tradeoff	(i.e.,	they	are	virtually	unaffected	by	the	fine	details	of	the	problems).	However,	

there	 are	 different	 types	 of	 individuals	who	 tend	 to	 resolve	 the	 prize–probability	 tradeoff	 in	

different	manners.		

	 To	 capture	 the	 qualitative	 reasoning	 described	 above,	 we	 introduce	 the	 two-stage	

qualitative	tradeoff	resolution	model	(2S-QTR),	which	is	essentially	a	qualitative	variation	of	the	

“categorize	 then	 choose”	 model	 (Manzini	 and	 Mariotti,	 2012).	 In	 our	 model,	 individuals	

categorize	the	stopping	rules	at	their	disposal	into	two	categories:	one	that	consists	of	left-biased	

rules	and	one	that	consists	of	right-biased	ones.	The	former	category	reflects	the	resolution	of	the	

prize–probability	 tradeoff	 in	 favor	 of	 a	 high	 probability	 of	 winning	 (or,	 consistent	 with	 the	

participants’	explanations,	a	low	probability	of	losing),	whereas	the	second	category	reflects	the	

resolution	of	the	tradeoff	in	favor	of	large	potential	prizes	(and	smaller	losses).	After	choosing	a	

category,	the	same	tradeoff	is	then	resolved	within	the	category:	either	in	the	same	direction	(i.e.,	

choosing	the	most	right-biased	rule	𝑟𝑟	or	the	most	left-biased	rule	𝑙𝑙)	or	in	the	opposite	direction	

(choosing	one	of	the	moderately	biased	rules:	𝑟	or	𝑙).	Thus,	individuals	implement	a	(two-stage)	

sequential	procedure,	 starting	 from	 “the	big	picture”	 (resolving	 the	prize–probability	 tradeoff	

between	the	two	categories	of	 left-biased	and	right-biased	rules),	and	then	deciding	about	the	

“fine	details”	(resolving	the	prize–probability	tradeoff	within	a	category	between	extreme	and	

moderate	rules).12		

	 The	2S-QTR	model	captures	the	above	ideas	by	assuming	that	each	participant	𝑖	can	be	

described	by	three	parameters:	𝛼# ,	𝛽# ,	and	𝜖# .	The	first	parameter,	𝛼# ,	 reflects	the	participant’s	

tendency	 to	 choose	 a	 left-biased	 category.	 The	second	parameter, 𝛽# ,	 reflects	 her	 tendency	 to	

choose	an	extreme	rule	within	a	category.	The	third	parameter,	𝜖# ,	is	a	random	noise	term	that	

reflects	 the	 probability	 that	 she	 chooses	 uniformly	 at	 random.	 Formally,	 with	 probability	 𝜖# 	

 
12 While	we	describe	a	natural	order	of	these	two	stages,	our	formalism	is	independent	of	that	order. 
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participant	𝑖	chooses	a	rule	uniformly	at	random.	Conditional	on	not	choosing	a	rule	uniformly	at	

random,	she	chooses	a	rule	in	the	left-biased	category	with	probability	𝛼# 	and	a	rule	in	the	right-

biased	category	with	probability	1 − 𝛼# .	Within	each	category	she	chooses	an	extreme	rule	with	

probability	𝛽# 	and	a	moderate	rule	with	probability	1 − 𝛽# .	Thus,	Table	2	specifies	the	probability	

that	participant	𝑖	chooses	rule	𝑗 ∈ {𝑙𝑙, 𝑙, 𝑚, 𝑟, 𝑟𝑟}	in	a	given	problem.13		

	
Rule	 Probability	

𝒍𝒍	 0.2𝜖* + (1 − 𝜖*)𝛼*𝛽* 	

𝒍	 0.2𝜖* + (1 − 𝜖*)𝛼*(1 − 𝛽*)	

𝒔	 0.2𝜖* 	

𝒓	 0.2𝜖* + (1 − 𝜖*)(1 − 𝛼*)(1 − 𝛽*)	

𝒓𝒓	 0.2𝜖* + (1 − 𝜖*)(1 − 𝛼*)𝛽*	

	Table	2.	The	probability	that	participant	𝑖	chooses	rule	𝑗 ∈ {𝑙𝑙, 𝑙, 𝑚, 𝑟, 𝑟𝑟}	in	a	given	problem	in	the	2S-QTR	
model.				
	
	 To	 examine	whether	 the	 2S-QTR	model	 explains	 the	 behavior	 of	 a	 large	 share	 of	 our	

participants,	we	performed	a	leave-one-out	prediction	exercise.	For	each	participant	and	each	of	

the	36	problems	in	Parts	A	and	B,	we	employed	a	maximum	likelihood	estimation	of	the	model’s	

parameters	based	on	the	participant’s	choices	in	the	other	35	problems.	Subsequently,	based	on	

these	estimated	parameters,	we	tried	to	predict	the	answer	to	the	36th	problem.	We	classified	a	

participant	as	a	2S-QTR	type	if	the	number	of	correct	predictions	in	this	exercise	was	14	or	higher.	

The	guiding	principle	in	choosing	the	threshold	was	that	the	probability	of	predicting	14	or	more	

choices	when	a	participant	chooses	rules	uniformly	at	random	is	less	than	1%.	Importantly,	our	

results	remain	virtually	 the	same	 if	we	choose	a	cutoff	of	13	or	15	choices	(the	probability	of	

predicting	at	least	13	or	15	choices	when	a	participant	chooses	uniformly	at	random	is	less	than	

2%	or	0.25%,	 respectively).	Overall,	we	 classified	50	 (74.6%)	of	 the	participants	 in	our	main	

treatment,	𝑇!,	 as	exhibiting	behavior	consistent	with	 the	2S-QTR	model.	The	mean	number	of	

predicted	choices	for	these	participants	was	24.24.	

