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Abstract

Leveraging an institutional feature that multi-unit auctions for different goods are

often held simultaneously, we propose a method for estimating own-and cross-

product demand elasticities, avoiding the usual endogeneity issues in demand esti-

mation. We show that these elasticities, together with the auction format, determine

how to optimally allocate goods across auctions. To implement our method, we use

data from Canadian Treasury auctions. We show that the auctioneer can achieve

higher revenues by issuing less of the price-sensitive and more of the price-insensitive

security in a discriminatory price auction, and vice versa in a uniform price auction.
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1 Introduction

Each year, securities and commodities worth trillions of dollars are allocated through

multi-unit auctions (Pycia and Woodward (2022)). Surprisingly, many of these auctions

are conducted by the same auctioneer, in parallel. For instance, in many countries (in-

cluding the U.S., Japan, Brazil, France, China, and Canada) government bonds of dif-

ferent maturities are sold in separate, parallel auctions. International carbon allowances

regulated by the Emissions Trading Scheme (ETS), diamonds, renewable energy, fish,

vegetables, and wine are also sold in parallel auctions in which bidders demand multiple

units.1 Further, trading multiple stocks on an exchange is like participating in parallel

multi-unit (double) auctions (Rostek and Yoon (2021a,b, 2022)).

We develop a framework to estimate demand systems for multiple goods by leveraging

simultaneous auctions, and show how to use these demand systems to achieve higher

revenue without changing the auction format. For illustration, we use data from Canadian

Treasury auctions, which is an important market to study in and of itself.

General Framework. In the first part, we introduce a model of the bidding process in

simultaneous multi-unit auctions to identify full demand systems, i.e. demand schedules

for all goods, and describe how to estimate its parameters.

The idea is to combine two institutional features. First, parallel auctions take place

under the same market rules, with the same set of participants, at the same time and

in the same economic situation. This allows us to control for unobserved heterogeneity.

Second, in multi-unit auctions, bidders submit full demand schedules. This implies that

we do not have to pool data across time and market participants to construct demand

schedules. Thus, we can ensure that variation in quantities is attributable to variation in

prices and not something omitted that is potentially correlated with prices. In contrast,

the existing literature addresses this issue by employing instruments aimed at isolating

such exogenous variation by making the appropriate exogeneity and validity assumptions

(following Berry et al. (1995) in industrial organization, and Koijen and Yogo (2019) in

finance).

Our model allows us to overcome two common challenges. First, bidders are strategic

and shade their bids which implies that we do not observe their actual demand. Second,

by the auction rules, bidders cannot submit multi-dimensional demand schedules that are

1For examples of simultaneous auctions of carbon allowances by the EU and UK, click here or here,
by Canada and Quebec, click here; of (spot) diamonds, see Cramton et al. (2013); of renewable energy,
see Ryan (2022) or click here; of procurement products, see Somaini (2020); of cars, see Larsen and Zhang
(2022); of food by Feeding American, click here; of fish, see Carleton (2000), or click here or here; of
tomatoes, click here; of wine, click here. All websites to click on were accessed on 07/08/2022.
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contingent on prices of multiple securities. This means that, unless demand for different

products is independent, we only observe parts of the demand schedules.

Our technical contribution is to extend techniques for identifying demand (or willing-

ness to pay) from bidding data in multi-unit auctions by Guerre et al. (2000), Hortaçsu

(2002) and Kastl (2011) to allow demand to depend not only on the allocation of the under-

lying product, but also on prices of other products. This complements contemporaneous

work by Gentry et al. (2022) who identify preferences in simultaneous single-object first-

price auctions. Further, we derive equilibrium conditions for interconnected multi-unit

auctions with common empirical features. This stands in contrast to existing theoretic

contributions which consider elegant and tractable, yet less realistic settings not suited

for estimation (e.g., Wittwer (2020, 2021) and Rostek and Yoon (2021a)).

In the second part of the paper, we show that an auctioneer can increase total auction

revenue by behaving like a monopolist who price discriminates and exploits differences

in demand elasticities. This approach complements a vast literature that analyzes and

proposes changes to (multi-unit) auction rules and formats (see Wilson (2021) for an

overview). While our approach is by no means the best way to optimize revenue, it is

straightforward to implement. This can be useful given that it often difficult to change

established auction formats. For instance, Klemperer (2010) proposes a combinatorial

auction format to sell multiple financial securities. Despite excellent theoretic properties,

however, the auction hasn’t become popular in practice.2

We begin with a theoretic framework that builds on a simple intuition. Assume the

auctioneer seeks to allocate a total amount Q (or production capacity) in the form of two

products, S and L.3 Aggregate demand is price-insensitive for S and price-sensitive for

L, meaning that the market price for S decreases less when increasing the supply of S by

dQ than the market price for L increases when decreasing the supply of L by the same

amount. Then, starting from an equal split of total supply, an auctioneer can increase

total revenue by issuing a bit less of L and a bit more of S. Given the difference in price-

sensitivity, this increases the revenue in the auction for L by more than it decreases the

revenue in the auction for S. However, the lower the supply of L, the lower the revenue

gain in the auction for L, even though the price for L increases more strongly. There is a

price-quantity trade-off.

2Another example is that it took a long academic debate with early contributions by Bikhchandani
and Huang (1989) and Back and Zender (1993) and field experiments to change the format of U.S.
Treasury auctions from discriminatory price to uniform price. Other countries, such as China, are still
debating which auction format to use (e.g., Barbosa et al. (2022)).

3In our setting S is short-term Treasuries and L is long-term Treasuries. In the example of fish
auctions, S would be one fish species, say halibut, and L another, such as salmon, or in the case of ETS
auctions, S would be the carbon allowance for one country and L for another.
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We show that this intuition goes through in a uniform price auction in which all

winning bidders pay the market clearing price. It would be misleading, however, in a

discriminatory price auction in which winning bidders pay the prices they bid, adding a

novel aspect to the list of things that distinguish the two auction formats (following Wilson

(1979) and Ausubel et al. (2014)). The reason is that unlike in a uniform price auction,

the entire aggregate demand curve, and not just the market clearing price, matters in

a discriminatory price auction. When supply changes, bidders adjust their bids and the

aggregate demand curve adjusts. It becomes an empirical question whether it is revenue-

increasing to issue more of S or L, which can be answered using our structural model.

Empirical application. To illustrate the applicability of our method we use data from

the Canadian primary market for government debt. Our data covers 15 years from 2002

until 2015. For most of the paper, we focus on bills; bills of different maturities are

sold in parallel, while bonds of different maturities are sold on different days.4 Further,

we concentrate on banks that act as primary dealers (dealers) because they buy almost

all the debt in an average auction. Non-dealer banks (customers) must place their bids

via dealers. We observe which security and maturity type is issued at what amount, in

addition to unique anonymized bidder identifiers. Moreover, we observe all submitted

bids (i.e., demand schedules) and know at what time and how the bids are submitted,

whether directly to the auctioneer or via a dealer. Finally, we observe the identity of the

winning bidders, how much they won and at what price.

With these data we first present descriptive evidence to motivate that it is important

to consider demand systems that account for interdependencies across different securities.

Using the time-stamps on when bids are placed, we show that dealers who observe their

customers placing bids for one security before the auction closes, say the 3 month bill

(3M), change their own bids not only for the 3M bill (as in Hortaçsu and Kastl (2012)),

but also for the 6M and 12M bill. This points towards interdependencies across the

different maturities. If instead demand for the 3M bill was entirely independent of the

6M bill, the dealer would bid in the 3M auction as if this auction took place in isolation.

We next estimate our model and find demand for all three maturities of bills to be

rather price-insensitive. For instance, when the average dealer wins 1% more of the supply

of 12M bills, his price offer for the 12M bills decreases by 0.24 basis points (bps).5 Perhaps

surprisingly, for the average dealer bills are only weak substitutes, despite the claim that

4The U.S. and other large economies also issue bonds in parallel. Our methodology is easily portable
to these other settings.

5Allen and Wittwer (2021) find that the demand elasticity of an average investor in the secondary
market is of similar magnitudes, applying a fundamentally different estimation approach.
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all bills are cash-like. For instance, if the average dealer wins 1% more of the supply of

the 3M bills, the price offered for the 12M bills decreases by 0.06 bps, and of the 6M bills

by 0.02 bps.

We use our demand estimates to show that it is revenue-increasing to issue more of

the price-sensitive bond (longer maturity) and less of the price-insensitive bond (shorter

maturity) in a discriminatory price auction and vice versa in a uniform price auction. In

particular, in a discriminatory price auction, assuming that bonds are perfect substitutes

would lead us to over-estimate the effects on revenue of maturity-shuffling government

debt. On the other hand, assuming independence would lead to an under-estimate of

these same revenue effects. Even though the economic magnitudes are small for the Cana-

dian bill market (since demands are overall price-insensitive), the exercise highlights the

importance of correctly accounting for interdependencies across goods when calculating

revenues. Revenue gains from reshuffling supply are larger when demand is more price-

sensitive, as is the case in other Treasury markets, such as the Spanish and Portuguese

primary markets (see Bigio et al. (2021); Albuquerque et al. (2022)).

Our empirical application complements two strands of literature in macro-finance. The

first analyzes the aggregate demand for government debt with market-level data of the

secondary market. Most of this literature focuses on comparing long-term with short-term

debt (e.g., Gagnon et al. (2011); D’Amico et al. (2012); Lou et al. (2013); Krishnamurthy

and Vissing-Jørgensen (2011, 2012, 2015)).6 We consider different types of short-term debt

(i.e., bills), more similar to Greenwood et al. (2015b) and Krishnamurthy and Li (2022).

In contrast to these papers, we zoom in on one market, the primary market, where we can

identify demand of individual institutions which act as dealers. Further, we show that the

demand of these dealers may differ from the aggregate demand of the market, because

dealers function as market makers who connect the primary and secondary markets.7

The second literature analyzes whether to issue government debt in the form of long-

or short-term bonds (e.g., Missale and Blanchard (1994); Greenwood et al. (2015a,b);

Belton et al. (2018); Bhandari et al. (2019); Bigio et al. (2021)). In this literature, the

key trade-off for the government is between default and inflation commitment problems

and roll-over risks. We set aside these dynamic aspects of the debt allocation problem

6A common approach for studying interdependencies across maturities is via term-structure models.
To identify the implied correlations of prices (yields) across maturities, various papers rely on changes
in the supply of Treasury securities (e.g., Krishnamurthy and Vissing-Jørgensen (2012); D’Amico et al.
(2012); Lou et al. (2013)). Other papers provide evidence that even government bonds that are issued
by different countries are close substitutes (e.g., Nagel (2016)).

7In Appendix A we provide one possible micro-foundation for our demand curve specification in the
spirit of Vayanos and Vila (2021). This model highlights how demand and prices in the primary market
are affected by the structure of secondary markets.
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by including an issuance cost of debt that absorb the (mechanical) price difference of

bonds with different maturities. Instead, we highlight how a government can reduce its

cost of financing by exploiting the fact that demand for shorter-term bonds tends to be

less price-sensitive than demand for longer-term bonds. We view these two approaches as

complementary.

General lessons and future research. Our empirical application focuses on the the

demand and supply of government debt, yet our method and insights on how to split

supply across different goods can be useful in many other settings, including those de-

scribed above. Unlike standard “BLP” demand estimation following Berry et al. (1995),

our method can identify both types of interdependencies, substitutes and complements,

which likely arise in many settings for various reasons, for instance, when bidders face bud-

get or capacity constraints. For this, we do not need to impose any correlation structure

in the unobserved preferences for different goods which affects the estimates in standard

demand models (Gentzkow (2007)).

Our counterfactual exercises highlight that taking these interdependencies seriously

can help auctioneers achieve higher auction revenues without having to change the auction

format. To illustrate the main insight, let us use another, perhaps more relatable, setting.

Consider a fisher who routinely auctions salmon and halibut and charges bidders (here

retailers) the market price for each fish. The fisher conjectures that salmon consumers are

less price-sensitive than halibut consumers. Then, he should fish more salmon and less

halibut to achieve higher revenue given his boat has capacity Q. However, if he charged

each bidder the prices that they bid, it might be better to fish more halibut and less

salmon.

Future research can expand our framework and estimation in various ways. It might

be interesting to quantify how much revenue could be gained when switching to a com-

binatorial auction format (such as Klemperer (2010)). This could help us understand

why parallel auctions of related goods exist in practice, even though we know from the

literature on market design that these auctions cannot achieve the first-best revenue or

welfare. Further, it might be useful to study alternative objective functions, other than

auction revenue. For example, with data on ETS auctions, it might be more natural to

reduce total carbon emissions, while we would maximize the total gains from trade with

data on limit order books. Finally, our method could be extended to cover sequential

auctions which are common in practice.

Outline. The remainder of the paper is structured as follows: Section 2 describes the

institutional environment and the data set. Section 3 presents descriptive evidence for
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interdependencies across goods. Section 4 introduces and estimates the model. Sections 5

discusses the counterfactual exercise. Section 6 concludes. All proofs are in the Appendix.

Throughout the paper, random variables are denoted in boldboldbold.

2 Institutional Environment and Data

Multi-unit auctions. Many divisible goods (such as financial securities, carbon al-

lowances, energy or diamonds) are auctioned via standard (sealed-bid) multi-unit auc-

tions. Other goods (such as fish, cattle or wine) are sold in auctions in which bidders

demand multiple units or objects. These auctions can often be approximated by one of

the two standard multi-unit auction formats (discriminatory or uniform price), depending

on the auction’s pricing rule.

In a standard multi-unit auction a bid is a step-function with at most K steps, which

specifies how much a bidder offers to pay for specific amounts of the good for sale (as in

Figure 1a). When the auction closes, the final bids are aggregated and the market clears

where aggregate demand meets total supply. Everyone wins the amount they asked for at

the clearing price (subject to pro-rata rationing on-the-margin in case of excess demand at

the market clearing price). In a discriminatory price auction, each bidder pays according

to what they bid, similar to a first-price auction. In a uniform price auction, each bidder

pays the market clearing price for each unit won.8

Canadian Treasury auctions. There are three types of Canadian Treasury bills: 3, 6,

and 12 month bills. They are sold every second Tuesday by the Bank of Canada in three

separate, but parallel, discriminatory price auctions. Two groups of bidders, dealers and

customers, participate in the auctions. Dealers are either primary dealers or government

securities distributors. Customers can only submit bids through dealers, but like dealers,

they tend to be large financial institutions. Our focus lies on dealers, who buy more than

85% of the issued amount in an average auction.

From the time the tender call opens until the auctions close, bidders may submit and

update their bids in two forms (see Appendix Figure A1). The first is a competitive bid,

which is a step-function with at most 7 steps. The quantity demanded must be stated in

multiples of $1,000 and be at least $100,000. The bid shall state the yield to maturity (in

8For detailed descriptions of other empirical settings with multi-unit auctions, see, for instance:
Hortaçsu (2002), Kang and Puller (2008), Kastl (2011), Hortaçsu et al. (2018), Bonaldi and Ruiz (2021),
Cole et al. (2022), Barbosa et al. (2022) for Treasury auctions of Turkey, Korea, Czech Republic, U.S.,
Columbia, Mexico, China; Cramton et al. (2013) for diamonds; Hortaçsu and Puller (2008) for electricity;
Ryan (2022) for renewable energy.
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Figure 1: Bids in the Canadian Treasury bill market

(a) Competitive Bid for 12M (b) Time to Deadline

Figure 1a displays an example of a bidding step function. It is the one of the median dealer in a 12M
auction, computed as follows: Determine the median number of steps in all competitive bid functions
submitted by dealers, and then take the median over all (price, quantity) tuples corresponding to each
step by a dealer who submitted the median number of steps. Figure 1b depicts the distribution of the
time at which bids arrive prior to the deadline in each of the auctions. Very early outliers and bids that
go in after auction closure are excluded.

