The Dual Role of Insurance in Input Use: Mitigating Risk Versus Curtailing Incentives

Davide Pietrobon IEE/GSEM University of Geneva, Centre LIVES

August 21, 2022

Motivation

 Governments around the developing world spend billions of dollars on fertilizer subsidies

• Indian government: \approx \$11bn in 2019 (GOI 19)

- More fertilizer \rightarrow higher agricultural productivity (Ellis 92, Sachs 04)
- Puzzle: why aren't farmers using more fertilizer?
- Fertilizer may be a risky input
 - More insurance should increase fertilizer use
- Insurance can decrease people's incentives to exert effort when the latter is difficult to monitor
- This effort reduction can go hand in hand with a decrease in the use of effort-complementary inputs

Research question

- What is the relationship between input use and insurance when the latter can create incentive problems?
- I use this relationship to shed light on how risk-sharing arrangements affect fertilizer use in rural India
- Households rely on risk-sharing to cope with income shocks
 - Yet informal insurance is incomplete (Townsend 94, Udry 94)
 - A leading explanation for this is private information frictions in production decisions (vidence)
- Fertilizer and effort are complements (vidence)
- Hypothesis
 - 1. risk-sharing can discourage effort supply
 - 2. effort reductions can lead to decreases in the use of effort-complementary inputs

This paper (• contribution)

- Mechanism: model of risk-sharing with hidden effort and fertilizer, and effort and fertilizer are complements
- Evidence: use the latest (10-14) ICRISAT panel from rural India to structurally estimate the model
- Exploit variation in fertilizer prices to rationalize observed household choices of effort and fertilizer given
 - 1. preferences: disutility of effort at the household level
 - 2. technology: CES between effort and fertilizer
 - 3. market conditions: risk-sharing at the village-month level
- Use retrieved structural parameters to conduct
 - 1. **counterfactual**: median fertilizer use is between 1.3 and 3.6 times higher under no sharing than under full insurance
 - policy simulation: 50% decrease in fertilizer prices leads to a welfare-equivalent increase in farmers' aggregate consumption of 8%

Sketch of the model (• details)

- Static economy with *n* household-farms, each choosing
 - 1. how much effort e_i to exert at a marginal utility cost κ_i
 - 2. how much fertilizer f_i to buy at a given price p_i
- ► Each household gets hit by an idiosyncratic shock → agricultural output: y (e_i, f_i) ε_i
- ▶ Risk sharing: households keep a fraction 1α of incomes and contribute the rest to a common pool
- Private information frictions in production decisions: farmers' choices of effort and fertilizer are not perfectly observable
- A utilitarian social planner chooses α, e, f taking into account incentive compatibility

Sketch of the model

▶ **Predictions**: insurance has two opposing effects on *e_i* and *f_i*

- 1. Risk channel: risk-sharing increases the expected marginal benefits of inputs because it makes them less risky
- 2. Free-riding channel: when farmers share more, they appropriate a smaller fraction of the marginal product of their effort
- ▶ If the free-riding channel is strong enough, $\alpha \uparrow$, $e_i^* \downarrow$
- ▶ If the free-riding channel is strong enough, $\alpha \uparrow$, $f_i^* \downarrow$ iff e_i and f_i are complements
- Fertilizer subsidy: increases welfare because it decreases input costs and leads households to work harder

- "Village Dynamics Studies in South Asia" (VDSA) project by ICRISAT
- Widely used dataset: Townsend 94, Ligon 98, Mazzocco and Saini 12, Morten 19, ...
- Monthly panel data with individual- and household-level information on farming, expenditure, and income for 18 villages in the Indian semi-arid tropics, from 2010 to 2014
- On average, 55 households per village

Structural equation

- Strategy: use variation in fertilizer prices to estimate the relative demand for fertilizer to effort
- Assuming CES technology with elasticity σ and measurement error in fertilizer/effort,

$$\log\left(\frac{f_{it}}{e_{it}}\right) = \sigma \log\left(\kappa_{i}\right) - \sigma \log\left(1 - \frac{n_{vt} - 1}{n_{vt}}\alpha_{vt}\right) - \sigma \log\left(p_{it}\right) + \epsilon_{it}$$

