Negative Rates

Julio Dávila ${ }^{1}$ and Elizaveta Lukmanova ${ }^{2}$

${ }^{1}$ Nazarbayev University
${ }^{2}$ KULeuven

motivation

ECB marginal lending facility rate
ECB main refinancing operations rate
ECB deposit facility rate

goals

- to explain zero/negative rates in an equilibrium set up
- to provide a rationale for bank intermediation starting from "natural" assumptions
- to shed light on policy

what is out there?

Eggertson et al. (2019): "the theoretical literature on negative interest rates is perhaps surprisingly somewhat smaller [than the empirical], given the high stakes in the policy debate"

- Rognlie (2015) "integrate[s] cash [...] by including [a] concave utility from real cash balances into household preferences"
- Brunnermeier and Koby (2016) "assume [...] that loans are priced at marginal costs that include costs from leverage"
- Ulate (2019): "deposits and loans have the same duration [which] side-steps maturity transformation as an aspect of banking", [and] "household[s ...] save [only] by depositing their money in [...] banks, or by holding cash"
- Eggerston et al. (2019) introduce opaque intermediation costs
a standard infinite-horizon deterministic neoclassical model with:
- households and firms are constrained by the timing of the availability of their own funds
- factor markets opening in the "morning"
- output market opening in the "evening"
- banks intermediate funds needed/made idle by the time mismatch, and allow for a higher participation in the capital market
- loans to firms have a "long" maturity (2 periods) while household deposits have a "short" maturity (1 period)

results

1 steady state output is higher with banks than (the conterfactual) without -if inflation and lending rates are low, and labor supply sufficiently inelastic

2 the first best steady state cannot (generically) be a market outcome with a passive central bank

3 to implement planner allocations, collateral requirements / leverage bounds -based on expected inflation and lending rates- are needed

4 the first-best steady state requires a zero lending rate from banks to firms and a negative lending rate from the central bank to banks

$$
\begin{aligned}
& \max _{0 \leq c_{t}, k_{t+1}, h_{t}, m_{t}^{h}, d_{t}} \sum_{t=1}^{+\infty}\left(\delta^{h}\right)^{t-1}\left[u\left(c_{t}\right)-v\left(h_{t}\right)\right] \\
& m_{t}^{h} \leq r_{t} k_{t}+w_{t} h_{t}+\pi_{t}^{f}+\sum_{b} \pi_{t}^{b} \\
& c_{t}+k_{t+1}+\phi\left(l_{t}\right) d_{t} \leq m_{t}^{h}+\frac{r_{t-1}^{d}}{\rho_{t}} d_{t-1}
\end{aligned}
$$

$$
\begin{aligned}
\max _{0 \leq k_{t}, h_{t}, l_{t}, m_{t}^{f}, \pi_{t}^{f}} & \sum_{t=1}^{+\infty}\left(\delta^{f}\right)^{t-1} \pi_{t}^{f} \\
r_{t} k_{t}+w_{t} h_{t}+\pi_{t}^{f}+\frac{r_{t-1}^{\prime}}{\rho_{t}} \frac{r_{t-2}^{\prime}}{\rho_{t-1}} / l_{t-2} & \leq I_{t}+\frac{1}{\rho_{t}} m_{t-1}^{f} \\
m_{t}^{f} & \leq f\left(k_{t}+e^{f}, h_{t}\right) \\
r_{t}^{\prime} l_{t} & \leq f\left(k_{t}+e^{f}, h_{t}\right) \theta
\end{aligned}
$$

banks

$$
\begin{gathered}
\max _{0 \leq l_{t}^{b}, d_{t}^{b}, q_{t}^{b}, \pi_{t}^{b}} \sum_{t=1}^{+\infty}\left(\delta^{b}\right)^{t-1} \pi_{t}^{b} \\
\pi_{t}^{b}+l_{t}^{b}-\frac{r_{t-1}^{l}}{\rho_{t}} \frac{r_{t-2}^{l}}{\rho_{t-1}} l_{t-2}^{b} \leq d_{t}^{b}-\frac{r_{t-1}^{d}}{\rho_{t}} d_{t-1}^{b}+q_{t}^{b}-\frac{r_{t-1}^{a}}{\rho_{t}} q_{t-1}^{b} \\
\frac{r_{t-1}^{\prime}}{\rho_{t}} I_{t-1}^{b}+l_{t}^{b}=e^{b}+d_{t}^{b}+q_{t}^{b} \\
\eta l_{t}^{b} \leq e^{b}
\end{gathered}
$$

$$
\begin{aligned}
\frac{u^{\prime}\left(c_{t}\right)}{\delta^{h} u^{\prime}\left(c_{t+1}\right)} & =r_{t+1}=\frac{1}{\phi\left(I_{t}\right)} \frac{r_{t}^{d}}{\rho_{t+1}} \\
\frac{v^{\prime}\left(h_{t}\right)}{u^{\prime}\left(c_{t}\right)} & =w_{t} \\
m_{t}^{h} & =r_{t} k_{t}+w_{t} h_{t}+\pi_{t}^{f}+\sum_{b} \pi_{t}^{b} \\
c_{t}+k_{t+1}+\phi\left(l_{t}\right) d_{t} & =m_{t}^{h}+\frac{r_{t-1}^{d}}{\rho_{t}} d_{t-1}
\end{aligned}
$$

