Goal-Setting and Behavioral Change: Evidence from a Field Experiment on Water Conservation

> Ximeng Fang (University of Oxford)

with Sumit Agarwal, Lorenz Goette, Tien Foo Sing, Samuel Schoeb, Thorsten Staake, Verena Tiefenbeck, and Davin Wang

Goal setting can motivate individuals to exert higher effort

• traditional focus in economics on goals with incentives

Goal setting can motivate individuals to exert higher effort

- traditional focus in economics on goals with incentives
- psychological literature: work even without material rewards (e.g., Mento et al. 1987, Locke and Latham, 1990 etc.)

Goal setting can motivate individuals to exert higher effort

- traditional focus in economics on goals with incentives
- psychological literature: work even without material rewards (e.g., Mento et al. 1987, Locke and Latham, 1990 etc.)
- also recent studies in economics (e.g., Koch and Nafziger 2011, Gómez-Miñambres 2012, Harding/Hsiaw 2014, Corgnet et al. 2015, Samek 2016, Allen et al. 2017, Clark et al. 2020)

Goal setting can motivate individuals to exert higher effort

- traditional focus in economics on goals with incentives
- psychological literature: work even without material rewards (e.g., Mento et al. 1987, Locke and Latham, 1990 etc.)
- also recent studies in economics (e.g., Koch and Nafziger 2011, Gómez-Miñambres 2012, Harding/Hsiaw 2014, Corgnet et al. 2015, Samek 2016, Allen et al. 2017, Clark et al. 2020)

Goals as **norms**? Potential for low-cost, scalable **interventions**?

• digitization \rightarrow many new applications and opportunities

Our study: goals for household water conservation

Field experiment on water conservation in an everyday activity

- (exogenous) goals and feedback through smart meters
- 525 households (>2,000 individuals) in Singapore
- study duration of 4 (to 6) months

Our study: goals for household water conservation

Field experiment on water conservation in an everyday activity

- (exogenous) goals and feedback through smart meters
- 525 households (>2,000 individuals) in Singapore
- study duration of 4 (to 6) months

Several advantages of our setting:

- natural field context
- can study effect dynamics over many repetitions
- fine-grained data to study behavioral responses

Water conservation in Singapore

Saving water is in our hands

Saving all the water can make a huge difference. Better all we can ill relay our abit, achies and sow where it this can mine. Save 0 these by streward grower minde line. Save 11 three by using a cup when you braintyour leasts. Save 14 three by wanting wegetables with a hub of water trained of a numming tap. Dwey 11% bit helps. Saving where is not hands.

Let's make every drop count

Save 9 litres of water when you do any of the following:

Use a tumbler when brushing your teeth

Wash clothes on a full load

in a container and not under a running tap

www.pub.gov.sg/conserve www.facebook.com/PUBsg

OUR WATER,

OUR FUTURE

Water conservation in Singapore

Saving water is in our hand

Saving at the water can make a huge difference. Before all us on all entry our day, and and save water at the same time, Save 0 thesis by showening one much lies, Save 11 times by using a cap when you brainly can beach Save 14 times by working registration with in table of water natived of a summing tap. Dway Hill statistical sales water is no chock.

t's make drop count

s of water when you of the following:

Use a tumbler when brushing your teeth

Field experiment in Singapore

Target behavior: Water conservation in the shower

Field experiment in Singapore

Target behavior: Water conservation in the shower

The field experiment

The field experiment

Households receive smart meters that measure water usage in the shower:

Random assignment into experimental conditions

The smart shower meters can show information though a display.

