Heteroskedastic Proxy Vector Autoregressions Testing for Time-Varying Impulse Responses in the Presence of Multiple Proxies

Martin Bruns^a & Helmut Lütkepohl^b

^aUniversity of East Anglia ^bFreie Universität Berlin

August 25, 2022

æ

Motivation	Model	Test	Simulations	Application	Conclusions	App en di x
●0000	000	000	00000000000	0000	0	000000000000000000000000000000000000
Backgro	ound					

• Increasingly popular approach in proxy vector autoregressions: Use of multiple proxies

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

Motivation	Model	Test	Simulations	Application	Conclusions	App en dix
●0000	000	000	00000000000		0	000000000000000000000000000000000000
Backgro	ound					

- Increasingly popular approach in proxy vector autoregressions: Use of multiple proxies
- Collective identification of a group of shocks

→

< 47 ▶

Motivation	Model	Test	Simulations	Application	Conclusions	App en dix
●0000	000	000	00000000000	0000	0	000000000000000000000000000000000000
Backgro	ound					

- Increasingly popular approach in proxy vector autoregressions: Use of multiple proxies
- Collective identification of a group of shocks
- For individual identification: Need for further restrictions

Motivation	Model	Test	Simulations	Application	Conclusions	Appen di x
●0000	000	000	00000000000	0000	0	000000000000000000000000000000000000
Backgro	ound					

- Increasingly popular approach in proxy vector autoregressions: Use of multiple proxies
- Collective identification of a group of shocks
- For individual identification: Need for further restrictions
- Zero restrictions
 - Stock & Watson (2012)
 - Mertens & Ravn (2013)

Motivation	Model	Test	Simulations	Application	Conclusions	App en di x
●0000	000	000	00000000000	0000	0	000000000000000000000000000000000000
Backgro	ound					

- Increasingly popular approach in proxy vector autoregressions: Use of multiple proxies
- Collective identification of a group of shocks
- For individual identification: Need for further restrictions
- Zero restrictions
 - Stock & Watson (2012)
 - Mertens & Ravn (2013)
- Sign restrictions
 - Piffer & Podstawski (2017)
 - Braun & Brüggemann (2020)
 - Arias et al. (2021)

Motivation	Mode l	Test	Simulations	Application	Conclusions	App en di x
●0000	000	000		0000	○	000000000000000000000000000000000000
Backgro	ound					

- Increasingly popular approach in proxy vector autoregressions: Use of multiple proxies
- Collective identification of a group of shocks
- For individual identification: Need for further restrictions
- Zero restrictions
 - Stock & Watson (2012)
 - Mertens & Ravn (2013)
- Sign restrictions
 - Piffer & Podstawski (2017)
 - Braun & Brüggemann (2020)
 - Arias et al. (2021)
- Alternative identification schemes available, e.g. exploiting statistical features of the data such as heteroskedasticity

Motivation	Mode l	Test	Simulations	Application	Conclusions	App en dix
○●○○○	000	000	00000000000	0000	0	000000000000000000000000000000000000
Motivat	ion					

• Common assumption in proxy VARs: Time-invariant impulse responses

3

(a)

Motivation	Model	Test	Simulations	Application	Conclusions	App en di x
○●○○○	000	000	00000000000	0000	○	000000000000000000000000000000000000
Motivat	ion					

- Common assumption in proxy VARs: Time-invariant impulse responses
- Assumption even made in the presence of heteroskedasticity

Motivation	Mode l	Test	Simulations	Application	Conclusions	App en dix
○●○○○	000	000	00000000000	0000	0	000000000000000000000000000000000000
Motivat	ion					

- Common assumption in proxy VARs: Time-invariant impulse responses
- Assumption even made in the presence of heteroskedasticity
- Exceptions
 - Bacchiocchi & Fanelli (2015)
 - Bacchiocchi et al. (2018)

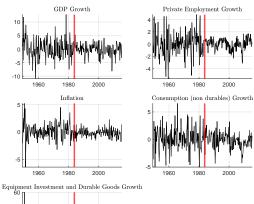
3 > < 3 >

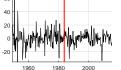
Motivation	Mode l	Test	Simulations	Application	Conclusions	App en di x
○●○○○	000	000	00000000000	0000	○	000000000000000000000000000000000000
Motivat	ion					

- Common assumption in proxy VARs: Time-invariant impulse responses
- Assumption even made in the presence of heteroskedasticity
- Exceptions
 - Bacchiocchi & Fanelli (2015)
 - Bacchiocchi et al. (2018)
- Statistical test for time-varying impulse responses in proxy VARs: Lütkepohl & Schlaak (2021)

(B)

Motivation	Mode l	Test	Simulations	Application	Conclusions	App en di x
○●○○○	000	000	00000000000	0000	○	000000000000000000000000000000000000
Motivat	ion					


- Common assumption in proxy VARs: Time-invariant impulse responses
- Assumption even made in the presence of heteroskedasticity
- Exceptions
 - Bacchiocchi & Fanelli (2015)
 - Bacchiocchi et al. (2018)
- Statistical test for time-varying impulse responses in proxy VARs: Lütkepohl & Schlaak (2021)
- Premise: Identification of a single shock by one or more proxies


(B)

Motivation	Mode l	Test	Simulations	Application	Conclusions	App en di x
○●○○○	000	000	00000000000	0000	○	000000000000000000000000000000000000
Motivat	ion					

- Common assumption in proxy VARs: Time-invariant impulse responses
- Assumption even made in the presence of heteroskedasticity
- Exceptions
 - Bacchiocchi & Fanelli (2015)
 - Bacchiocchi et al. (2018)
- Statistical test for time-varying impulse responses in proxy VARs: Lütkepohl & Schlaak (2021)
- Premise: Identification of a single shock by one or more proxies
- Unsuitable when shocks are identified collectively

Heteroskedastic Proxy VARs

August 25, 2022 4 / 28

< ∃→

Motivation	Model	Test	Simulations	Application	Conclusions	App en di x
000●0	000	000		0000	0	000000000000000000000000000000000000
This Pa	per					

• Test for time-varying impact effects when a set of shock is collectively identified by proxies

Motivation	Mode l	Test	Simulations	Application	Conclusions	App en di x
000●0	000	000	00000000000	0000	O	000000000000000000000000000000000000
This Pa	per					

