The Crossborder Effects of Bank Capital Regulation.

Saleem Bahaj (UCL) and Fred Malherbe (UCL)

Motivation

▶ International competition between regulators.

- ▶ What are the strategic incentives? Externalities?
- ▶ Dell'Ariccia and Marquez (2006)
 - ▶ Race to the bottom, competition for market share.

Motivation

- ▶ International competition between regulators.
 - ▶ What are the strategic incentives? Externalities?
- ▶ Dell'Ariccia and Marquez (2006)
 - ▶ Race to the bottom, competition for market share.
- ▶ International standards (Basel I, II, III) to *"level the playing field"*.
 - ▶ ... but national discretion remains in some dimensions (e.g. macropru).
- ▶ CCyBs are the marginal instrument.
 - ▶ These are reciprocated. This changes the game.

Motivation

- ▶ International competition between regulators.
 - ▶ What are the strategic incentives? Externalities?
- ▶ Dell'Ariccia and Marquez (2006)
 - ▶ Race to the bottom, competition for market share.
- ▶ International standards (Basel I, II, III) to *"level the playing field"*.
 - ▶ ... but national discretion remains in some dimensions (e.g. macropru).
- ▶ CCyBs are the marginal instrument.
 - ▶ These are reciprocated. This changes the game.
- ▶ This paper: no longer competition for market share, now competition for capital.

The model

- Static, two country model, competitive markets, risk neutral agents: Home and Foreign (1).
- ► Technology:
 - ▶ Penniless firms, CD production: AK^{α} ; stochastic TFP.
 - ▶ Labour inelastic and immobile.
 - ▶ Storage unit gross return.

The model

- Static, two country model, competitive markets, risk neutral agents: Home and Foreign (1).
- ► Technology:
 - ▶ Penniless firms, CD production: AK^{α} ; stochastic TFP.
 - ▶ Labour inelastic and immobile.
 - ▶ Storage unit gross return.
- ▶ Banks, mobile across borders:
 - Lend to firms (X = K in equilibrium).
 - ▶ Raise insured deposits + equity capital from anywhere.
 - ▶ Upward sloping global supply curve for bank capital; slope $1 + z^*$.
 - \blacktriangleright Equity capital scarce .

▶ Basel III like capital requirement

$$\underbrace{n}_{\text{equity of Home bank}} \geq (\overline{\gamma} + \text{CCyB}_t) \times \begin{pmatrix} \underbrace{x}_{\text{Home lending}} \end{pmatrix} + (\overline{\gamma} + \text{CCyB}_t') \times \begin{pmatrix} \underbrace{x'}_{\text{Foreign lending}} \end{pmatrix}$$

▶ Basel III like capital requirement

$$\underbrace{n}_{\text{equity of Home bank}} \geq (\overline{\gamma} + \text{CCyB}_t) \times \left(\underbrace{x}_{\text{Home lending}}\right) + \left(\overline{\gamma} + \underbrace{\text{CCyB}'_t}_{\text{Reciprocity}}\right) \times \left(\underbrace{x'}_{\text{Foreign lending}}\right)$$

▶ Basel III like capital requirement

$$\underbrace{n}_{\text{equity of Home bank}} \geq (\overline{\gamma} + \text{CCyB}_t) \times \left(\underbrace{x}_{\text{Home lending}}\right) + \left(\overline{\gamma} + \text{CCyB}_t'\right) \times \left(\underbrace{x'}_{\text{Foreign lending}}\right)$$

▶ Reciprocity *de facto* host country rule at the margin:

- ▶ same treatment of Home and Foreign banks.
- ▶ same treatment of branches and subsidiaries.

▶ Basel III like capital requirement

• Reciprocity *de facto* host country rule at the margin:

- ▶ same treatment of Home and Foreign banks.
- ▶ same treatment of branches and subsidiaries.

▶ Basel III like capital requirement

• Reciprocity *de facto* host country rule at the margin:

- ▶ same treatment of Home and Foreign banks.
- same treatment of branches and subsidiaries.

► Standard features:

- ▶ Requirement binding in equilibrium.
- Specialisation(risk-shifting). Intepretation: BHC subsidiaries or stand-alone.

First step: solve for equilibrium given a pair γ, γ' .

R denotes the return on equity for banks specialising in Home $(R^\prime$ for specialising in Foreign).

First step: solve for equilibrium given a pair γ, γ' .

R denotes the return on equity for banks specialising in Home $(R^\prime$ for specialising in Foreign).