Next,	to	study	the	behavior	of	the	participants	who	chose	consistently	with	the	2S-QTR	

model,	we	estimated	the	model’s	parameters	for	each	of	them	based	on	all	36	problems	in	Parts	

A	 and	 B.	 We	 used	 the	 estimation	 to	 classify	 the	 participants	 into	 types.	 Participants	 whose	

tendency	to	choose	the	left-biased	rules	category,	𝛼,	was	significantly	greater	(resp.,	less)	than	

 
13	While	 the	2S-QTR	 formalization	 is	 tailored	 to	our	 experimental	 setting,	 it	 is	possible	 to	modify	 it	 to	
situations	in	which	the	set	of	possible	stopping	rules	has	a	different	structure.	
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0.5	(at	the	5%	level)	were	classified	as	L	(resp.,	R)	types.	The	remaining	seven	participants	were	

classified	as	unbiased.	We	took	a	similar	approach	when	classifying	participants	as	extreme	and	

moderate.	 We	 classified	 as	 extreme	 (resp.,	 moderate)	 types	 participants	 whose	 tendency	 to	

choose	an	extreme	rule	within	a	category,	𝛽,	was	significantly	greater	(resp.,	less)	than	0.5.	The	

remaining	participants	were	classified	as	diversifying.	Tables	3	and	4	present	this	classification,	

where,	for	each	type,	L	and	R,	we	report	the	average	number	of	predicted	choices	in	the	leave-

one-out	 exercise,	 the	 average	 number	 of	 choices	 of	 left-biased,	 right-biased,	 moderate,	 and	

extreme	rules,	and	the	average	estimated	parameters,	𝛼	and	𝛽.	The	tables	show	that	estimated	

parameters	for	right-biased/left-biased/moderate/extreme	types	are	quite	far	from	0.5,	and	that	

their	choices	in	the	experiment	match	their	classification.		

	
L	types	 Extreme	 Moderate	 Diversifying	 Overall	

Proportion	(n)	 24%	(16)	 12%	(8)	 9%	(6)	 45%	(30)	

Mean	alpha	(SD)	 0.93	(0.09)	 0.98	(0.05)	 1	(0)	 0.96	(0.08)	

Mean	beta	(SD)	 0.84	(0.10)	 0.12	(0.14)	 0.47	(0.01)	 0.57	(0.34)	

No.	of	predicted	choices	(SD)	 26.25	(4.95)	 27	(5.37)	 18.16	(2.64)	 24.83	(5.84)	

No.	of	left	choices	(SD)	 32	(3.66)	 31.62	(4.50)	 31.66	(4.41)	 31.83	(3.86)	

No.	of	right	choices	(SD)	 3.12	(3.58)	 1.75	(2.55)	 1.16	(2.04)	 2.36	(3.06)	

No.	of	moderate	choices	(SD)	 6.31	(3.74)	 28.12	(5.36)	 17.33	(3.61)	 14.33	(10.49)	

No.	of	extreme	choices	(SD)	 28.81	(4.36)	 5.25	(5.44)	 15.5	(3.21)	 19.86	(11.38)	

Table	 3.	 A	 description	 of	 the	 2S-QTR	 model’s	 L	 types:	 the	 proportions	 of	 extreme,	 moderate,	 and	
diversifying	L	types;	the	estimated	parameters	𝛼	and	𝛽;	the	number	of	predicted	choices;	the	mean	number	
of	choices	of	left-biased,	right-biased,	moderate,	and	extreme	rules.	 
 

As	suggested	in	Table	3,	a	large	share	of	the	participants	in	𝑇!	exhibited	a	tendency	toward	

left-biased	 rules.	 In	 fact,	 30	 (45%)	 participants	 were	 classified	 as	 L	 types.	 While	 the	 formal	

selection	 rule	was	 14	 correct	 predictions	 according	 to	 our	model,	 on	 average,	 the	 number	 of	

correct	predictions	for	the	2S-QTR	model’s	L	types	was	24.83.	Participants	who	were	classified	

as	L-extreme	and	L-moderate	exhibited	behavior	that	was	consistent	with	their	classification	as	

the	average	number	of	choices	of	left-biased	rules	was	31.83,	the	number	of	extreme	rules	chosen	

by	extreme	types	was	28.8	and	the	number	of	moderate	rules	chosen	by	moderate	types	was	28.1.	
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R	types	 Extreme	 Moderate	 Diversifying	 Overall	

Proportion	(n)	 10%	(7)	 4%	(3)	 4%	(3)	 19%	(13)	

Mean	alpha	(SD)	 0.06	(0.12)	 0.12	(0.08)	 0.04	(0.04)	 0.07	(0.1)	

Mean	beta	(SD)	 0.95	(0.07)	 0.04	(0.06)	 0.36	(0.08)	 0.6	(0.41)	

No.	of	predicted	choices	(SD)	 30.14	(5.84)	 27	(6.66)	 18.67	(0.58)	 26.76	(7.05)	

No.	of	left	choices	(SD)	 2.71	(4.46)	 4.66	(3.21)	 1.66	(2.08)	 2.92	(3.68)	

No.	of	right	choices	(SD)	 32.28	(4.79)	 25.66	(8.14)	 31	(3)	 30.46	(5.64)	

No.	of	moderate	choices	(SD)	 3.14	(4.34)	 28	(3.46)	 20.33	(1.53)	 12.85	(11.75)		

No.	of	extreme	choices	(SD)	 31.85	(5.49)	 2.33	(1.53)	 12.33	(3.06)	 20.53	(13.84)	

Table	 4.	 A	 description	 of	 the	 2S-QTR	 model’s	 R	 types:	 the	 proportions	 of	 extreme,	 moderate,	 and	
diversifying	R	types;	the	estimated	parameters	𝛼	and	𝛽;	the	number	of	predicted	choices;	the	mean	number	
of	choices	of	left-biased,	right-biased,	moderate,	and	extreme	rules.	
	