 Assume measurement error in fertilizer/effort is uncorrelated with fertilizer prices

Use OLS to consistently estimate

$$\log\left(\frac{f_{it}}{e_{it}}\right) = \varphi_i + \phi_{vt} - \sigma \log\left(p_{it}\right) + \epsilon_{it}$$

Structural equation

Dep. variable: $\log\left(\frac{f_{it}}{e_{it}}\right)$	\widehat{eta}
	(s.e.)
$\log(p_{it})$	3499***
	(0.0241)
Household fixed effects	Yes
Village-month fixed effects	Yes
R-squared	0.640
Observations	9,941

Notes: OLS regressions of log fertilizer used per worked hours on log fertilizer prices. Standard errors are clustered at the village-month level.

Estimates:

- 1. $\widehat{\sigma} \approx 0.35$
- 2. Distribution of marginal disutility of effort: Go to figure
- 3. Distribution of risk-sharing coefficients: Go to figure

Counterfactual

I compute

$$\widehat{\log\left(\frac{f_{it}}{e_{it}}\right)} = \widehat{\sigma}\widehat{\log\left(\kappa_{i}\right)} - \widehat{\sigma}\log\left(1 - \frac{\widetilde{n}_{vt} - 1}{\widetilde{n}_{vt}}\widetilde{\alpha}_{vt}\right) - \widehat{\sigma}\log\left(p_{it}\right)$$

- Counterfactual: move avec from 1 (full insurance) to 0 (no sharing)
- When moving α̃_{vt} from 1 to 0, the median fertilizer over effort goes from 2.21 to 0.97: ▶go to table ▶go to figure
- Disentangling the effect of risk-sharing on the change of effort and fertilizer (details):
 - Median fertilizer use is between 1.3 to 3.6 times higher
 - Median effort supply is 4 to 12 times higher

Fertilizer subsidy

- How much can a fertilizer price subsidy increase welfare for the farmers who are treated by this policy?
- Compute the equivalent variation in aggregate consumption from a fertilizer price subsidy
- Percentage increase in aggregate consumption that would make the planner indifferent between the subsidized prices and the actual prices, i.e. Δ such that

$$W\left(\sum_{i\in N}c_i+\Delta, \boldsymbol{p}
ight)=W\left(\sum_{i\in N}c_i, \boldsymbol{p}^s
ight)$$

- Hypothetical fertilizer subsidy: decreases the observed prices of fertilizer by 50%.
- Welfare-equivalent increase in aggregate consumption: 8%

Fertilizer subsidy and risk-sharing

I quantify the effect of a fertilizer subsidy on risk-sharing

- ▶ To do this, I compute $\alpha^*(p)$, solving $\partial W(\alpha)/\partial \alpha = 0$
 - The derivative depends on ρ (absolute risk aversion) and χ (land share)
 - I calibrate ρ and χ so that α^{*}(p) matches the average of estimated risk-sharing levels, α_{vt} = 0.66
 - This implies $\rho = 0.36$ and $\chi = 0.58$
- ▶ I numerically solve the derivative for $\rho = 0.36$ and $\chi = 0.58$ (respective for $\rho = 0.36$)
- Optimal risk-sharing is increasing in the subsidy (or to figure)
 - As people use more inputs, production becomes riskier, so it's optimal to insure them more

Taking stock

- I analyze the impact of risk-sharing on fertilizer returns under private information frictions in production decisions
- Two insights/pieces of evidence:
 - Risk-sharing can discourage effort provision (Marshallian inefficiency)
 - Effort and fertilizer are complements
- Build a model of risk-sharing that combines these insights
- Structurally estimate the model using a household survey panel data from rural India
- Use the structural estimates to quantify
 - the effect of risk-sharing on effort supply and fertilizer use
 - the welfare gains from a fertilizer price subsidy

Private effort (po back)