- Control group: display only shows water temperature
- Real-time feedback: water temperature for first 20 showers, then real-time feedback on water usage (see Tiefenbeck et al. 2018)
- Real-time feedback + Goal:

water temperature for first 20 showers, then real-time feedback **plus goal and injunctive norm**

Goals range from hard to easy

Figure: Histogram of baseline usage

Five goal conditions:

- 10 liter
- 15 liter
- 20 liter
- 25 liter
- 35 liter

▶ shower level

Empirical Results

Field experiment in Singapore

No evidence for extensive margin effects

Field experiment in Singapore

No evidence for extensive margin effects

Water conservation effects by goal difficulty

Water conservation effects by goal difficulty

Regression estimates for ATEs

		effect stability over time		
	Full sample	Early-phase	Mid-phase	Late-phase
RTF group	-1.873***	-1.784***	-1.933***	-1.816***
	(0.522)	(0.495)	(0.586)	(0.615)
10l goal group	-2.972***	-2.951***	-3.126***	-2.814***
	(0.592)	(0.550)	(0.641)	(0.741)
15l goal group	-3.922***	-4.084***	-3.767***	-3.871***
	(0.661)	(0.648)	(0.714)	(0.755)
20l goal group	-3.061***	-3.185***	-2.975***	-3.032***
	(0.494)	(0.506)	(0.532)	(0.612)
25l goal group	-2.991***	-3.100***	-3.102***	-2.775 ^{***}
	(0.565)	(0.537)	(0.611)	(0.674)
351 goal group	-1.108*	-1.115 ^{**}	-1.088	-1.124
	(0.592)	(0.546)	(0.666)	(0.728)
Bathroom FEs	yes	yes	yes	yes
"Time" controls	yes	yes	yes	yes
Observations R^2	318318	117220	117457	114461
	0.335	0.325	0.325	0.376

SEs clustered at household level. * p < 0.1, ** p < 0.05, *** p < 0.01

Stopping probabilities around the goal

Behavioral adjustments over 4 months

Goal attainment rates drop over time

	Placebo		Actual attainment rates		
	Control	RTF	Goal conditi	ons (pooled)	
	(1)	(2)	(3)	(4)	
Intervention	-0.009	0.017*	0.080***	0.021***	
	(0.006)	(0.010)	(0.008)	(0.004)	
Study progress	-0.010	-0.015	-0.038***	-0.011***	
	(0.008)	(0.010)	(0.006)	(0.004)	
Water volume FEs	-	-	-	yes	
Bathroom FEs	yes	yes	yes	yes	
Baseline mean	0.626	0.617	0.619	0.619	
N	203275	181875	212680	212471	
Clusters	70	67	360	360	
R ²	0.175	0.189	0.348	0.715	

Notes. Linear probabilities model. Standard errors in parentheses are clustered at the household level. * p < 0.1, ** p < 0.05, *** p < 0.01

Conclusion

Goal setting is effective in encouraging water conservation

- can more than double the effect of feedback alone
- best goals are challenging yet attainable

Conclusion

Goal setting is effective in encouraging water conservation

- can more than double the effect of feedback alone
- best goals are challenging yet attainable

Strongest behavioral responses at the margin of goal attainment

- spike in effort at the goal, steep drop after failure (asymmetry)
- psychological cost of "norm violation"?

Conclusion

Goal setting is effective in encouraging water conservation

- can more than double the effect of feedback alone
- best goals are challenging yet attainable

Strongest behavioral responses at the margin of goal attainment

- spike in effort at the goal, steep drop after failure (asymmetry)
- psychological cost of "norm violation"?

Water conservation effects remarkably stable over time

- despite reduction in direct response to goal
- Félix Ravaisson's (1838) double law of habit

Thanks for your attention!

Goal conditions range from hard to easy

Figure: Histogram of shower volumes in baseline

Randomization checks: BL shower behavior

	Volume	Duration	Flow rate	Temperature	Energy
	[liter]	[min]	[l/min]	[Celsius]	[kWh]
10l goal	0.36	0.41	-0.32	0.25	0.01
	(1.29)	(0.25)	(0.29)	(0.29)	(0.02)
15l goal	0.63	0.20	0.04	-0.54*	-0.01
	(1.42)	(0.25)	(0.32)	(0.28)	(0.02)
20l goal	0.35	0.26	0.09	-0.01	0.01
	(1.19)	(0.23)	(0.31)	(0.31)	(0.02)
25l goal	0.10	0.16	-0.12	-0.08	0.01
	(1.31)	(0.22)	(0.28)	(0.30)	(0.02)
35l goal	1.49	0.34	0.14	-0.31	0.01
	(1.33)	(0.25)	(0.30)	(0.30)	(0.02)
Real-time feedback	0.66	0.49*	-0.39	-0.33	0.01
	(1.37)	(0.26)	(0.28)	(0.34)	(0.02)
Constant	19.18***	3.80***	5.30***	33.88***	0.24***
	(0.92)	(0.15)	(0.21)	(0.20)	(0.01)
Observations	763	763	763	763	761
<i>R</i> ²	0.002	0.006	0.007	0.011	0.002
F test: p-value	0.950	0.524	0.4277	0.115	0.971