A	 smaller	 share	 of	 the	 participants	 exhibited	 a	 tendency	 to	 choose	 right-biased	 rules.	

Again,	the	mean	number	of	predicted	choices	according	to	our	model	was	much	larger	than	the	

cutoff	of	14	predictions	as,	overall,	the	average	number	of	predictions	of	participants	who	were	

classified	as	the	2S-QTR	model’s	R	types	was	26.77.	As	before,	the	R	types	exhibited	behavior	that	

was	consistent	with	their	classification,	which	is	reflected	in	the	average	values	of	𝛼	and	𝛽	as	well	

as	in	the	number	of	choices	of	right-biased,	extreme,	and	moderate	rules.		

	
4.1	Alternative	theory-based	explanations	

A	natural	question	that	arises	is	whether	there	is	a	different,	more	standard	explanation	of	the	

findings	described	above.	In	this	section,	we	address	this	question	by	considering	leading	theories	

of	decision-making	under	risk:	expected	utility	with	risk	aversion,	disappointment	aversion	(DA;	

Gul,	 1991),	 regret	 aversion	 (RA;	 Bell,	 1982;	 Loomes	 and	 Sugden,	 1982),	 salience	 theory	 (ST;	

Bordalo	et	al.,	2012),	and	cumulative	prospect	theory	(CPT;	Kahneman	and	Tversky,	1992).		

	 Before	examining	the	different	theories,	it	will	be	useful	to	examine	a	relatively	simple	

explanation	of	our	findings.	To	this	end,	we	explore	the	behavior	of	a	risk-neutral	expected	utility	

maximizer	 who	 faces	 the	 decision	 problems	 in	 our	 experiment.	 Not	 only	 is	 expected	 value	

maximization	a	special	case	of	all	the	theories	we	examine,	but	it	can	also	provide	clear	intuition	

for	the	quantitative	reasoning	in	our	experimental	setting.	The	next	observation	establishes	that	
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expected	value	maximization	 implies	a	completely	different	 ranking	of	 the	rules,	{𝑙𝑙, 𝑙, 𝑠, 𝑟, 𝑟𝑟},	

depending	on	which	bound	is	fixed	in	the	problem	and	whether	the	baseline	lottery	is	favorable.	

Expected	value	maximization	is,	therefore,	inconsistent	with	our	findings.14	

	
Observation	 1.	 An	 expected	 value	 maximizer	 would	 rank	 the	 rules	 as	 𝑙𝑙 ≻ 𝑙 ≻ 𝑠 ≻ 𝑟 ≻ 𝑟𝑟	 in	

Questions	1–6	and	25–30,	and	as	𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙	in	Questions	7–12	and	19–24.		

	

Proof.	The	expected	value	 from	choosing	rule	 𝑖	 is	𝑒 × 𝑛# ,	where	𝑒	 is	 the	expected	value	of	 the	

baseline	lottery	and	𝑛# 	is	the	expected	number	of	baseline	lotteries	played	given	rule	𝑖.	When	𝑒 <

0	(as	in	Part	A)	the	expected	value	of	rule	𝑖	is	decreasing	in	𝑛# 	and	when	𝑒 > 0	(as	in	Part	B)	its	

expected	value	is	increasing	in	𝑛# .	Denote	by	𝑙# < 0	and	ℎ# > 0	the	potential	loss	and	gain	given	

rule	𝑖,	respectively.	Consider	two	rules,	𝑖	and	𝑗,	such	that	𝑙# = 𝑙$ 	and	ℎ# > ℎ$ .	Observe	that	𝑛# > 𝑛$ 	

as	the	two	rules	induce	the	same	number	of	lotteries	if	the	process	reaches	𝑙$ 	before	reaching	ℎ$ ,	

and	otherwise	rule	𝑖	results	in	more	lotteries.		This	proves	the	claim	for	Questions	1–6	and	19–

24.	Symmetrically,	consider	two	rules,	𝑖	and	𝑗,	such	that	ℎ# = ℎ$ 	and	𝑙$ > 𝑙# .	Here	too	𝑛# > 𝑛$ 	as	

the	two	rules	induce	the	same	number	of	lotteries	if	the	process	reaches	ℎ$ 	before	reaching	𝑙$ ,	and	

otherwise	rule	𝑖	results	in	more	lotteries.	This	proves	the	claim	for	Questions	7–12	and	25–30.∎	

	
We	conclude	that	an	expected	value	maximizer	would	diversify	between	the	most	right-

biased	rule	and	the	most	left-biased	rule,	depending	on	which	bound	is	fixed	and	whether	the	

baseline	lottery	is	favorable	or	not.	

After	establishing	that	expected	value	maximization	cannot	account	for	the	main	patterns	

in	the	data,	we	consider	the	more	nuanced	theories	and	compare	their	success	rate	in	predicting	

the	 data.	 For	 each	 theory,	 we	 consider	 a	 prominent	 specification	 and	 run	 a	 leave-one-out	

prediction	 exercise,	 per	 participant,	 similar	 to	 the	 one	 performed	 for	 the	 2S-QTR	model.	We	

employ	 a	 maximum	 likelihood	 estimation	 of	 each	 participant’s	 parameters	 (assuming	 a	

multinomial	logit	choice	model).15	We	begin	by	exploring	the	overall	performance	of	each	model	

 
14	In	the	remaining	problems	in	our	experiment,	in	which	no	bound	is	fixed,	the	ranking	of	the	rules	is	more	
nuanced	and	remains	inconsistent	with	our	findings.		
15	The	descriptions	of	the	theories’	specifications	appear	in	Appendix	A.3.	For	some	of	the	theories,	there	
is	more	than	one	workhorse	specification.	 In	such	cases,	we	estimated	more	than	one	specification	and	
reported	 the	 results	 for	 the	 specification	 that	was	 consistent	with	 the	 behavior	 of	 the	 largest	 share	 of	
participants	(e.g.,	for	expected	utility	theory,	we	estimated	both	a	specification	with	constant	relative	risk	
aversion	and	a	specification	with	constant	absolute	risk	aversion).	
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separately,	 allowing	different	participants	 to	be	 characterized	by	different	model	parameters.	