%) to three decimal places. We convert yields into prices so that demand schedules are

decreasing rather than increasing, using a face value of C$ 1 million (as in Figure 1a).9

The second form of bidding is a non-competitive bid. This is a quantity order, which

the bidder will win for sure, but for which he pays the average price of all accepted

competitive bid prices. It is capped at $ 10 million for dealers and $ 5 million for customers,

and hence trivial relative to the competitive order sizes—with one exception: the Bank of

Canada itself. It utilizes non-competitive bids to reduce the previously announced supply

and to purchase Treasuries (assets) to match its issuance of bank notes (liabilities).

Data. To estimate demand systems in multi-unit auctions, the data set must include all

winning and losing bids (i.e., full step functions), the issued supply, the market clearing

price of each auction, and how much each bidder won. Our data is richer than this.

Our data set consists of all 366 Canadian Treasury bill auctions between 2002 and

2015, in addition to all Treasury bond auctions. Table 1 summarizes the data on bills.

On average the Bank of Canada announced issuances of C$6.41 billion for 3M bills and

C$2.47 billion for each of the 6M and 12M bills per auction, of which it actually distributed

roughly C$5.76 (3M) and C$2.12 billion (6/12M).10

9yield = (C$1 million - price)/price* 365/days left to maturity.
10Online Appendix Figure O1 plots the issuance amounts over the period 2012–2017.
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Table 1: Data Summary of 3M/6M/12M Auctions

Mean SD Min Max
3M 6M 12M 3M 6M 12M 3M 6M 12M 3M 6M 12M

Issued amount 5.76 2.12 2.12 1.68 0.52 0.52 3.05 1.22 1.22 10.40 3.80 3.80
Dealers 11.88 11.79 11.03 0.90 0.93 0.83 9 9 9 13 13 12
Global part. (%) 93.67 93.84 98.84 24.34 24.04 10.67 0 0 0 100 100 100

Customers 6.26 5.68 5.35 2.69 2.94 2.54 1 0 0 14 13 15
Global part. (%) 35.66 40.13 39.46 47.90 49.02 48.88 0 0 0 100 100 100

Comp demand as %
of announced sup. 16.29 16.91 17.02 7.96 7.61 7.31 0.002 0.019 0.005 25 25 25
Submitted steps 4.83 4.23 4.35 1.86 1.78 1.75 1 1 1 7 7 7
Dealer updates 2.89 2.18 2.48 3.58 2.87 3.18 0 0 0 31 31 42
Customer updates 0.12 0.13 0.19 0.40 0.40 0.58 0 0 0 4 3 9

Non-comp dem. as %
of announced sup. 0.05 0.15 0.15 0.03 0.10 0.10 5/105 4/105 2/103 0.24 0.58 0.58

Table 1 displays summary statistics of our sample, which goes from January 2002 until December 2015.
There are 366 auctions per maturity. The total number of competitive bids (including updates) in the
3M, 6M, 12M auctions is 66382, 48927, and 56721, respectively. These individual steps make up 18272,
15514, and 17077 different step-functions. The total number of non-competitive bids is 2477, 2378, and
1932. From the raw data we drop competitive bids with missing bid price (133) and competitive or non-
competitive bids with missing quantities (69). Global part. is the probability of attending the remaining
auctions, conditional on bidding for one maturity. Dollar amounts are in billions of C$.

We identify each bidder through a bidder ID, and know whether the bidder is a dealer

or a customer. The average auction has 11 to 12 dealers and 5 to 6 customers. Dealers

tend to participate in all parallel auctions to keep their dealer status.11

We observe all bids submitted from the opening of the tender call until the auction

closes. The updating period lasts one week, although most bids arrive within 10 to 20

minutes prior to closing (see Figure 1b). Typically, a dealer updates his (competitive or

non-competitive) bid once or twice. The median number of updates is one. The higher

average (2.26) is driven by outliers. Customers are less likely to update, with an average

number of 0.1 (and a median of no updates).

An average step-function of a competitive bid has 4.5 steps with little difference across

maturities. Non-competitive bids are small in size. On average, bidders only demand

0.1% of the total (announced) supply via non-competitive bid. Given their size, our

structural model abstracts from non-competitive bids, and focuses solely on the decision

11“At every auction, a primary dealer’s bids, and bids from its customers, must total a minimum of
50 per cent of its auction limit and/or 50 per cent of its formula calculation, rounded upward to the
nearest percentage point, whichever is less. [...] Each government securities distributor must submit at
least one winning competitive or non-competitive bid on its own behalf or on behalf of customers, every
six months.” (Bank of Canada (2016), p. 12).
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of placing competitive bids. The Bank of Canada, on the other hand, demands substantial

amounts via non-competitive bids to reduce the total supply on the day of the auction.

On average, it takes away 11.13% (3M), 14.35% (6M), 14.26% (12M) with a maximum

of 20.45% (3M), 41.66% (6M), 25.00% (12M) of the total previously announced supply.

Our empirical model will need to account for unannounced changes in actual supply.

3 Motivating Interdependencies in Demands

Before estimating demand for different goods, it is useful to present evidence suggesting

that studying auctions for individual goods in isolation provides an incomplete picture of

demand. Different goods might be interconnected both on the supply and the demand

side. On the supply side, the seller might determine the total amount for sale at each

auction jointly, which leads to a non-zero correlation between the sold amounts across

goods. On the demand side, bidders might want to buy bundles of goods to satisfy the

demand of consumers downstream after the auction.

Cross-auctions correlations. A natural starting point to look for dependencies across

auctions is to analyze correlations on the supply and demand side (see Table 2). In our

data, the supply that the Bank of Canada announces exhibits perfect positive correlation

across maturities. In fact, over our long sample the Bank of Canada always announces

the exact same issuance size for the 6M and 12M bills. The amount it actually distributes

on the auction day is also almost perfectly correlated.12

We observe a similar pattern on the demand side. The total amount bidders demand

(via competitive or non-competitive bid) when the auction closes is highly positively

correlated across maturities, about 0.91–0.92. The correlation between quantities actually

won drops to 0.54–0.57, suggesting that bidders do not always achieve this goal.

These correlations suggest that bidders don’t value bills as independent. Bills could be

complements or substitutes. This depends on how much bidders are willing to pay for one

maturity when winning more of the other maturities, and not on the correlation patterns

of supply and demand quantities alone. Concretely, if the bidder is willing to pay more

12Policy-makers perform stochastic simulations to determine a debt strategy that is desirable over
a long horizon, e.g. 10 years. The model (https://github.com/bankofcanada/CDSM) trades off risks
and costs of different ways to decompose debt over the full spectrum of government securities. Part of
the simulation routine is to specify ratios between maturities, for instance 1/4th of each of the 3/6/12M
bills and 1/16th of each of the 2/5/10/30-year bonds. Final issuance decisions are taken based on model
simulations and judgment. “The typical practice is to split the total amount purchased by the Bank [of
Canada], so that the Bank’s purchases approximate the same proportions of issuance by the government
across the three maturity tranches” (Bank of Canada (2015)).
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Table 2: Cross-Market Correlations

(a) Supply Side

Q̄3M Q̄6M Q̄12M Q3M Q6M Q12M

Q̄3M 1.00 Q3M 1.00
Q̄6M 1.00 1.00 Q6M 0.99 1.00
Q̄12M 1.00 1.00 1.00 Q12M 0.99 1.00 1.00

(b) Demand Side

qD3M,i qD6M,i qD12M,i q∗3M,i q∗6M,i q∗12M,i

qD3M,i 1.00 q∗3M,i 1.00
qD6M,i 0.92 1.00 q∗6M,i 0.57 1.00
qD12M,i 0.91 0.91 1.00 q∗12M,i 0.54 0.57 1.00

Table 2a displays the correlation between the announced issuance amount, Q̄m, and
the distributed supply, Qm, for the three maturities, m = 3, 6, 12M . Table
2b correlates bidder i’s demand qDm,i and the amount he won q∗m,i across the
different maturities.

for one good when he wins more of the other good, the goods would be complements, and

substitutes vice versa.

Bid regression. We cannot observe how much a bidder is willing to pay, but we can

test whether the bidder offers more or less for one good when he wins more of the other

goods. For this, we regress bid k of dealer i on day t for good m on the quantity demanded

at that step, qt,m,i,k and the amount the dealer won in the other two auctions, wont,l,i,

plus a day and bidder fixed effect, ζt, ζi:

bt,m,i,k = αm + λmqt,m,i,k +
∑
l ̸=m

δm,lwont,l,i + ζt + ζi + ϵt,m,i,k. (1)

We find that all δ parameters are statistically significant and positive, suggesting that

bills might be complements (see Table 3). Given that bills are cash-like, this seems

counterintuitive. In fact, the estimates from this regression are unbiased only if bidders

do not shade their bids and have a sufficiently precise idea of how much they will win in

the other auctions while bidding. Both are strong assumptions which may fail to hold,

but can be tested and avoided using our model.

Bid updating. In our setting, in which dealers observe customer bids, we can provide

another piece of evidence in favor of interdependencies. We know that a dealer updates

his own bid, say, for the 3M bills, upon observing a customer bid in the 3M auction,
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Table 3: Bid regression

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −4.593 (0.519) λ6M −6.338 (0.667) λ12M −11.86 (1.130)
δ3M,6M +0.627 (0.114) δ6M,3M +1.289 (0.220) δ12M,3M +1.633 (0.641)
δ3M,12M +0.475 (0.180) δ6M,12M +2.422 (0.396) δ12M,6M +4.735 (0.786)
α̂3M 995189.4 (4.847) α̂6M 990957.6 (6.081) α̂12M 980312.6 (7.568)
N 18307 15641 16302

Table 3 shows the estimation results of regression (1) for each maturity, using final bids by dealers. Bids
are in C$ and quantities in % of auction supply. Standard errors are in parentheses, clustered at the
bidder level. Results are robust to including customer bids and bid updates.

for instance, because this provides information about competition or the fundamental

security value (Hortaçsu and Kastl (2012)). If the three maturities are interdependent,

the dealer should also update his bids for the other bills. To test this, we run the following

Probit regression on competitive bids placed by dealers, treating each step function as

one observation:

updatem,i = α +
∑
m

Im (βmcustomerm + δm,−mcustomer−m) + εm,i. (2)

The dependent variable updatem,i takes value 1 if dealer i updated his bid in an auction

for m, and 0 otherwise. Im is an indicator variable equal to 1 if the update occurs in

the auction for maturity m. customerl (for l = m or −m) is also an indicator vari-

able, which is created in two different ways. In the more conservative specification (1)

customerl takes value 1 only if the dealer received a competitive order by his customer

for maturity l immediately before taking action in auction m himself. Specification (2)

builds on this benchmark but takes a longer sequence of events, which are less than 20

seconds apart, into account (e.g., as in Appendix Table A1). This acknowledges that the

auction interface (shown in Appendix Figure A1) does not allow bidders to submit bids

for different maturities at the same time. Further, it takes time to calculate bids, enter

them manually—which until 2019 is the rule rather than exception—and transfer them

electronically.

Table 4 displays the estimated coefficients for specifications (1) and (2), in columns (1)

and (2), respectively. The significant positive β̂m coefficients support existing evidence by

Hortaçsu and Kastl (2012) on dealer updating. The significantly positive δ̂m,−m suggest

that dealers also update their bids across maturities. As expected, the level of significance

increases when taking into account the fact that in practice dealers’ bids are hardly ever

simultaneous, but instead placed in close sequence.

12



Table 4: Probability of Dealer Updating Bids

Coefficient Verbal description (1) (2)

β̂3M update in 3M after order for 3M 0.533 (0.056) 0.711 (0.053)

δ̂3M,6M update in 3M after order for 6M 0.405 (0.064) 0.531 (0.061)

δ̂3M,12M update in 3M after order for 12M 0.303 (0.057) 0.446 (0.054)

δ̂6M,3M update in 6M after order for 3M 0.086 (0.063) 0.248 (0.059)

β̂6M update in 6M after order in 6M 0.848 (0.076) 0.929 (0.070)

δ̂6M,12M update in 6M after order in 12M 0.729 (0.080) 0.762 (0.074)

δ̂12M,3M update in 12M after order for 3M 0.556 (0.070) 0.664 (0.066)

δ̂12M,6M update in 12M after order for 6M 0.120 (0.059) 0.244 (0.056)

β̂12M update in 12M after order for 12M 0.828 (0.061) 0.934 (0.059)
α̂ constant 0.476 (0.007) 0.448 (0.007)

Table 4 shows the results of the Probit regression (2). In column (1) customerl is an indicator variable
equal to 1 if the dealer received a competitive order from a customer for maturity l immediately before
taking action in auction m himself. In column (2) customerl is an indicator variable equal to 1 if the
dealer received an order for maturity l within one minute before placing his own bid in auction m, or if
the dealer’s bid is part of a sequence of bids which are each less then 20 seconds apart, starting less than
one minute after the customer’s order. The total number of observations is 39,271. Standard errors are
in parentheses.

Take away. Taken together, the evidence suggests that securities are interdependent.

This motivates the need for a methodology that can identify full demand systems of

interdependent goods.

4 Identifying Demand Systems

It is challenging to consistently estimate the full demand system for two main reasons.

First, bidders have private information about how much they value each good. This

generates incentives to misrepresent the true demand. As in a first-price auction, bidders

shade their bids to reduce the total payments they must make to win. Thus, we cannot

infer their true demands by looking at bids. Second, even if bidders wanted to report

their true demands, by the rules of the auction, they can, in auction m, only submit a

one-dimensional bidding step-function that depends on amounts of good m, not on goods

−m (such as in Figure 1a). This implies that we only observe parts of the demand system.

To solve these challenges, we model the auction process.
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4.1 Model of Simultaneous Multi-Unit Auctions

We describe an auction model that fits our empirical application, but highlight how to

adjust assumptions for other applications.

M perfectly divisible goods, indexed m, are auctioned in M separate multi-unit auc-

tions that run in parallel. The auction format may be uniform or discriminatory price.

We focus on the latter in the main text, but present the equilibrium conditions for uniform

price auctions in Appendix B.

There are g ≥ 1 commonly known groups of bidders. In our application, there are

dealers (d) and customers (c). In addition, all or some bidders could carry a latent type,

as illustrated in a model extension in Online Appendix A. The total number of bidders

in each group, Ng, is commonly known.

Over the course of the auction, bidder i of group g draws a private signal sgi,τsgi,τsgi,τ ≡
(sg1,i,τsg1,i,τsg1,i,τ . . . s

g
M,i,τsgM,i,τsgM,i,τ ) at time τ . The signal may be multi-dimensional. To account for differences

between bidder groups, it may be drawn from different distributions for customers and

dealers.

Assumption 1. Dealers’ and customers’ private signals sdi,τsdi,τsdi,τ and sci,τsci,τsci,τ are for all bidders i

independently drawn from common atomless distribution functions F d and F c with support

[0, 1]M and strictly positive densities fd and f c.

Notably, a bidder’s signal can be persistent since we do not pool bids from auctions

held at different points in time. The signal must only be independent from all other

signals conditional on anything that everyone knows at the time of the auction. In our

empirical application, this includes a reference price-range provided by the auctioneer

(see Appendix Figure A1), in addition to all public information that is available in the

active forward (when-issued) market. The presence of this market implies that most, if

not all, information relevant for price-discovery is aggregated prior to the auction and

that any private information about future resale value can be arbitraged away. Thus

the heterogeneity of information at the time of the auction is likely driven mostly by

idiosyncratic factors such as the structure of the balance sheet, investment opportunities or

repo needs—which do not depend on private information of other dealers. Consistent with

this, Hortaçsu and Kastl (2012) fail to reject that dealers only learn about competition

from observing customers’ bids, which provides support for assuming that valuations are

(conditionally) private.13

13In other settings, the independent signal assumption might be too strong. For example, Boyarchenko
et al. (2021) provide evidence of information sharing in U.S. Treasury auctions. Estimating bidder
valuations in such settings without having to make strong functional form assumptions remains an open
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The bidder’s signal affects his true (inverse) demand or marginal willingness to pay.

