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Motivation

I We analyze the inequalities between distributions (groups) of an ordered
attribute.

I Dissimilarity: two (or more) groups are similarly distributed whenever “the
overall populations of the two groups take the same values with the same
frequency.”[Gini, 1914].

I When does a set of distributions display more dissimilarity than another?

I Relevant question for:
I Unfair inequality [Fleurbaye 2008, Roemer Trannoy 2016, Ferreira and

Peragine 2018, ...]

I Discrimination [Gastwirth 1975, Dagum 1980, Jenkins 1994, Le Breton et al
2012]

I Mobility [Dardanoni 1993, Van de gaer et al 2001, Jantti and Jenkins 2015]

I Distance between distributions [Shorrocks 1982, Ebert 1984, Magdalou and
Nock 2011]
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Motivation

I Consider two distributions of a cardinal attribute.

I A basic criterion is the difference in averages.

I The criterion is useful to compare situations G1,G2 versus F1,F2.

I A more robust approach is gap curve dominance [Andreoli et al, 2019]
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Motivation
I These and similar criteria are translation invariant and robust, but...

I ... a desirable criterion should also be scale invariant and, in a broader
sense, invariant to monotone transformations of the data.
I Model specification (FE, trends,...),
I Choice of scale ($, ranks, log$)
I ...,

I If the criterion preserves only ordinal information it is also useful for
studying:
I Self-assessed health.
I Skills.
I Composite indicators of well-being.
I Ordered alternatives (jobs, neighborhoods, schools).
I ...

Contribution

We develop a dissimilarity criterion for comparing distributions F1, . . . ,Fd to
G1, . . . ,Gd that is robust, invariant to monotone transformations and hence
preserves ordinal information. Our main result offers an axiomatic derivation
of the criterion.



Motivation
I These and similar criteria are translation invariant and robust, but...

I ... a desirable criterion should also be scale invariant and, in a broader
sense, invariant to monotone transformations of the data.
I Model specification (FE, trends,...),
I Choice of scale ($, ranks, log$)
I ...,

I If the criterion preserves only ordinal information it is also useful for
studying:
I Self-assessed health.
I Skills.
I Composite indicators of well-being.
I Ordered alternatives (jobs, neighborhoods, schools).
I ...

Contribution

We develop a dissimilarity criterion for comparing distributions F1, . . . ,Fd to
G1, . . . ,Gd that is robust, invariant to monotone transformations and hence
preserves ordinal information. Our main result offers an axiomatic derivation
of the criterion.



Motivation
I These and similar criteria are translation invariant and robust, but...

I ... a desirable criterion should also be scale invariant and, in a broader
sense, invariant to monotone transformations of the data.
I Model specification (FE, trends,...),
I Choice of scale ($, ranks, log$)
I ...,

I If the criterion preserves only ordinal information it is also useful for
studying:
I Self-assessed health.
I Skills.
I Composite indicators of well-being.
I Ordered alternatives (jobs, neighborhoods, schools).
I ...

Contribution

We develop a dissimilarity criterion for comparing distributions F1, . . . ,Fd to
G1, . . . ,Gd that is robust, invariant to monotone transformations and hence
preserves ordinal information. Our main result offers an axiomatic derivation
of the criterion.



Motivation

x

1

F (x) F (F
−1

(p))

F (x)100

p

p′

p p′

F1(x)F2(x)

G1(x)G2(x)F (x)

G(x)

I Choose reference distributions (endogenous) F and G (in gray).

I Measure proportions F1(.), F2(.), G1(.), G2() at quantiles F
−1

(p) and G
−1

(p)
at proportions p, p′, . . . (• and � symbols)

I Criterion:

|G1(G
−1

(p))− G2(G
−1

(p))| ≤ |F1(F
−1

(p))− F2(F
−1

(p))|, ∀p ∈ [0, 1]



Motivation

x

1

F (x) F (F
−1

(p))

F (x)100

p

p′

p p′

F1(x)F2(x)

G1(x)G2(x)F (x)

G(x)

I Choose reference distributions (endogenous) F and G (in gray).