- Test for time-varying impact effects when a set of shock is collectively identified by proxies
- Key insight: impulse response impact effect is time-varying if a linear transformation is time-varying

Motivation	Mode l	Test	Simulations	Application	Conclusions	App en di x
000●0	000	000	00000000000	0000	O	000000000000000000000000000000000000
This Pa	per					

- Test for time-varying impact effects when a set of shock is collectively identified by proxies
- Key insight: impulse response impact effect is time-varying if a linear transformation is time-varying
- Monte Carlo simulation: Stylized and "realistic" setting

Motivation	Model	Test	Simulations	Application	Conclusions	App en di x
000●0	000	000	00000000000	0000	○	000000000000000000000000000000000000
This Pa	per					

- Test for time-varying impact effects when a set of shock is collectively identified by proxies
- Key insight: impulse response impact effect is time-varying if a linear transformation is time-varying
- Monte Carlo simulation: Stylized and "realistic" setting
- Application to the impact of two total factor productivity shocks in the US (see Lunsford 2015)

Motivation	Model	Test	Simulations	Application	Conclusions	Appendix
0000	000	000	00000000000	0000	0	000000000000000000000000000000000000000

- Testing for Time-varying Impact Effects
 - Monte Carlo Simulations
 - DGP1
 - DGP2
- 5 The Impact of TFP Shocks on the U.S. Economy
 - Conclusions
 - 7 Appendix

Reduced form:

$$y_t = \nu + A_1 y_{t-1} + \dots + A_p y_{t-p} + u_t,$$
(1)

$$u_t \sim (0, \Sigma_t)$$
(2)

$$\mathbb{E}(u_t u'_t) = \Sigma_t = \Sigma_u(m) \text{ for } t \in \mathcal{T}_m, \quad m = 1, \dots, M,$$
(3)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Reduced form:

$$y_t = \nu + A_1 y_{t-1} + \dots + A_\rho y_{t-\rho} + u_t,$$
 (1)
 $u_t \sim (0, \Sigma_t)$ (2)

$$\mathbb{E}(u_t u_t') = \Sigma_t = \Sigma_u(m)$$
 for $t \in \mathcal{T}_m, m = 1, \dots, M,$ (3)

- M volatility regimes
- ullet (Known) volatility changes at \mathcal{T}_m , where $\mathcal{T}_0=0$ and $\mathcal{T}_M=\mathcal{T}$

3

Structural form

$$u_t = B(m) \boldsymbol{w}_t, \tag{4}$$

$$B(m) = [B_1(m) : B_2(m)]$$
 (5)

$$\Theta_h(m) = \Phi_h B(m) \tag{6}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation Model Test Simulations Application Conclusions Appendix Heteroskedastic Proxy VAR Models (cont.)

Structural form

$$u_t = B(m)\boldsymbol{w}_t, \tag{4}$$

$$B(m) = [B_1(m) : B_2(m)]$$
(5)

$$\Theta_h(m) = \Phi_h B(m) \tag{6}$$

- K variables, K_1 identified shocks, K_2 non-identified shocks
- $\boldsymbol{w}'_t = (\boldsymbol{w}'_{1t}, \boldsymbol{w}'_{2t}), \ \boldsymbol{w}_{1t} = (w_{1t}, \dots, w_{K_1t})', \ \boldsymbol{w}_{2t} = (w_{K_1+1,t}, \dots, w_{Kt})', \ Var(\boldsymbol{w}_t) \text{ diagonal}$

•
$$\Phi_i = \sum_{j=1}^i \Phi_{i-j} A_j, \quad \Phi_0 = I_K$$

- $B_i(m)$: impact effects of shocks in w_{it} , i=1,2 in volatility regime m
- Structural impulse responses (6) time-varying at all horizons if impact effects (5) time-varying

Bruns & Lütkepohl

Identification

N proxies

$$z_t = (z_{1t}, \dots, z_{Nt})', \quad t \in \mathcal{T}_m \tag{7}$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Identification

N proxies

$$z_t = (z_{1t}, \dots, z_{Nt})', \quad t \in \mathcal{T}_m \tag{7}$$

$$\begin{split} \mathbb{E}(\boldsymbol{w}_{1t}\boldsymbol{z}_t') &= \boldsymbol{C}_m \neq \boldsymbol{0}, \quad \boldsymbol{C}_m \; (\boldsymbol{K}_1 \times \boldsymbol{N}), \quad \boldsymbol{rk}(\boldsymbol{C}_m) = \boldsymbol{K}_1 \quad (\text{relevance}), \quad (8) \\ \mathbb{E}(\boldsymbol{w}_{2t}\boldsymbol{z}_t') &= \boldsymbol{0} \quad (\text{exogeneity}). \quad (9) \end{split}$$

This implies

$$\mathbb{E}(u_t z'_t) = B(m)\mathbb{E}(\boldsymbol{w}_t z'_t) = B_1(m)C_m. \tag{10}$$

i.e. z_t contain information to identify the first $K_1 < K$ shocks collectively.

3

• $D(m) = B_1(m)C_m$ can be estimated consistently from the data

3

10 / 28

• $D(m) = B_1(m)C_m$ can be estimated consistently from the data • $\widehat{D}(m) = \frac{1}{\tau_m T} \sum_{t \in \mathcal{T}_m} \hat{u}_t z'_t$

3

10 / 28

- $D(m)=B_1(m)C_m$ can be estimated consistently from the data
- $\widehat{D}(m) = \frac{1}{\tau_m T} \sum_{t \in \mathcal{T}_m} \widehat{u}_t z'_t$
- But disentangling $B_1(m)$ and C_m would require additional restrictions

• $D(m)=B_1(m)C_m$ can be estimated consistently from the data

•
$$\widehat{D}(m) = \frac{1}{\tau_m T} \sum_{t \in \mathcal{T}_m} \widehat{u}_t z'_t$$

- But disentangling $B_1(m)$ and C_m would require additional restrictions
- Solution: $B_1(m)$ will be time-varying if a linear transformation is time-varying

1

• Partition $B_1(m)$:

$$B_1(m) = \left[egin{array}{c} B_{11}(m) \ B_{12}(m) \end{array}
ight],$$

• Compute transformed matrix

$$\begin{bmatrix} I_{K_1} \\ B_{12}(m)B_{11}(m)^{-1} \end{bmatrix} = B_1(m)B_{11}(m)^{-1}$$