Assumption 2. The marginal willingness to pay (or valuation) of a bidder with signal

sgm,i,τ for amount qm conditional on purchasing q−m of the other securities −m is

vm(qm, q−m, s
g
m,i,τ ) = fm(s

g
m,i,τ ) + λmqm + δm · q−m, (3)

where fm(·) maps any realization of sgm,i,τsgm,i,τsgm,i,τ into R+ for all m, and λm < 0, |δm| < λm, αm

are sufficiently high such that the marginal willingness to pay does not drop below 0 for

any amount that might be for sale.

Generally, fm(·), λm and δm could be bidder-specific, e.g., δm,i. Importantly, δm and

q−m are vectors when there are more than two maturities—a simplified notation we adopt

throughout the paper. The vector of δm parameters measures interdependencies across

maturities. Take the example of the m = 3M auction, where q−m ≡ (q6M q12M)′ and

δm ≡ (δ3M,6M δ3M,12M). If δ3M,6M < 0, bidders are willing to pay less for any amount of

the 3M maturity the more they purchase of the 6M bills, hence the bills are substitutes.

When δ3M,6M > 0 they are complementary, and independent if δ3M,6M = 0.

Relative to existing papers that ignore interdependencies across auctions, we impose

more structure on the bidder’s marginal willingness to pay. To justify our functional

form assumption, we provide one possible micro-foundation in Appendix A that helps

us understand what drives the demand of a bidder in a multi-unit auction who seeks

to sell some of the amount won to clients that arrive after the auction. We show that

demand schedules can be approximated by linear functions (Proposition 2), and that

different goods are less substitutable (even complementary) for bidders for whom it is

more costly to turn down clients after the auction. For large bidders—whom we identify

in our application as market makers—who can more easily satisfy client demand, bills are

stronger substitutes.

Knowing their own true demands, each bidder chooses how to bid. A bid in auction

m consists of a set of quantities in combination with prices. It is a step-function which

characterizes the price the bidder would like to pay for each amount.

Assumption 3. In auction m each bidder has the following action set each time he places

a bid:

question in the literature. Bonaldi and Ruiz (2021) take a first step in this direction for uniform price
auctions.
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Am =


(bm, qm, Km) : dim (bm) = dim(qm) = Km ∈ {1, ..., Km}

bm,k ∈ [0,∞) and qm,k ∈ [0, 1]

bm,k > bm,k+1 and qm,k > qm,k+1∀k < Km.

To compare bids in auctions with different sizes of supply, qm,k ∈ [0, 1], representing

the share of total supply. A bid of 0 denotes non-participation.

In Canadian Treasury auctions bidders may update their bids over the course of the

auction. To capture this process we follow Hortaçsu and Kastl (2012) and assume that

new information may arrive at a discrete number of time slots τ = 0, ...,Γ, giving the

bidder incentives to update the bid.14 For settings with no updating set Γ = 0.

The rules of the Canadian auctions do not allow for customers to submit their own

bids. At each time τ at which a customer seeks to place a bid, he is matched to a

dealer who observes the customer’s bid. This provides the dealer with additional private

information, which we denote by Zm,i,τZm,i,τZm,i,τ . Thus, if the dealer observed a customer’s bid

in all three auctions, his information set is θgi,τθgi,τθgi,τ = (sgi,τsgi,τsgi,τ ,Z1,i,τZ1,i,τZ1,i,τ ,Z2,i,τZ2,i,τZ2,i,τ ,Z3,i,τZ3,i,τZ3,i,τ ). If he only

has a customer in one auction, say for maturity 1, θgi,τθgi,τθgi,τ = (sgi,τsgi,τsgi,τ ,Z1,i,τZ1,i,τZ1,i,τ ), and so on. By

Assumption 1, (sgi,τsgi,τsgi,τ ,Zi,τZi,τZi,τ ) are independent across dealers and time. However, sgi,τsgi,τsgi,τ and Zi,τZi,τZi,τ

can be correlated within a dealer across τ . For auctions in which all bidders bid directly

to the auctioneer: θgm,τθgm,τθgm,τ = sgm,τsgm,τsgm,τ .

Definition 1. A pure-strategy is a mapping from the bidder’s set of types at each time τ

to the action space of all three auctions: Θg
i,τ → A1 × A2 × A3.

A choice in auction m by a bidder who draws type θgi,τ may be summarized as bidding

function bgm,i,τ (·, θ
g
i,τ ). When auction m closes at τ = Γ, the auctioneer aggregates the

bidders’ final bids, and the market clears at the lowest price P c
m at which aggregate

demand satisfies aggregate supply.

In our application, auction supply is the announced amount for sale net of what the

Bank of Canada demands in the form of non-competitive bids during the auction plus

all other competitive bids by bidder i’s competitors. In other settings, auction supply is

fixed at Qm. In that case, set Q
m
= Qm = Qm.

14At τ = 0, a bidder draws an iid random variable ΨiΨiΨi ∈ [0, 1] which is one dimension of the bidder’s
private signal and thus unobservable to competitors. It corresponds to the mean of an iid Bernoulli
random variable, ΩiΩiΩi, which determines whether the bidder’s later bids will make it in time to be accepted
by the auctioneer. Thus, for τ > 0, the bidder’s information set includes the realizations ωi ∈ {0, 1} of
ΩiΩiΩi, where ωi = 1 means that the bid of time τ will make it in time. This gives an incentive to bid at each
arrival of new information because there might not be an opportunity to successfully bid in the future.
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Assumption 4. Supply {Q1Q1Q1,Q2Q2Q2,Q3Q3Q3} is a random variable distributed on [Q
1
, Q1] ×

[Q
2
, Q2] × [Q

3
, Q3] with strictly positive marginal density conditional on sgi,τ ∀i, g = c, d

and τ .

If aggregate demand equals total supply exactly there is a unique market clearing price

P c
m. Each bidder wins their demand at the market clearing price and pays for all units

according to their individual price offers. When there are several prices at which total

supply equals aggregate demand by all bidders, the auctioneer chooses the highest one.

Finally, in the event of excess demand at the market clearing price, bidders are rationed

pro-rata on-the-margin.15

Denoting the amounts bidder i gets allocated by qci = (qc1,i q
c
2,i q

c
3,i) when submitting

bgi,τ (·, θ
g
i,τ ) ≡ (bg1,i,τ (·, θ

g
i,τ ) b

g
2,i,τ (·, θ

g
i,τ ) b

g
3,i,τ (·, θ

g
i,τ )) his total surplus is

TS(bgi,τ (·, θ
g
i,τ ), s

g
i,τ ) = V (qci , s

g
i,τ )−

3∑
m=1

∫ qcm,i

0

bgm,i,τ (x, θ
g
i,τ )dx (4)

in the event in which τ is the time of his final bid, with V (qci , s
g
i,τ ) given by

∂V (qm,q−m,sgi,τ )

∂qm
=

vm(qm, q−m, s
g
m,i,τ ) in (3). It is the total utility he achieves from obtaining the amounts

he wins minus the total payments he must make. Ex ante, when placing a bid, the bidder

knows neither how much he will win nor at which price the market will clear. His optimal

choice maximizes the expected total surplus.

Definition 2. A Bayesian Nash equilibrium (BNE) is a collection of functions bgi,τ (·, θ
g
i,τ )

that for each bidder i and almost every type θgi,τ at each time τ maximizes the expected

total surplus, E[TS(bgi,τ (·, θ
g
i,τ ), s

g
i,τ )|θ

g
i,τ ].

We focus on type-symmetric BNE of the auction game, in which bidders who are

ex ante identical follow the same strategies. Dealers who draw the same signal employ

the same function, and similarly for customers: bdi,τ (·, θi,τ ) = bd(·, θi,τ ) and bci,τ (·, θi,τ ) =

bc(·, θi,τ ) ∀i, τ. Across bidder groups strategies might be asymmetric.

15“Under this rule, all bids above the market clearing price are given priority, and only after all such
bids are satisfied, the remaining marginal demands at exactly price P c = p are reduced proportionally by
the rationing coefficient so that their sum exactly equals the remaining supply. An alternative rationing
rule would, for example, not give bids at higher prices priority.” (Kastl (2011)). The rationing coefficient

satisfies Rm(P c
m) =

Qm−TD+
m(Pm

c )

TDm(P c
m)−TD+

m+(P c
m)

where TDm(P c
m) denotes the total demand at price P c

m, and

TD+
m(P c

m) = limpm↓P c
m
TDm(pm).
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4.2 Estimation Strategy

To identify how much bidders are willing to pay, we first characterize an equilibrium by

combining insights from Kastl (2011) and Wittwer (2020). We then assume that bidders

in our data play this equilibrium and estimate the joint distribution of market clearing

prices by extending resampling techniques developed by Hortaçsu (2002), Kastl (2011)

and Hortaçsu and Kastl (2012) for isolated auctions. This allows us to back out each

bidder’s true willingness to pay from the equilibrium condition.

Equilibrium Condition. Bidding incentives in simultaneous discriminatory price auc-

tions are similar to those in an isolated auction. In an isolated auction (δ = 0), a bidder

chooses his bids to maximize total surplus subject to market clearing. Similar to a first-

price auction, he trades off the expected surplus on the marginal infinitesimal unit versus

the probability of winning it (see Kastl (2017), p. 237 for more details).

The key difference when auctioned goods are interdependent (δ ̸= 0), is that the bidder

takes this interconnection across auctions into account. His demand for one good, say q1,

now depends on how much of the other goods the bidder gets allocated, v1(q1, q−1, s
g
1,i,τ ).

Ideally, the bidder would want to condition his bid b1,k for amount q1,k on how much he

will purchase of the other securities in equilibrium, q∗−1,i ≡ (q∗2,i q
∗
3,i)

′. However, he cannot

do this by the rules of the auction. Thus, he takes an expectation conditional on winning

q1,k—which happens when b1,k ≥ P c
1P
c
1P
c
1 > b1,k+1—and equates the expected marginal benefit,

E
[
v1

(
q1,k, q∗−1,iq∗−1,iq∗−1,i, s

g
1,i,τ

)∣∣ b1,k ≥ P c
1P
c
1P
c
1 > b1,k+1, θ

g
i,τ

]
, with the marginal cost of changing the bid.

Since the auctions clear separately, the cost is identical to the cost in an isolated auction,

only that the market clearing prices follow a joint distribution.

Proposition 1 (Discriminatory price auctions). Consider a dealer i with private infor-

mation θgi,τ who submits K̂m(θ
g
i,τ ) steps in auction m at time τ . Under Assumptions 1-4

in any type-symmetric BNE every step k in his bid function bgm(·, θ
g
i,τ ) has to satisfy

ṽm(qm,k, s
g
m,i,τ |θ

g
i,τ ) = bm,k +

Pr
(
bm,k+1 ≥ P c

mP
c
mP
c
m|θgi,τ

)
Pr

(
bm,k > P c

mP
c
mP
c
m > bm,k+1|θgi,τ

)(bm,k − bm,k+1) ∀k < K̂m(θgi,τ )

with ṽm(qm,k, s
g
m,i,τ |θ

g
i,τ ) ≡ E

[
vm

(
qm,k, q

∗
−m,iq∗−m,iq∗−m,i, s

g
m,i,τ

)∣∣ bm,k ≥ P c
mP
c
mP
c
m > bm,k+1, θ

g
i,τ

]
for all m

with −m ̸= m, and bm,k = ṽm(q̄m(θ
g
i,τ ), s

g
m,i,τ |θ

g
i,τ ) at k = K̂m(θ

g
i,τ ) where q̄m(θ

g
i,τ ) is the

maximal amount the bidder may be allocated in an equilibrium.

Resampling Procedure. To back out the bidders’ valuations from the equilibrium

conditions, we estimate the distribution of market clearing prices P c
t,mP c
t,mP c
t,m and, equally im-
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portant, the corresponding amount q∗t,−m,iq∗t,−m,iq∗t,−m,i of each maturity bidder i would win at the

market clearing price, by resampling. Unlike to the case of isolated auctions, the resam-

pling must be done jointly for all—in our case three—maturities.

A natural starting point is to extend Hortaçsu (2002)’s resampling procedure: fix a

triplet of bids simultaneously submitted by a bidder i and draw a random subsample

of N − 1 bid-vector triplets with replacement from the sample of bids.16 From this,

construct the bidder’s realized residual supply for all maturities were others to submit

these bids to determine the realized clearing prices P c = (P c
3M P c

6M P c
12M) and the amount

q∗i = (q∗3M,i q
∗
6M,i q

∗
12M,i) this bidder would have won for all q∗i , P

c. Repeating this procedure

a large number of times provides an estimate of the joint distribution of market clearing

prices and, equally important, the corresponding amount of each security i would win.

Our resampling procedure is more complex due to the fact that customers place bids

via dealers (as in Hortaçsu and Kastl (2012)). With simultaneous auctions, there are

two complications. A customer might bid via different dealers for different maturities,

and two bids for the same maturity but by different customers might go through the

same dealer. Neither of these cases happens more than a handful of times. Therefore, we

assume that the information set of dealers who observe the same customer is independent

across maturities, conditional on his own signal. In addition, we restrict the number of

possible observed customer bids to two given that most customers only submit one bid

and that there are many more dealers than customers in a typical auction.

Our procedure goes as follows: draw Nc customer bids from the empirical distribution

of customer bids at date t. If a customer did not participate in one auction, replace

his bid by 0. For each customer, find the dealer(s) who observed this customer’s bid(s).

If the customer submitted only one bid, we take the dealer who observed it. If the

customer submitted more than one bid, draw uniformly over dealer-bids having observed

this customer. Finally, if the total number of dealers drawn is at this point lower than the

total number of potential dealers, draw the remaining bids from the pool of uninformed

dealers, i.e., those who do not observe a customer bid in any of the three auctions. Note

that—while theory allows for many updates—we restrict the number of possible observed

customer bids to two in order to simplify our resampling algorithm. This includes most

16In practice, bids are not submitted at the exact same time given electronic or human delays (see the
example in Appendix Table A1). We define bids to be “simultaneous” if they are the closest bids of all
bids a bidder places within 200 seconds, or they are the last bids made before the auction deadline, i.e.
final bids. Setting an upper bound of 200 seconds seems sensible when looking at the number of seconds
between bids across maturities which we know were determined “simultaneously”. Those are cases where
the bidder does not update his bids over the course of the auctions. On average 551(383) seconds pass
between such bids for different maturities by dealers (customers). Excluding outliers reduces the time
(see Online Appendix Figure O2).
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cases as most bidders only update once or twice.

Our resampling gives consistent estimates under two scenarios: in the benchmark, all

bidders (customers and dealers) are ex ante symmetric. Dealers do not know whether

their rivals have complementary, substitutable, or independent preferences for different

maturities. This is plausible if we believe that these preferences are mostly driven by

fluctuating factors in the secondary market. In the extended model presented in the

online appendix, there are two latent dealer types. They consistently display different

preferences, for example, because they follow different business models. Each dealer is

aware of how many dealers are of each type but they do not know dealer identities.