Aggregating	over	all	the	participants	in	𝑇!,	 i.e.,	considering	2,412	(67 × 36)	choices	between	5	

rules,	the	2S-QTR	predicts	1,290	choices,	CPT	predicts	1,015	choices,	ST	predicts	645	choices,	DA	

predicts	591	choices,	RA	predicts	585	choices,	and	CRRA	predicts	443	choices.	Thus,	2S-QTR	and	

CPT	predict	a	substantially	larger	number	of	choices	than	the	other	theories	we	consider.	

Next,	 we	 run	 a	 prediction	 competition	 between	 these	 theories,	 per	 participant,	 and	

classify	a	participant	into	a	theory	if	(i)	the	theory	predicts	at	least	14	of	the	participant’s	choices	

(a	criterion	that	is	identical	to	the	one	used	in	the	2S-QTR	classification	exercise	above),	and	(ii)	

there	 is	 no	 other	 theory	 that	 predicts	 a	 higher	 number	 of	 choices.	 Table	 5	 summarizes	 the	

prediction	competition	for	participants	in	T0.	It	illustrates	three	main	findings.	First,	even	when	

we	allow	for	alternative	explanations,	the	share	of	individuals	whose	behavior	is	best	explained	

by	the	2S-QTR	model	is	69%.	This	suggests	that	there	is	no	better	explanation	of	our	participants’	

behavior	among	the	prominent	specifications	of	decision-making	under	risk	theories.	Second,	a	

considerable	 share	 of	 the	participants	 (33%)	were	 classified	 as	CPT	 types,	where	 about	 two-

thirds	 of	 them	 were	 also	 classified	 as	 2S-QTR	 types	 (i.e.,	 the	 two	 theories	 tie	 for	 those	

participants).	Third,	only	a	small	share	of	the	participants	were	classified	into	one	of	the	other	

theories.		

	

Theory	 Proportion	(n)	

2S-QTR	 69%	(46)	

Constant	Relative	Risk	Aversion	 1.5%	(1)	

Disappointment	Aversion	 1.5%	(1)	

Regret	Aversion	 3%	(2)	

Salience	Theory	 4.5%	(3)	

Cumulative	Prospect	Theory	 33%	(22)	

Table	5.	The	proportion	and	the	number	(in	parentheses)	of	participants	in	T0,	out	of	the	67	participants,	
that	were	classified	into	each	of	the	decision	theories.	
	

A	potential	 limitation	of	our	classification	method	 is	 that	a	 theory	 is	disqualified	as	an	

explanation	for	a	participant’s	behavior	if	it	is	only	slightly	outperformed	by	another	theory.	In	

Appendix	 A.4,	we	modify	 our	 classification	method	 in	 a	manner	 that	 relaxes	 the	 competition	

between	the	different	theories.	In	this	robustness	exercise	we	consider	a	theory	to	be	a	plausible	
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explanation	of	a	participant’s	behavior	if	it	is	the	best	at	predicting	that	participant’s	behavior	or	

if	it	is	only	slightly	less	successful	than	the	best	predicting	theory.	The	results	of	this	exercise	are	

similar	to	those	presented	in	Table	5	and	can	be	found	in	Table	S5	in	the	appendix.	

Recent	findings	by	Ebert	and	Karehnke	(2021)	provide	an	intuition	for	why	CPT	seems	to	

be	 the	 best	 explanation	 for	 our	 participants’	 behavior	 among	 the	 quantitative	 theories	 we	

considered.	Ebert	and	Karehnke	show	that	among	the	leading	theories	of	decision-making	under	

risk,	 CPT	 is	 essentially	 the	 only	 theory	 that	 can	 imply	 both	 skewness-seeking	 and	 skewness-

averse	behavior,	depending	on	the	parameters.	To	see	the	connection,	let	𝑠𝑘𝑒𝑤# 	be	the	skewness	

of	the	lottery	induced	by	rule	𝑖 ∈ {𝑟𝑟, 𝑟, 𝑠, 𝑙, 𝑙𝑙}	and	note	that,	in	all	of	the	problems	in	Parts	A	and	

B,	 it	holds	 that	𝑠𝑘𝑒𝑤%% > 𝑠𝑘𝑒𝑤% > 𝑠𝑘𝑒𝑤& > 𝑠𝑘𝑒𝑤' > 𝑠𝑘𝑒𝑤'' .	Thus,	 skewness-seeking	 is	 closely	

related	to	choosing	right-biased	rules	and	skewness	aversion	is	closely	related	to	choosing	left-

biased	rules.	As	for	CPT,	Ebert	and	Karehnke	(2021)	suggest	that	skewness-seeking	follows	from	

probability	weighting	that	overweights	small	probabilities	and	underweights	large	probabilities,	

whereas	 skewness	 aversion	 follows	 from	 a	 diminishing	 sensitivity	 to	 gains	 and	 losses.	While	

Ebert	and	Karehnke’s	definition	of	skewness-seeking	and	skewness	aversion	is	“in	the	small,”	the	

next	 observation	 considers	 the	 canonic	 representation	 suggested	 by	 Kahneman	 and	 Tversky	

(1992)	 and	 shows	 that	 sufficiently	overweighting	 small	 probabilities	 implies	 a	preference	 for	

right-biased	 rules,	 whereas	 sufficiently	 diminishing	 sensitivity	 to	 gains	 and	 losses	 implies	 a	

preference	for	left-biased	rules.	

