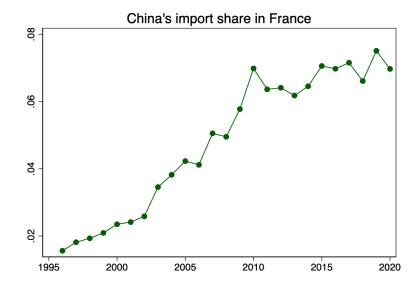
Opposing firm-level responses to the China shock: output competition versus input supply?

Philippe Aghion^{1,2} Antonin Bergeaud³ Matthieu Lequien^{4,6} Marc Melitz⁵ Thomas Zuber^{3,6}

¹Collège de France
²INSEAD
³Banque de France
⁴Insee
⁵Harvard University
⁶Paris School of Economics

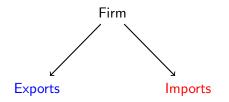

EEA - Bocconi August 23rd, 2022

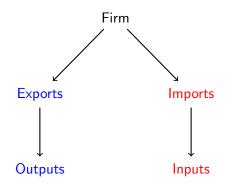
Introduction

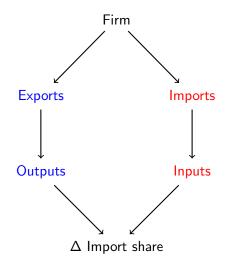
Empirical strategy

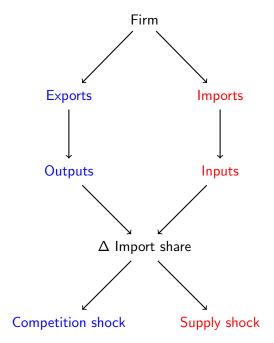
Results

Conclusion




Source: BACI, CEPII, HS96.


What do we known?


- Increased competition from China contributed ~ 10% to the decline in manufacturing employment (Autor et al., 2013, 2016; Malgouyres, 2017).
- Long term impact on displaced workers' earnings (Autor et al., 2014; Basco et al., 2020).
- But up to some point increased competition could foster innovation Aghion et al. (2005).
- Conflicting findings of Autor et al. (2020a) in the US and Bloom et al. (2016) in Europe.
- Trade also allows firms to access cheaper inputs Amiti and Konings (2007); Goldberg et al. (2010):
- \rightarrow Distinguish **output** from **input** trade competition.

Firm

Multiple response margins to trade competition

automation,

 \rightarrow buying machines

- technology improvements,
 - \rightarrow patenting new processes
- multidimensional changes in the product mix, → upstream/downstream? Away from low comparative advantage goods?
- outsourcing of production tasks,
 - \rightarrow buying final good itself, exit manufacturing.
- decline and exit.

Introduction

Empirical strategy

Results

Conclusion

Empirical strategy

Our empirical strategy depends upon merging different sources of information at the firm level:

- ▶ firm level trade data on French firms' HS6 exports and imports (~ 5000 products)
- Product level global trade data: BACI.
- Various firm level variables which can be found in fiscal files (FICUS)
- Firm level patenting behavior: PATSTAT matched to administrative identifiers through Lequien et al. (2019)'s matching algorithm.

Potential pitfalls:

- 1. Selected sample of firms = trading firms
- 2. Selected sample of products within firms = only products for which French firms have a comparative advantage.

Sample - I

We restrict our sample to:

- 1. privately managed french manufacturing firms recorded with positive sales as of $t_0 = 1999$,
- 2. which are measured with at least 10 employees at least once in our time window,
- 3. and which have customs data available prior to base year t_0 .

Our various data sources run from 1994 to 2007:

- we use the 1994-1999 period to construct exposure measures and firm level controls,
- and 2000-2007 data to construct shocks and analyze outcomes.

