Introduction 00 Background O Model 000000 Calibration O Results 000 Conclusion O

EEA-ESEM 2022

The Surprising Power of the Floor: Unemployment Insurance and Worker Heterogeneity

Simon Heiler

University of Bonn

August 24, 2022

シック・目前 (日本)(日本)(日本)(日本)

Introduction	Background	Model	Calibration	Results	Conclusion
•0	0	000000	0	000	0

The problem with unemployment insurance

Introduction ●O	Background O	Model 000000	Calibration O	Results 000	Conclusion O
The problem w	ith unemployme	nt insurance			

- heterogeneity matters: unemployment risk, asset holdings, human capital / experience, time to retirement
- correlated with idiosyncratic characteristics, e.g. age and ability
- potential for conditioning policies
- conditional policies potentially problematic

- heterogeneity matters: unemployment risk, asset holdings, human capital / experience, time to retirement
- correlated with idiosyncratic characteristics, e.g. age and ability
- potential for conditioning policies
- conditional policies potentially problematic

Research question:

What is the optimal unemployment insurance policy and how can it be implemented?

Introduction	Background	Model	Calibration	Results	Conclusion
O●	O	000000	O	000	O
Related literature					

- Baily, 1978: key trade-off is consumption smoothing vs. moral hazard
- Shavell and Weiss, 1979: wealth and and worker discretion matter
- Brown and Kaufold, 1988: human capital channel is important for UI policy
- Shimer and Werning, 2008: UI serves double role (insurance + liquidity)
- Michelacci and Ruffo, 2015: age affects optimal replacement rates

Introduction	Background	Model	Calibration	Results	Conclusion
OO	●	000000	O	000	O
Some background	information				

• Unemployment risk decreases with education and with age

- Ability to self-insure increases with education and with age, but remains limited for low education workers • share of low wealth workers
- The U.S. UI system consists of a replacement rate, a benefit floor and a benefit cap rate, floor, cap system
- Effective UI replacement rates are decreasing with education and u-shaped in age • effective replacement rates

Introduction	Background	Model	Calibration	Results	Conclusion
00	O	●00000	O	000	O
Model framework					

• lifecycle model with endogenous search effort

• human capital depends on ability type k (permanent) and experience h (endogenous)

homogenous and additively separable CRRA preferences over consumption and leisure

$$U(c, l) = u(c) + \alpha \psi(l) = \frac{c^{1-\sigma^c}}{1-\sigma^c} + \alpha \frac{l^{1-\sigma^l}-1}{1-\sigma^l}$$

• workers receive wages $\bar{\omega}h$ when employed and UI benefits $b_k(n,h)$ when unemployed

· government sets UI policy to maximize expected utility of newborn worker

no productive sector

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Background	Model	Calibration	Results	Conclusion
00	O	O●OOOO	O	000	O

Human capital accumulation

• workers enter with initial experience $h_{k,0}$

• workers accumulate experience when employed (learning-by-doing)

• experience *h* depreciates at fixed rate δ_k^h

• law of motion for experience

 $h_k'(h,e) = \mathbb{1}_{\{e=1\}} \alpha_k h^{\phi_k} + (1-\delta_k^h)h$

うしん 正則 エル・エット 山マット

Introduction	Background	Model	Calibration	Results	Conclusion
00	O	OO●OOO	O	000	O
lob search					

• workers separate exogenously at heterogeneous rates $\delta_{k,n}$

 \bullet searching workers allocate 1 unit of time between job search s and leisure I

• all workers have leisure utility function $\psi(I)$ and use type-dependent search technology $\zeta_k(s)$

• workers choose search effort and receive leisure utility

· successful search leads to employment in the same period

Introduction	Background	Model	Calibration	Results	Conclusion
OO	O	000€00	O	000	O
Government	programs				

Unemployment Insurance:

- financed by labor tax τ^{UI} (endogenous)
- pays out UI benefits $b_k(n, h)$ (policy choice) to all unemployed agents

② Social Security:

- financed by labor tax τ^{SS} (exogenous)
- \circ pays out pension benefits π (endogenous) to all retired agents

③ General income tax and transfer system:

- financed by income tax τ' (exogenous) on labor and capital income
- \circ pays out lumpsum transfers T (endogenous) in all states and periods