I Measure proportions F1(.), F2(.), G1(.), G2() at quantiles F
−1

(p) and G
−1

(p)
at proportions p, p′, . . . (• and � symbols)

I Criterion:

|G1(G
−1

(p))− G2(G
−1

(p))| ≤ |F1(F
−1

(p))− F2(F
−1

(p))|, ∀p ∈ [0, 1]



Motivation

x

1

F (x) F (F
−1

(p))

F (x)100

p

p′

p p′

F1(x)F2(x)

G1(x)G2(x)F (x)

G(x)

I Choose reference distributions (endogenous) F and G (in gray).

I Measure proportions F1(.), F2(.), G1(.), G2() at quantiles F
−1

(p) and G
−1

(p)
at proportions p, p′, . . . (• and � symbols)

I Criterion:

|G1(G
−1

(p))− G2(G
−1

(p))| ≤ |F1(F
−1

(p))− F2(F
−1

(p))|, ∀p ∈ [0, 1]



Outline of the presentation

I A dissimilarity criterion for discrete (empirical) distributions:
I matrix notation,

I piecewise linear representations.

I Axiomatic model;

I Characterization;

I Additional results
I Dissimilarity indices

I Implementable conditions

I Empirical comparisons

I Dissimilarity, discrimination and distance between distributions.

I Empirical illustration: Unfair inequality and education reforms in Sweden
[Meghir and Palme 2005]:



Notation

I A = [aij ]
i=1,...,d
j=1,...,n ∈Md is a distribution matrix

I d groups by n classes.

I aij is the proportion of group i observed in class j .

I Matrices in Md have fixed d but variable n.

I
−→
A ∈ Rd,nA

+ is a cumulative distribution matrix

I −→a k :=
∑k

j=1 aj .

I h first order stochastic dominates that of groups ` whenever −→a hj ≤ −→a `j
for all j = 1, ..., n, with a strict inequality (<) holding for at least a class.



Notation

I pj ∈ [0, 1] is the average cumulative distributions across groups in j .

I pj = 1
d

∑
i
−→a ij ∈ [0, 1].

I −→a i (p) ∈ [0, 1] is the cumulative group distribution
I onto function specific of each group i

I −→a i (pj ) = −→a ij

I −→a i (0) = 0

I −→a i (pn) = 1

I For p ∈ (pj−1, pj ) it solves p = 1
d

∑
i
−→a i (p), obtained by linear

interpolation of −→a ij and −→a ij+1:

−→a (p) := (−→a 1(p), . . . ,−→a d (p))t = −→a j−1 +
p − pj−1

pj − pj−1
aj .

I Plotting −→a i (p) across levels p ∈ [0, 1] gives instead a piecewise linear
graph on the unit interval domain



Notation

Example

A =

 0.4 0.1 0.3 0.2
0.1 0.4 0 0.5
0.1 0.1 0.6 0.2

 and
−→
A =

 0.4 0.5 0.8 1
0.1 0.5 0.5 1
0.1 0.2 0.8 1

 . (1)

Classes

cdf
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0 1
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The dissimilarity criterion

Definition

For any A,B ∈Md , B is at most as dissimilar as A, which we denote B 4D A
if and only if for all p ∈ [0, 1]

h∑
i

−→
b (i)(p) ≥

h∑
i

−→a (i)(p), h = 1, . . . , d . (2)

We say that B is as most as dissimilar as A if the proportions of the groups
adding up to the bottom p100% of the average of the cumulative distributions

across groups in B (i.e
−→
b (p)) are unambiguously less dispersed than the

corresponding proportions in A (i.e. −→a (p)), for any p ∈ [0, 1].

Remark

When d = 2, the Lorenz dominance condition (2) can be equivalently stated as

|
−→
b 1(p)−

−→
b 2(p)| ≤ |−→a 1(p)−−→a 2(p)|, ∀p ∈ [0, 1].
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The dissimilarity criterion
The dissimilarity criterion 4D sets out a partial order of distribution matrices:
I Lorenz dominance of shares at any p,
I For all p.

1) Transitivity.