Obtaining demand coefficients. With the estimated joint distributions, we can esti-

mate how much each bidder expects to win of the other maturities −m if he were to win

a given quantity in maturity m:

Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
= E

[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|bt,m,i,τ,k ≥ P c

t,mP c
t,mP c
t,m > bt,m,i,τ,k+1, θ

g
t,i,τ

]
+ εqt,m,i,τ,k. (5)

Moreover, using Proposition 1, we can back out each bidder’s valuations given the observed

bids at all steps:

v̂t,m,i,τ,k = E
[
vm

(
qt,m,i,τ,k, q

∗
t,−m,iq∗t,−m,iq∗t,−m,i, s

g
m,i,τ

)∣∣ bt,m,i,τ,k ≥ P c
t,mP c
t,mP c
t,m > bt,m,i,τ,k+1, θ

g
t,i,τ

]
+εvt,m,i,τ,k. (6)

Finally, with (5), (6) and Assumption 2, we can estimate all demand coefficients by run-

ning the following regressions with auction-bidder-time fixed effects, ut,m,i,τ = fm(s
g
t,m,i,τ ):

v̂t,m,i,τ,k = ut,m,i,τ + λmqt,m,i,τ,k + δm · Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
+ εt,m,i,τ,k ∀m,m ̸= −m (7)

on a subsample with competitive bids with at least two steps. Appendix Figure A2 shows

that it is the case for virtually all dealer bids: almost all submit more than one step.17

Given that the expected amounts, Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
, are estimated and thus might be

measured with error, the δ estimates or regression (7) might be downward biased. We

illustrate how to grasp the size of the measurement bias in Online Appendix C. In our

empirical application, this bias seems small.

17In Online Appendix Table O1 we show that our findings are robust when focusing on bids with at
least 3 steps.
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4.3 Estimation Findings: Demand Coefficients

We restrict attention to dealers, and impose valuations ṽm(·, sdm,i,τ |θdi,τ ) to be weakly de-

creasing. Furthermore, to correct for outliers that occasionally occur due to small values

of the denominator in the estimated (marginal) hazard rate of the market clearing price,

P̂r
(
bm,k > P c

mP
c
mP
c
m > bm,k+1|θgi,τ

)
, we trim our estimated valuations. Specifically, we restrict

each to be lower than the bidder’s maximal bid plus a markup of about 5 bps (C$500 for

12M, C$250 for 6M, C$125 for 3M).18 This approach is conservative in light of the dis-

tribution of how bidders shade the untrimmed estimated valuations per step (see Online

Appendix Figures O3). The less we trim, the larger, in absolute value, all coefficients (see

Online Appendix Table O2).

Regressions with bids. As a starting point, we estimate all regressions (7) using

observed bids rather than estimated valuations (see Table 5 (a) and Online Appendix

Table O3). All δ coefficients are positive if statistically significant. This is similar to

the reduced-form regression (1), reported in Table 3, which uses the amounts bidders

actually win (ex-post) rather than the amounts they expect to win when bidding (ex

ante). This means that the average dealer is willing to pay a higher price when winning

more of the other maturities, implying that bills are complements. This is a somewhat

surprising result—there is a long literature which classify securities of similar term and

risk as substitutes.

Regressions with valuations. To determine if bid-shading leads to biased estimates,

we re-estimate the regressions using the estimated valuations. We do this both with

valuations expressed as prices (in C$) and yields (in bps), but only report results for

prices (see Table 5 (b)).19 In contrast to the case of using bids, all δ coefficients are now

negative, implying that bills are substitutes.20 This highlights how important it is to

eliminate bid-shading and use the true valuations to identify interdependencies. This is

18Note that 1 bp of a 12M T-bill with a face value of 1 mil corresponds to 1 mil/10,000=C$100. Hence,
1 bp for a 3M T-bill corresponds approximately to C$25 and for 6M T-bill to C$50.

19Comparing the δ coefficients across auctions, we may notice that the estimates are not symmetric.
For example, δ̂3M,6M ̸= δ̂6M,3M . The main reason for this asymmetry is that the price of a bill mechani-
cally increases as it approaches maturity. If we estimate the demand coefficients using yields we obtain δ
estimates that are more symmetric across auctions up to some estimation error. We prefer to work with
prices since it is more natural to think of demand schedules as downward sloping, especially moving to the
counterfactual exercise and for other empirical applications. Alternatively, we could impose symmetry in
the estimation.

20In previous versions of the paper, we falsely reported that bills are complements. This was because
there was a typo in the estimation code due to which the estimated values were trimmed so much that
they resembled the submitted bids. Therefore, the biased estimation results were similar to Table 5 (a).
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Table 5: Demand coefficients

(a) With bids as independent variables

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −5.033 (0.025) λ6M −7.990 (0.046) λ1Y −15.87 (0.084)
δ3M,6M +0.167 (0.055) δ6M,3M +0.435 (0.101) δ1Y,3M −0.014 (0.212)
δ3M,1Y +0.411 (0.059) δ6M,1Y +0.737 (0.110) δ1Y,6M +1.557 (0.214)
N 58542 42282 50408

(b) With valuations as independent variables

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −6.726 (0.033) λ6M −11.53 (0.066) λ1Y −24.03 (0.135)
δ3M,6M −0.921 (0.073) δ6M,3M −2.343 (0.146) δ1Y,3M −6.317 (0.339)
δ3M,1Y −0.140 (0.079) δ6M,1Y −0.514 (0.159) δ1Y,6M −2.561 (0.342)
N 58542 42282 50408

Table 5 (a) reports the coefficients for equation (7), but with the observed competitive bids by dealers
with more than one step as independent variables rather than the estimated true valuations. Table 5 (b)
reports the coefficients with valuations. Bids and valuations are in C$ and quantities in % of auction
supply. Alternatively, we could express bids in yields (bps) and quantities in units (C$). The findings
are qualitatively the same. The first three columns show the estimates for the 3M Bill auction, the next
three for the 6M Bill auction and the last three for the 12M Bill auction. The point estimates are in the
second, fifth and eight column. Standard errors are in parentheses.

true even though we estimate small shading factors in absolute terms.

The magnitudes of all coefficients are relatively small in absolute terms, which is not

surprising given that the bidding curves in bill auctions are very flat. For instance, when

the dealer wins 1% more of the supply of the 6M bills, his price for the 6M bills decreases

by λ6M =C$11.53. Instead, if he wins 1% more of the supply of the 3M bills the price for

the 6M bills decreases by δ6M,3M =C$2.343, and of the 12M bills by δ6M,1Y =C$0.514.
The δ estimates imply that the dealer’s valuation for the 6M bill decreases by about

C$2.343*7.3+C$0.514*6.9 ≈ C$20.65 when obtaining the average amount of the 3M (7.3%

of supply) and 12M bills (6.9% of supply), rather than nothing. In the 3M auction

the analogous price decrease is about C$0.921*6.7 + C$0.140*6.9≈C$7.14 and in the

12M auctions about C$63.27. These price drops are not negligible in comparison to the

difference between the maximal and minimal bid in the average bidding function, which

is C$142.

Take away. Taken together, our analysis highlights that bills are at best imperfect

substitutes, despite being cash-like. Using our extended model, presented in the online

appendix, we find that larger dealers (market makers) view bills as substitutes, but that
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smaller dealers (non-market makers), may view bills are complements.

5 Policy Takeaway

Now we demonstrate how to use demand estimates to analyze how to split total supply

across different goods strategically so as to maximize auction revenues in a discriminatory

or uniform price auction.

We make two simplifications. First, we consider the supply split of two goods pairwise,

and ask under what conditions total revenue increases when issuing a little bit more of one

good, and a little bit less of the other, holding the total amount of supply (or production

capacity) constant. Second, we abstract from non-competitive bids because they are not

present at every multi-unit auction and because in our application the large majority of

these are allocated to the auctioneer (Bank of Canada). Therefore, most of the revenue

that the auctioneer collects from non-competitive bids comes from its own pocket, and

can thus be viewed as revenue-neutral in-house transfer. It is straightforward to include

non-competitive bids in the revenue calculations with our framework.

5.1 Theory: How to Allocate Goods?

Assume that there are only two goods, S for short and L for long, which are auctioned in

two separate auctions. Three factors determine how to split total supply (or production

capacity), across both goods: (i) price levels, (ii) price sensitivities, (iii) the auction

format.

Price levels. When S predictably sells at a higher price but is not more costly to issue

than L, it is revenue maximizing to only issue S. This case is trivial. We focus on

the more interesting case where the predictable price difference is due to a difference in

issuance cost: cS = PS − PL. For instance, the price for salmon might always be higher

than the price for halibut because it requires more expensive machinery to catch salmon.

Then, even though the auction for salmon will clear at a higher price, the fisher does not

necessarily make more money if he only fishes salmon.

In our empirical application, shorter bonds are typically sold at higher prices than

longer bond, PS > PL.
21 Thus, if the government’s objective were to maximize the

auction revenue on a single day, it should issue only the short bond. In practice, however,

governments do not take this strategy. They seek, instead, to maximize revenues over

21In normal times, the yield curve of government bonds is upward sloping, implying that bond prices
decline in term to maturity.
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a planning horizon—typically one year. Doing so, they take into account that the short

bond must be rolled-over more frequently than the long bond to maintain the same level

of expenditures, all else equal. Rolling over debt is costly not only because it involves

running more auctions, but also because it is risky. For instance, if the level of interest

rates in the economy suddenly increases, future auction revenue is lower than expected.

To a first-order approximation, the issuance cost must be such that the government does

not want to issue more of the short bond and less of the long bond only to cash in the

higher price of the short bond: cS = PS − PL.

Price sensitivity. The price sensitivity tells us by how much the market price changes

in response to a 1% change in supply. It is the inverse of the price elasticity of aggregate

demand. Formally, to fix ideas, let Pm(Qm) sum all bids for good m ∈ {S, L} per unit

of supply. Assume, for illustration, that the market clears at {Pm, Qm} and that Pm(·) is
differentiable (which is not the case in the data). Then the price sensitivity is ∂P (Qm)

∂Qm

Qm

Pm
.

The important feature is that this market price sensitivity not only depends on the

bidders’ price sensitivity when winning more in the auction—the own good effect (the

λ’s)—but also on how this sensitivity changes when winning more of the other goods—

the cross-good effect (the δ’s).

In our case, the aggregate demand for the long bond is typically more price-sensitive

than for the short bond, which means that the price for the long bond responds more

strongly to a change in auction supply than the price for the short maturity. This is true

when bonds are independent and when they are substitutes. It may not hold when they

are highly complementary—a case we exclude from our discussion since it seems not to

be empirically relevant.

Auction format. In a uniform price auction, the difference in price sensitivities implies

that the auctioneer can increase total auction revenue by issuing less of the price-sensitive

good (here the long bond) and more of the price insensitive good (here the short bond),

without changing total supply (see Figure 2 (a)-(b)). The reason is that everyone pays

the market prices, and the market price of the long bond increases more strongly than

the market price of the short bond decreases.

However, there is a price-quantity trade-off. Starting from an equal supply split across

goods, when the auctioneer moves one dollar from the long into the short bonds, the price

of the short bond drops less than the price of the long bond increases. Thus, while

the revenue of the short bond auction decreases, the revenue of the long bond auction

increases by more. Total revenue increases. Yet, the more debt is issued as short rather

than long, the lower the revenue gain in the long bond auction given that the higher price
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Figure 2: Simplified example of revenue under two auction formats

(a) Uniform price auction: S
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QS
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Q2
SQ1

S

P 1
S

P 2
S

(b) Uniform price auction: L

PL

QLQ1
LQ2

L

P 2
L

P 1
L

(c) Pay-as-bid auction: S

PS

QS

clearing price

Q2
SQ1

S

P 1
S

P 2
S

(d) Pay-as-bid auction: L

PL

QLQ1
LQ2

L

P 2
L

P 1
L

The figures on the LHS show the revenue gain (in green) and loss (in red) when issuing dQ more of
S depending on the auction format, in addition to the change in total issuance cost (in yellow). The
figures on the RHS show the analogous changes in revenue when issuing dQ less of L. In all cases, we

assume that ∂Pm(Qm)
∂Qm

= −µm for m ∈ {S,L} does not change. Formally, before the change in supply,

Q1
S = Q1

L = Q, P 1
S > P 1

L, c
1
S = P 1

S − P 1
L. After issuing dQ more for S and dQ less of L, Q2

S = Q + dQ,
Q2

L = Q − dQ P 2
S = P 1

S − µSdQ, P 2
L = P 1

L + µLdQ. In the uniform price auction, the total change in
revenue is [−µS(Q+dQ)+µL(Q−dQ)]dQ > 0 when dQ is small, dQ > 0, µL > µS . In the discriminatory
price auction it is [−µS/2dQ− µL/2dQ]dQ < 0 when dQ > 0, µL > 0, µS > 0.

for the long bond is multiplied by a smaller and smaller amount. In the extreme, when

the auctioneer goes from a mixed supply split to issuing only short bonds, no one pays

the hypothetical high price for the long bond that would clear the market, and therefore

total revenue decreases.

A similar price-quantity trade-off can arise in the discriminatory price auction (see

Figure 2 (c)-(d)). There are two differences. First, shifting supply towards the short

bond may decrease total revenue. Second, the revenue of one auction is determined by

the area underneath the aggregate demand curve. The key is that this area shrinks in the
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long bond auction by more than it increases in the short bond auction when decreasing

the supply of the long bond—unless bidders adjust the price offers for small amounts of

the bond.

If aggregate demand curves were linear as in Figure 2 and no bidder adjusted bids given

the new supply quantities, we could formalize the price-quantity trade-off for both auction

formats, and determine the revenue-maximizing supply split. In reality, the optimal

supply split cannot be determined as easily.

From theory to practice. In practice, there are two complications. First, bidders

respond to changes in supply. Therefore, the aggregate demand curves change. This is

especially important when the auction is discriminatory price since the auction revenue is

determined by the shape of the entire aggregate demand curve, and not only the market

clearing price. Take Figure 2 (c)-(d), as an example. Due to the change in the aggregate

demand curve, it is actually not true that the gray area is the same before and after

the change in supply. Generally, it is an empirical question as to whether total revenue

increases or decreases because the theoretical effect is ambiguous.

Second, bidders submit step functions based on their individual willingness to pay and

shade their bids. This implies that it is not straightforward to compute the steepness of

the aggregate demand curves. These curves have steps and cannot be constructed based

on any single parameter (such as the λ’s) that we can estimate.

5.2 Empirical Implementation

Now we illustrate how to compute revenue gains or losses as proof-of-concept to quali-

tatively test the insights from our theoretical model. For this, we use demand schedules

with prices and quantities, both expressed in C$.22 We focus on reshuffling the 6M and

12M bills and keep the 3M bills at the observed amount, but illustrate how sensitive these

revenue gains are when the aggregate demand is more price sensitive—as is the case for

bonds with longer maturities than 12 months. Reshuffling supply from the 12M to 3M

bills leads to slightly higher revenue impact since demand for the 3M bills is less price

sensitive than demand for the 6M bills.