• $D(m)=B_1(m)C_m$ can be estimated consistently from the data

•
$$\widehat{D}(m) = \frac{1}{\tau_m T} \sum_{t \in \mathcal{T}_m} \widehat{u}_t z'_t$$

- But disentangling $B_1(m)$ and C_m would require additional restrictions
- Solution: $B_1(m)$ will be time-varying if a linear transformation is time-varying
- Partition $B_1(m)$:

$$B_1(m) = \left[egin{array}{c} B_{11}(m) \ B_{12}(m) \end{array}
ight],$$

• Compute transformed matrix

$$\begin{bmatrix} I_{K_1} \\ B_{12}(m)B_{11}(m)^{-1} \end{bmatrix} = B_1(m)B_{11}(m)^{-1}$$

• This transformation can be estimated from the data

Bruns & Lütkepohl

Heteroskedastic Proxy VARs

August 25, 2022 10 / 28

Instead of testing

$$\mathbb{H}_0: B_1(m) = B_1(k)$$
 versus $\mathbb{H}_1: B_1(m) \neq B_1(k)$ (11)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Instead of testing

$$\mathbb{H}_0: B_1(m)=B_1(k)$$
 versus $\mathbb{H}_1: B_1(m)\neq B_1(k)$ (11)

• We are testing

$$\mathbb{H}_{0}: B_{12}(m)B_{11}(m)^{-1} = B_{12}(k)B_{11}(k)^{-1}$$
vs.
$$\mathbb{H}_{1}: B_{12}(m)B_{11}(m)^{-1} \neq B_{12}(k)B_{11}(k)^{-1}$$
(12)

• Test statistic $\eta(m,k) \stackrel{d}{\rightarrow} \chi^2(K_1(K-K_1))$

Bruns & Lütkepohl

Heteroskedastic Proxy VARs

August 25, 2022

11 / 28

- without individually identifying w_{1t}
- regardless of C_m

12 / 28

< 4[™] > <

- without individually identifying \boldsymbol{w}_{1t}
- regardless of C_m
- \mathbb{H}_0 in (12) holding is a necessary, not sufficient condition for \mathbb{H}_0 in (11) to hold

- without individually identifying \boldsymbol{w}_{1t}
- regardless of C_m
- \mathbb{H}_0 in (12) holding is a necessary, not sufficient condition for \mathbb{H}_0 in (11) to hold
- For example no power against a change $B_1(m)$ to $B_1(k)=cB_1(m)$

12 / 28

イロト イポト イヨト イヨト

- without individually identifying \boldsymbol{w}_{1t}
- regardless of C_m
- \mathbb{H}_0 in (12) holding is a necessary, not sufficient condition for \mathbb{H}_0 in (11) to hold
- For example no power against a change $B_1(m)$ to $B_1(k)=cB_1(m)$
- Corresponds to Lütkepohl & Schlaak (2021) for a single shock

• The alternative pair of hypotheses (12) can be tested

- without individually identifying \boldsymbol{w}_{1t}
- regardless of C_m
- \mathbb{H}_0 in (12) holding is a necessary, not sufficient condition for \mathbb{H}_0 in (11) to hold
- For example no power against a change $B_1(m)$ to $B_1(k)=cB_1(m)$
- Corresponds to Lütkepohl & Schlaak (2021) for a single shock
- Requires variable ordering such that B₁₁ is non-singular (e.g. nonzero effect of w_{1t} on the first K₁ variables)

- 3

12 / 28

• The alternative pair of hypotheses (12) can be tested

- without individually identifying \boldsymbol{w}_{1t}
- regardless of C_m
- \mathbb{H}_0 in (12) holding is a necessary, not sufficient condition for \mathbb{H}_0 in (11) to hold
- For example no power against a change $B_1(m)$ to $B_1(k)=cB_1(m)$
- Corresponds to Lütkepohl & Schlaak (2021) for a single shock
- Requires variable ordering such that B₁₁ is non-singular (e.g. nonzero effect of w_{1t} on the first K₁ variables)
- Practical issues:
 - Choice of volatility regimes (pretesting)
 - Sample lengths within the regimes

- 3

12 / 28

Motivation	Model	Test	Simulations	Application	Conclusions	Appendix
00000	000	000	•0000000000	0000	0	000000000000000000000000000000000000000

- 2 Heteroskedastic Proxy VAR Models
- Testing for Time-varying Impact Effects
 - Monte Carlo Simulations
 - DGP1
 - DGP2
- 5 The Impact of TFP Shocks on the U.S. Economy
 - Conclusions
 - 🕖 Appendix

- Based on Lütkepohl & Schlaak (2021)
- M = 3 volatility regimes (known volatility change points)
- *K* = 3 variables
- N = 2 proxies (and $K_1 = 2$ identified shocks)

14 / 28

< □ > < 同 > < 回 > < 回 > < 回 >

- Based on Lütkepohl & Schlaak (2021)
- M = 3 volatility regimes (known volatility change points)
- K = 3 variables
- N = 2 proxies (and $K_1 = 2$ identified shocks)

$${\cal A}_1 = \left[egin{array}{cccc} 0.79 & 0.00 & 0.25 \ 0.19 & 0.95 & -0.46 \ 0.12 & 0.00 & 0.62 \end{array}
ight],$$

 $B(m)=I_3$ under \mathbb{H}_0 , and

$$B(1) = I_3, \quad B(2) = egin{bmatrix} 1 & 0 & 1 \ 2 & 1 & 4 \ 4 & 6 & 6 \end{bmatrix}, \quad B(3) = egin{bmatrix} 4 & 2 & 1 \ -2 & 2 & 8 \ 2 & 1 & 10 \end{bmatrix}$$

 Motivation
 Model
 Test
 Simulations
 Application
 Conclusions
 Appendix

 DGP1:
 Setup
 (cont.)
 Application
 Application
 Application
 Appendix

• Therefore, under \mathbb{H}_1 :

$$B_{12}(1)B_{11}(1)^{-1} = [0,0]$$
(13)

$$B_{12}(2)B_{11}(2)^{-1} = [-8, 6]$$
(14)

$$B_{12}(3)B_{11}(3)^{-1} = [0.5, 0] \tag{15}$$

•
$$\Sigma_u(m) = B(m)\Lambda_m B(m)', \quad m = 1, ..., M.$$
 with $\Lambda_1 = I_3, \Lambda_2 = diag(4, 9, 12)$ and $\Lambda_3 = diag(1, 4, 9)$