Sample - II

	All mean	Manufacturing mean	Customs mean	Patenting mean
Sales	8358.75	13592.21	17266.54	60233.90
Employees	40.44	60.22	81.25	259.28
Value added	2220.25	3236.57	4450.29	15881.26
Value added per worker	44.26	41.47	45.43	54.28
Labor share	0.58	0.60	0.59	0.52
Export intensity	0.05	0.13	0.13	0.21
Exported products	1.23	5.17	7.87	19.14
Imported products	1.99	8.38	12.75	27.90
Patent applications	0.00	0.25	0.37	2.96
Triadic patents	0.00	0.01	0.02	0.15
Exit	0.25	0.27	0.27	0.10
Death	0.14	0.14	0.14	0.06
Observations	243056	57764	37956	4710

Note: Mean of descriptive variables by firm group in 1999.

Trade shocks

More concretely:

- ► let x^f_{i,t0} and m^f_{i,t0} denote firm f's exports and imports of product i in base year t₀,
- let S_{i,t} be the share of France's total imports of good i originating in China in year t.

We define firm f's horizontal and vertical exposures to Chinese import competition in year t, as predicted by its base year t_0 export/import structure as:

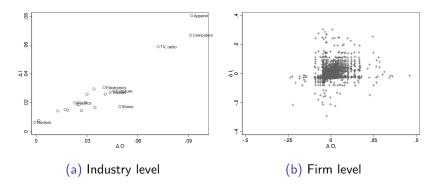
$$O_t^f = \sum_i \frac{x_{i,t_0}^f}{\sum_j x_{j,t_0}^f} S_{i,t}$$

and

$$I_t^f = \sum_i \frac{m_{i,t_0}^f}{\sum_j m_{j,t_0}^f} S_{i,t}$$

Empirical specification

To identify the causal impact of increased exposure to trade competition on firm level outcome consider the following long-difference specification:


 $\Delta_{t-k}^{t} Y_{f} = \alpha + \beta_{O} \Delta_{t-k}^{t} O_{f} + \beta_{I} \Delta_{t-k}^{t} I_{f} + \gamma' X_{f,t_{0}} + \eta_{s(f)} + \epsilon_{f}$

Where:

- ► Y_f is firm f's outcome,
- ► Δ^t_{t-k} either denotes the long difference or Davis-Haltiwanger long difference of a variable between t and t - k > t₀,
- ▶ X_{f,t0} are a set of firm level pre-t0 controls,
- $\eta_{s(f)}$ are 2-digits industry fixed effects.

To get rid of potential biases on β_O and β_I , instrument $\Delta_{t-k}^t \tilde{O}_f$ and $\Delta_{t-k}^t \tilde{I}_f$ by their counterpart in a set of 6 economically advanced countries excluding France.

Figure: Comparing output and input exposure

Note: while (a) plots of the long differences over the 2000/2007 period of our output and input shocks aggregated at the industry level, (b) plots the firm level residual variation of our long difference input and output shocks controlling for industry fixed effects.

Introduction

Empirical strategy

Results

Conclusion

Industry vs firm level evidence on employment

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Output	-0.728***	-0.467*	-1.012***	-2.310***	-2.703***	-0.872***	-0.367**	-0.0130
	(0.213)	(0.272)	(0.386)	(0.792)	(0.765)	(0.197)	(0.167)	(0.0311)
Input				1.868*	1.833*	-0.0214	0.136	-0.0208
				(1.075)	(1.003)	(0.189)	(0.179)	(0.0312)
Firm controls	\checkmark							
Sector FE							\checkmark	\checkmark
Shocks	Industry	Industry	Industry	Industry	Industry	Firm	Firm	Firm
Sample	All	All	All	All	Trading	Trading	Trading	Trading
F		131.6	119.6	17.66	14.00	160.1	142.2	142.2
Mean outcome	-0.0657	-0.0657	-0.0657	-0.0657	-0.108	-0.108	-0.108	0.0416
Ν	42323	42323	42323	42323	27884	27884	27883	27883

Standard errors in parentheses

* p < 0.10, ** p < 0.05, *** p < 0.01

Innovation

Patents:

- Look at the yearly flow of patents after 2000 versus before 2000 (DH growth rate)
- Set of "patenting" firms (at least one patent over the period)
- Different measures of patenting: triadic, EPO, priority, applications (fractional counts).