Introduction	Background	Model	Calibration	Results	Conclusion
00	O	0000●0	O	000	O

Household problem – optization problem

Value functions

employed:

$$V_{k}^{e}(n,h,a) = \max_{a' \geq a} u(c_{k}^{e}(n,h,a,a')) + \beta \left[(1-\delta_{k,n}) V_{k}^{e}(n+1,h'(h,1),a') + \delta_{k,n} V_{k}^{s}(n+1,h'(h,1),a') \right]$$
(1)

• unemployed:

$$V_{k}^{u}(n,h,a) = \max_{a' \ge a} u(c_{k}^{u}(n,h,a,a')) + \beta V_{k}^{s}(n+1,h'(h,0),a')$$
(2)

searching:

$$V_{k}^{s}(n,h,a) = \max_{s \in [0,1]} \psi(1-s) + \zeta_{k}(s) V_{k}^{e}(n,h,a) + [1-\zeta_{k}(s)] V_{k}^{u}(n,h,a)$$
(3)

Budget constraints:

• employed:

$$c_k^e(n,h,a,a') = (1 - \tau^{UI} - \tau^{SS} - \tau')\bar{\omega}h + [1 + (1 - \tau')r]a + T - a'$$
(4)

• unemployed:

$$c_k^u(n,h,a,a') = b_k(n,h) + [1 + (1 - \tau')r]a + T - a'$$
(5)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Background	Model	Calibration	Results	Conclusion
OO	O	00000●	O	000	O
Government	Problem				

Objective:

$$\max_{b_k(n,h)} \sum_{k \in K} \chi_k V_k^s(0, h_{k,0}, 0) \tag{6}$$

Budget constraints:

• Unemployment Insurance:

$$\sum_{k\in K}\sum_{n=0}^{\bar{n}_w}\beta^n\int_{\mathcal{R}^+}b_k(n,h)\chi_k^u(n,dh)=\sum_{k\in K}\sum_{n=0}^{\bar{n}_w}\beta^n\int_{\mathcal{R}^+}\tau^{UI}\bar{\omega}h\chi_k^e(n,dh)$$
(7)

Social Security:

$$\sum_{k\in\mathcal{K}}\sum_{n=\bar{n}_{w}+1}^{\bar{n}_{w}+\bar{n}_{r}}\beta^{n}\pi\chi_{k}=\sum_{k\in\mathcal{K}}\sum_{n=0}^{\bar{n}_{w}}\beta^{n}\int_{R^{+}}\tau^{SS}\bar{\omega}h\chi_{k}^{e}(n,dh)$$
(8)

• Tax and transfer system:

$$\sum_{k\in\mathcal{K}}\sum_{n=0}^{\bar{n}_{w}+\bar{n}_{r}}\beta^{n}T\chi_{k}=\sum_{k\in\mathcal{K}}\left(\sum_{n=0}^{\bar{n}_{w}}\beta^{n}\int_{\mathcal{R}^{+}}\tau^{I}\bar{\omega}h\chi_{k}^{e}(n,dh)+\sum_{n=0}^{\bar{n}_{w}+\bar{n}_{r}}\beta^{n}\int_{\mathcal{R}^{+}}\tau^{I}ra\chi_{k}(n,da)\right)$$
(9)

<ロト < 団 > < 三 > < 三 > < 三 > < 回 > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Background	Model	Calibration	Results	Conclusion
OO	O	000000	●	000	O
Calibration					

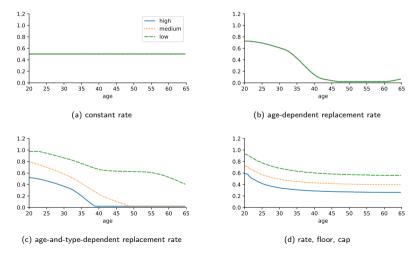
- one model period corresponds to one quarter
- 45 years of working age ($\bar{n}_w = 180$) and 20 years of retirement ($\bar{n}_r = 80$)
- model calibrated to U.S. male population (CPS basic monthly data, 1989-2020):
 - hc technology via relative wages hc parameters
 - search technology parameters via unemployment probabilities (* search tech parameters)
 - 3-month separation probabilities via 1-month transition probabilities
- remaining parameters standard from the literature other parameters

Introduction	Background	Model	Calibration	Results	Conclusion
00	O	000000	O	●00	O
Policy experir	ments				

Classes for UI policy functions:

- constant replacement rate: $b_k(n,h) = \bar{\rho}\omega_k(h)$
- age-dependent replacement rates: $b_k(n,h) = \rho_n \omega_k(h)$
- age-and-type-dependent replacement rates: $b_k(n,h) = \rho_{k,n}\omega_k(h)$
- constant replacement rate, benefit floor and cap: $b_k(n, h) = \min\{\overline{b}; \max\{\underline{b}; \overline{\rho}\omega_k(h)\}\}$

Introduction	Background	Model	Calibration
00	0	000000	0


on

Results 000

Conclusion

Optimal policies

Introduction	E
00	(

Welfare analysis

Background

Model

Calibration

Results 000

Conclusion

Table 1: Consumption equivalents								
	(Consumption equivalent						
	low	medium	high	average				
Policy	Policy							
Baseline	0.00	0.00	0.00	0.00				
Common and constant rate	0.02	0.00	-0.02	0.00				
Rate, floor, cap	1.33	0.14	-0.34	0.20				
Age-dependent	0.14	0.24	0.29	0.24				
Age-and-type-dependent	2.11	0.25	-0.45	0.35				

• sizeable welfare gains from all policies: 0,5 ppt CI correspond to ca. 20% of UI budget

• "rate, floor, cap" implementation generates 80% of gains from age-dependent policies and 60% of gains of age-and-type-dependent policies

Introdu	ction	Backgroun
00		0
-		

Model 0000 Calibration O

Conclusion

• age and education capture substantial heterogeneity across workers

• the human capital channel is a key driver of this heterogeneity

• the current U.S. UI system differentiates by age and education (but not enough)

• optimal UI replacement rates fall with ability and age

• potential welfare gains from conditioning replacement rates are sizeable

large share of these gains can be generated with the current U.S. system

シック 正則 イボットボット 電 マック

Empirics 0000000 Model – Calibration 0000 Model – Further results

References I

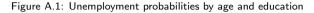
- Baily, M. N. (1978). Some aspects of optimal unemployment insurance. *Journal of Public Economics*, 10, 379–402.
- Brown, E., & Kaufold, H. (1988). Human capital accumulation and the optimal level of unemployment insurance provision. *Journal of Labor Economics*, 6(4), 493–514.
- Michelacci, C., & Ruffo, H. (2015). Optimal life cycle unemployment insurance. American Economic Review, 105(2), 816–59.
- Shavell, S., & Weiss, L. (1979). The optimal payment of unemployment insurance benefits over time. Journal of Political Economy, 87(6), 1347–1362.
- Shimer, R., & Werning, I. (2008). Liquidity and insurance for the unemployed. American Economic Review, 98(5), 1922–42.

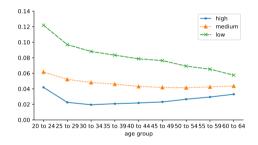
(日) (日) (日) (日) (日) (日) (日) (日) (日)

Model – Calibration 0000

Data

- CPS basic monthly (male sample, 1989–2020): unemployment rates, transition rates, wages
- CPS tenure supplements (male sample, 2002–2018): returns to tenure
- SCF extracts (male sample, 1989–2019): assets-to-income-ratios, share of low-wealth households
- ETA UI policy statistics (1989–2019): replacement rates, benefit floors, benefit caps

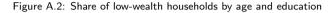

<ロ> <目< <目< <目< <目< <目< <目< <目< <0<0</p>

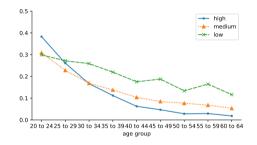

Model – Calibration 0000

Model – Further results

< ロ > < 同 > < 三 > < 三 > < 三 > < 回 > < ○ </p>

U.S. workers by age and education


Notes: Life-cycle profiles of unemployment probabilities (left panel) and share of population with zero or negative net worth (right panel) by education. Source: CPS basic monthly (male sample, 1989-2020), SCF extracts (male sample, 1989-2019).

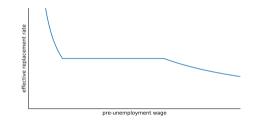

- Unemployment risk is decreasing in education
- Unemployment risk is decreasing in age for low and medium edu workers, u-shaped for high edu workers

Model – Calibration 0000

Model – Further results

U.S. workers by age and education

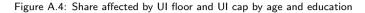
Notes: Life-cycle profiles of unemployment probabilities (left panel) and share of population with zero or negative net worth (right panel) by education. Source: CPS basic monthly (male sample, 1989-2020), SCF extracts (male sample, 1989-2019).