	
Observation	2.		Consider	the	representation	suggested	by	Kahneman	and	Tversky	(1992):	

𝑢(𝑥) = g −𝜆(−𝑥)
( 											𝑓𝑜𝑟		𝑥 < 0

								𝑥( 																			𝑓𝑜𝑟			𝑥 ≥ 0l	

with	the	probability	weighting	function	

𝑤(𝑝) = "!

("!*(+,")!)
"
!
	.	

Fix	a	problem	from	Part	A	or	Part	B.	

(i) 	For	any	𝜆 ≥ 1	and	𝛼 ≤ 1	there	exists	a	𝛿⋆	such	that	for	all	𝛿 ∈ (0, 𝛿⋆)	an	individual	with	

such	preferences	would	rank	the	rules	as	𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙.		

(ii) For	any	𝜆 ≥ 1	and	𝛿 ≤ 1	there	exists	an	𝛼⋆	such	that	for	all	𝛼 ∈ (0, 𝛼⋆)	an	individual	with	

such	preferences	would	rank	the	rules	as	𝑙𝑙 ≻ 𝑙 ≻ 𝑠 ≻ 𝑟 ≻ 𝑟𝑟.	
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Proof.	 Denote	 by	 𝑈# 	 and	 𝐿# 	 the	 absolute	 values	 of	 the	 upper	 and	 lower	 bounds	 of	 rule	 𝑖,	

respectively.	For	part	(i),	note	that	𝑤(𝑝)	goes	to	1	as	𝛿	goes	to	0.	Hence,	in	this	limit	rule	𝑖	induces	

a	value	of	𝑈#( − 𝜆𝐿#( .	It	follows	that	a	decision-maker	prefers	rule	𝑖	to	rule	𝑗	if	𝑈#( − 𝑈$( > 𝜆(𝐿#( −

𝐿$().	Since	𝛼 ∈ (0,1]	and		𝜆 ≥ 1,	this	inequality	implies	the	ranking	𝑟𝑟 ≻ 𝑟 ≻ 𝑠 ≻ 𝑙 ≻ 𝑙𝑙	in	all	of	the	

problems	in	our	experiment.	The	continuity	of	the	weighting	function	completes	the	proof	of	(i).	

To	prove	(ii),	consider	the	𝛼 = 0	limit,	in	which	rule	𝑖	induces	𝑤(𝑞#) − 𝜆𝑤(1 − 𝑞#),	where	𝑞# 	is	the	

probability	of	finishing	the	game	with	a	gain.	In	this	limit,	the	ranking	of	the	rules	is	𝑙𝑙 ≻ 𝑙 ≻ 𝑠 ≻

𝑟 ≻ 𝑟𝑟	as	the	expected	value	induced	by	a	rule	depends	only	on	the	probability	𝑞# .	The	continuity	

of	the	value	function	in	𝛼	guarantees	(ii).∎	

	
We	conclude	 that	CPT	can	accommodate	both	consistently	choosing	right-biased	rules	

and	 consistently	 choosing	 left-biased	 rules.	 It	 should	 be	 stressed,	 however,	 that	 it	 can	 also	

accommodate	other	choice	patterns	(in	fact,	Observation	1	shows	such	a	pattern	for	𝛼 = 𝜆 = 𝛿 =

1),	and	that	some	of	the	participants	who	were	classified	as	CPT	types	(6	out	of	22)	were	not	

classified	as	either	L	or	R	types.		

Let	us	take	an	even	more	conservative	approach	and	classify	participants	into	the	2S-QTR	

model	only	if	it	predicts	a	strictly	greater	number	of	the	participant’s	choices	than	any	of	the	other	

theories.	Under	this	approach,	30	participants	(45%)	are	classified	as	2S-QTR	types,	26	(39%)	

are	classified	into	one	of	the	quantitative	theories	considered,	and	11	(16%)	are	unclassified.	It	is	

noteworthy	 that	 for	 the	 30	 participants	 classified	 into	 2S-QTR,	 the	 quantitative	 theories’	

predictions	are	substantially	less	successful	(e.g.,	for	24	of	them,	the	difference	in	the	number	of	

predictions	is	at	least	4).	

We	wish	to	point	out	that	 for	some	of	the	22	CPT	types,	 the	estimated	parameters	are	

inconsistent	with	the	range	of	parameters	usually	estimated	in	the	literature	(Stott,	2006).	If	we	

follow	 the	 literature	 and	 restrict	 CPT	 parameters	 to	 a	more	 conventional	 range	 (0.15 < 	𝛼 <

1, 0.15 < 	𝛿	 < 1, 1 < 	𝜆	 < 5),	 then	 the	 theory	 explains	 the	 behavior	 of	 only	 11	 participants	

(16%)	 in	T0	 and	 the	 2S-QTR	model	 becomes	 the	 single	 best	 explanation	 for	 39	 participants’	

behavior	(58%).		