Products:

- ► For exporting firms, look at exported products after 2000.
- Share of products exported prior to 2000 which disappeared as of 2007.
- Evolution of the average comparative advantage relative to China of a firm's exported products.
- Relative comparative advantage = France/China relative exports to the rest of the world at the product level, over time.
- Concentration of exported products: HHI at the HS6 product level.

Main results

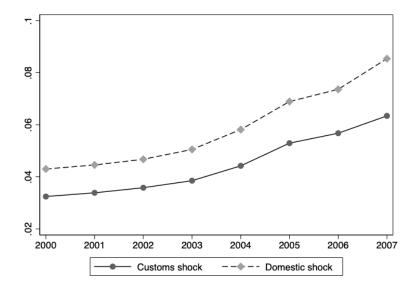
	Main outcomes						Patents		Products		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
	Sales	Employment	Labor share	Exit mfg	Death	Triadic	Appln	Discontinued	New	Comp Adv	
Output	-0.417**	-0.367**	-0.255**	0.0104	0.0707	-1.312***	-1.488*	0.196*	0.191	0.637***	
	(0.197)	(0.167)	(0.106)	(0.0751)	(0.0798)	(0.487)	(0.854)	(0.117)	(0.161)	(0.155)	
Input	0.0653	0.136	0.136	0.301***	-0.0765	-0.179	0.412	-0.133*	-0.488***	-0.288*	
	(0.186)	(0.179)	(0.114)	(0.0890)	(0.0931)	(0.482)	(0.945)	(0.0738)	(0.112)	(0.151)	
F-stat Mean outcome	142.2	142.2 -0.108	133.2 -0.0236	142.2 0.0745	169.9 0.160	141.8	141.8 0.289	131.3 0.815	162.0 0.472	148.2 0.00161	
Observations	27,883	27,883	24,999	27,883	33,203	4,710	4,710	24,232	17,307	16,090	

Frontier vs Laggard firms

	Main outcomes						ents	Products		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Sales	Employment	Labor share	Exit mfg	Death	Triadic	Appln	Discontinued	New	Comp Adv
${\sf Output}^*(q{=}1)$	-0.409*	-0.489**	-0.244*	-0.0326	0.0349	-1.259**	-1.888*	0.0189	-0.0368	0.578***
	(0.247)	(0.206)	(0.127)	(0.0648)	(0.116)	(0.516)	(1.058)	(0.0926)	(0.192)	(0.208)
Output*(q=2)	-0.403	-0.0778	-0.263	0.117	0.0442	-1.159	-0.904	0.411**	0.377**	0.694***
	(0.264)	(0.204)	(0.168)	(0.127)	(0.0888)	(0.838)	(1.372)	(0.184)	(0.178)	(0.178)
Input*(q=1)	0.0185	-0.207	-0.0181	0.220***	0.126	-0.0668	0.255	-0.0925	-0.415**	-0.327
	(0.204)	(0.200)	(0.128)	(0.0740)	(0.110)	(0.481)	(1.139)	(0.0853)	(0.172)	(0.213)
Input*(q=2)	0.117	0.488*	0.348*	0.371**	-0.322**	-0.341	0.428	-0.224*	-0.577***	-0.264
	(0.328)	(0.282)	(0.188)	(0.162)	(0.143)	(0.901)	(1.622)	(0.120)	(0.156)	(0.194)
F-Stat	70.32	70.32	66.66	70.32	83.93	32.23	32.30	65.32	51.80	49.59
Mean outcome	0.0704	-0.108	-0.0236	0.0745	0.160	0.100	0.289	0.815	0.472	0.00161
Observations	27,883	27,883	24,999	27,883	33,203	4,710	4,710	24,232	17,307	16,090

Introduction

Empirical strategy


Results

Conclusion

Conclusion

- We separately identify firms' responses to output competition and input supply trade shocks.
- Negative effect of the output competition component on:
 - 1. sales, employment both across and within industries
 - 2. the labor share within sectors: consistent with firms moving away labor-intensive, low comparative advantage goods?
 - 3. firm survival at the industry level only
- ...concentrated on low-productivity, low-comparative advantage, downstream firms.
- Surviving firms leaving manufacturing in response to increased vertical exposure: dropping manufactured goods and concentrating on associated services?