firm's optimizing

$$
\left.\begin{array}{c}
\frac{r_{t}}{f_{k}\left(k_{t}+e^{f}, h_{t}\right)}=\frac{1}{r_{t}^{\prime}}\left[\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}+\theta\left(1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}\right)\right]=\frac{w_{t}}{f_{h}\left(k_{t}+e^{f}, h_{t}\right)} \\
r_{t} k_{t}+w_{t} h_{t}+\pi_{t}^{f}+\frac{r_{t-2}^{\prime}}{\rho_{t-1}} \frac{r_{t-1}^{\prime}}{\rho_{t}} t_{t-2} \\
=\frac{1}{\rho_{t}} m_{t-1}^{f}+l_{t} \\
m_{t}^{f}=f\left(k_{t}+e^{f}, h_{t}\right) \\
r_{t}^{\prime} l_{t}
\end{array} \leq f\left(k_{t}+e^{f}, h_{t}\right) \theta\right] \begin{aligned}
{\left[1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}\right]\left[r_{t}^{\prime} l_{t}-f\left(k_{t}+e^{f}, h_{t}\right) \theta\right]=0 } \\
\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}^{\prime}} \leq 1
\end{aligned}
$$

banks' optimizing

$$
\begin{gathered}
r_{t}^{d}=r_{t}^{a} \\
\pi_{t}^{b}+I_{t}^{b}-\frac{r_{t-1}^{\prime}}{\rho_{t}} \frac{r_{t-2}^{\prime}}{\rho_{t-1}} l_{t-2}^{b}=d_{t}^{b}-\frac{r_{t-1}^{d}}{\rho_{t}} d_{t-1}^{b}+q_{t}^{b}-\frac{r_{t-1}^{a}}{\rho_{t}} q_{t-1}^{b} \\
\frac{r_{t-1}^{\prime}}{\rho_{t}} l_{t-1}^{b}+I_{t}^{b}=e^{b}+d_{t}^{b}+q_{t}^{b} \\
\eta I_{t}^{b} \leq e^{b} \\
{\left[\left(\delta^{b} \frac{r_{t}^{\prime}}{\rho_{t+1}}-\delta^{b} \frac{r_{t}^{d}}{\rho_{t+1}}\right)+\delta^{b} \frac{r_{t}^{\prime}}{\rho_{t+1}}\left(\delta^{b} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}-\delta^{b} \frac{r_{t+1}^{d}}{\rho_{t+2}}\right)\right]\left(\eta l_{t}^{b}-e^{b}\right)=0} \\
0 \leq\left(\delta^{b} \frac{r_{t}^{\prime}}{\rho_{t+1}}-\delta^{b} \frac{r_{t}^{d}}{\rho_{t+1}}\right)+\delta^{b} \frac{r_{t}^{\prime}}{\rho_{t+1}}\left(\delta^{b} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}-\delta^{b} \frac{r_{t+1}^{d}}{\rho_{t+2}}\right)
\end{gathered}
$$

market clearing

$$
\begin{aligned}
c_{t}+k_{t+1} & =f\left(k_{t}+e^{f}, h_{t}\right) \\
I_{t} & =\sum_{b} I_{t}^{b} \\
d_{t} & =\sum_{b} d_{t}^{b} \\
0 & =\sum_{b} q_{t}^{b}
\end{aligned}
$$

equilibrium

- household's optimizing
- firm's optimizing
- banks' optimizing
- market clearing
consistent with observations?

consistent with observations?

$$
\begin{aligned}
& -0.04 \\
& 1960 \\
& 0 \leq\left(\delta^{b} \frac{r_{t}^{\prime}}{\rho_{t+1}}-\delta^{b} \frac{r_{t}^{d}}{\rho_{t+1}}\right)+\delta^{b} \frac{r_{t}^{l}}{\rho_{t+1}}\left(\delta^{b} \frac{r_{t+1}^{l}}{\rho_{t+2}}-\delta^{b} \frac{d_{t+1}^{d}}{\rho_{t+2}}\right)
\end{aligned}
$$

consistent with observations?

(1) the equilibrium SS with banks has a higher output...
(2) the planner's SS is not a market outcome...

(3) decentralising planner allocations

any equilibrium allocation satisfying

$$
\theta_{t}=\frac{r_{t}^{\prime}-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}}{1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}}
$$

is a planner's allocation, why?