Interactions with baseline water use

	(1) linear interaction		(2) above median	
	main effect	×baseline	main effect	$\times \mathbb{I}_{\textit{median}^+}$
10l goal \times intervention $\times \dots$	-2.884***	-0.179***	-1.854***	-3.852***
	(0.552)	(0.060)	(0.503)	(0.961)
15l goal \times intervention \times	-3.827***	-0.405***	-1.562***	-6.192***
	(0.515)	(0.077)	(0.406)	(1.131)
20l goal \times intervention \times	-2.937***	-0.296***	-1.297***	-4.276***
	(0.413)	(0.066)	(0.408)	(0.781)
25I goal \times intervention \times	-2.946***	-0.286***	-1.293***	-4.783***
	(0.475)	(0.068)	(0.428)	(0.977)
35I goal \times intervention \times	-1.172**	-0.171**	-0.352	-2.115**
	(0.489)	(0.071)	(0.450)	(0.912)
$RTF\timesintervention\times\ldots$	-1.699***	-0.265***	-0.093	-3.350***
	(0.441)	(0.053)	(0.508)	(0.843)
Intervention $\times \ldots$	1.108***	0.048	0.967***	1.242**
	(0.278)	(0.035)	(0.278)	(0.540)
Observations	314608		314608	
between <i>R</i> ²	0.287		0.109	

Margins of adjustment

	Volume	Duration	Flow rate	Temperature
	[liter]	[sec]	[liter/min]	[Celsius]
10l goal $ imes$ intervention	-2.876***	-34.249***	-0.056	0.057
	(0.563)	(7.081)	(0.071)	(0.248)
15l goal $ imes$ intervention	-3.815***	-36.540***	-0.215**	0.341
	(0.634)	(7.389)	(0.097)	(0.253)
20I goal \times intervention	-2.901***	-28.237***	-0.119	0.198
	(0.461)	(6.065)	(0.080)	(0.255)
25I goal \times intervention	-2.871***	-26.963***	-0.096	-0.011
	(0.530)	(6.783)	(0.069)	(0.316)
35l goal \times intervention	-1.290**	-12.369*	-0.010	0.002
	(0.542)	(6.399)	(0.072)	(0.319)
$RTF\timesintervention$	-1.763***	-20.144***	0.010	0.050
	(0.483)	(5.630)	(0.069)	(0.287)
Intervention	1.091***	5.158	0.133**	-0.027
	(0.287)	(3.514)	(0.055)	(0.231)
Bathroom FEs	Yes	Yes	Yes	Yes
Observations R^2	314608	286732	286732	286732
	0.331	0.297	0.859	0.561
Standard errors clustered at household level. * $p < 0.1$, ** $p < 0.05$, *** $p < 0.01$				

Ximeng Fang

Effects on household consumption level

Effects on household consumption level

Treatment effects on daily household water use per capita

1. Estimated vs. actual volume before the intervention

No relationship between actual and estimated water use

- Estimated average is quite close to true value (wisdomof-the-crowd effect)
- But individuals know virtually nothing about their own water use
- Quite typical, seen in many other studies.

No differences between control group and experimental conditions (all collapsed into one group).

Strong improvement in awareness of resource use in the treatment conditions.

 Relationship between actual and estimated water use becomes much steeper. than it was before.

Control group shows no improvement in awareness of water use (not surprising).

Awareness persists throughout the study.

 Treated groups continue to show the same, much tighter, relationship between actual and estimated water use.

Control group shows no improvement.