3

15 / 28

イロト イヨト イヨト イヨト

Test

Simulations

Model

Motivation

• Therefore, under \mathbb{H}_1 :

$$B_{12}(1)B_{11}(1)^{-1} = [0,0] \tag{13}$$

Conclusions

Appendix

$$B_{12}(2)B_{11}(2)^{-1} = [-8, 6]$$
(14)

$$B_{12}(3)B_{11}(3)^{-1} = [0.5, 0] \tag{15}$$

•
$$\Sigma_u(m) = B(m)\Lambda_m B(m)', \quad m = 1, ..., M.$$
 with $\Lambda_1 = I_3, \Lambda_2 = diag(4, 9, 12)$ and $\Lambda_3 = diag(1, 4, 9)$

• Proxies generated as

$$z_t = \Phi \boldsymbol{w}_{1t} + \boldsymbol{v}_t, \quad \boldsymbol{v}_t \sim \mathcal{N}(0, \Sigma_{\boldsymbol{v}}), \quad \Phi = \begin{bmatrix} 1 & 0\\ \rho & 1 \end{bmatrix}, \quad \Sigma_{\boldsymbol{v}} = \kappa \begin{bmatrix} 1 & 0.5\\ 0.5 & 1 \end{bmatrix}$$
(16)

Application

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

15 / 28

Test

Motivation

• Therefore, under \mathbb{H}_1 :

$$B_{12}(1)B_{11}(1)^{-1} = [0,0] \tag{13}$$

Conclusions

Appendix

$$B_{12}(2)B_{11}(2)^{-1} = [-8, 6]$$
(14)

$$B_{12}(3)B_{11}(3)^{-1} = [0.5, 0] \tag{15}$$

•
$$\Sigma_u(m) = B(m)\Lambda_m B(m)', \quad m = 1, ..., M.$$
 with $\Lambda_1 = I_3, \Lambda_2 = diag(4, 9, 12)$ and $\Lambda_3 = diag(1, 4, 9)$

Simulations

• Proxies generated as

$$z_t = \Phi \boldsymbol{w}_{1t} + v_t, \quad v_t \sim N(0, \Sigma_v), \quad \Phi = \begin{bmatrix} 1 & 0\\ \rho & 1 \end{bmatrix}, \quad \Sigma_v = \kappa \begin{bmatrix} 1 & 0.5\\ 0.5 & 1 \end{bmatrix}$$
(16)

Application

• Volatility change points: $T_1 = T/3 + p$, $T_2 = 2T/3$

< □ > < 同 > < 回 > < 回 > < 回 >

Model

Motivation

• Therefore, under \mathbb{H}_1 :

$$B_{12}(1)B_{11}(1)^{-1} = [0,0]$$
(13)

Conclusions

Appendix

$$B_{12}(2)B_{11}(2)^{-1} = [-8, 6]$$
(14)

$$B_{12}(3)B_{11}(3)^{-1} = [0.5, 0] \tag{15}$$

•
$$\Sigma_u(m) = B(m)\Lambda_m B(m)', \quad m = 1, ..., M.$$
 with $\Lambda_1 = I_3, \Lambda_2 = diag(4, 9, 12)$ and $\Lambda_3 = diag(1, 4, 9)$

Simulations

Proxies generated as

$$z_t = \Phi \boldsymbol{w}_{1t} + v_t, \quad v_t \sim \mathcal{N}(0, \Sigma_{\nu}), \quad \Phi = \begin{bmatrix} 1 & 0\\ \rho & 1 \end{bmatrix}, \quad \Sigma_{\nu} = \kappa \begin{bmatrix} 1 & 0.5\\ 0.5 & 1\\ (16) \end{bmatrix}$$

Application

- Volatility change points: $T_1 = T/3 + p$, $T_2 = 2T/3$
- Estimated models include intercept, 5000 replications

Bruns & Lütkepohl

Model

Motivation

• Therefore, under \mathbb{H}_1 :

$$B_{12}(1)B_{11}(1)^{-1} = [0,0]$$
(13)

Conclusions

Appendix

$$B_{12}(2)B_{11}(2)^{-1} = [-8, 6]$$
(14)

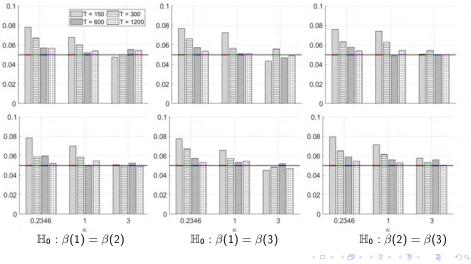
$$B_{12}(3)B_{11}(3)^{-1} = [0.5, 0] \tag{15}$$

•
$$\Sigma_u(m) = B(m)\Lambda_m B(m)', \quad m = 1, ..., M.$$
 with $\Lambda_1 = I_3, \Lambda_2 = diag(4, 9, 12)$ and $\Lambda_3 = diag(1, 4, 9)$

Simulations

Proxies generated as

$$z_t = \Phi \boldsymbol{w}_{1t} + v_t, \quad v_t \sim \mathcal{N}(0, \Sigma_{\nu}), \quad \Phi = \begin{bmatrix} 1 & 0\\ \rho & 1 \end{bmatrix}, \quad \Sigma_{\nu} = \kappa \begin{bmatrix} 1 & 0.5\\ 0.5 & 1\\ (16) \end{bmatrix}$$


Application

- Volatility change points: $T_1 = T/3 + p$, $T_2 = 2T/3$
- Estimated models include intercept, 5000 replications
- T = 150, 300, 600, 1200

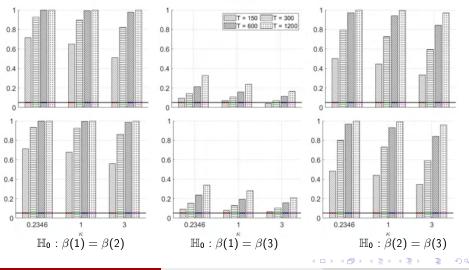
Bruns & Lütkepohl

Heteroskedastic Proxy VARs

15 / 28

Heteroskedastic Proxy VARs

Bruns & Lütkepohl


16 / 28

August 25, 2022

Application Appendix DGP1 Results under \mathbb{H}_1 : Proxy-shock correlation: $\rho = 0$ (top row) vs $\rho = 0.5$ (bottom row), p = 1