Remark

For any A,B,C ∈Md , if B 4D A and C 4D B then C 4D A.

2) Boundedness. Let the perfect similarity S and maximal dissimilarity D
matrices:

S :=

 s′

...
s′

 and D :=

 d′1 . . . 0′nd
...

. . .
...

0′n1
. . . d′d

 . (3)

Remark

For any S,D,A ∈Md where S and D are as in (3), S 4D A 4D D.

Remark

Let S,S′ be two distinct perfect similarity matrices and D,D′ be two distinct
maximal dissimilarity matrices, then S ∼D S′ and D ∼D D′.
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Axiomatic model

A dissimilarity ordering is a complete and transitive binary relation 4 on the set
Md with symmetric part ∼, that ranks B 4 A whenever B is at most as
dissimilar as A.

Axiom

E (Exchange) For any A, B ∈Md with nA = nB = n where group h dominates
group ` and k ′ > k, if B is obtained from A by an exchange transformation
such that (i) bhk = ahk + ε and bhk′ = ahk′ − ε, (ii) b`k = a`k − ε and
b`k′ = a`k′ + ε, (iii) bij = aij in all other cases, (iv) ε > 0 so that if −→a ij ≤ −→a i′j

then
−→
b ij ≤

−→
b i′j for all groups i 6= i ′ and for all classes j, then B 4 A.

Example

B =

 0.4 0.1 0.3− ε 0.2 + ε
0.1 0.4 0 + ε 0.5− ε
0.1 0.1 0.6 0.2

 4 A. (4)
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Axiomatic model
Next set of axioms allows to modify the shape of a distribution matrix but does
not affect its informational content. Cardinality concerns are lost.

Axiom

IEC (Independence from Empty Classes) For any A, B, C, D ∈Md and
A = (A1,A2), if B = (A1, 0d ,A2) , C = (0d ,A) , D = (A, 0d) then
B ∼ C ∼ D ∼ A.

Axiom

ISC (Independence from Split of Classes) For any A,B ∈Md with
nB = nA + 1, if ∃ j such that bj = βaj and bj+1 = (1− β)aj with β ∈ (0, 1),
while bk = ak ∀k < j and bk+1 = ak ∀k > j , then B ∼ A.

Example

 0.4 β0.1 (1− β)0.1 0.3 0.2
0.1 β0.4 (1− β)0.4 0 0.5
0.1 β0.1 (1− β)0.1 0.6 0.2

 v

 0 0.4 0.1 0 0.3 0.2 0
0 0.1 0.4 0 0 0.5 0
0 0.1 0.1 0 0.6 0.2 0

 v A

(5)
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Axiomatic model
Next axioms emphasize the extent of disadvantage of one group over another
rather than the sign of it.

Axiom

IPG (Independence from Permutations of Groups) For any A, B ∈Md , if
B = Πd · A for a permutation matrix Πd ∈ Pd then B ∼ A.

Axiom

I (Interchange of Groups) For any A, B ∈Md with nA = nB = n, if
∃Πh,` ∈ Pd permuting only groups h and ` whenever −→a hk = −→a `k , such that
B = (a1, ..., ak ,Πh,` · ak+1, ...,Πh,` · anA), then B ∼ A.

Example

 0.1 0.4 0 0.5
0.4 0.1 0.3 0.2
0.1 0.1 0.6 0.2

 v

 0.4 0.1 0 0.5
0.1 0.4 0.3 0.2
0.1 0.1 0.6 0.2

 v A (6)
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Main result /1
The intersection of the dissimilarity orderings 4 (which is a partial order [see
Donaldson and Weymark 1998]) characterizes the dissimilarity criterion

Theorem

For any A, B ∈Md the following statements are equivalent:

(i) B 4 A for every ordering 4 satisfying axioms E, SC, IEC, IPG and I,

(ii) B 4D A.

I Axiom E combines concerns for distance and correlation reduction [Epstain
Tanny 1980, Tchen 1980, Atkinson Bourguignon 1982] as two equivalent
perspectives. Axiom I eliminates concerns for correlation.