Proposition

There is a unique pair $\{N^*, N'^*\}$ such that $R(N^*, \gamma) = R'(N'^*, \gamma') = (1 + z(N^*, N'^*))$

First step: solve for equilibrium given a pair γ, γ' .

R denotes the return on equity for banks specialising in Home $(R^\prime$ for specialising in Foreign).

Proposition

There is a unique pair $\{N^*, N'^*\}$ such that $R(N^*, \gamma) = R'(N'^*, \gamma') = (1 + z(N^*, N'^*))$ key objects: equity capital *allocated* to lending in each country

First step: solve for equilibrium given a pair γ, γ' .

R denotes the return on equity for banks specialising in Home $(R^\prime$ for specialising in Foreign).

Proposition

There is a unique pair $\{N^*, N'^*\}$ such that $R(N^*, \gamma) = R'(N'^*, \gamma') = (1 + z(N^*, N'^*))$

$\frac{Lemma}{\frac{dN^*}{d\gamma}} \gtrless 0 \Leftrightarrow \frac{\partial R(N^*,\gamma)}{\partial \gamma} \gtrless 0$

Assume $\frac{\partial R(N^*,\gamma)}{\partial \gamma} > 0$; two sources of extra capital:

- 1. new issuance
- 2. inflows from abroad.

Assume $\frac{\partial R(N^*,\gamma)}{\partial \gamma} > 0$; two sources of extra capital:

- 1. new issuance
- 2. inflows from abroad.

Proposition

$$rac{d {\sf N}^{*\prime}}{d \gamma} = - \underbrace{SP^*(\gamma, \gamma')}_{\in [0,1]} rac{d {\sf N}^*}{d \gamma}$$

Assume $\frac{\partial R(N^*,\gamma)}{\partial \gamma} > 0$; two sources of extra capital:

- 1. new issuance
- 2. inflows from abroad.

Proposition

$$\frac{dN^{*\prime}}{d\gamma} = -\underbrace{SP^{*}(\gamma,\gamma')}_{\in [0,1]} \frac{dN^{*}}{d\gamma}$$

Assume $\frac{\partial R(N^*,\gamma)}{\partial \gamma} > 0$; two sources of extra capital:

- 1. new issuance
- 2. inflows from abroad.

Proposition

$$\frac{dN^{*\prime}}{d\gamma} = -\underbrace{SP^{*}(\gamma,\gamma')}_{\in [0,1]} \frac{dN^{*}}{d\gamma}$$

Assume $\frac{\partial R(N^*,\gamma)}{\partial \gamma} > 0$; two sources of extra capital:

- 1. new issuance
- 2. inflows from abroad.

Proposition

$$\frac{dN^{*\prime}}{d\gamma} = -\underbrace{SP^{*}(\gamma,\gamma')}_{\in [0,1]} \frac{dN^{*}}{d\gamma}$$

Assume $\frac{\partial R(N^*,\gamma)}{\partial \gamma} > 0$; two sources of extra capital:

- 1. new issuance
- 2. inflows from abroad.

Proposition

Spillovers are given by

$$rac{d {\sf N}^{*\prime}}{d \gamma} = - \underbrace{SP^*(\gamma, \gamma')}_{\in [0,1]} rac{d {\sf N}^*}{d \gamma}$$

BUT can $R(N^*, \gamma)$ increase with γ ?

- ▶ all else equal, tighter capital requirements generate scarcity rents...
- ▶ ...effect like dampened competition.

- ▶ all else equal, tighter capital requirements generate scarcity rents...
- ▶ ...effect like dampened competition.

- ▶ all else equal, tighter capital requirements generate scarcity rents...
- ▶ ...effect like dampened competition.

- ▶ all else equal, tighter capital requirements generate scarcity rents...
- ▶ ...effect like dampened competition.

- ▶ all else equal, tighter capital requirements generate scarcity rents...
- ▶ ...effect like dampened competition.

Implications

For any γ' there is a "Revenue maximising requirement": γ̂(γ')
 If γ < γ̂(γ'), raising γ raises R and, therefore, dN^{*'}/dγ > 0.

Implications

For any γ' there is a "Revenue maximising requirement": $\hat{\gamma}(\gamma')$

X = Aggregate Home lending. We assume ex-ante symmetry.

► Welfare function
$$\widetilde{\pi}(X, N) = (X^{\alpha} - X) - \widetilde{L}(X, N)$$

econ surplus loss function

▶ Maintain assumption: $\widetilde{L_N}(X, N) < 0$.