Bids and aggregate submitted demand. It is still an open question in the literature

on how to characterize equilibrium strategies in discriminatory price auctions that are

sufficiently complex to capture real world markets. Our idea is to extrapolate from the

22Alternatively, we could use demand schedules with yields. The key insights are independent of the
units of measurements we use.
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observed shading factors to the counterfactual ones, given that there are by now a fair

number of papers that find shading factors of similar magnitudes for different settings

(e.g., Kang and Puller (2008); Kastl (2011); Hortaçsu et al. (2018)).23

We assume that the shading factor changes sufficiently little when going from the status

quo to the counterfactual and approximate the counterfactual (final) bid for amount qm

of a bidder i for maturity m on day t by his demand minus the fixed shading factor:

bcft,m,i(qm) = v̂cft,m,i(qm)− ŝhadingt,m,i(qm) (8)

with v̂cft,m,i(qm) = ût,m,i + λ̂mqm + δ̂m · Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm] (9)

and ŝhadingt,m,i(qm) = v̂t,m,i(qm)− bt,m,i(qm) ∀m, i. (10)

The counterfactual aggregate (submitted) demand sums across these bids: Pt,m(Qm) =∑
i b

cf
t,m,i(qm). Here, v̂t,m,i(qm) is estimated demand for amount qm, and bt,m,i(qm) is the

observed (final) bid. v̂cft,m,i(qm) and bcft,m,i(qm) are the counterfactual demand and (final)

bid. Both depend on the slope parameters, λ̂m and δ̂m, the estimated fixed effect, ût,m,i,

and on the amount the bidder expects to win in the counterfactual, Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm].
Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm] depends on how everyone bids in an auction, and thus can be found by

solving a fixed point problem. Solving this problem is computationally intensive since it

involves finding a fixed point for each bidder and each auction. To reduce the computa-

tional complexity, we show by means of examples that Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm] is typically very close

to the amount one obtains when rescaling the original expectation by the factor by which

total supply of m is changed in the counterfactual, and approximate the fixed points by

rescaling (see Appendix D for details).

To highlight how important the market price sensitivity is when determining the sup-

ply split, we illustrate how our findings change as price sensitivities become larger by

rescaling all λ and δ parameters by factors, for instance by 10. In our application, we ex-

pect sensitivities to be higher for longer-term bonds because the observed bidding curves

become steeper in maturity length (see Table 6).24 For instance, we use a λ-factor of 10

to approximate the bids for the 5Y and 10Y bonds, combined with varying δ-factors from

0 (independent) up to high enough to make bonds perfect substitutes (i.e., set the δ’s

equal to the λ’s, e.g., λ6M = δ6M,3M = δ6M,12M). Given that all λ estimates for bills are

under-estimated when using bids rather than valuations (recall Table 5), we conjecture

23This assumption is stronger when we switch the auction format or scale the demand coefficients. As
a robustness check we verify that our qualitative findings go through when we abstract from bid-shading
and assume that bidders submit their true demands as is the case in a perfectly competitive auction.

24We cannot estimate the demand systems for bonds of different maturities because these are sold on
different days, which implies that we cannot directly implement the method developed in this paper.
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Table 6: Slopes of bidding curves per maturity

3M 6M 12M 2Y 3Y 5Y 10Y 30Y
qm -0.0710 -0.297 -0.534 -1.319 -2.562 -4.444 -11.34 -46.03

(0.000342) (0.00171) (0.00280) (0.0120) (0.0316) (0.0363) (0.0839) (0.438)
N 68045 42224 56880 29804 11413 25421 23246 13195

Table 6 shows the estimated slope of an average bidding curve for each maturity length that Canada
issues, using data of all final bids submitted in all Canadian Treasury Bill and Bond auctions from 2002
until 2015. Each column displays the β estimate when regressing the submitted price bids of a bidder in
an auction for maturity m on the quantity that this bidder asked for at that price and a bidder-auction
fixed effect: bt,i,m,k = ut,i,m + βqt,i,m,k + ϵt,i,m,k. Bids and quantities are in million C$ to facilitate
revenue calculations. Note that the units are different in Table 5 so that the numbers are not directly
comparable. Standard errors are in parentheses.

that using factors based on bidding data provides lower bounds of all effects.

Issuance costs. To identify the indirect revenue effect that comes from different market

price sensitivities, we eliminate the mechanical price effect that makes short bonds achieve

higher revenues than long bonds by including an issuance cost.25 We compute the prices at

which an auction clears when bidders bid as in (8) and the government issues the observed

supply, normalize the cost of the long maturity to zero, ct,L = 0, and define the cost of the

short maturity relative to the long maturity of an auction as ct,S = P c
t,S − P c

t,L.
26 When

we make out-of-sample statements about bonds, we recompute the cost as the difference

between the market clearing prices that arise if the λ’s and δ’s in the bidders’ willingness

to pay was scaled up by a specific set of factors.

Revenue gains. To quantify how much revenue can be gained when moving slightly

away from the observed supply split, we compute by how much the revenue of one auction

day (Revenuet) changes when issuing 1% more of total debt in form of the short maturity

and 1% less of the long maturity, and vice versa.

Revenuet =


∑

m∈{S,L}
∑Nt,m

i=1

∫ q∗t,m,i

0 (bcft,m,i(qm)− ct,m)dqm if discriminatory price∑
m∈{S,L}(P

c
t,m − ct,m)Qt,m if uniform price,

25It is an open question in the literature as to how to estimate issuance costs for government debt.
Providing a precise answer to this question is beyond the scope of this paper.

26Alternatively, we could compute the costs that rationalize the supply split that we observe in the
data, assuming that the Bank of Canada chooses the supply split that maximizes the revenue of an
auction day, or on average in a year. These cost-estimates are similar to the ones we pick. We prefer our
more transparent approach to eliminate the mechanical price effect.
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Figure 3: Example on an auction

(a) Aggregate demand for S (b) Aggregate demand for L

Figure 3 shows aggregate demand curves for two auctions that took place on the same day at some point
in our sample. Each graph plots four curves. Two of the curves look rather flat. In 3a, the flat curves
correspond to the aggregate demand for 6M bills when the Bank of Canada issues the supply as we
observe it, and when we increase the supply of the 6M bills by 1% of the total debt issued on that auction
day. In 3b, we see the same curves but for the 12M bills. The steeper curves correspond to the aggregate
demand curves when scaling the λ parameters by a factor of 10 and making bills perfect substitutes. Here
we can see how the aggregate demand curve changes in responds to the change in supply.

where Nt,m is the observed number of bidders who participate in the auction for maturity

m on day t, bt,m,i(qm) is a bid for amount qm of a bidder i, q∗t,m,i is the amount this bidder

wins at market clearing, P c
t,m is the market clearing price, ct,m is the maturity’s issuance

cost, and Qt,m is the supply issued to competitive bidders.

We measure the gain (or loss) in revenue in bps of the revenue before reshuffling supply

locally. For example, a revenue gain of 1 bps means that the government earned 0.01%

more money in a single auction.

5.3 Counterfactual Findings

Example. We start with an example shifting supply between the S = 6M and L = 12M

bills in one auction in our sample (see Figure 3). Given the observed supply, the 6M

auction clears at P 1
S = C$991, 162 and P 1

L = C$981, 627 and QS = QL = 2.575 billion.

Shuffling 1% of total debt between the 6M and 12M auction, we get the following prices:

P 2
S = P 1

S − 5, P 2
L = P 1

L + 25. The revenue gain is small: +0.09 bps in a uniform price

auction and −0.04 bps in a discriminatory price auction, similar to Figure 2.

To illustrate the impact of reshuffling longer-dated debt, for example, 5Y and 10Y

bonds, let us scale up all λ’s by a factor of 10. Now, a uniform price auction achieves a

larger revenue gain—both when bonds are independent (+0.32 bps) and when bonds are
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Table 7: Average gain (in bps) per auction when reshuffling 1% of debt

S ↑ L ↓ S ↑ L ↓ S ↓ L ↑ S ↓ L ↑
Demand coefficients Uniform Discrim Uniform Discrim
Independent: factorλ=1, factorδ=0 +0.020 +0.007 −0.023 −0.010
Weak substitutes: factorλ=1, factorδ=1 +0.016 −0.002 −0.024 +0.001
Perfect substitutes: factorλ=1, δ = λ +0.011 −0.052 −0.016 +0.048
Independent: factorλ=10, factorδ=0 +0.234 −0.028 −0.297 +0.007
Weak substitutes: factorλ=10, factorδ=1 +0.225 −0.036 −0.292 +0.016
Perfect substitutes: factorλ=10, δ = λ +0.119 −0.609 −0.189 +0.590
Independent: factorλ=100, factorδ=0 +2.344 −0.446 −2.9757 +0.191
Weak substitutes: factorλ=100, factorδ=1 +2.341 −0.455 −2.970 +0.200
Perfect substitutes: factorλ=100, δ = λ +1.313 −6.720 −1.956 +6.624

Table 7 shows the revenue gains when issuing 1% of debt more for the short maturity and 1% less of
the long maturity in the second and third column (S ↑ L ↓) and vice versa in the fourth and fifth
column S ↓ L ↑ when the auction format is uniform price (Uniform) and when it is discriminatory price
(Discrim). The first three rows (factorλ=1) correspond to the demand estimates of the 6M and 12M bills
assuming different degrees of substitution. The fourth-sixth row and seventh-ninth row correspond to
hypothetical auctions in which the λ parameters in the bidder’s demand are scaled by a factor of 10, and
100, respectively. The revenue gain is in bps of the original revenue. Online Appendix Table O6 shows
the analogous revenue gains in the extended model with heterogeneous dealers.

perfect substitutes (+0.10 bps)—because the aggregate demand curve is steeper than it

is at the estimated λ. The revenue loss in a discriminatory price auction is also larger

than before. If bonds are independent, the loss is −0.25 bps; when bonds are perfect

substitutes, the loss is −1.55 bps. The non-negligible difference between these predictions

highlights the importance of taking substitution patterns into account when comparing

revenues across auction formats.

Average revenue gains. On average, it is revenue-increasing to issue more of the more

price-sensitive bond (here the long maturity) and less of the more price-insensitive bond

(here the short maturity) in a discriminatory price auction, and vice versa in a uniform

price auction (see Table 7). The revenue effect increases when scaling up the λ’s since the

aggregate demand curves become more price-sensitive. This suggests that it might pay

off to reshuffle supply across longer bonds.

It is important to have a good understanding of the degree of substitutability of

different maturities before changing supply. In particular, when the auction format is

discriminatory price, we over-estimate the revenue effect when assuming that different

maturities are perfect substitutes, and under-estimate the effect when we assume they are

independent (see Appendix Figure A3). This is because the revenue effect is determined
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by the shape of the entire aggregate demand curve and not just the point at which the

market clears.

Price-quantity trade-off. So far, we have considered relatively moderate changes in

supply. Next, we present graphically the price-quantity trade-off described above, which

pins down the (two-dimensional) revenue-maximizing supply split. For illustration, we

consider one auction day in our sample. The qualitative findings of other auction days

are similar. Further, when scaling up the λ or δ parameters, the price-quantity trade-off

is more pronounced.

When the auction is uniform price (as in Figure 4a), revenue increases when going

from issuing no short bonds to issuing some short bonds until 61% of debt is issued as

short and 39% as long. Until that point, the positive price effect dominates the negative

quantity effect in the auction for the long bonds. When further increasing the supply of

the short bond and decreasing the supply of the long bond, the negative quantity effect

dominates and total revenue decreases.

In the discriminatory price auction, we see a similar pattern (see in Figure 4b). The

difference is that the highest revenue gain is achieved when issuing less of the short (39%)

and more of the long bond (61%).

Back-of-the-envelope calculation. We conclude the discussion with a back-of-the-

envelope calculation to get a rough sense of how much the Canadian government could

save if it changed its current supply split only marginally. For illustration, we consider the

issuance in 2021. In 2021 the Canadian government issued C$416 billion in form of bills

and C$277 billion in form of bonds. Taking Table 7 at face-value, issuing slightly more of

the longer maturities would have brought a revenue gain of +0.001 bps per bill-auction

and roughly +0.02 bps per-bond auction, assuming bonds are weak substitutes. This

sums to moderate savings of C$595,600.
In other markets, in which demand is more price-sensitive, savings would be larger. For

example, Albuquerque et al. (2022) estimate an average price elasticity of demand of -379

in Portuguese bond auctions between 2014 and 2019, implying a price sensitivity of 1/-

379 = −0.0026. In comparison, with Canadian data, we find an average price sensitivity

of -0.0012 if we, like Albuquerque et al. (2022), assume that securities are independent.

The cross-country difference suggests that cost savings could be larger in the Portuguese

market. Further, savings increase when considering larger changes in supply. For instance,

Bigio et al. (2021) study a one percentage point increase in monthly issuances over annual

GDP in the Spanish primary market. They find that this reduces auction prices between

8 bps for the 3 year bonds and 56 bps for the 30 year bonds. Exploiting this difference in
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Figure 4: Illustration of the price-quantity trade-off

(a) Uniform price auction (b) Discriminatory price auction

Figures 4 depict the price-quantity trade-off when the auction is uniform price (a), and discriminatory
price (b) using the estimated λ and δ parameters. On the y-axis is the total revenue earn from issuing
both maturities (in billion C$) when issuing x% of the short maturity and (1-x)% of the long maturity.
The x-axis scales up x from 0% to 100%. Online Appendix Figure O5 shows the analogous trade-off in
the extended model with heterogeneous dealers.

price sensitivity could lead to sizable annual cost savings for taxpayers.

Take away. We introduce a simple framework to guide auctioneers in their decision

on how to split goods across auctions without changing the auction format since this

can be difficult in practice. The key idea is that the auctioneers should behave like a

monopolist who price discriminates subject to the auction rules. We show that it is

generally revenue-increasing to issue more of the relatively price-insensitive good and less

of the price-sensitive good when the auction is uniform price, and vice versa when it is

discriminatory price.

6 Conclusion

We leverage the institutional feature that many multi-unit auctions of related goods are

held in parallel with an overlapping set of bidders to develop a new methodology on

how to estimate demand systems for multiple goods that can account for any degree of

substitution or complementarity between goods. We illustrate how to use these demand

systems to better target the auctioneers’ objective. In our empirical application (Canadian

Treasury auctions), the objective is to maximize total auction revenue, which implies lower

financing costs of debt for tax payers. In other settings, the objective might be different,

yet it would still depend on the estimated demand systems.
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Appendix

A Micro-Foundation of Demand

We present a model that helps explain what might drive the demand of a bidder who

plans to sell some of its auction purchases to clients after the auction. In line with our

empirical application, we call the bidder a dealer and think of his clients as investors.

However, the model could be adjusted to fit other resale settings.

We view our model as one possible micro-foundation that is by no means exclusive.

In our application, there are other reasons that might drive interdependencies and het-

erogeneities in dealer demand across maturities. For instance, dealers face regulatory

constraints that could affect their needs across different maturities (or their budget con-

straints for these auctions).

Our model features market segmentation in the spirit of Vayanos and Vila (2021).

Investors/clients may have preferences for specific maturities and dealers function across
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maturities by participating in the primary market and making markets in secondary

trading. For simplicity, we restrict the number of maturities to M = 2, and drop the

superscript g and the subscripts i, τ for the remainder of the section with exception of the

formal statements.27

Each dealer has a type sss, which decomposes into ν (known by all bidders) and ttt

(private information):

sss = (ttt, ν) with ttt = (t1t1t1, t2t2t2) and ν = (a, b, e, γ, κ1, κ2, ρ).

Rather than assuming that dealers are risk-averse, we assume that dealers face a cost

of not meeting client demand.28 A dealer who draws type s obtains the following gross

benefit from “consuming” amounts (1− κ1)q1 and (1− κ2)q2:

U(q1, q2, s) = t1(1− κ1)q1 + t2(1− κ2)q2. (11)

The private type determines how much a dealer benefits from keeping a share (1− κm) ∈
[0, 1) of the purchased bill m in his own inventory or to fulfill existing customer orders.

Dealers function as market makers in the secondary market where they distribute the

rest of the bills {κ1q1, κ2q2} among investors who are yet to arrive. To incorporate future

resale opportunities we let there be a second stage following the primary auction.

In the secondary market a (mass of) client(s) with random demand {x1x1x1,x2x2x2} arrives to

the dealer.29 Equivalently, you may imagine that there are two types of clients, each with

a random demand for one of the two maturities. We assume that each of {x1, x2x1, x2x1, x2} is on-

the-margin uniformly distributed on [0, 1] but allow both amounts to be correlated. More

specifically, {x1, x2x1, x2x1, x2} assumes the following (Farie-Gumbel-Morgenstern cupola) density

f(x1, x2) = 1 + 3ρ(1 − 2F1(x1))(1 − 2F2(x2)) with marginal distributions Fm(xm) = xm

and correlation parameter ρ ∈
[
−1

3
,+1

3

]
.