The	analysis	in	this	section	suggests	that	the	2S-QTR	model	provides	the	best	explanation	

for	 the	behavior	of	 a	 considerable	 share	of	 the	participants.	As	 for	 the	other	participants,	 the	

leading	explanation	is	CPT.	
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5.	The	Absence	of	the	Rules’	Probabilities	and	Its	Implications	
In	this	section,	we	examine	to	what	extent	the	choices	of	the	participants	in	the	main	treatment,	

T0,	 were	 affected	 by	 not	 knowing	 the	 rules’	 induced	 winning	 probabilities.	 Not	 knowing	 the	

induced	probabilities	should	have	no	effect	if	the	participants	can	infer	these	probabilities	from	

the	likelihood	of	winning	a	single	baseline	lottery.	Thus,	the	first	step	of	the	analysis	must	examine	

the	participants’	ability	to	make	such	an	inference.	Part	C	of	the	experiment	explores	this	question	

and	 shows	 that	 the	 participants’	 inferences	 are	 very	 far	 from	 the	 true	 winning	 probabilities	

(consistent	with	Gneezy,	1996,	and	Halevy,	2007).	In	the	second	part	of	this	section,	we	present	

the	results	of	our	second	treatment,	𝑇",	in	which	the	induced	probabilities	were	explicitly	given	

to	the	participants.	A	comparison	of	the	two	treatments	sheds	light	on	the	effects	of	the	unknown	

probabilities	on	the	participants’	behavior.			

	 	
5.1	Can	the	participants	infer	the	rules’	induced	winning	probabilities?	(Part	C)	

In	each	of	the	three	problems	in	Part	C,	we	presented	the	participants	with	a	stopping	rule.	The	

rules	were	 (−25,+25), (−25,+50),	 and	 (−25,+100)	 in	 the	 first,	 second,	 and	 third	problems,	

respectively.	The	participants	were	asked	to	assess	the	rules’	induced	winning	probabilities	given	

that	the	probability	of	winning	a	single	baseline	lottery	is	18/37,	as	in	Part	A.	The	correct	induced	

winning	probabilities	were	20.5%,	5%,	and	0.3%,	respectively.	

The	 participants’	 average	 estimates	 in	 𝑇!	 were	 39.6%,	 24.3%,	 and	 17.4%.	 The	 mean	

errors	in	absolute	terms	were	23.2%,	20.6%,	and	17.4%.	Moreover,	only	26.8%	of	the	answers	

were	within	a	range	of	5%	from	the	correct	answer	(e.g.,	an	estimate	of	15.6%–25.6%	in	the	first	

problem	in	Part	C).16	While	most	of	the	participants	failed	to	estimate	the	winning	probabilities	

correctly,	they	did	exhibit	a	qualitative	understanding	of	the	prize–probability	tradeoff,	where	

86.8%	 of	 them	 provided	 monotone	 estimates	 (an	 estimate	 is	 monotone	 if	 the	 estimate	 for	

(−25,+25)	is	weakly	greater	than	the	estimate	for	(−25,+50)	and	the	latter	is	weakly	greater	

than	the	estimate	for	(−25,+100)).	The	fact	that	the	vast	majority	of	the	participants	failed	to	

estimate	the	induced	winning	probabilities	provides	additional	motivation	for	our	investigation	

of	 the	𝑇"	 treatment	 in	which	 the	participants	were	provided	with	 the	 rules’	 induced	winning	

probabilities.	

 
16	In	Tp,	where	the	participants	observed	the	probabilities	of	the	stopping	rules	in	Parts	A	and	B,	the	average	
estimates	in	Part	C	were	37%,	22.7%,	and	12.3%,	and	the	average	error	size	slightly	decreased	in	all	three	
problems.	Only	29.8%	of	the	answers	in	Tp	were	within	a	range	of	5%	from	the	correct	answer.	
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Our	 findings	 in	 Part	 C	 complement	 Gneezy’s	 (1996)	 findings,	which	 relate	 to	 positive	

expected	value	lotteries.	He	finds	that	individuals	use	the	stage-by-stage	probability	as	an	anchor	

and	 adjust	 insufficiently:	 estimations	 are	 biased	 toward	 the	 direction	 of	 the	 single-lottery	

probability,	 resulting	 in	 an	 underestimation	 of	 the	 overall	 probability	 of	 winning.	 The	

combination	of	these	findings	and	our	results	can	have	significant	implications	for	situations	in	

which	 processes	 are	 perceived	 to	 be	 “almost	 fair.”	 It	 could	 lead	 to	 over-optimism	 and	 over-

participation	in	situations	where	the	baseline	drift	is	slightly	negative	(e.g.,	casino	gambling)	and	

over-pessimism	and	under-participation	in	situations	where	the	baseline	drift	is	slightly	positive	

(e.g.,	stock	market	trading).			

	
5.2	Known	vs.	missing	induced	winning	probabilities	(𝑻𝒑	vs.	𝑻𝟎	)		
We	briefly	describe	the	behavior	in	𝑇",	in	which	the	participants	were	provided	with	the	stopping	

rules’	induced	probabilities	of	winning	and	losing.		We	show	both	similar	and	different	patterns	

from	those	observed	in	𝑇!	and	compare	the	behavior	statistically.		

At	the	aggregate	level,	the	behavior	patterns	that	are	exhibited	by	the	𝑇"	participants	are	

mostly	similar	to	the	ones	observed	in	𝑇!.	First,	when	the	baseline	lottery	is	unfavorable,	there	is	

a	 tendency	 to	 prefer	 left-biased	 stopping	 rules	 to	 right-biased	 ones.	 Second,	 this	 tendency	 is	

weaker	when	𝑝 > 0.5.	We	found	that	in	Part	A,	62%	of	the	846	choices	(47 × 18)	are	of	left-biased	

rules	and	28%	are	of	right-biased	ones,	whereas	in	Part	B,	49%	of	the	choices	are	of	left-biased	

rules	and	37%	are	of	right-biased	ones	(see	Table	6).	A	prominent	difference	from	𝑇!	is	the	higher	

ratio	of	extreme	vs.	moderate	rules	in	𝑇":	 in	both	parts,	extreme	rules	are	more	frequent	than	

moderate	rules	within	both	the	category	of	left-biased	rules	and	the	category	of	right-biased	rules.	