Domestic vs customs - I

Domestic vs customs - II

				Emplo	YMENT					
	Without industry FE (column 6 of Table ??)					With industry FE (column 7 of Table ??)				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Output	-0.879*** (0.194)	-1.017*** (0.227)	-0.897*** (0.304)	-0.894*** (0.301)	-0.328** (0.160)	-0.434** (0.190)	0.214 (0.435)	0.243 (0.437)		
Shocks Sample Firm controls Industry FE	Customs Customs √	Customs Customs and EAE ✓	EAE Customs and EAE ✓	EAE EAE √	Customs Customs √ √	Customs Customs and EAE ✓ ✓	EAE Customs and EAE ✓ ✓	EAE EAE ✓		
F-Stat Mean outcome Observations	310.9 -0.108 27884	161.7 -0.182 12864	89.00 -0.182 12864	75.34 -0.183 14438	232.0 -0.108 27883	141.1 -0.182 12863	104.2 -0.182 12863	96.15 -0.183 14437		
		Vithout industry FE (column 6 of Table ?	TRIADIC 2)		With industry FE (co	ump 7 of Table 22)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Output	-1.465*** (0.492)	-1.789*** (0.569)	-1.740** (0.749)	-1.740** (0.749)	-1.382*** (0.483)	-1.470*** (0.545)	-1.913** (0.908)	-1.913** (0.908)		
Shocks Sample Firm controls Sector FE	Customs Customs √	Customs Customs and EAE √	EAE Customs and EAE √	EAE EAE √	Customs Customs √ √	Customs Customs and EAE ✓ ✓	EAE Customs and EAE \checkmark	EAE EAE ✓		
F-Stat Mean outcome Observations	176.0 0.100 4710	130.4 0.110 3510	155.1 0.110 3510	155.1 0.110 3510	159.2 0.100 4710	128.8 0.110 3509	149.7 0.110 3509	149.7 0.110 3509		

Appendix: common shock

	Main outcomes						ents	Products		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Sales	Employment	Labor share	Exit mfg	Death	Triadic	AppIn	Discontinued	New	Comp Adv
Horizontal	-0.403**	-0.374**	-0.336***	0.0385	0.0512	-1.240**	-1.967*	0.279***	0.243	0.462***
	(0.195)	(0.175)	(0.108)	(0.0710)	(0.0890)	(0.553)	(1.029)	(0.102)	(0.164)	(0.167)
Vertical	0.205	0.322*	0.0808	0.269***	0.0159	-0.560	-1.040	0.0297	-0.225*	-0.00775
	(0.202)	(0.191)	(0.119)	(0.0828)	(0.0929)	(0.457)	(0.799)	(0.0736)	(0.129)	(0.141)
Common	-0.215	-0.215	0.140	0.0113	-0.0563	-0.0744	1.104	-0.278***	-0.288**	-0.0332
	(0.222)	(0.186)	(0.134)	(0.0968)	(0.112)	(0.420)	(0.935)	(0.0714)	(0.131)	(0.168)
F	88.05	88.05	79.67	88.05	118.6	71.79	71.79	105.4	123.2	125.9
Mean outcome	0.0704	-0.108	-0.0236	0.0745	0.160	0.100	0.289	0.815	0.472	0.00161
N	27883	27883	24999	27883	33203	4710	4710	24232	17307	16090

Appendix: all patent measures

.