Conclusions

Simulations

Bruns & Lütkepohl

Motivation

Model

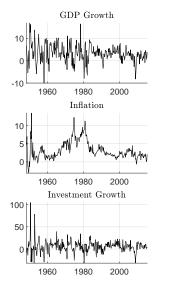
Test

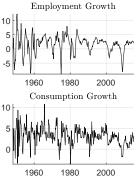
Heteroskedastic Proxy VARs

August 25, 2022 17 / 28

Motivation 00000	Model 000	Test 000	Simulations	Application	Conclusions 0	App en di x 000000000000000000000000000000000000
DGP2:	Setup					

- Informed by Lunsford (2015)
 - 5 variables
 - 269 observations 1948Q2 = 2015Q2
 - 2 shocks
 - 2 proxies
- We fit VAR(1) model, stable process (max. Eigenvalue 0.7444)
- Search for volatility break using

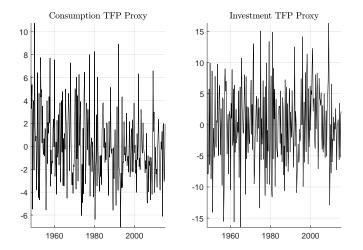

$$\psi(T_1) = T_1 \log \det \hat{\Sigma}_u(1) + (T - T_1) \log \det \hat{\Sigma}_u(2)$$
 (17)


over
$$T_1 \in \{0.15T, \dots, 0.85T\}$$

• We find 1982*Q*4

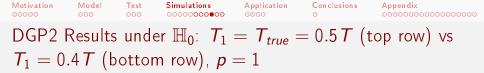
 Motivation
 Model
 Test
 Simulations
 Application
 Conclusions
 Appendix

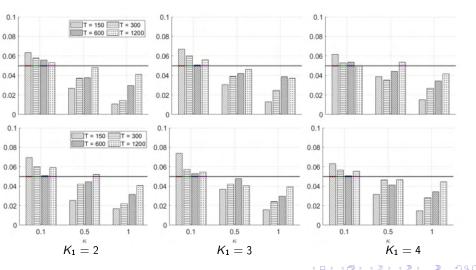
 DGP2:
 Setup (cont.)
 Generalized
 Generalized


Bruns & Lütkepohl

Heteroskedastic Proxy VARs

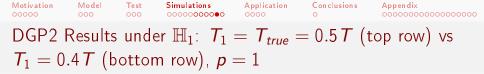
August 25, 2022 19 / 28

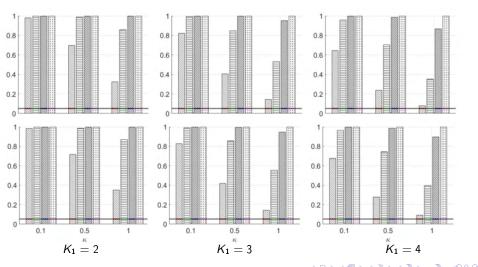

э



August 25, 2022

< ロト < 同ト < ヨト < ヨト





Bruns & Lütkepohl

Heteroskedastic Proxy VARs

August 25, 2022 21/28

Bruns & Lütkepohl

Heteroskedastic Proxy VARs

August 25, 2022 22 / 28

Motivation	Model	Test	Simulations	Application	Conclusions	Appendix
00000	000	000	0000000000	0000	0	000000000000000000000000000000000000000

- 2 Heteroskedastic Proxy VAR Models
- Testing for Time-varying Impact Effects
 - Monte Carlo Simulations
 - DGP1
 - DGP2
- 5 The Impact of TFP Shocks on the U.S. Economy
 - Conclusions
 - 7 Appendix

The Impact of TFP Shocks on the U.S. Economy

- Benchmark study: 5-variate quarterly SVAR by Lunsford (2015)
- GDP growth, employment growth, inflation, consumption growth, investment growth
- Now, following Lunsford (2015), estimate a VAR(4)
- N = 2 proxies based on Fernald (2014):
 - Consumption TFP proxy
 - Investment TFP proxy
- Proxy construction:
 - regress 2 TFP measures (excluding durable goods and for durable goods and equipment investment) on 4 lags of yt and a constant
 use residuals as proxies
- Condition on volatility change in 1983Q4 as start of the Great Moderation (see e.g. McConnell & Perez-Quiros 2000, Galí & Gambetti 2009)

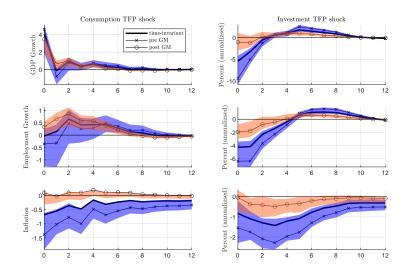
Motivation	Model	Test	Simulations	Application	Conclusions	Appendix
00000	000	000	00000000000	0000	0	0000000

Application: Volatility Change Point Selection

T_1	test statistic	<i>p</i> -value
1982Q3	11.004	0.088
1982Q4	11.282	0.080
1983Q1	10.980	0.089
1983Q2	10.600	0.102
1983Q3	11.953	0.063
1983Q4	12.364	0.054
1984Q1	13.013	0.043
1984Q2	13.730	0.033
1984Q3	13.712	0.033
1984Q4	13.679	0.033
1985 Q1	12.987	0.043
1985 Q2	12.533	0.051
1985 Q3	12.512	0.051
1985 Q4	12.234	0.057

MotivationModelTestSimulationsApplicationConclusionsAppendixApplication:Computing Impulse Responses

- Challenge: separate identification (not needed to execute our test)
- Lunsford (2015) adds proxies separately and empirically finds that each proxy is correlated with only one shock
- Corresponds to setting C_m diagonal, so that columns of D(m) are scalar multiples of the true impact effects
- Distorted impulse response if true C_m not diagonal, but still suggestive evidence for or against a shift in the actual impulse responses
- Regime-specific moving block bootstrap (see e.g. Jentsch & Lunsford 2019, Bruns & Lütkepohl 2020) to compute confidence bands