I When Md are income mobility matrices, the Theorem offer and alternative
characterization of the orthant order [Dardanoni 1993, Jantti and Jenkins 2015]

I When Md represent intergenerational mobility matrices, 4D regards origin
independence as a reference [Shorrocks 1978, Kanbur Stiglitz 2016].

I The Theorem extends the (intergenerational) mobility orders to matrices that are
non-monotone with different margins. Useful to in inequality of opportunity IOP
analysis [Roemer and Trannoy 2016, Andreoli et al 2019, Andreoli et al 2022]

I The Theorem yields a normative justification to robust IOP comparisons with
ordinal variables [Ferreira Gignoux 2011].
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Main result /2
I The 4D gives rise to an orthant test [Ch. 6 in Shaked Shantikuman 2006].

I Axiom E invokes a stronger but appealing principle (that groups are
ordered by SD) than [Tchen 1980]. Axiom E weaker than operations that
characterize the supermodularity order [Mayer and Strulovici 2013].

I Axiom E is incompatible with Merge operations, regarded as
unambiguously dissimilarity-reducing when outcomes are categories
[Andreoli and Zoli, SCW 2022].
I Merge operations characterize Matrix Majorization,
I Weakened to zonotope inclusion criterion.

Example

Consider merging (element by element) classes 2 and 3 of matrix Ã and then
splitting in proportion 5/8. This gives:

Ã →
(

0.4 0 0.4 0.2
0.1 0 0.4 0.5

)
→

(
0.4 0.4 5

8
0.4 3

8
0.2

0.1 0.4 5
8

0.4 3
8

0.5

)
= B̃

B̃ unambiguously less dissimilar than Ã [Andreoli and Zoli, SCW 2022].
But, for ε = 0.15:

Ã =

(
0.4 0.25− ε 0.15 + ε 0.2
0.1 0.25 + ε 0.15− ε 0.5

)
4D B̃!!!!
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Ã →
(

0.4 0 0.4 0.2
0.1 0 0.4 0.5

)
→

(
0.4 0.4 5

8
0.4 3

8
0.2

0.1 0.4 5
8

0.4 3
8

0.5

)
= B̃

B̃ unambiguously less dissimilar than Ã [Andreoli and Zoli, SCW 2022].
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Useful facts

I Sketch of the proof. Go!

I Characterization of a family of dissimilarity indices. Go!

I Implementation of the dissimilarity criterion. Go!

I Empirical dissimilarity criterion. Go!

I The geometry of dissimilarity. Go!

I Dissimilarity, discrimination and distance. Go!



Application: Evaluating the Swedish education reform

The Swedish education reform:

I increased compulsory education duration, abolished streaming after grade
six and introduced a uniform national curriculum.

I gradually introduced across Swedish municipalities in 1949 until 1962.

I Quasi-random variation across space and cohorts [Meghir Palme 2005].

I Significant average effects on earnings [Meghir Palme 2005, Fisher et al
2020] education [Holmlund 2007], mortality [Lager Torssander 2012],
health [Meghir et at 2018].

Objective: assess the consequences of the reform on unfair inequality in
income, along circumstances of birth.



Application: Evaluating the Swedish education reform
Sample design:

I Cohorts 1948 (pre-reform) and 1953 (post-reform)

I About 18,000 boys and girls, whose income is observed 1985 though 1996.

I 65% of sample lives in municipalities that switch into the reformed system
about 1962.

Goal: compare income opportunities of post-reform cohort in treated
municipalities (treatment) with the control municipalities.

Identification: Quasi random assignment of municipalities switching reform
status, clear of cohort, municipality, county, year FE and trends.