The dealer sells to clients who arrive as long as there is enough for resale: xm ≤ κmqm.

Selling xm brings a payment of pmxm. The prices depend on the clients’ willingness to

pay, or the aggregate demand in the secondary market more generally. For simplicity we

assume that it is linear and symmetric across maturities. The inverse demand schedule

for maturity 1 in the secondary market takes the following form:

27Generalizing to more than two maturities is straightforward but mathematically cumbersome and
brings no major additional insights.

28A practical reason for why we model dealers as risk neutral is that it is much harder to estimate
auction models with risk-averse bidders than having a cost of not meeting demand.

29The terms “client” and “customer” denote different players. Customers participate in the auction
by placing bids with dealers, while clients buy in the secondary market.
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pi,1(x1, x2|q1, q2) =


a− bx1 − ex2 for x1 ≤ κ1q1 and x2 ≤ κ2q2

a− bx1 for x1 ≤ κ1q1 and x2 > κ2q2

0 for x1 > κ1q1 and x2 > κ2q2.

(12)

The price function for maturity 2 is analogous. It splits into three cases. In the first,

clients for both bills arrive and the dealer has enough of both in their inventory. The

dealer charges a bundle price of {p1(x1, x2|q1, q2), p2(x1, x2|q1, q2)} for selling {x1, x2}. In
the second case the dealer can only sell maturity 1. This might be because only clients

with demand for this maturity arrive or because the dealer does not have enough of

the other maturity in inventory for resale, x2 > κ2q2. The price the dealer charges is

independent of the maturity he does not sell, p1(x1, x2|q1, q2) = a − bx1. Finally, if the

dealer does not hold enough of either bill to satisfy the demand of client(s) he cannot sell.

Notice that the magnitudes of the resale prices are characterized by three parameters

{a, b, e}. A higher intercept a > 0 increases the dealer’s bargaining power, and with it

the price he can charge for each unit sold. Parameter b > 0 governs the price-sensitivity

of clients. Large clients (who demand more) have more negotiating power and can drive

down the price. When e > 0 bills are substitutes in the secondary market, and vice versa

for complements.

Selling {x1, x2} generates a resale revenue of:

revenue(x1, x2|q1, q2) = p1(x1, x2|q1, q2)x1 + p2(x1, x2|q1, q2)x2. (13)

Turning down clients is costly for the dealer. An unhappy client is, for instance, less likely

to contact the dealer again in the future. In reality, a dealer might even want to source

the security a client demands in the secondary market so as to avoid losing his client in

the longer run. This is costly for the dealer because it is expensive to borrow or buy

additional Treasury bills on the secondary market when demand is high. In our model,

dealers face the following cost function:

cost(x1, x2|q1, q2) =


0 if x1 ≤ κ1q1 and x2 ≤ κ2q2

γx1 if x1 > κ1q1 and x2 ≤ κ2q2

γx2 if x1 ≤ κ1q1 and x2 > κ2q2

γx1x2 if x1 > κ1q1 and x2 > κ2q2.

(14)

This function captures the idea that it is more costly to turn down larger clients, i.e. those

with larger demand. The important feature for our results is that it is supermodular in
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x1, x2, i.e. has increasing differences.30 This means that the marginal cost from turning

down a client who demands one maturity is higher the larger the order for the other

maturity.

Taken together, a dealer expects to derive the following payoff from winning q1, q2 at

time τ in the primary market:

V (q1, q2, s) = U(q1, q2, s) + E [revenue(x1x1x1,x2x2x2|q1, q2)− cost(x1, x2x1, x2x1, x2|q1, q2)] . (15)

The gross payoff determines how much a dealer is willing to pay on-the-margin. Consider

auction 1. At time τ the dealer is willing to pay v1(q1, q2, s) = ∂V (q1,q2,s)
∂q1

for amount q1

conditional on winning q2 of the other maturity. The appendix shows that v1(·, ·, s) is a
third-order polynomial for any s. It can be approximated by a linear function. Taking

the first-order Taylor expansion around (E[x1x1x1],E[x2x2x2]) = (1/2, 1/2) we obtain the following

result.

Proposition 2. The marginal willingness to pay of a dealer with type sgm,i,τ for amount

qm conditional on winning q−m in the other auction can be approximated by

vm(qm, q−m, s
g
m,i,τ ) = fm,i(s

g
m,i,τ ) + λm,iqm + δm,iq−m (3)

for m = 1, 2−m ̸= m, where fm,i(s
g
m,i,τ ) = αm,i + (1− κm,i)t

g
m,i,τ and αm,i, λm,i, δm,i are

polynomials of parameters {κ1,i, κ2,i, γi, ρi, ai, bi, ei}.

The higher the private marginal benefit t1 from keeping a share (1 − κ1) of the bill

for personal usage, the more the dealer is willing to pay. Bills might be substitutable or

complementary depending on the underlying exogenous parameters.

To understand this result, let us contrast the extreme cases where the dealer keeps all

of maturity 1 (κ1 = 0), keeps all of maturity 2 (κ2 = 0), or sells all of both (κ1 = κ1 = 1)

and the demand of clients is stochastically independent (ρ = 0).

v1(q1, q2, s1) =


t1 if κ1 = 0

1
4κ1(bκ

2
1 − 2γ) + (1− κ1)t1 + κ21((a− bκ1) +

1
2γ)q1 if κ2 = 0

1
8(2(b+ e)− 6γ) + ((a− b)− 1

4e+
7
8γ)q1 +

1
4(3γ − 2e)q2 if κ1 = κ2 = 1

When buying only for its own account (κ1 = 0) a dealer is willing to pay the marginal

value that the bill brings to his own institution, t1. When he anticipates that he will sell

30Supermodularity is for functions that map from Rn → R equivalent to increasing differences:
cost(x′

1, x
′
2|q1, q2)− cost(x1, x

′
2|q1, q2) ≥ cost(x′

1, x2|q1, q2)− cost(x1, x2|q1, q2) for x′
1 ≥ x1 and x′

2 ≥ x2.
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at least some of maturity 1, his demand in auction 1 decreases in q1 as long as his clients

are sufficiently price-elastic (i.e. b is sufficiently high). If he sells all of both maturities

(κ1 = κ2 = 1) the demand is independent of his private type t1. How much he is willing to

pay for one maturity now hinges on the amount he wins of the other maturity. Whether

bills are substitutes or complements in the primary market depends on how large γ is

relative to e.

More generally one can derive the following corollary which will be useful when inter-

preting our estimation results. It holds for the general case where clients’ demand might

be correlated (ρ ̸= 0) and the dealer keeps any amount of bills (κ1, κ2 ∈ [0, 1]).

Corollary 1. Securities in the primary market become less substitutable for a dealer when

(i) they are weaker substitutes in the secondary market (ei ↓),
(ii) it is more costly to turn down clients (γi ↑), or
(iii) it is more likely that clients with demand for different maturities arrive (ρi ↑).

The corollary has two interesting implications. First, it highlights that bills might

be substitutable for clients, or more generally for traders in the secondary market (ei >

0), but complementary for dealers who purchase in the primary auctions to sell in the

secondary market. Through the lens of our model, the existing literature using market-

level data to estimate the degree of substitutability between government securities (e.g.,

Koijen and Yogo (2019)) estimates the mean of parameter ei. We, instead, focus on the

preferences of dealers in the primary market.

Second, the corollary tells us that it is possible that some dealers view bills as sub-

stitutes and others as complements, depending on νi. For some dealers it could be more

costly to turn down clients (high γi), for instance, because they are not at the core of

the market’s trade network, such as the key market makers. For these dealers bills are

less substitutable—potentially even complementary—than for the market makers. This

insight motivates us to allow dealers to have a latent business type (market makers versus

non-market makers) in an extension of our structural model.

B Equilibrium Condition for Uniform Price Auctions

As in the discriminatory price auction, the equilibrium condition for simultaneous uniform

price auctions is like the condition for an independent uniform price auction (see Kastl

(2011), Proposition 1). The only difference is that the bidder must take the expectation

over how much he expects to benefit from winning a specific amount in one auction.
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Proposition 1 (Uniform price auctions). Consider a dealer i with private information

θgi,τ who submits K̂m(θ
g
i,τ ) steps in uniform price auction m at time τ . Under Assumptions

1-4 in any type-symmetric BNE every step k in his bid function bgm(·, θ
g
i,τ ) has to satisfy

ṽm(qm,k, s
g
m,i,τ |θ

g
i,τ ) = E[P c

mP
c
mP
c
m|bm,k > P c

mP
c
mP
c
m > bm,k+1, θ

g
i,τ ] +

∂E[P c
mP
c
mP
c
m|bm,k≥P c

mP
c
mP
c
m≥bm,k+1,θ

g
i,τ ]

∂qm,k

Pr(bm,k>P c
mP
c
mP
c
m>bm,k+1|θgi,τ )
qm,k

∀k < K̂m(θgi,τ )

with ṽm(qm,k, s
g
m,i,τ |θ

g
i,τ ) ≡ E

[
vm

(
qm,k, q

∗
−m,iq∗−m,iq∗−m,i, s

g
m,i,τ

)∣∣ bm,k ≥ P c
mP
c
mP
c
m > bm,k+1, θ

g
i,τ

]
for all m

with −m ̸= m, and bm,k = ṽm(q̄m(θ
g
i,τ ), s

g
m,i,τ |θ

g
i,τ ) at k = K̂m(θ

g
i,τ ) where q̄m(θ

g
i,τ ) is the

maximal amount the bidder may be allocated in an equilibrium.

C Proofs

Proposition 1. Consider discriminatory price auctions. Take the perspective of dealer

i. Fix his type, a time slot τ , as well as one of his information sets θgi,τ , and let all other

agents j ̸= i play a type-symmetric equilibrium. In this equilibrium it must be optimal for

the bidder to choose the same set of functions {bg1(·, θ
g
i,τ ), ...b

g
M(·, θgi,τ )} as all other bidders

in his bidder group with information θgi,τ . These M functions must jointly maximize the

bidder’s expected total surplus. It must therefore be the case that each of the functions

bgm(·, θ
g
i,τ ) maximizes his expected total surplus separately when fixing all the other bidding

functions −m at the optimum. To determine necessary conditions of the type-symmetric

equilibrium we can consequently fix the agent’s strategy in all but one auction at the

equilibrium.

The remainder of the proof extends Kastl (2012)’s proof for a K-step equilibrium of

a discriminatory price auction that takes place in isolation (on pp. 347–348). There are

two main differences to the original proof. First, our framework allows bidders to update

their bids due to arrival of new information. Such information arrives at discrete time

slots τ = 1...Γ. Bidding functions do not (only) depend on the bidder i’s type sgi,τ drawn

at time τ but on the (entire) information set at that time θgi,τ . It includes the type,

sgi,τ ⊆ θgi,τ . Since only final bids count, bidders bid as if it was their last bid each time

they place a bid. We can just keep some τ fixed throughout the proof. Second, following

Hortaçsu and Kastl (2012) we allow for asymmetries in bidding behavior between dealers

and customers. They draw types from (potentially) different distributions and may have

different information available. The original proof extends to this setup. For details see

the Online Appendix.

The proof for the uniform price follows the same steps, and is therefore omitted.
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Proposition 2. For notational convenience we drop the superscript g and the subscript

i of all parameters {κg
1,i, κ

g
2,i, γ

g
i , ρ

g
i , a

g
i , b

g
i , e

g
i }. Given the aggregate inverse demand of the

dealer’s clients (12), the dealer expects the following payoff (15) from owning q1, q2:

V (q1, q2, s) = U(q1, q2, s) +

∫ κ1q1

0

∫ κ2q2

0
[p1(x1, x2)x1 + p2(x2, x1)x2]f(x1, x2)dx1dx2

+

∫ κ1q1

0

∫ 1

κ2q2

[p1(x1)x1 − γx2]f(x1, x2)dx1dx2 +

∫ 1

κ1q1

∫ κ2q2

0
[p2(x2)x2 − γx1]f(x1, x2)dx1dx2

−
∫ 1

κ1q1

∫ 1

κ2q2

[γx1x2]f(x1, x2)dx1dx2.

Insert the functional forms (11), (12), and f(x1, x2) = 1 + 3ρ(1− 2F1(x1))(1− 2F2(x2)),

integrate and take the partial derivative w.r.t. q1. Then do a Taylor expansion around(
1
2
, 1
2

)
to obtain

v1(q1, q2, s1) =(1− κ1)t1 + h0(κ1, κ2, γ, ρ) + h1(κ1, κ2, γ, a, b, e, ρ)q1 + h2(κ1, κ2, e, ρ)q2

with

h0(κ1, κ2, γ, ρ) =
1

16
(4bκ31 + 2eκ21κ

2
2(2 + (6− 9κ1 − 6κ2 + 8κ1κ2)ρ))

+
1

16
(γκ1(8(−1 + ρ) + κ21(−2 + κ2)(2 + κ2(−11 + 8κ2))ρ))

+
1

16
(γκ1(+2κ22(−1− 3ρ+ 4κ2ρ) + 2κ1κ2(−2 + κ2 − 3(−1 + κ2)(−2 + 3κ2)ρ)))

h1(κ1, κ2, γ, a, b, e, ρ) =
1

8
κ21(8a− 8bκ1 − 2eκ22(1 + (−1 + 2κ1)(−3 + 2κ2)ρ))

+
1

8
κ21(γ(4 + 4κ2 − κ22 − (−2 + κ2)(−6 + 3κ2 − 6κ22 + 2κ1(−2 + κ2)(−1 + 2κ2))ρ))

h2(κ1, κ2, γ, e, ρ) =− 1

4
κ1κ2(−2γκ1 + γ(−2 + κ1)κ2 + 2eκ1κ2)(1 + 3(−1 + κ1)(−1 + κ2)ρ)

Proof of Corollary 1. Securities become less substitutable when h2(κ1, κ2, γ, e, ρ)

increases. Therefore, for any κm ∈ [0, 1] and any ρ ∈ [−1/3, 1/3]: ∂h2(κ1,κ2,γ,e,ρ)
∂e

≤
0, ∂h2(κ1,κ2,γ,e,ρ)

∂γ
≥ 0, ∂h2(κ1,κ2,γ,e,ρ)

∂ρ
≥ 0.
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Appendix Figure A1: Auction interface–what bidders see when bidding

Appendix Figure A1 shows the a screen shot of what a bidder sees when bidding. He sees three “Tranches”,
listing the three different securities for sale. If he is a dealer, placing a competitive bid for his own account,
he clicks on “Distributor” (in green). He fills in what “Net Position” he currently holds of the security,
and his bid “Tender” of maximally 7 steps. On the RHS he sees a non-binding “Plausibility Range”
suggesting yields at which the auction might clear. When the dealer is content with his bid, he clicks
“Submit”. Then he can choose a different “Tranche” to bid in a different auction. At the bottom of the
page, he sees an overview of all his submitted bids for all auctions.
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Appendix Figure A2: Steps by Bidder Groups

Appendix Figure A2 shows a histogram of the number of steps customers (in gray) and dealers (in red)
submit. The fraction is measured in percentage points.