3

26 / 28

< □ > < 同 > < 回 > < 回 > < 回 >

90% Confidence Bands from regime-dependent MBB

Bruns & Lütkepohl

Heteroskedastic Proxy VARs

27 / 28

Motivation	Model	Test	Simulations	Application	Con clusion s	App en di x
00000	000	000		0000	●	000000000000000000000000000000000000
Conclus	sions					

- New test for time-varying impulse responses for heteroskedastic Proxy VARs
- Individual identification not necessary
- Asymptotic properties
- Performance in small sample in various settings
 - Larger samples and stronger proxies improve power
 - Larger lag orders, more variables, more proxies decrease power
 - Limited effect of even substantial volatility change point misspecification
- Application to US TFP shocks
 - Change in the response of some variables in pre- and post-GM period

Motivation	Model	Test	Simulations	Application	Conclusions	Appendix
00000	000	000	00000000000	0000	0	•000000000000000000

Thank you for your attention

3

Motivation	Model	Test	Simulations	Application	Conclusions	Appendix
00000	000	000	00000000000	0000	0	•000000000000000000

- Arias, J. E., Rubio-Ramírez, J. F. & Waggoner, D. F. (2021), 'Inference in Bayesian Proxy-SVARs', Journal of Econometrics 225(1), 88-106.
- Bacchiocchi, E., Castelnuovo, E. & Fanelli, L. (2018), 'Gimme a break! Identification and estimation of the macroeconomic effects of monetary policy shocks in the United States', *Macroeconomic Dynamics* 22, 1613-1651.
- Bacchiocchi, E. & Fanelli, L. (2015), 'Identification in structural vector autoregressive models with structural changes, with an application to US monetary policy', Oxford Bulletin of Economics and Statistics 77, 761–779.
- Braun, R. & Brüggemann, R. (2020), Identification of SVAR Models by Combining Sign Restrictions With External Instruments, Technical report, Department of Economics, University of Konstanz.
- Bruns, M. & Lütkepohl, H. (2020), An alternative bootstrap for proxy vector autoregressions, Discussion Paper 1913, DIW, Berlin.
- Fernald, J. (2014), A quarterly, utilization-adjusted series on total factor productivity, Working paper, Federal Reserve Bank of San Francisco.
- Galí, J. & Gambetti, L. (2009), 'On the sources of the great moderation', American Economic Journal: Macroeconomics 1, 26–57.
- Jentsch, C. & Lunsford, K. G. (2019), 'The dynamic effects of personal and corporate income tax changes in the United States: Comment', American Economic Review 109, 2655-2678.
- Lunsford, K. (2015), Identifying structural VARs with a proxy variable and a test for a weak proxy, Technical report, Federal Reserve Bank of Cleveland.
- Lütkepohl, H. & Schlaak, T. (2021), 'Heteroscedastic proxy vector autoregressions', Journal of Business and Economic Statistics (forthcoming).
- McConnell, M. M. & Perez-Quiros, G. (2000), 'Output fluctuations in the United States: What has changed since the early 1980's?', American Economic Review 90, 1464-1476.
- Mertens, K. & Ravn, M. O. (2013), 'The dynamic effects of personal and corporate income tax changes in the United States', American Economic Review 103, 1212–1247.
- Piffer, M. & Podstawski, M. (2017), 'Identifying uncertainty shocks using the price of gold', The Economic Journal 128(616), 3266-3284.
- Stock, J. H. & Watson, M. W. (2012), 'Disentangling the channels of the 2007-2009 recession', NBER Working paper 18094.

$$\begin{bmatrix} I_{K_1} \\ B_{12}(m)B_{11}(m)^{-1} \end{bmatrix} = B_1(m)B_{11}(m)^{-1}$$
$$= B_1(m)C_mQC'_m(C_mQC'_m)^{-1}B_{11}(m)^{-1}$$
$$= B_1(m)C_mQC'_mB_{11}(m)'(B_{11}(m)C_mQC'_mB_{11}(m)')^{-1}$$
positive definite (N × N) matrix Q.

for any positive definite $(N \times N)$ matri $D_1(m)$ is the upper $(K_1 \times N)$ part of

$$D(m) = \begin{bmatrix} D_1(m) \\ D_2(m) \end{bmatrix}$$

Bruns & Lütkepohl

Heteroskedastic Proxy VARs

August 25, 2022

э

3

28 / 28

< 47 ▶

We can estimate

$$B_{12}(m)B_{11}(m)^{-1}=D_2(m)QD_1(m)'[D_1(m)QD_1(m)']^{-1}$$
 consistently as

$$\widehat{B_{12}(m)B_{11}(m)^{-1}} = \widehat{D}_2(m)Q\widehat{D}_1(m)'[\widehat{D}_1(m)Q\widehat{D}_1(m)']^{-1}$$

where we choose

$$Q = \left(\sum_{t \in \mathcal{T}_m} z_t z_t'\right)^{-1}$$

3 🕨 🤅 3

28 / 28

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MotivationModelTestSimulationsApplicationConclusionsAppendixTransformed Test Statistic:derivation (cont.)

Slutsky's theorem:

$$\sqrt{T}$$
 vec $\left(\widehat{B_{12}(m)B_{11}(m)^{-1}} - B_{12}(m)B_{11}(m)^{-1}\right) \xrightarrow{d} \mathcal{N}(0, V(m)),$

where

$$V(m) = \frac{1}{\tau_m} \frac{\partial \text{vec}[B_{12}(m)B_{11}(m)^{-1}]}{\partial \text{vec}D(m)'} \Sigma_D(m) \frac{\partial \text{vec}[B_{12}(m)B_{11}(m)^{-1}]'}{\partial \text{vec}D(m)}$$

can be estimated as

$$\widehat{V}(m) = rac{1}{ au_m} rac{\widehat{\partial eta(m)}}{\partial \mathrm{vec} D(m)'} \widehat{\Sigma}_D(m) rac{\widehat{\partial eta(m)'}}{\partial \mathrm{vec} D(m)},$$

with

$$\widehat{\Sigma}_{D}(m) = \frac{1}{\tau_{m}T} \sum_{t \in \mathcal{T}_{m}} \operatorname{vec}(\widehat{u}_{t}z_{t}' - \widehat{D}(m))[\operatorname{vec}(\widehat{u}_{t}z_{t}' - \widehat{D}(m))]'$$