Estimating model: Let yitcmd be the log-income observed in year t for children
i when aged about 40 years old, born in cohort c and municipality m and living
in a treatment (d = 1) or control (d = 0) municipality. The log-income process
is decomposed according to the following specification:

yitcmd = θ0 + θt + θc + θm + θd + θtc + θtd + γ0t + γct + γmt + εitcmd , (7)

Predict residuals ˆεitcmd and distinguish along the lines of treatment vs control
groups and gender, ability, location and parental background characteristics
(d = 32 groups).
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Application: Evaluating the Swedish education reform

The specification of the model residuals may affect evaluations that retain
cardinal information (vertical bars are vingitiles):

(a) Control group (b) Treatment group



Application: Evaluating the Swedish education reform

The specification of the model residuals may affect evaluations that retain
cardinal information (vertical bars are vingitiles):

(c) Control group (d) Treatment group



Application: Evaluating the Swedish education reform

For ease of exposition, comparisons are limited to earnings vingitiles, yielding
two distribution matrices of size 32× 20 for the treatment (T) and control (C)
cases.

(e) Control group C (f) Treatment group T



Application: Evaluating the Swedish education reform
From T and C we derive the empirical representations of the cumulative group
distributions

−→
t (p) and −→c (p) for p ∈ [0, 1], respectively (in gray).

We also plot the (finite) set of points for which it is sufficient to test Lorenz
dominance (at fixed p) in order to conclude on the null T 4D C (in black)

(g) Control group −→c (p)



Application: Evaluating the Swedish education reform
From T and C we derive the empirical representations of the cumulative group
distributions

−→
t (p) and −→c (p) for p ∈ [0, 1], respectively (in gray).

We also plot the (finite) set of points for which it is sufficient to test Lorenz
dominance (at fixed p) in order to conclude on the null T 4D C (in black)

(h) Treatment group
−→
t (p)



Application: Evaluating the Swedish education reform
Dominance test for the null T 4D C builds on the statistic

h∑
i

−→
b (i)(pj) ≥

h∑
i

−→a (i)(pj), h = 1, . . . , d ,

issued at a finite number of intercepts p1, . . . , p493 Implementation



Application: Evaluating the Swedish education reform

The test is not informative about where inequalities in groups distributions are
stronger over the domain of p. A relative version of the test allows to deal
with this issue, considering first the groups cumulative distributions relative to
the average, dp, and then constructing the Lorenz curves coordinates as
follows, for p1, . . . , p493:

(i) Control group
∑h

i=1
1

dpj

−→c ∗(i)j (j) Treatment group
∑h

i=1
1

dpj

−→c ∗(i)j



Application: Evaluating the Swedish education reform
Using the relative statistics based on differences in Lorenz curves at intercepts
p1, . . . , p493, we conclude that the education reform has made income
opportunities more equal or low-income achievers, whereas the effects are
ambiguous in the middle of the distribution. Implementation



Application: Evaluating the Swedish education reform
Such differences my be statistically significant, but they are more than
compensated by improvements at the bottom according to aggregate measures
of dissimilarity.

The figure reports the estimator for
∑32

i=1 wi t(i)(pj) and
∑32

i=1 wic(i)(pj) for
selected p ∈ [0, 1], where wi is the S-Gini weighting function (parametrized by
k = 1, . . . , 5). Indices



Conclusions
A new dissimilarity criterion 4D is introduced:

I Multi-group (d ≥ 2),

I Preserves ordinal information,

I Robust,

I Partial order.

Axiomatic characterization of 4D :
I Intersection of dissimilarity orderings,

I Based on simple operations,

I Exchange: widely used,

I Interchange: introduce concerns for distance of distributions,

I Operations break down more effects of more complex transformations (eg.
policy)

A policy evaluation exercise using 4D :
I Evaluate the distributional impact of the Swedish reform on unfair

inequality,

I Test is rejected,

I Yet, violations are mild and concentrated in the middle.

I Aggregate measures support reduction of unfair inequality.



Implementation
Back

Assessing B 4D A requires and infinity of Lorenz curve dominance comparisons.

For a special class of matrices with same margins, same order of groups, the
criterion 4D can be easily tested with via the orthant test:

Definition

The matrices A, B ∈Md are ordinal comparable if (i) 1t
d · A = 1t

d · B (same
margins), (ii) all groups are ordered according to stochastic dominance in A
and B, and (iii) the order of the groups is the same in A and B.