Appendix Table A1: Bid Updating

Update in 12M for 3M order Update in 6M for 3M order

Bid by Time Maturity (1) (2) (1) (2)
Customer 10:19:52 3M . . . .
Dealer 10:21:59 12M 1 1 0 0
Dealer 10:22:17 6M 0 0 0 1
Dealer 10:22:34 3M 0 0 0 0
Dealer 10:26:52 12M 0 0 0 0
Dealer 10:27:16 12M 0 0 0 0
Customer 10:28:34 3M . . . .
Dealer 10:28:44 3M 0 0 0 0

Appendix Table A1 illustrates the sequence of events from a random dealer and their customer for the
last 10 minutes before the auction closes on 02/10/2015. Having observed a customer in the 3M auction
(visible in the first row), the dealer takes action himself and places several bids in a row (as shown in
the second until sixth row). He first bids in the 12M auction. Therefore customer3M assume value 1 in
specification (1) and (2) shown in the fourth and sixth column. Then the dealer bids in the 6M auction.
Now, the customer3M variable switches to 1 only in specification (2) in the seventh column, but not
in specification (1) in the sixth column. This is because the dealer has observed a customer in the 3M
auction one minute before placing a bid in the 6M auction but not immediately before that.
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Appendix Figure A3: Time series

(a) Proxy of market price sensitivities

(b) Revenue gains in uniform price auction (c) Revenue gains in discrim. price auction

Appendix Figure A3 shows two time series. An observation in A3a shows the yearly average mar-
ket price sensitivity when scaling the λ parameters by a factor of 100 and setting all δ’s to zero:
1
Ty

∑Ty

t=1(−100)λ̂m
Qt,m

P c
tm

, where Ty is the total number of auction in year y. An observation in A3b and

A3c is the gain in total revenue of the two maturities on a day when issuing 1% of total debt more of
the short and less of the long bill, or vice versa, averaged across all auction days in a year. The revenue
gain is computed for a discriminatory price auctions and is measured in bps of the revenue earned when
issuing the observed supply. We scale up the λ and δ parameters to make the time trends visible.
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Online Appendix

The Online Appendix has four sections. Section A presents our model extension in which

dealers have a latent type. Section B walks through a more detailed proof of Proposition 1.

Section C analyzes the potential bias stemming from measurement error in the estimated

expected winning quantities. Section D provides details on how we solve the fixed point

problem when determining the counterfactual bids. Online Appendix Figures and Tables

are presented at the end.

A Model Extension

We consider a model extension in which dealers have a latent business type χ. Each dealer

is either a market-maker type (χ = mm) or a niche-customer type (χ = nc). In theory

one could allow for more than two types. In the estimation, this is feasible only if there

are sufficiently many bidders that participate in an auction, which is not the case in our

setting. Otherwise, one would need to pool auctions that take place on different dates

and lose the ability to control for unobservable auction characteristics.

Assumptions 1 and 2 adjust in that the private signals draw independently from three

distributions F d,mm, F d,nc and F c. The marginal willingness to pay may now be bidder

specific: vm,i(qm, q−m, s
g
m,i,τ ) = fm,i(s

g
m,i,τ ) + λm,iqm + δm,i · q−m. All other assumptions

remain unchanged, but there is an additional assumption.

Assumption 5 (Model extension). Dealers can be partitioned into two types: Nd =

Nd,mm ∪ Nd,nc, such that ∀ m ∈ Nmm : δd,mm
m,i ≤ 0.

The econometrician does not know which dealer is of which type. The bidders know

who is of which type. For them these latent types just mean that there are more than

two bidder groups. Therefore, there are more than two strategies in the type-symmetric

equilibrium: ∀χ : bd,χi,τ (·, θi,τ ) = bd,χ(·, θi,τ ) and bci,τ (·, θi,τ ) = bc(·, θi,τ ) ∀i, τ .
To recover the valuations, v̂t,m,i,τ,k, we adjust Proposition 1 and extend the resampling

procedure as in Cassola et al. (2013) to account for asymmetric types. The resampling

proceeds in three steps: (i) Partition dealers into the two groups. (ii) Estimate a model,

where resampling is conditional on that assignment.31 (iii) Use the estimated demands to

classify dealers into types.32 Repeat until (iii) yields the same assignment as we started

31An mm−type needs to integrate over bids of Nmm − 1 other mm-types and Nnc niche-client types
and vice versa.

32Since we have 3 maturities, we have 6 coefficients in the demand system given by (3) governing the
substitution patterns. We assign a dealer to mm-type if at most 2 of those are negative.
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with in (i). While there is no formal argument that this procedure will converge, in

practice it converges within 2 or 3 steps. Finally, we estimate regression (7) for each

dealer group separately, identifying the group-specific average δχ and λχ parameters.

We find that there are two dealer groups with different preferences (see Online Ap-

pendix Table O4). For the 11 dealers in group one, bills are (in most cases) more sub-

stitutable than for the average dealer in our benchmark model. For the 4 dealers in the

second group, preferences are mixed.

Our micro-foundation is able to rationalize these findings (see Corollary 1). Dealers in

the first group win on average larger amounts in the auctions than dealers in the second

group. They are the bigger players in the market who are not concerned about turning

down clients, either because they hold large inventory positions or because they can rely

on their trading network to quickly and cheaply find the security a clients wants. For

dealers in the second group, who tend to win less at auction, this might not always be

true.

B Detailed Proof of Proposition 1

We present the proof for discriminatory auctions. The proof for uniform price auctions

follows the same steps, and is therefore omitted.

Take the perspective of dealer i. Fix his type, a time slot τ , as well as one of his

information sets θgi,τ , and let all other agents j ̸= i play a type-symmetric equilibrium.

In this equilibrium it must be optimal for the bidder to choose the same set of functions

{bg1(·, θ
g
i,τ ), ...b

g
M(·, θgi,τ )} as all other bidders in his bidder group with information θgi,τ .

These M functions must jointly maximize the bidder’s expected total surplus. It must

therefore be the case that each of the functions bgm(·, θ
g
i,τ ) maximizes his expected total

surplus separately when fixing all the other bidding functions −m at the optimum. To

determine necessary conditions of the type-symmetric equilibrium we can consequently

fix the agent’s strategy in all but one auction at the equilibrium. Without loss take this

auction to be for security 1, and denote the inverse of bid function bg1(·, θ
g
i,τ ) by yg1(·, θ

g
i,τ ).

The remainder of the proof follows Kastl (2012)’s original proof. To facilitate the

comparison with the original proof (on pp. 347–348 of Kastl (2012)) we copy it as closely

as possible but adopt our notation.

We drop subscripts τ, i as well as superscript g. We refer to the amount a bidder

with information θ wins at market clearing in auction m (for a given set of strategies

in the event that τ is the time of the bidder’s final bid) by qc1q
c
1q
c
1, and the amount he wins

in equilibrium by q∗1q
∗
1q
∗
1. Notice that both, qc1q

c
1q
c
1 and q∗1q

∗
1q
∗
1 are (for given strategies of all agents)
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functions of the total supply Q1Q1Q1 and the information of all agents {θiθiθi}Ni=1. They are

implicitly defined by market clearing.

The proof of the proposition relies on three lemmas. The second and third are taken

from Kastl (2012).

Lemma 1. Fix a bidder with information θ. Denote his marginal willingness to pay in

auction m at step k when submitting some function b′1(·, θ) with {(b′1,k, q′1,k−1), (b
′
1,k+1, q

′
1,k)}

by ṽ1(q1, θ|b′1,k, b′1,k+1) ≡ E
[
v1

(
q1, q

∗
−1q∗−1q∗−1, s1

)∣∣ b′1,k ≥ P c
1P
c
1P
c
1 > b′1,k+1, θ

]
for q1 ∈ (q′1,k−1, q

′
1,k].

(i) ṽ1(q1, θ|b′1,k, b′1,k+1) is bounded.

(ii) In equilibrium, where the bidder submits function b1(·, θ) with {(b1,k, q1,k−1), (b1,k+1, q1,k)},
ṽ1(q1, θ|b1,k, b1,k+1) is decreasing in q1 and right-continuous in b1,k.

Proof of Lemma 1. (i) By Assumption 2

ṽ1(q1, θ|b′1,k, b′1,k+1)
(3)
= f1(s1) + λ1q1 + δ1 · E

[
q∗−1q∗−1q∗−1|b′1,k ≥ P c

1P
c
1P
c
1 > b′1,k+1, θ

]
for q1 ∈ (q′1,k−1, q

′
1,k]. Since types and total supply are drawn from distributions with

bounded support by Assumptions 1 and 4, E
[
q∗−1q∗−1q∗−1|b′1,k ≥ P c

1P
c
1P
c
1 > b′1,k+1, θ

]
and with it

ṽ1(q1, θ|b′1,k, b′1,k+1) is bounded.

(ii) In equilibrium ṽ1(q1, θ|b1,k, b1,k+1) must be decreasing in q1 or it could not give rise

to a decreasing bidding function that fulfills the necessary conditions of Proposition 1.

To see why ṽ1(q1, θ|b1,k, b1,k+1) is right-continuous in b1,k note first that it can only jump

discontinuously if changing b1,k breaks a tie between this bidder and at least one other bid-

der. Since there can be only countably many prices on which a tie might occur, however,

there must exist a neighborhood at any b1,k for which for any price in that neighborhood

there are no ties. Therefore, when perturbing bk, there cannot be any discontinuous shift

in the conditional probability measure and thus in the object of interest.

Lemma 2. Fix a bidder with information θ. If at some step k in auction 1, Pr(qc1q
c
1q
c
1 ≥

q1,k|θ) > 0, then b1,k ≤ ṽ1(q1, θ|b1,k, b1,k+1).

Proof of Lemma 2. The proof is analogous to Kastl (2012)’s proof of Lemma 2. It

suffices to replace v(q, s) by ṽ1(q1, θ|b1,k, b1,k+1) and rely on Lemma 1.

Lemma 3. (i) Ties occur with zero probability for a.e. θ in any K-step equilibrium of

simultaneous discriminatory price auctions except possibly at the last step (k1 = K1).

(ii) If a tie occurs with positive probability at the last step, a bidder with information

θ must be indifferent between winning or losing all units between the lowest share he gets

3



allocated after rationing in the event of a tie qRAT
1

and the last infinitesimal unit he may

be allocated in equilibrium, q1:

b1,K1 = ṽ1(q̄1, θ|b1,K1) where q̄1 = sup
{Q1,θ−i}

y1(b1,K1 , θ|Q1, θ−i) ∀q1 ∈ [qRAT

1
, q1].

Proof of Lemma 3. The proof is analogous to the proof of Lemma 1 in Kastl (2012).

In essence, it suffices to replace the bidder’s true valuation v(q, s) in Kastl (2012) by

ṽ1(·, θ|bk, bk+1) in equilibrium and ṽ1(·, θ|b′k, b′k+1) for deviations and rely on Lemma 1.

To facilitate this conversion, we demonstrate the beginning of the proof: Suppose that

there exists an equilibrium, in which for a bidder i with information set θ a tie between

at least two bidders can occur with positive probability π1 > 0 in auction 1. Since there

can be only finitely many prices that can clear the market with positive probability, in

order for a tie to be a positive probability event, it has to be the case that there exists

a positive measure subset of information sets Θ̂−i ∈ [0, 1]N−1 such that for some bidder

j, and all profiles of information sets θ−i ∈ Θ̂′
−i ⊂ Θ̂−i (another positive measure subset)

and some step k and l we have b1,k(θi) = b1,l(θj) = P c
1 . Without loss, suppose that this

event occurs at the bid (b1,k, q1,k), and that the maximum quantity allocated to i after

rationing is q̄RAT
1 < q1,k. Let S̄R

1π denote the maximal level of the residual supply at b1,k

in the states leading to rationing at b1,k.

Consider a deviation to a step b′1,k = b1,k+ε and q′1,k = q1,k where ε is sufficiently small.

This deviation increases the probability of winning q1,k − q1,k−1 units. Most importantly

in the states that led to rationing under the original bid, the bidder with information θ

will now obtain qu1 > q̄RAT
1 where qu1 ≥ min{q1,k, S̄R

1π}. Notice that since we hypothesized

a positive probability of a tie at b1,k, we need to have q1,k−1 < q̄RAT
1 < q1,k due to rationing

pro-rata on-the-margin. Therefore, the lower bound on the increase in θ’s expected gross

surplus from such a deviation is

EDε = π1

(
Ṽε(q

u
1 , θ)− Ṽ (q̄RAT

1 , θ)
)

(EDε)

where

Ṽε(q
u
1 , θ) ≡

∫ q̄RAT
1

0

ṽ1(q1, θ|b1(q1|θ)) +
∫ qu1

q̄RAT
1

ṽ1(q1, θ|b′1,k, b′1,k+1)dq1

and

Ṽ (q̄RAT
1 , θ) ≡

∫ q̄RAT
1

0

ṽ1(q1, θ|b1(q1|θ))dq1

with ṽ1(q1, θ|b1(q1|θ)) denoting the true valuation when submitting b1(q1|θ) not just at

step k, as ṽ1(q1, θ|b1,k, b1,k+1), but including all previous steps (if any).
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To continue, let us first focus on steps other than the last one, k < K1, and suppose

that ṽ1(·, θ|b1,k, b1,k+1) is strictly decreasing. The increased bid b1,k + ε also results in

an increase in the payment for the share requested at this step. This increase, however,

is bounded by (q1,k − q1,k−1)ε. Comparing the upper bound on the change in expected

payment with the lower bound on the change in expected gross utility, in order for this

deviation to be strictly profitable we need to obtain

(q1,k − q1,k−1)ε < π1EDε. (16)

As b1,k ≤ ṽ1(q1,k, θ|b1,k, b1,k+1) by Lemma 2 and ṽ1(q1,k, θ|b1,k, b1,k+1) < ṽ1(q
u
1 , θ|b1,k, b1,k+1),

the LHS of (16) goes to 0 and the RHS to a strictly positive number as ε → 0. Since

ṽ1(q1, θ|b1,k, b1,k+1) is for any q1 ∈ [q̄RAT
1 , q1,k] right-continuous in b1,k, the proposed de-

viation would indeed be strictly profitable for the bidder with information θ. Moreover,

there can be only countable many θ’s with a profitable deviation, otherwise bidder i

could implement this deviation jointly and thus for a.e. information sets θ ties have zero

probability in equilibrium for all bidders i.

Relying on Lemma 1, the remainder of the proof is analogous to the original proof.

It suffices to replace v(q, s) by ṽ1(·, θ|bk, bk+1) in equilibrium and ṽ1(·, θ|b′k, b′k+1) when

deviating, as well as V (q∗, s)−V (q̄RAT
i , s) by EDε. In our environment with updating, a tie

may occur with positive probability only at the last step and the bidder with information

θ (at the previously fixed time τ) must not prefer winning any units in
[
qRAT
1

, q1

]
where

q1 = sup{Q1,θ−i} y1(b1,K1 , θ|Q1, θ−i) is the maximal quantity the bidder may be allocated

in an equilibrium (in the event that τ is the time of his final bid).

At step k = K1 Lemma 2 specifies the optimal bid-choice. At steps k < K1 Lemma

3 can be applied. Kastl (2012) perturbs the kth step to q′1 = q1,k − ϵ and takes the

limit as q′1 → q1,k. The original proof goes through without complications. It suf-

fices to replace the type s by the information set θ, E [V (Qc
i(Q,SSS,yyy(·|S)), si)| states]

by E
[
V (q∗1q

∗
1q
∗
1, q

∗
−1q∗−1q∗−1, s)

∣∣ θ, states] with all states as specified in the original proof, and sim-

ilarly E [V (Qc
i(Q,SSS,yyy′(·|S)), si)| states] by E

[
V (qc1q

c
1q
c
1, q

∗
−1q∗−1q∗−1, s)

∣∣ θ, states] where qc1qc1qc1 denotes the
amount the bidder wins at market clearing under the deviation in our simplified notation.