(3) decentralising planner allocations

any equilibrium allocation satisfying

$$
\theta_{t}=\frac{r_{t}^{\prime}-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}}{1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}}
$$

is a planner's allocation, why?

$$
1=\left[\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}+\theta_{t}\left(1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}\right)\right] \frac{1}{r_{t}^{\prime}}
$$

(3) decentralising planner allocations

any equilibrium allocation satisfying

$$
\theta_{t}=\frac{r_{t}^{\prime}-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}}{1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}}
$$

is a planner's allocation, why?

$$
1=\left[\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}+\theta_{t}\left(1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}\right)\right] \frac{1}{r_{t}^{\prime}}=\frac{r_{t}}{f_{k}\left(k_{t}+e^{f}, h_{t}\right)}
$$

(3) decentralising planner allocations

any equilibrium allocation satisfying

$$
\theta_{t}=\frac{r_{t}^{\prime}-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}}{1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}}
$$

is a planner's allocation, why?

$$
1=\left[\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}+\theta_{t}\left(1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}\right)\right] \frac{1}{r_{t}^{\prime}}=\frac{r_{t}}{f_{k}\left(k_{t}+e^{f}, h_{t}\right)}
$$

(3) decentralising planner allocations

any equilibrium allocation satisfying

$$
\theta_{t}=\frac{r_{t}^{\prime}-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}}{1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}}
$$

is a planner's allocation, why?

$$
1=\left[\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}+\theta_{t}\left(1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}\right)\right] \frac{1}{r_{t}^{\prime}}=\frac{\frac{u^{\prime}\left(c_{t-1}\right)}{\delta^{h} u\left(c_{t}\right)}}{f_{k}\left(k_{t}+e^{f}, h_{t}\right)}
$$

(3) decentralising planner allocations

any equilibrium allocation satisfying

$$
\theta_{t}=\frac{r_{t}^{\prime}-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}}{1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}}
$$

is a planner's allocation, why?

$$
1=\left[\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}}+\theta_{t}\left(1-\delta^{f} \frac{r_{t}^{\prime}}{\rho_{t+1}} \cdot \delta^{f} \frac{r_{t+1}^{\prime}}{\rho_{t+2}}\right)\right] \frac{1}{r_{t}^{\prime}}=\frac{\frac{v^{\prime}\left(h_{t}\right)}{u\left(c_{t}\right)}}{f_{h}\left(k_{t}+e^{f}, h_{t}\right)}
$$

(4) decentralising the planner's SS

(4) decentralising the planner's SS

the market implementation of the planner's SS requires

- lending to firms at a zero rate :

$$
r^{\prime}=1
$$

- lending to banks at a negative rate :

$$
r^{q}<1
$$

whenever $\theta \geq 1$ and $\frac{\delta^{h}}{\delta^{f}}>\phi(I)$

(4) decentralising the planner's SS

the market implementation of the planner's SS requires

- lending to firms at a zero rate :

$$
r^{\prime}=1
$$

- lending to banks at a negative rate :

$$
r^{q}<1
$$

whenever $\theta \geq 1$ and $\frac{\delta^{h}}{\delta^{f}}>\phi(I)$
household's FOC

$$
\frac{u^{\prime}\left(c_{t}\right)}{\delta^{h} u^{\prime}\left(c_{t+1}\right)}=\frac{1}{\phi\left(I_{t}\right)} \frac{r_{t}^{d}}{\rho_{t+1}}
$$

household's FOC

$$
\frac{u^{\prime}\left(c_{t}\right)}{\delta^{h} u^{\prime}\left(c_{t+1}\right)}=\frac{1}{\phi\left(I_{t}\right)} \frac{r_{t}^{d}}{\rho_{t+1}}
$$

household's FOC at SS

$$
\frac{u^{\prime}(c)}{\delta^{h} u^{\prime}(c)}=\frac{1}{\phi(I)} \frac{r^{d}}{\rho}
$$

household's FOC at SS

$$
\frac{u^{\prime}(c)}{\delta^{h} u^{\prime}(c)}=\frac{1}{\phi(I)} \frac{r^{d}}{\rho}
$$

household's FOC at SS

$$
\frac{1}{\delta^{h}}=\frac{1}{\phi(I)} \frac{r^{q}}{\rho}
$$

at SS

$$
\frac{1}{\delta^{h}}=\frac{1}{\phi(I)} \frac{r^{q}}{\rho}
$$

at SS decentralising the planner's

$$
\frac{1}{\delta^{h}}=\frac{1}{\phi(I)} \frac{r^{q}}{\delta^{f}}
$$

at SS decentralising the planner's

$$
\phi(I) \frac{\delta^{f}}{\delta^{h}}=\quad r^{q}
$$

at SS decentralising the planner's

$$
1>\phi(I) \frac{\delta^{f}}{\delta^{h}}=\quad r^{q}
$$

iff

$$
\delta^{h}>\phi(I) \delta^{f}
$$

shortcomings

- no actual borrowing from the central bank
- no room for banks deposits at the central bank either
- reserve requirements seem not to play much of a role
- business cycle aspects are not addressed
but still...

to take home

- observed zero and negative rates are compatible [even optimal] with an equilibrium model that withstands confronting data
- policy may need to focus not just on rates but on leverage levels —reminiscent of Geanakoplos (2010)
- reserve requirements may not play a role in decentralising planner's allocations because of the required negative lending rate to banks
- the results should be robust given the stripped-down nature of the set-up...