	

	 Tp	 	 T0	

	 Part	A	(𝒑 < 𝟎. 𝟓)	 Part	B	(𝒑 > 𝟎. 𝟓)	 	 Part	A	(𝒑 < 𝟎. 𝟓)	 Part	B	(𝒑 > 𝟎. 𝟓)	

Rule	𝑙𝑙	 44%	 32%	 	 31%	 23%	

Rule	𝑙	 18%	 17%	 	 35%	 23%	

Rule	𝑠	 11%	 15%	 	 9%	 19%	

Rule	𝑟	 10%	 13%	 	 10%	 19%	

Rule	𝑟𝑟	 18%	 24%	 	 15%	 16%	

Table	6.	The	proportions	of	choices	in	Tp	out	of	the	846	choices	(47 × 18)	that	were	made	in	each	part,	
presented	next	to	the	proportions	of	choices	in	T0	out	of	the	1,206	choices	(67 × 18)	in	each	part.	
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At	the	individual	level,	the	mean	number	of	choices	of	left-biased	rules	in	Part	A	of	𝑇"	is	

higher	than	that	in	Part	B	of	𝑇",	according	to	a	paired-samples	t-test17	(11.09	vs.	8.74,	𝑡(46) =

2.96,	𝑝 = 0.005).	The	mean	number	of	choices	of	right-biased	rules	in	Part	A	of	𝑇"	is	lower	than	

that	in	Part	B	of	𝑇",	according	to	a	paired-samples	t-test	(4.98	vs.	6.6,	𝑡(46) = −2.26,	𝑝 = 0.028).	

Nonetheless,	the	participants’	choices	in	Part	A	and	Part	B	are	correlated	in	terms	of	the	number	

of	 left-biased	 choices	 (Pearson’s	𝑟 = 0.62,	𝑝 < 0.001)	 and	 the	number	 of	 right-biased	 choices	

(Pearson’s	𝑟 = 0.57,	𝑝 < 0.001).	A	comparison	of	 the	number	of	 left-biased	choices	across	the	
two	treatments,	𝑇!	and	𝑇" ,	reveals	that	there	are	no	significant	differences	in	either	part	or	overall	

(when	the	two	parts	are	analyzed	jointly).	Similarly,	there	are	no	significant	differences	between	

the	treatments	in	the	number	of	right-biased	choices.		
By	contrast,	there	are	significant	differences	between	the	two	treatments	in	the	number	

of	extreme	and	moderate	choices.	In	particular,	participants	in	𝑇"	tended	to	choose	the	extreme	

stopping	rules	more	often	than	those	in	𝑇!	in	both	parts	and	overall	(the	mean	number	out	of	36	

choices	 was	 21.13	 vs.	 15.45,	 𝑡(112) = −2.88,	 𝑝 = 0.005).	 Accordingly,	 the	 mean	 number	 of	

moderate	rules	was	lower	in	𝑇"	than	in	𝑇!	(10.28	vs.	15.6,	𝑡(112) = 3.43,	𝑝 < 0.001).	Thus,	the	

uncertainty	over	the	induced	lotteries	in	𝑇!	mitigated	the	individuals’	extreme	choices.	

The	 above	 observations	 suggest	 that	 the	 directional	 (left-biased	 vs.	 right-biased)	

tendencies	in	𝑇"	are	similar	to	those	found	in	𝑇!.	A	comparison	of	the	two	treatments	indicates	

that	in	both	parts,	the	distribution	of	our	measures	of	the	number	of	the	participants’	left-biased	

or	right-biased	choices	is	not	significantly	different	between	the	treatments.	Furthermore,	there	

are	no	significant	differences	between	the	treatments	in	the	number	of	left-biased	or	right-biased	

choices	for	any	of	the	six	types	of	questions,	as	described	in	Appendix	A.1.	The	only	significant	

difference	in	behavior	between	the	treatments	is	the	tendency	mentioned	above	of	choosing	more	

extreme	stopping	rules	in	𝑇"	(i.e.,	rules	𝑙𝑙	and	𝑟𝑟	are	more	common	than	rules	𝑙	and	𝑟).	

Consequently,	roughly	74%	of	the	participants	in	𝑇"	exhibited	behavior	consistent	with	

the	2S-QTR	model,	as	in	𝑇!.	Table	7	presents	the	classification	into	theory-based	types	in	𝑇",	based	

on	a	leave-one-out	prediction	competition,	as	in	Section	4.1.	It	appears	that	the	main	difference	

between	the	two	treatments	is	that	in	𝑇"	a	larger	share	of	the	participants	were	classified	as	CPT	

types	(𝑝 < 0.017,	𝜒1 = 5.73),	while	a	somewhat	smaller	share	of	the	participants	were	classified	

as	2S-QTR	types	(𝑝 = 0.058,	𝜒1 = 3.61).18	Among	the	24	participants	(51%)	who	were	classified	

 
17	All	the	results	in	Section	5.2	are	robust	to	non-parametric	testing.	
18 We	modify	our	classification	method	in	a	robustness	exercise	reported	in	Appendix	A.4.	 
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as	2S-QTR	types,	17	were	L	types,	5	were	R	types,	and	2	were	unbiased.	A	possible	interpretation	

of	 these	 differences	 is	 that	 when	 the	 probabilities	 of	 gains	 and	 losses	 are	 provided,	 the	

participants	better	recognize	situations	in	which	the	tradeoff	between	prizes	and	probabilities	is	

clear-cut	and	adjust	their	choices	accordingly.	For	example,	in	situations	where	a	minor	deduction	

of	a	winning	probability	leads	to	a	major	increase	in	prizes,	they	tend	to	opt	for	the	most	right-

biased	rules.	Symmetrically,	in	situations	where	a	major	increase	in	the	probability	of	winning	is	

accompanied	by	a	small	change	in	prizes,	they	tend	to	opt	for	the	most	left-biased	rules.	This	may	

explain	why	the	quantitative	theories	we	considered,	such	as	CPT,	account	for	the	behavior	of	a	

larger	share	of	the	participants	in	𝑇".	