C Measurement Error

It is generally difficult to get a sense of whether and by how much our demand coefficients

might be downward biased due to measurement error in the expected winning quantities:

Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
= E

[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|bt,m,i,τ,k ≥ P c

t,mP c
t,mP c
t,m > bt,m,i,τ,k+1, θ

g
t,i,τ

]
+ εqt,m,i,τ,k. (5)

5



This is because we can construct proxy variables of how much a bidder might expect to

win in total Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i

]
, but we cannot approximate how much the bidder expected to win

at a particular bid without estimating our model.

To get at least a rough sense of the size of the bias coming, we return to regression

(1), which regresses bids on winning quantities. The idea is that this regression only

relies on observable variables. This means that we can rule out that variables other than

Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
are measured with errors that come from simulating auction clearance in

the first stage of our estimation. Since the coefficients from this regression are not the

coefficients that we obtain when we take into account that bidders shade their bids, this

exercise is useful only to the extend that it helps us grasp the size of the measurement

bias. The coefficient estimates or their signs alone, rather than in comparison, bring no

additional insights.

We compare the estimates of regression (1) with the estimates of the analogous re-

gression where we use the amounts a bidder expected to win Ê
[
q∗t,−m,iq∗t,−m,iq∗t,−m,i|...

]
instead of the

amount the bidder wins. In addition, we use other observable variables that help bound

how much a bidder might expect to win in an auction but are observable. Here, we display

two of those: the amount the bidder demanded at the highest step that he ever wins of a

maturity in a year, and the total amount the bidder demands at auction if this amount

is less than the 1% highest amount the bidder ever wins of the maturity during a year.

Online Appendix Table O5 shows the estimation findings for the 3M auction for illus-

tration. The other auctions show similar patterns. We find that the δ coefficients range

between roughly 0.1 and 0.7 when using the observable variables, while they are around

0.3 when using the expected values. Most importantly, all of the δ estimates are small

compared to the λ estimate which is 3.7. Therefore, it seems as if the measurement error

in the expected values is not causing us to vastly understand the interdependencies.

D Fixed Point Problem and Approximation

In order to compute how bidders bid when we change supply, we must determine how

much each bidder expects to win in the other auctions, Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm]. This depends on

how all bidders bid in all auctions. Therefore, finding Ê[qcf∗t,−m,iqcf∗t,−m,iqcf∗t,−m,i|qm] of all bidders and all

auctions is a complicated fixed point problem. Below we fix one auction date and omit

the day subscript.

Exact fixed point routine. Assume we change the supply from Qm to Qcf
m for all m.
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Step 1. Rescale all amounts demanded and expectations:

qcfm,i,k =
Qcf

m

Qm

qm,i,k (17)

Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]
old =

Qcf
m

Qm

Ê[q∗−m,iq∗−m,iq∗−m,i|qm,i,k] for all m,−m, i, k. (18)

Then compute the counterfactual bids for each step k, bidder i and maturity m according

to (8):

bcfm,i,k = ûm,i + λ̂mq
cf
m,i,k + δ̂m · Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]

old − ŝhadingm,i,k. (8)

Step 2. Given the counterfactual bids, estimate how much each bidder expects to win in

the other auctions by simulating market clearance for each bidder and maturity many

times (e.g., 5,000 times). Update all expectations, Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]
new.

Step 3. With the updated expectations, update all bids. Repeat steps 2-3 until none of

the expectations change when updated.

Statistical fixed point routine. It is computational infeasible to implement the exact

fixed point routine. Therefore, we propose a routine that finds the fixed point with some

estimation noise.

Steps 1-2 are as before. Step 3. Find out whether the expectations are too large or

too small, by regressing:

Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]
new = αm + βm ∗ Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]

old + ϵm,i,k for all m.

Update all expectations: Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]
new become Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]

old and the new Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]
new

= β̂m ∗ Ê[qcf∗−m,iqcf∗−m,iqcf∗−m,i|qm,i,k]
old for all m, i, k. Repeat this step until all β̂m estimates are within

the 95% confidence interval around 1.

We determine fixed points using our statistical routine for a couple of randomly se-

lected auction days. We do this for two reasons. First, we want to illustrate that this

method works reasonably well (see Online Appendix Figure O4a). Second, we want to

show that the fixed point is sufficiently close to the rescaled expectations (18) with which

we start the fixed point routine (see Online Appendix Figure O4b). This motivates us to

use the rescaled expectations in our counterfactual exercises.
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Online Appendix Figure O1: Issuance of Canadian 3M, 6M, 12M Treasury bills
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Online Appendix Figure O1 displays a time series of the issued supply of the 3M, 6M, and 12M bills,
where the 6M issuance do not appear in the graph because they are identical to 12M issuance. The Bank
of Canada always issues as many 6M bills as 12M bills. Over time, the amounts issued of the different
maturities are perfectly correlated.

Online Appendix Figure O2: Time between bids of those who do not update

Online Appendix Figure O2 shows the distribution of the time difference (measured in seconds) between
the bids that a dealer and a customer who does not update the bids places in different auctions.
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Online Appendix Figure O3: Distribution of the untrimmed shading factor

Online Appendix Figure O3 shows box plots of the untrimmed shading factor, v̂t,m,i,,τ,k − bt,m,i,,τ,k, per
step ∈ {1, 2, 3, 3, 5, 6, 7} in a bidding function. For each step, the distribution is taken over dealers i, days
t and time τ and maturities m. The shading factor is in bps.
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Online Appendix Figure O4: Expectations on 3 auction days

(a) Did we find a fixed point? (b) Fixed point vs. rescaled expectations

Online Appendix Figures O4a shows the distributions of the difference (in million C$) between the last
two iterations of updating expectations in our statistical fixed point routine for all three maturities on
three different auction days. We claim to find a fixed point (up to measurement noise) if the median
difference is zero and there are only occasional outliers. Figure O4b shows the difference (in million C$)
between the rescaled expectations (18) and the expectations that we find using our statistical fixed point
routine. The median difference is again zero.
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Online Appendix Figure O5: Illustration of the price-quantity trade-off (extended model
with heterogeneous dealers)

(a) Uniform price auction (b) Discriminatory price auction

Online Appendix Figures O5 is the analogue to Figure 4 but using the extended model with heterogeneous
dealers. depict the price-quantity trade-off when the auction is uniform price (a), and discriminatory price
(b) using the estimated λ and δ parameters in the upper graphs and scaling the parameters by 100 in the
lower graphs. On the y-axis is the total revenue earn from issuing both maturities (in billion C$) when
issuing x% of the short maturity and (1-x)% of the long maturity. The x-axis scales up x from 0% to
100%.
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Online Appendix Table O1: Demand coefficients with valuations with more than 3 steps

(a) Average dealer

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −6.777 (0.034) λ6M −11.81 (0.069) λ1Y −24.46 (0.138)
δ3M,6M −0.931 (0.074) δ6M,3M −2.396 (0.149) δ1Y,3M −6.336 (0.345)
δ3M,1Y −0.171 (0.080) δ6M,1Y −0.552 (0.163) δ1Y,6M −2.647 (0.348)
N 55822 38856 46778

(b) Dealer group 1

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −6.165 (0.034) λ6M −11.07 (0.069) λ1Y −23.09 (0.140)
δ3M,6M −1.158 (0.074) δ6M,3M −2.290 (0.146) δ1Y,3M −5.498 (0.344)
δ3M,1Y −0.281 (0.080) δ6M,1Y −1.105 (0.163) δ1Y,6M −4.281 (0.352)
N 42937 30456 37820

(c) Dealer group 2

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −11.13 (0.106) λ6M −17.29 (0.224) λ1Y −35.04 (0.469)
δ3M,6M +0.236 (0.237) δ6M,3M −1.608 (0.639) δ1Y,3M −7.224 (1.463)
δ3M,1Y +1.243 (0.246) δ6M,1Y +3.524 (0.537) δ1Y,6M +7.319 (1.189)
N 12885 8400 8958

Online Appendix Table O1 (a)-(c) are analogous to Tables 5 (a) and O4. They report the coefficients for
equation (7), but estimated on a subsample of valuations estimated from bidding functions with strictly
more than two steps, instead of one step. Valuations are in C$ and quantities in % of the auction supply.
The first three columns show the estimates for the 3M bill auction, the next three for the 6M bill auction
and the last three for the 12M bill auction. The point estimates are in the second, fifth and eight column.
Standard errors are next to them in parentheses.
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Online Appendix Table O2: Demand coefficients for the average dealer with trimmed
valuations

(a) 3M Bill auction

markup 4 bps 10 bps 20 bps 40 bps
λ3M −6.496 (0.031) −7.767 (0.046) −9.609 (0.075) −12.89 (0.135)
δ3M,6M −0.752 (0.069) −1.692 (0.101) −3.040 (0.163) −5.499 (0.293)
δ3M,1Y −0.040 (0.074) −0.605 (0.108) −1.449 (0.175) −2.806 (0.314)
N 58542 58542 58542 58542

(b) 6M Bill auction

markup 4 bps 10 bps 20 bps 40 bps
λ6M −11.05 (0.061) −13.62 (0.096) −17.25 (0.162) −23.75 (0.296)
δ6M,3M −1.892 (0.134) −4.350 (0.209) −7.910 (0.351) −14.02 (0.644)
δ6M,1Y −0.308 (0.147) −1.446 (0.228) −2.994 (0.383) −5.763 (0.701)
N 42282 42282 42282 42282

(c) 1Y Bill auction

markup 4 bps 10 bps 20 bps 40 bps
λ1Y −22.89 (0.123) −29.14 (0.202) −38.03 (0.345) −54.03 (0.637)
δ1Y,3M −5.102 (0.309) −12.25 (0.507) −23.42 (0.869) −44.35 (1.603)
δ1Y,6M −1.895 (0.312) −5.630 (0.512) −11.27 (0.877) −21.93 (1.618)
N 50408 50408 50408 50408

Appendix Table O2 (a)-(c) report the coefficients for equation (7), estimated using competitive bids of
more than one step that were placed by dealers for different valuations of the markup (4 bps, 10 bps,
20 bps, 40 bps). The estimates for a markup of 5 bps, our favorite specification, are in the main text.
Valuations are in C$, quantities % of auction supply. Standard errors are in parentheses next to the point
estimates.
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Online Appendix Table O3: Demand coefficients per dealer group with bids as indepen-
dent variables

(a) Dealer group 1

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −4.498 (0.023) λ6M −7.266 (0.040) λ1Y −14.59 (0.077)
δ3M,6M −0.081 (0.051) δ6M,3M +0.538 (0.086) δ1Y,3M +0.710 (0.191)
δ3M,1Y +0.305 (0.055) δ6M,1Y +0.145 (0.096) δ1Y,6M −0.070 (0.196)
N 45405 33464 40956

(b) Dealer group 2

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −8.879 (0.086) λ6M −13.43 (0.183) λ1Y −25.88 (0.340)
δ3M,6M +1.613 (0.193) δ6M,3M +1.156 (0.526) δ1Y,3M +0.993 (1.072)
δ3M,1Y +1.760 (0.201) δ6M,1Y +5.234 (0.442) δ1Y,6M +12.16 (0.875)
N 13137 8818 9452

Online Appendix Tables O3 (a) and (b) are analogous to Table 5 (a). They report the coefficients for
equation (7), but with the observed competitive bids by dealers with more than one step as independent
variables rather than the estimated true valuations. Bids are in C$ and quantities in % of auction supply.
The first three columns show the estimates for the 3M Bill auction, the next three for the 6M Bill auction
and the last three for the 12M Bill auction. The point estimates are in the second, fifth and eight column.
Standard errors are next to them in parentheses.

Online Appendix Table O4: Demand coefficients per dealer group with valuations as
independent variables

(a) Dealer group 1

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −6.107 (0.033) λ6M −10.75 (0.066) λ1Y −22.53 (0.135)
δ3M,6M −1.158 (0.073) δ6M,3M −2.249 (0.142) δ1Y,3M −5.478 (0.336)
δ3M,1Y −0.243 (0.078) δ6M,1Y −1.080 (0.158) δ1Y,6M −4.258 (0.344)
N 45405 33464 40956

(a) Dealer group 2

3M Bill Auction 6M Bill Auction 12M Bill Auction
λ3M −11.19 (0.106) λ6M −17.42 (0.221) λ1Y −35.75 (0.462)
δ3M,6M +0.285 (0.237) δ6M,3M −1.666 (0.636) δ1Y,3M −6.957 (1.459)
δ3M,1Y +1.216 (0.247) δ6M,1Y +3.748 (0.536) δ1Y,6M +7.607 (1.190)
N 13137 8818 9452

Online Appendix Tables O4 (a) and (b) are analogous to Table 5 (b). They report the coefficients for
equation (7). Valuations are in C$ and quantities in % of auction supply. The first three columns show
the estimates for the 3M bill auction, the next three for the 6M bill auction and the last three for the
12M bill auction. The point estimates are in the second, fifth and eight column. Standard errors are next
to them in parentheses.
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Online Appendix Table O5: Bidding regression in 3M auction

(1) (2) (3) (4)
λ3M -3.750 -3.726 -3.713 -3.722

(0.0320) (0.0316) (0.0318) (0.0318)
δ3M,6M 0.316 0.678 0.289 0.551

(0.0428) (0.0351) 0.0441) (0.0531)
δ3M,12M 0.348 0.359 0.170 0.0857

(0.0438) (0.0347) (0.0423) (0.0567)
N 59718 59583 59583 59583

Online Appendix Table O5 shows the estimation results of regression (1) but using different explanatory
variables: the estimated expected winning quantities in column (1), the actual winning quantities in
column (2), the the amount the bidder demanded at the highest step that he ever wins of a maturity
in a year in column (3) and the total amount the bidder demands at auction if this amount is less than
the 1% highest amount the bidder ever wins of the maturity during a year in column (4). We use all
bids and not just final bids of dealers similar to Table 5. Therefore, the estimates in column (2) are not
identical to the estimates of Table 3. Bids and valuations are in C$ and quantities in % of auction supply.
Standard errors are in parentheses, clustered at the bidder level.
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Online Appendix Table O6: Average gain (in bps) per auction when reshuffling 1% of

debt in the extended model with heterogeneous dealers

S ↑ L ↓ S ↑ L ↓ S ↓ L ↑ S ↓ L ↑
Uniform Discrim Uniform Discrim

Independent: factorλ=1, factorδ=0 +0.021 +0.006 −0.024 −0.008
Weak substitutes: factorλ=1, factorδ=1 +0.012 −0.004 −0.020 +0.001
Perfect substitutes: factorλ=1, δ = λ +0.011 −0.056 −0.015 +0.047
Independent: factorλ=1, factorδ=0 +0.234 −0.029 −0.295 −0.002
Weak substitutes: factorλ=1, factorδ=1 +0.227 −0.036 −0.290 +0.007
Perfect substitutes: factorλ=1, δ = λ +0.089 −0.586 −0.208 +0.589
Independent: factorλ=1, factorδ=0 +2.365 −0.448 −2.996 +0.185
Weak substitutes: factorλ=1, factorδ=1 +2.361 −0.445 −2.992 +0.144
Perfect substitutes: factorλ=1, δ = λ +1.009 −6.591 −2.113 +6.523

Online Appendix Table O6 is analogous to Table 7 but builds on the extended model with two dealer
groups (market makers and non-market makers). It shows the revenue gains when issuing 1% of debt
more for the short maturity and 1% less of the long maturity in the second and third column (S ↑ L ↓)
and vice versa in the fourth and fifth column S ↓ L ↑ when the auction format is uniform price (Uniform)
and when it is discriminatory price (Discrim). The first three rows (factorλ=1) correspond to the demand
estimates of the 6M and 12M bills assuming different degrees of substitution. The fourth-sixth row and
seventh-ninth row correspond to hypothetical auctions in which the λχ parameters in the bidder’s demand
are scaled by a factor of 10, and 100, respectively. The revenue gain is in bps of the original revenue.
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