Remark

Let A ∈Md and A∗ obtained from it through elimination of empty classes,
split of classes, interchanges and permutation of groups operations, then
A∗ ∼D A.

Remark

Any representation of the distributions −→a (p) and
−→
b (p) taken from matrices

A,B ∈Md can be equivalently obtained from two ordinal comparable matrices
A∗,B∗ ∈Md such that A∗ ∼D A and B∗ ∼D B.
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Implementation
Back

Example

A =

 0.4 0.1 0.3 0.2
0.1 0.4 0 0.5
0.1 0.1 0.6 0.2

 and B =

 0.4−0.1 0.1+0.1 0.3 0.05 0.15
0.1+0.1 0.4−0.1 0 0.35 0.15

0.1 0.1 0.6 0.05 0.15



1

0 p4 = 1

cdf
1

0

cdf

p1 p2 p3p5 p6 1



Implementation
Back

Example

A∗ =

 0.4 0.1 0.15 0.15 0.1 0.1
0.1 0.4 0 0 0.25 0.25
0.1 0.1 0.3 0.3 0.1 0.1

 and B =

 0.3 0.2 0.15 0.15 0.05 0.15
0.2 0.3 0 0 0.35 0.15
0.1 0.1 0.3 0.3 0.05 0.15



1

0 p4 = 1

cdf
1

0

cdf

p1 p2 p3p5 p6 1



Implementation
Back

Given that
−→
b i (p) =

−→
b ∗i (p) at any p, we have:

Corollary

For any A,B ∈Md the following conditions are equivalent:

(i) B 4D A;

(ii) There exist A∗,B∗ ∈Md ordinal comparable that are obtained from A
and B respectively through elimination of empty classes, split of classes,
interchanges and permutation of groups operations, such that

∆(h, pj) :=
h∑

i=1

−→
b ∗(i)j −

h∑
i=1

−→a ∗(i)j ≥ 0

for all h = 1, . . . , d and for all j = 1, . . . , n∗.

Remark
When dissimilarity comparisons involve only two distributions (which we conventionally
denote h = 2), it can be shown that the test statistic ∆(2, pj ) coincides with

∆(2, pj ) =
∣∣∣−→b∗1j −

−→
b∗2j

∣∣∣− ∣∣∣−→a∗1j −
−→
a∗2j

∣∣∣ ≤ 0, ∀j .



Dissimilarity indices
Back

I Rank-dependent inequality indies (such as the Gini index family) can be
used to value dissimilarity:

Dw (A) :=

∫ 1

0

d∑
i=1

wi (p)−→a (i)(p)dp

I Weighting functions W:
I
∑

i wi (p) = 0 ∀p.

I wi non-decreasing in i

I Example : S-Gini function

wi (p) =
1

p

(
1− ((1− i − 1

d
)k − (1− i

d
)k )

)
for k a positive integer [Donaldson and Weymark 1980, Aaberge et al.
2019].

Corollary

For any A,B ∈Md the following conditions are equivalent:

(i) B 4D A;

(ii) Dw (B) ≤ Dw (A) for all w ∈ W.



Empirical criterion
Back

Objective: derive empirical tests for dissimilarity comparisons involving
distributions Fi (y) for a group i = 1, . . . , d defined over cardinal outcomes
y ∈ R.

I Random sample of seize N, ι = 1, . . . ,N from the population

I Ni the sample size of group i

I yι an empirical occurrence for observation ι

I The index j = 1, . . . , n can be used to identify distinct empirical
realizations y(j)

I Denote aij =
∑Ni
ι=1

1
Ni

1{yι = y(j)}. In small sample with no ties, likely

n = N and aij ∈ {1/Ni , 0}
I For any y ∈ [yj , yj+1], denote the empirical cdf of group i :

F̂i (y) :=

Ni∑
ι=1

1

Ni
1{yι ≤ y} =

Ni∑
ι=1

1

Ni
1{yι ≤ y(j)} = −→a ij .

I By linearity, F̂i (y)→p Fi (y) and
∑

i
1
d
F̂i (y)→p F (y)

I As the sample size N grows:

−→a (p) −→p
(
F1(F

−1
(p)), . . . ,Fd(F

−1
(p))

)
, p ∈ [0, 1].