- Ligon 98 uses private effort to rationalize imperfect insurance in 3 Indian villages
 - Compares models of risk-sharing (full insurance, private effort)
 - Private effort model better predicts consumption allocations in 2 villages
- Papers similar to Ligon 98:
 - 1. Paulson et al. 06 (Thailand)
 - 2. Kocherlakota and Pistaferri 09 (Italy, USA, UK)
 - 3. Attanasio and Pavoni 11 (UK)
 - 4. Karaivanov and Townsend 13 (Thailand)
- Jain 20 provides experimental evidence that private effort decreases risk-sharing in Kenya
- Sharecropping literature provides evidence that better risk-sharing leads to lower effort:
 - 1. Laffont and Matoussi 95 (Tunisia)
 - 2. Burchardi et al. 19 (Uganda)

Effort and fertilizer (Proback)

- Kamanga et al. 14: experimental evidence from Malawi showing that
 - 1. it takes labor to apply fertilizer
 - 2. fertilizer application results in more weed growth, which requires more labor
 - 3. fertilizer application results in more output per acre and thus more harvest labor per acre
- Beaman et al. 13: experimental evidence from Mali showing that farmers receiving fertilizer grants increase labor demand
- ► Hours of work and fertilizer use are positively correlated:
 - 1. Foster and Rosenzweig 09, 10, 11 (India)
 - 2. Ricker-Gilbert 13 (Malawi)
 - 3. Haider et al. 18 (Burkina Faso)
- Kopper 18: labor-constrained households in Ethiopia use less fertilizer

Contribution (go back related literature)

- Mechanism: interaction between insurance and input use through complementarity between inputs and effort
 - More insurance is isomorphic to higher effort costs
 - It induces agents to use smaller quantities of effort-complementary inputs
- A subset of the parameters are identified from the distributions of effort and fertilizer choices and of fertilizer prices
 - Use estimates to quantify how risk-sharing affects input choices
- Estimate the model with data from 18 Indian villages
 - Most of the estimated parameters satisfy the model's restrictions without being imposed
- Quantification of the effect of risk-sharing on fertilizer use and of fertilizer price subsidy on welfare

Related literature (De back)

- This paper relates consumption allocations with a private effort restriction to the complementarity between effort and fertilizer
 - Quantify by how much risk-sharing can crowd out fertilizer use
 - Calculate by how much a fertilizer subsidy can alleviate this market failure
- Literature on agricultural input (especially fertilizer) use in developing countries (Dercon and Christiaensen 11, Duflo et al. 11, Beaman et al. 13, ...)
 - Foster and Rosenzweig (10): what is the role of complementarity between inputs?
- Literature on the impact of risk-sharing on the village economy
 - Munshi and Rosenzweig (16): migration
 - Morten (19): temporary migration
 - Mazur (20): irrigation

- Static economy inhabited by *n* household-farms, i = 1, ..., n
- Output depends on effort, fertilizer, and an idiosyncratic shock: y_i = y (e_i, f_i) ε_i
- i's expected utility depends on consumption and effort (rediscussion):

$$U(c_i, e_i) = \mathbb{E}c_i - \frac{\rho}{2} \mathbb{V}ar(c_i) - \kappa_i e_i$$

• Let $\pi_i = y_i - p_i f_i$ and assume linear contracts (• discussion):

$$c_i(\alpha) = (1 - \alpha)\pi_i + \alpha\overline{\pi}$$

where $\alpha \in [0,1]$ is the degree of risk-sharing and $\overline{\pi}$ is average profit

Constrained-efficient allocation

The planner's problem is

$$\max_{\alpha, \boldsymbol{e}, \boldsymbol{f}} \sum_{i \in \boldsymbol{N}} U\left(c_{i}\left(\alpha\right), e_{i}\right) \quad \text{s.t.} \quad e_{i}, f_{i} \in \arg\max_{\widehat{e}_{i}, \widehat{f}_{i}} U\left(c_{i}\left(\alpha\right), \widehat{e}_{i}\right)$$

Claim

An optimal allocation of \boldsymbol{e} and \boldsymbol{f} for a given α implies

$$\frac{y_e\left(e_i^*,f_i^*\right)}{y_f\left(e_i^*,f_i^*\right)} = \frac{\kappa_i}{\left(1-\frac{n-1}{n}\alpha\right)p_i},$$