Bruns & Lütkepohl

Heteroskedastic Proxy VARs

August 25, 2022

3 🕨 🤅 3

28 / 28

Define

$$eta(m) = ext{vec}[B_{12}(m)B_{11}(m)^{-1}]$$

Then we can use the test statistic

$$\eta(m,k) = T\left(\hat{\beta}(m) - \hat{\beta}(k)\right)' \left(\widehat{V}(m) + \widehat{V}(k)\right)^{-1} \left(\hat{\beta}(m) - \hat{\beta}(k)\right) \\ \stackrel{d}{\to} \chi^2(K_1(K - K_1)).$$

▶ back

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DGP2 Setup: Simulation parameters

Test

• Under \mathbb{H}_0 : We decompose $\Sigma_u(1)$ and $\Sigma_u(2)$ such that

Simulations

$$\Sigma_u(1) = BB'$$
 and $\Sigma_u(2) = B\Lambda_2 B',$

Application

Conclusions

Appendix

• $\Lambda_2 = diag(0.57, 0.15, 0.18, 0.35, 0.39)$

$$z_t = \Phi(m) \boldsymbol{w}_{1t} + v_t$$

with $v_t \sim \mathcal{N}(0, \kappa \Sigma_v)$, t = 1, ..., T. Such that for $\kappa = 1$ the covariance matrix of the proxies,

$$\Sigma_z = \Phi(1)\Phi(1)' + \Sigma_v = \Phi(2)\Lambda_2\Phi(2)' + \Sigma_v$$

is similar to the empirical (Lunsford 2015)

$$\mathcal{T}^{-1} \sum_{t=1}^{T} z_t z_t' = \begin{bmatrix} 9.95 & 5.41\\ 5.41 & 36.88 \end{bmatrix}$$

Φ(m) diagonal

Motivation

Bruns & Lütkepohl

・ロト ・得ト ・ヨト ・ヨト

DGP2 Setup: Additional proxies

•
$$\mathcal{K}_{1} = 3$$
:

$$\Phi(1) = \begin{bmatrix} 1.70 & 0 & 0 \\ 0 & 2.24 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \Phi(2) = \begin{bmatrix} 2.26 & 0 & 0 \\ 0 & 5.83 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\Sigma_{\nu}(1) = \Sigma_{\nu}(2) = \begin{bmatrix} 7.05 & 5.35 & 0 \\ 5.35 & 31.89 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

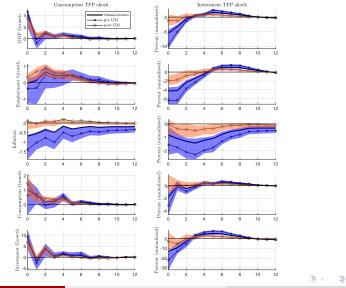
• $K_1 = 4$:

$$\Phi(1) = \begin{bmatrix} 1.70 & 0 & 0 & 0 \\ 0 & 2.24 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \Phi(2) = \begin{bmatrix} 2.26 & 0 & 0 & 0 \\ 0 & 5.83 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$$\Sigma_{\nu}(1) = \Sigma_{\nu}(2) = \begin{bmatrix} 7.05 & 5.35 & 0 & 0 \\ 5.35 & 31.89 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Bruns & Lütkepohl

August 25, 2022

28 / 28


イロト イポト イヨト イヨト

Motivation	Model
00000	000

Test 000 Simulations

Application 0000 Conclusions 0

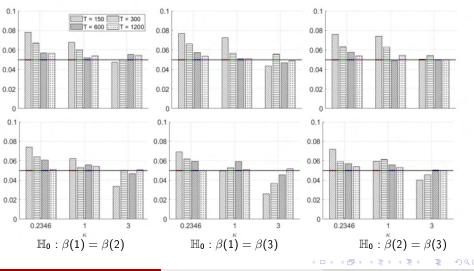
Impulse Responses

Bruns & Lütkepohl

Heteroskedastic Proxy VARs

August 25, 2022 28 / 28

- Inflation response to consumption TFP shock significant only in pre-GM period
- Initial effect of investment TFP shock on GDP growth and employment growth stronger in pre-GM period
- Time-invariant IRFs seem to be close to an average across the two regimes
- As in Lunsford (2015):
 - Consumption TFP shock can be interpreted as a supply shock (in post-GM regime)
 - Investment TFP shock cannot be interpreted as a supply shock but rather negative demand shock

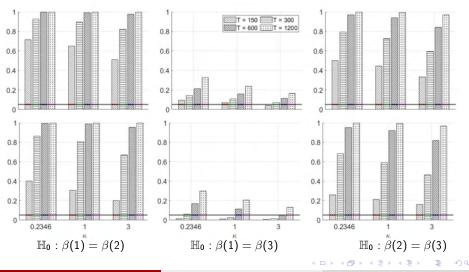

- 3

Motivation	Model	Test	Simulations	Application	Conclusions	Appendix
00000	000	000	00000000000	0000	0	0000000000000000000