Dissimilarity preserving operations (ordered case)

Back

Axiom

Introduction of empty classes, split of classes, permutation of groups and
Interchange preserve the dissimilarity in the ordered setting .

A′ =

 0 0.6 0.4
0.25 0 0.75
X X X

 with
−→
A′ =

 0 0.6 1
0.25 0.25 1
X X X



IL IM IHIL IM IH IM IHIL

1

.2

.4

.6

.8

IM IHIL
0
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Dissimilarity preserving operations (ordered case)

Back

Axiom

Introduction of empty classes, split of classes, permutation of groups and
Interchange preserve the dissimilarity in the ordered setting .

A′ =

 0 0.25 0.35 0.4
0.25 0 0 0.75
X X X X

 with
−→
A′ =

 0 0.25 0.6 1
0.25 0.25 0.25 1
X X X X



IL IMIL IM1 IHIM2 IL IMIL IM1 IHIM2

1

.2

.4

.6

.8

0
IM1 IM2IL IH



Dissimilarity preserving operations (ordered case)
Back

Axiom (Exchange)

A transfer of population masses (ε) across adjacent classes that is progressive
for the dominating group and regressive for the dominated group reduces
dissimilarity.
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0.25 0 0 0.75
X X X X
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Geometry of dissimilarity

Back

I Consider a different mapping, the hypercube [0, 1]d

I The Monotone Path : MP(A) :=
{−→a (p) : p ∈ [0, 1]

}
.

I Its expansion, the Path Polytope:

PP(A) := {z : z ∈ conv {Πd · p} , Πd ∈ Pd , p ∈ MP(A)}

.

I1 I2 I3 I4 I5 I6

1

O

0.8

0.6

0.4

0.2

F1 F2

1O

1

F1

F2



Geometry of dissimilarity

Back

I Consider a different mapping, the hypercube [0, 1]d

I The Monotone Path : MP(A) :=
{−→a (p) : p ∈ [0, 1]

}
.

I Its expansion, the Path Polytope :

PP(A) := {z : z ∈ conv {Πd · p} , Πd ∈ Pd , p ∈ MP(A)}

.

I1 I2 I3 I4 I5 I6

1

O

0.8

0.6

0.4

0.2

F1 F2

1O

1

F1

F2



Geometry of dissimilarity

Back

I Consider a different mapping, the hypercube [0, 1]d

I The Monotone Path : MP(A) :=
{−→a (p) : p ∈ [0, 1]

}
.

I Its expansion, the Path Polytope :

PP(A) := {z : z ∈ conv {Πd · p} , Πd ∈ Pd , p ∈ MP(A)}

.

I1 I2 I3 I4 I5 I6

1

O

0.8

0.6

0.4

0.2

F1 F2

1O

1

F1

F2



Geometry of dissimilarity
Back

I Complex to draw for d > 2, easy to test.
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Gr.3

Gr.2

Gr.1

(1, 1, 1)
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Geometry of dissimilarity

Back

I The dissimilarity test: PP(B) ⊆ PP(A).

I ⊆-ordering induce a partial ranking

I diagonal = PP(S) ⊆ PP(A) ⊆ PP(D) = hypercube
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I The dissimilarity test: PP(B) ⊆ PP(A).

I ⊆-ordering induce a partial ranking

I diagonal = PP(S) ⊆ PP(A) ⊆ PP(D) = hypercube
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Implementation

Back

I Main idea: it is sufficient to test Lorenz dominance on selected intercepts.

I d = 2 is visual.

I d > 2 needs some effort... and the Kolm’s (1969) triangles.
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Implementation

Back

I Main idea: it is sufficient to test Lorenz dominance on selected intercepts.

I d = 2 is visual.

I d > 2 needs some effort... and the Kolm’s (1969) triangles.
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Implementation

Back

I Main idea: it is sufficient to test Lorenz dominance on selected intercepts.

I d = 2 is visual.

I d > 2 needs some effort... and the Kolm’s (1969) triangles.
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