- Insurance induces farmers to free-ride on each others' efforts
- ▶ If the free-riding channel is strong enough, $\partial e_i^* / \partial \alpha < 0$
- ► As long as e_i and f_i are complements (► discussion) and this channel is strong enough, $\partial f_i^* / \partial \alpha < 0$

Optimal sharing and fertilizer subsidy

W (α): welfare evaluated at (e^{*}(α), f^{*}(α)). An optimal sharing rule is pinned down by setting

$$\frac{\partial W(\alpha)}{\partial \alpha} = \sum_{i \in \mathbb{N}} \left(\underbrace{A_i}_{(+)} \underbrace{\frac{\partial e_i^*(\alpha)}{\partial \alpha}}_{?} + \underbrace{B_i}_{(+)} \underbrace{\frac{\partial f_i^*(\alpha)}{\partial \alpha}}_{?} \right) - \underbrace{\rho(1-\alpha)\left(\frac{n-1}{n}\right) \eta^2 \sum_{i \in \mathbb{N}} [y(a_i)]^2}_{(+)}$$

to zero

The effect of a marginal decrease in p on welfare is

$$-\frac{\mathrm{d}W\left(\alpha^{*}\left(p\right),p\right)}{\mathrm{d}p} = -\frac{\partial W(\alpha^{*}\left(p\right),p)}{\partial p} - \underbrace{\frac{\partial W\left(\alpha^{*}\left(p\right),p\right)}{\partial \alpha}}_{=0} \frac{\partial \alpha^{*}\left(p\right)}{\partial p}$$
$$= -\sum_{i \in \mathbb{N}} \left\{ \underbrace{\underbrace{A_{i}}_{\geq 0} \frac{\partial e_{i}^{*}\left(\alpha\right)}{\partial p}}_{(-)} + \underbrace{B_{i}}_{(+)} \frac{\partial f_{i}^{*}\left(\alpha\right)}{\partial p} - f_{i}^{*}\left(\alpha\right)}_{(-)} \right\}$$

Household utility (De back)

Model can be extended to

$$U(c_i, e_i) = \mathbb{E}u(c_i) - \kappa_i e_i$$

where u' > 0 and u'' < 0

- Separability in consumption and effort is standard in the moral hazard literature
- Costant marginal disutility of effort: κ_i can be interpreted as a price
 - 1. Arcand et al. (07)
 - 2. Conlon (09)

Mean-variance holds when u is CARA and ε_i is normal, and greatly simplifies strategic interactions

- Assume i takes j's choices as given
- With linear contracts, i's choices of e_i and f_i do not depend on j's choices

Sharing contract (De back)

- Model can be changed to households sharing revenues y_i instead of profits π_i
 - Risk-sharing affects fertilizer use both directly and through its complementarity with effort
 - Profit sharing is consistent with risk-sharing being an ex-post consumption smoothing mechanism and temporal sequencing of agricultural production
- Linear sharing simplifies the analysis but often not optimal under private information
 - However, linear contracts are widespread (Dutta and Prasad 02)
 - Explaining why linear contracts are so common is a longstanding problem in contract theory (Carroll 15)
- Model can be generalized to $(c_i(\pi))_i$, which are generic functions such that $\sum_i c_i(\pi) \leq \sum_i \pi_i$
 - If the optimal sharing contract is differentiable and the first-order aproach is valid, my qualitative results hold

Complementarity (De back)

- *e_i* and *f_i* are complements, i.e. *y* is strictly supermodular in (*e_i*, *f_i*)
- Since y is C^2 , strict supermodularity is equivalent to

$$\frac{\partial^2 y\left(e_i,f_i\right)}{\partial f_i \partial e_i} > 0$$

► E.g.

$$y(e_i, f_i) = \left[e_i^{\frac{\sigma-1}{\sigma}} + f_i^{\frac{\sigma-1}{\sigma}}\right]^{\frac{\chi\sigma}{\sigma-1}} \ell_i^{1-\chi}$$

where ℓ_i is land

- If y exhibits constant returns to scale in (e_i, f_i) (χ = 1) then it is strictly supermodular in (e_i, f_i)
- If χ < 1, then strict supermodularity in (e_i, f_i) ↔ σ ∈ [0, 1) (gross complementarity)

Summary statistics (Pgo back)

Variable	Average	Std. Dev.
Household size	5.17	2.24
Number of infants	0.05	0.23
Average adult age	40.76	8.57
Age-sex weight	4.48	1.77
Monthly consumption	151.18	410.38
Monthly income	105.27	1384.07
Monthly effort (hr)	20.57	22.76
Monthly fertilizer (kg)	22.51	62.06
Number of households	698	
Observations	11234	

Notes: All money values in 1975 rupees. Consumption, income, effort, and fertilizer expressed in adult-equivalent terms. Household-month observations.