 $\blacktriangleright\,$ e.g $\widetilde{L}\propto$ Expected losses from bank default.

▶ e.g $\tilde{L} \propto \text{Expected losses from bank default.}$

Definition Symmetric Nash equilibrium: $\gamma^{nash} \equiv \arg \max_{\gamma} \pi^*(\gamma, \gamma^{nash})$ Collaborative optimum: $\gamma^{col} \equiv \arg \max_{\gamma=\gamma'} \pi^*(\gamma, \gamma') + \pi'^*(\gamma', \gamma)$

▶ e.g \widetilde{L} ∝ Expected losses from bank default.

Definition Symmetric Nash equilibrium: $\gamma^{nash} \equiv \arg \max_{\gamma} \pi^*(\gamma, \gamma^{nash})$ Collaborative optimum: $\gamma^{col} \equiv \arg \max_{\gamma=\gamma'} \pi^*(\gamma, \gamma') + \pi'^*(\gamma', \gamma)$

Ultimately, what we are interested in is $\gamma^{\text{nash}} \geq \gamma^{\text{col}}$

Collaborative FOC: $\pi_{\gamma}^{*}(\gamma, \gamma') + \pi_{\gamma}^{'*}(\gamma', \gamma) = 0$ Competitive FOC sets to 0 externality, if >0 $\gamma^{nash} < \gamma^{col}$

► Collaborative FOC:

Competitive FOC sets to 0 externality, if >0 $\gamma^{nash} < \gamma^{col}$

 $\underbrace{\pi_{\gamma}^{*}(\gamma,\gamma')}_{\gamma} + \underbrace{\pi_{\gamma}^{'*}(\gamma',\gamma)}_{\gamma} = 0$

• Externality can be developed as: $\pi_{\gamma}^{\prime*}(\gamma',\gamma) \equiv \frac{dN^{\prime*}}{d\gamma} \underbrace{\widetilde{\pi}_{N'}^{\prime}(N^{\prime*},\gamma')}$

• Externality can be developed as: $\pi_{\gamma}^{\prime*}(\gamma',\gamma) \equiv \frac{dN^{\prime*}}{d\gamma} \underbrace{\widetilde{\pi}_{N'}^{\prime}(N^{\prime*},\gamma')}_{>0}$

- *π*'_{N'}(N'*, γ') > 0 means Foreign would like more N' given γ'.
 Sufficient condition, an increase in γ raises welfare holding lending fixed.
- ▶ The sign of the externality is the same as that of $\frac{dN^{**}}{d\gamma}$. So:

$$\gamma^{\mathrm{nash}} < \gamma^{\mathrm{col}} \Leftrightarrow \hat{\gamma}(\gamma^{\mathrm{col}}) < \gamma^{\mathrm{col}}$$

• Externality can be developed as: $\pi'^*_{\gamma}(\gamma',\gamma) \equiv \frac{dN'^*}{d\gamma} \underbrace{\widetilde{\pi}'_{N'}(N'^*,\gamma')}_{>0}$

- *π*'_{N'}(N'*, γ') > 0 means Foreign would like more N' given γ'.
 Sufficient condition, an increase in γ raises welfare holding lending fixed.
- ▶ The sign of the externality is the same as that of $\frac{dN'^*}{d\gamma}$. So:

$$\gamma^{\mathrm{nash}} < \gamma^{\mathrm{col}} \Leftrightarrow \hat{\gamma}(\gamma^{\mathrm{col}}) < \gamma^{\mathrm{col}}$$

If capital is abundant externality < 0 and $\gamma^{col} < \gamma^{nash}$. Vice versa if capital is scarce.

Capital Scarcity and Policy Implications

Capital Scarcity and Policy Implications

Capital Scarcity and Policy Implications

Conclusion

▶ New Regime: Time varying buffers and **Reciprocity**.

▶ The competition among regulators \Rightarrow race to the bottom.

► Contribution:

- ▶ Analytical framework to study current regulatory environment.
- ▶ Raising requirements can generates capital outflows and *inflows*.
- ▶ Inflows generate incentive for excessively tight regulation relative to collaboration.
- ▶ Direction of flow governs varies over the cycle with implications for the CCyB.

Capital-constrained banks are more likely to reduce their foreign exposures than their domestic ones [...] the build-up of a capital buffer in one country [...] should not impair the functioning of financial intermediation in other countries.

L. de Guindos (2019).