	

Theory	
Tp	(N=47)	

Proportion	(n)	

T0	(N=67)	

Proportion	(n)	

2S-QTR	 51%	(24)	 69%	(46)	

Constant	Relative	Risk	Aversion	 15%	(7)	 1.5%	(1)	

Disappointment	Aversion	 11%	(5)	 1.5%	(1)	

Regret	Aversion	 13%	(6)	 3%	(2)	

Salience	Theory	 11%	(5)	 4%	(3)	

Cumulative	Prospect	Theory	 55%	(26)	 33%	(22)	

Table	7.	The	proportion	and	the	number	(in	parentheses)	of	participants	in	Tp	who	were	classified	into	
each	of	the	decision	theories,	next	to	the	corresponding	results	in	T0.	
	

CPT	accounts	for	the	behavior	of	55%	of	the	participants	in	𝑇".	As	in	𝑇!,	for	some	of	the	

CPT	 types,	 the	 estimated	 parameters	 are	 inconsistent	 with	 the	 range	 of	 parameters	 usually	

estimated	in	the	literature.	If	we	follow	the	literature	and	restrict	CPT’s	parameters	to	a	more	

conventional	range	(0.15 < 	𝛼 < 1, 0.15 < 	𝛿	 < 1, 1 < 	𝜆	 < 5),	then	only	18	participants	(38%)	

in	𝑇"	are	classified	as	CPT	types.	

We	 conclude	 that	 there	 are	 both	 similarities	 and	 differences	 between	 the	 patterns	 of	

behavior	observed	in	𝑇"	and	𝑇!.	First,	the	participants’	tendency	to	consistently	choose	left-	or	

right-biased	 rules	 is	 quite	 similar	 between	 the	 two	 treatments.	 Recall	 that	 the	 𝑇"	 and	 𝑇!	

participants	received	the	same	experimental	instructions.	Moreover,	the	stopping	rules’	framing	

in	 the	 two	 treatments	was	 identical:	 each	alternative	was	presented	as	a	 lower	and	an	upper	

bound	 rather	 than	 as	 a	 standard	 lottery.	 The	 only	 difference	 between	 the	 treatments	was	 an	
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additional	 sentence	 in	 𝑇"	 that	 provided,	 for	 every	 alternative,	 the	 induced	 probabilities	 of	

reaching	the	lower	and	the	upper	bound	given	𝑝.		We	suggest	that	the	stopping	rules’	framing	and	

the	 qualitative	 understanding	 of	 the	 prize–probability	 tradeoff	 in	 this	 context	 (established	 in	

Section	5.1)	makes	many	participants	reason	 in	qualitative	 terms	when	trading	off	prizes	and	

probabilities	even	when	the	probabilities	are	known.		

Second,	the	participants’	resolution	of	the	tradeoff	between	extreme	and	moderate	rules	

is	different	between	the	two	treatments:	the	𝑇" 	participants	tend	to	opt	for	extreme	rules	more	

than	 the	 𝑇!	 participants.	 The	 tendency	 to	 choose	 extreme	 rules	 results	 in	 a	 larger	 share	 of	

participants	who	behave	in	a	manner	that	is	consistent	with	CPT,	which	also	results	in	fewer	2S-

QTR	types	in	this	more	standard	exercise	(nonetheless,	more	than	half	of	the	participants	were	

classified	as	such	types).	However,	the	results	of	𝑇!	suggest	that	in	situations	where	participants	

lack	information	about	the	induced	probabilities	of	stopping	with	a	gain	or	a	loss,	as	often	occurs	

in	reality,	a	larger	share	of	them	reason	qualitatively.	

	

6.	Conclusion	
We	examined	individuals’	preferences	over	stopping	rules	when	they	have	commitment	power.	

We	suggest	a	simple	qualitative	model	whereby	individuals	tend	to	trade	off	between	the	size	of	

the	prize	and	the	probability	of	winning	in	a	consistent	manner,	either	in	favor	of	right-biased	

stopping	rules	or	in	favor	of	left-biased	stopping	rules.	Then,	they	resolve	this	tradeoff	again	in	

favor	of	either	the	extreme	or	the	moderate	rule	within	the	category	of	left-	or	right-biased	rules.	

Our	model	accounts	for	behavior	patterns	in	the	data,	which	cannot	be	explained	by	prominent	

theories	of	decision-making	under	risk.		

Our	 analysis	 suggests	 that	many	 individuals	 use	 qualitative	 decision	 procedures	even	

when	 the	 stopping	 rules’	 induced	 winning	 probabilities	 are	 known.	 These	 individuals	

consistently	 focus	 either	 on	 the	winning	 probability	 or	 on	 the	 size	 of	 the	 potential	 gains	 and	

losses.	More	generally,	our	results	provide	indications	of	qualitative	reasoning:	individuals	think	

in	 relative	 terms	 and	 are	 not	 responsive	 to	 a	 decision	 problem’s	 fine	 numerical	 details.	 An	

interesting	direction	 for	 future	 research	would	be	 to	 examine	whether	 this	 type	of	 reasoning	

arises	in	stopping	problems	in	other	contexts,	such	as	job	search	and	experimentation	in	R&D,	as	

well	as	when	choosing	between	other	kinds	of	prospects. 
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