Indian semi-arid tropics (• go back)

Data details (po back)

- ▶ Random sample of \approx 40 households per village
- Cultivation schedule: for each operation in each crop, quantity and value of inputs used
 - 1. Effort: hours of family labor supplied to own plots
 - 2. Fertilizer: physical quantity of inputs used in fertilizer application operations
 - 3. Price of fertilizer: divide the value of fertilizer inputs by the corresponding quantity
- Transaction schedule: for each transaction, quantity and value of item
 - 1. Consumption: total value of expenditures in food and non-food items
 - 2. Income: following Mazzocco and Saini 12,

 $expenditure-borrowing+lending+saving-gov't\ benefit$

Conversion to PC terms using the age-sex weight (Townsend 94)

Marginal disutility of effort (po back)

Figure: Histogram of \hat{k}_i

Figure: Histogram of $\widehat{\alpha}_{vt}$

• Average $\widehat{\alpha}_{vt} \approx 0.67$, s.d. $(\widehat{\alpha}_{vt}) \approx 0.33$

Table: Summary statistics for
$$\log \left(\frac{f_{it}}{e_{it}} \right)$$

	Average	S.d.	Min	Max
$\widetilde{\alpha}_{vt} = 0$	2.4541	14.0909	-1.7666	387.3596
$\widetilde{\alpha}_{vt} = 1$	3.6874	14.0827	-1.6697	388.5255

Figure: Comparative statics

Disentangling the effect of risk-sharing on the change of effort and fertilizer (restack)

I numerically solve

$$\left\{ \left(1 - \frac{n-1}{n}\alpha\right) \left[1 - \rho\left(1 - \frac{n-1}{n}\alpha\right)y\left(a_{i}^{*}\left(\alpha\right)\right)\eta^{2}\right] \right\} y_{e}\left(a_{i}^{*}\left(\alpha\right)\right) = \kappa_{i}, \\ \left[1 - \rho\left(1 - \frac{n-1}{n}\alpha\right)y\left(a_{i}^{*}\left(\alpha\right)\right)\eta^{2}\right] y_{f}\left(a_{i}^{*}\left(\alpha\right)\right) = p_{i},$$

taking ρ and η as given

- ▶ I solve the these first-order conditions for $\rho \in [0, 1]$
- These values correspond to risk premia between 0% and approximately 99% of the standard deviation of household income
- \blacktriangleright I analyze how the solutions change when we move the level of risk-sharing α

Counterfactual: discussion (Pro back)

- The identification of the κ_i 's and σ does NOT rely on
 - the linearity of the risk-sharing contract
 - the expected benefit of consumption admitting a mean-variance representation
- Suppose the first-order approach is valid and the optimal risk-sharing contract is differentiable
 - Household i's relative demand for fertilizer to effort would be

$$\log\left(\frac{f_{i}^{*}}{e_{i}^{*}}\right) = \sigma \log\left(\kappa_{i}\right) - \sigma \log\left(\int u'\left(c_{i}^{*}\left(\boldsymbol{\pi}\right)\right) \frac{\partial c_{i}^{*}\left(\boldsymbol{\pi}\right)}{\partial \pi_{i}} \mathrm{d}\Phi^{\varepsilon}\left(\varepsilon\right)\right) - \sigma \log\left(\rho_{i}\right)$$

- If the risk-sharing contract is village and month specific, can still use a simple OLS to estimate the κ_i's and σ
- Linearity of the risk-sharing contract is used to compute the effect of a change in risk-sharing on input choices

Welfare-maximizing sharing rule (**Pgo back**)

Welfare-maximizing sharing rule and subsidy