	(1) Triadic	(2) EPO	(3) Priority	(4) Applications
Horizontal	-1.312***	-1.687**	-1.138	-1.488*
	(0.487)	(0.820)	(0.751)	(0.854)
Vertical	-0.179	0.940	0.0968	0.412
	(0.482)	(0.746)	(0.925)	(0.945)
F	141.8	141.8	141.7	141.8
Mean outcome	0.100	0.235	0.217	0.289
Ν	4710	4710	4710	4710

Standard errors in parentheses

 * p<0.10, ** p<0.05, *** p<0.01

Appendix: all patent measures, frontier vs laggard

	(1) Triadic	(2) EPO	(3) Priority	(4) Applications
	mauic		Тпопту	Applications
$Horizontal^*(q{=}1)$	-1.259**	-1.827*	-1.276	-1.888*
	(0.516)	(0.955)	(1.004)	(1.058)
Horizontal*(q=2)	-1.159	-1.507	-1.106	-0.904
	(0.838)	(1.299)	(1.216)	(1.372)
(1)	0.0000	0 420	0.410	0.055
Vertical*(q=1)	-0.0668	0.438	-0.410	0.255
	(0.481)	(0.866)	(1.069)	(1.139)
Vertical*(q=2)	-0.341	1.544	0.729	0.428
Vertical (q=2)				
	(0.901)	(1.340)	(1.632)	(1.622)
F	32.23	32.42	32.27	32.30
Mean outcome	0.100	0.235	0.217	0.289
Ν	4710	4710	4710	4710

Standard errors in parentheses

Bibliography I

- Aghion, Philippe, Nicholas Bloom, Richard Blundell, Rachel Griffith, and Peter Howitt, "Competition and Innovation: an Inverted-U Relationship," *The Quarterly Journal of Economics*, 2005, *120* (2), 701–728.
- Amiti, Mary and Jozef Konings, "Trade Liberalization, Intermediate Inputs, and Productivity: Evidence from Indonesia," *American Economic Review*, December 2007, *97* (5), 1611–1638.
- Autor, David, David Dorn, Gordon H. Hanson, Gary Pisano, and Pian Shu, "Foreign Competition and Domestic Innovation: Evidence from US Patents," *American Economic Review: Insights*, September 2020a, 2 (3), 357–74.
- _ , _ , Gordon Hanson, Gary Pisano, and Pian Shu, "Foreign Competition and Domestic Innovation: Evidence from U.S. Patents," Technical Report 22879, National Bureau of Economic Research 2016. DOI: 10.3386/w22879.

Bibliography II

- Autor, David H., David Dorn, and Gordon H. Hanson, "The China Syndrome: Local Labor Market Effects of Import Competition in the United States," *American Economic Review*, October 2013, *103* (6), 2121–68.
- Autor, David H, David Dorn, Gordon H Hanson, and Jae Song, "Trade adjustment: Worker-level evidence," *The Quarterly Journal of Economics*, 2014, *129* (4), 1799–1860.
- Basco, Sergi, Maxime Liégey, Martí Mestieri, and Gabriel Smagghue, "The Heterogeneous Effects of Trade across Occupations: A Test of the Stolper-Samuelson Theorem," 2020.
- Bloom, Nicholas, Mirko Draca, and John Van Reenen, "Trade Induced Technical Change? The Impact of Chinese Imports on Innovation, IT and Productivity," *The Review of Economic Studies*, 2016, *83* (1), 87–117.

Bibliography III

- Goldberg, Pinelopi Koujianou, Amit Kumar Khandelwal, Nina Pavcnik, and Petia Topalova, "Imported intermediate inputs and domestic product growth: Evidence from India," *The Quarterly journal of economics*, 2010, *125* (4), 1727–1767.
- Lequien, Matthieu, Martin Mugnier, Loriane Py, and Paul Trichelair, "Linking patents to firms: insights with French firms," 2019. Mimeo Banque de France.
- Malgouyres, Clément, "The impact of Chinese import competition on the local structure of employment and wages: evidence from France," *Journal of Regional Science*, 2017, 57 (3), 411–441.