DGP1: Correlations of z_t and w_{1t}

κ	Zt	$t\in$	\mathcal{T}_1	$t\in I$	\mathcal{T}_2	$t\in I$	\mathcal{T}_3
		W_{1t}	W _{2t}	w_{1t}	W _{2t}	w _{1t}	W _{2t}
	Z 1 <i>t</i>	0.900	0.000	0.972	0.000	0.900	0.000
0.2346	Z_{2t}	0.000	0.900	0.000	0.987	0.000	0.972
	Z_{1t}	0.707	0.000	0.894	0.000	0.707	0.000
1	Z_{2t}	0.000	0.707	0.000	0.949	0.000	0.894
	z_{1t}	0.500	0.000	0.756	0.000	0.500	0.000
3	Z_{2t}	0.000	0.500	0.000	0.866	0.000	0.756
		W_{1t}	W _{2t}	w _{1t}	W _{2t}	w _{1t}	W _{2t}
	Z_{1t}	0.900	0.000	0.972	0.000	0.900	0.000
0.2346	Z_{2t}	0.410	0.821	0.313	0.938	0.236	0.944
	Z_{1t}	0.707	0.000	0.894	0.000	0.707	0.000
1	Z_{2t}	0.333	0.667	0.302	0.905	0.218	0.873
	Z 1 <i>t</i>	0.500	0.000	0.756	0.000	0.500	0.000
3	Z_{2t}	0.243	0.485	0.277	0.832	0.186	0.743
		11.2	i di di D	VAD	< • • • 6		2022 2
	к 0.2346 1 3 0.2346 1 3 3	$\begin{array}{c} & & & & \\ & & & \\ 0.2346 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ 3 & & & \\ & & & \\ 0.2346 & & & \\ & & & \\ 1 & & & \\ 0.2346 & & & \\ & & & \\ 1 & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ 3 & & & \\ 1 & & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 2 & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 2 & & \\ 1 & & $	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	w_{1t} w_{2t} w_{1t} 0.2346 z_{1t} 0.900 0.000 0.972 $2.2t$ 0.000 0.900 0.972 2_{2t} 0.000 0.900 0.972 2_{2t} 0.000 0.900 0.894 2_{2t} 0.000 0.707 0.000 3 z_{1t} 0.500 0.000 0.756 2_{2t} 0.500 0.000 0.972 0.2346 z_{1t} 0.900 0.000 0.972 0.333 0.667 0.894 0.302 3 z_{1t} 0.500 0.000 0.756 3 w_{1t} w_{1t} w_{1t} w_{1t}	$\begin{array}{c c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	w_{1t} w_{2t} w_{1t} w_{2t} w_{1t} 0.2346 z_{1t} 0.9000.0000.9720.0000.9000.2346 z_{2t} 0.0000.9000.0000.9720.0000.9001 z_{2t} 0.7070.0000.8940.0000.7071 z_{2t} 0.0000.7070.0000.9490.0003 z_{1t} 0.5000.0000.7560.0000.5003 z_{1t} 0.9000.0000.9720.0000.9000.2346 z_{1t} 0.9000.0000.9720.0000.9000.2346 z_{1t} 0.9000.0000.9720.0000.9000.2346 z_{1t} 0.9000.0000.9720.0000.9000.2346 z_{1t} 0.9000.0000.9720.0000.9000.2346 z_{2t} 0.4100.8210.3130.9380.2361 z_{1t} 0.7070.0000.8940.0000.7071 z_{2t} 0.3330.6670.3020.9050.2183 z_{1t} 0.5000.0000.7560.0000.5003 z_{1t} 0.5000.0000.7760.8320.186

Bruns & Lütkepohl


Heteroskedastic Proxy VARs

August 25, 2022 28 / 28

Application Appendix DGP1 Results under \mathbb{H}_1 : Lag order p = 1 (top row) vs p = 12 (bottom row), $\rho = 0$

Conclusions

Simulations

Bruns & Lütkepohl

Motivation

Model

Test

Heteroskedastic Proxy VARs

August 25, 2022 28 / 28

• We generate proxies

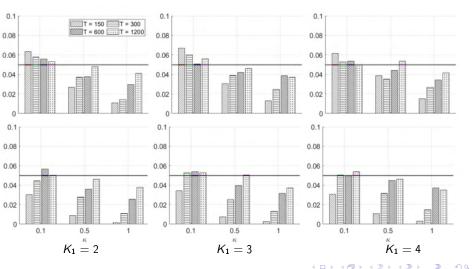
$$z_t = \Phi(m) \boldsymbol{w}_{1t} + \boldsymbol{v}_t, \quad \boldsymbol{v}_t \sim \mathcal{N}(0, \kappa \Sigma_{\boldsymbol{v}})$$
(18)

$corr(z_t, \boldsymbol{w}_{1t})$							
		W _{1t}	W_{2t}				
$\kappa = 0.1$	Z_{1t}	0.897	0.000				
	z_{2t}	0.000	0.782				
		W _{1t}	W _{2t}				
$\kappa = 0.5$	<i>Z</i> _{1<i>t</i>}	0.672	0.000				
	Z_{2t}	0.000	0.489				
		W _{1t}	W _{2t}				
$\kappa = 1$	Z_{1t}	0.540	0.000				
1	<i>z</i> _{2t}	0.000	0.368				

Heteroskedastic Proxy VARs

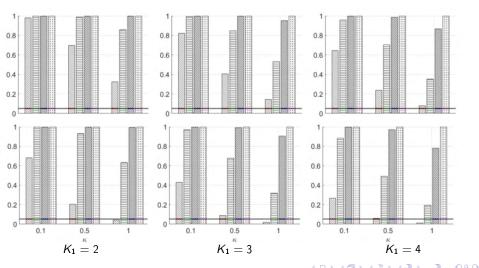
August 25, 2022

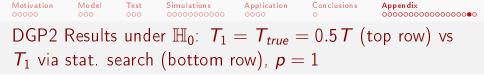
イロト イヨト イヨト イヨト

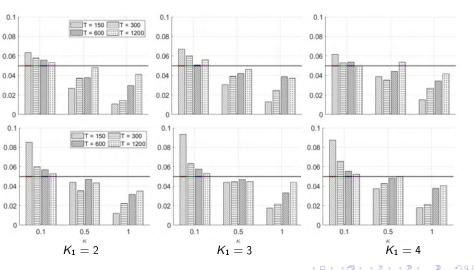

We investigate the test's performance in the following scenarios

- Lag order
- Proxy strength
- Increase number of identified shocks (and proxies)
- Misspecifying the volatility change point
- Searching for the volatility change point

A (10) × (10)

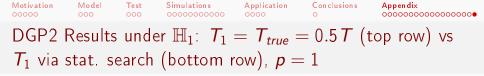


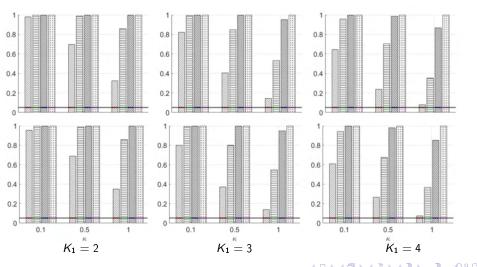

Bruns & Lütkepohl


Heteroskedastic Proxy VARs

August 25, 2022 28 / 28

Heteroskedastic Proxy VARs





Bruns & Lütkepohl

Heteroskedastic Proxy VARs

August 25, 2022 28 / 28

Heteroskedastic Proxy VARs

August 25, 2022 28 / 28