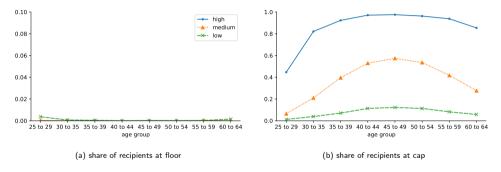

- Ability to self-insure is lower for young workers
- · Substantial share of low edu workers cannot effectively self-insure throughout working life

Empirics 0000000 Model – Calibration 0000

Model – Further results

The U.S. UI system - mechanism



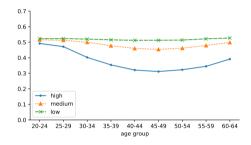

• replacement rate on pre-unemployment wages, benefit floor and benefit cap

- cap and floor cause non-linear effective replacement rates
- binding floor increases effective rate, binding cap reduces effective rate

Model – Calibration 0000 Model – Further results

The U.S. UI system - bounds

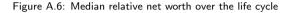
Notes: Life-cycle profiles of the share of workers at the benefit floor (right panel) and at the benefit cap (left panel) by education group. Source: CPS basic monthly (male sample, 1989–2020) and ETA UI policy statistics (1989–2020).

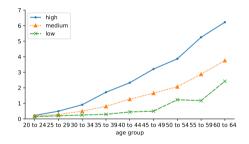

- average replacement rate ca. 50%, benefit floor ca. 30\$/week, benefit cap ca. 220\$/week (1990 USD)
- benefit cap is binding for substantial share of medium and high education workers
- benefit floor is largely ineffective

back

Empirics 0000000 Model – Calibration 0000 Model – Further results

The U.S. UI system - effective replacement rates




Notes: Life-cycle profiles of imputed effective replacement rates (left panel) by education group. Source: CPS basic monthly (male sample, 1989–2020) and ETA UI policy statistics (1989–2020).

- effective replacement rates fall with education
- effective rates are mostly flat for low education workers, u-shaped in age for medium and high education workers

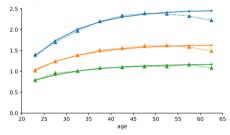
Empirics 000000● Model – Calibration 0000 Model – Further results 00

Asset holdings

Notes: Life-cycle profiles of median assets over median quarterly income by education. Source: SCF extracts (male sample, 1989–2019).

back

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


Empirics 0000000 Model – Calibration

Model – Further results 00

Calibration – Human capital technology

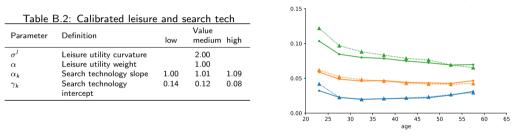
Parameter	Definition	low	Value medium	high
$h_{0,k}$	initial human capital level	0.70	0.90	1.10
α_k	Learning ability parameter	0.03	0.04	0.06
ϕ_k	Human capital curvature parameter	0.10	0.10	0.10
δ^h_k	Human capital depreciation rate	0.03	0.03	0.03

Figure B.1: Fit of simulated wage profiles

• targets obtained by estimating relative wages by age group and education group

o mismatch close to retirement driven by insufficient decrease in simulated hc

back


(日) (日) (日) (日) (日) (日) (日) (日) (日)

Empirics 0000000 Model – Calibration

Figure B.2: Fit of simulated unemployment rates

Model – Further results

Calibration – Leisure utility function and search technology

unemployment probabilities estimated by age group and education group

calibration of search technology parameters by minimizing distance to empirical moments

back

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

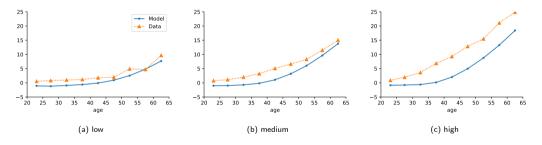
Empirics 0000000 Model – Calibration

Model – Further results 00

Calibration

Parameter	Definition	Value			
		low	medium	high	
\bar{n}_w	Working periods		180		
n _r	Retirement periods		80		
β	Discount factor		0.99		
σ^{c}	Risk aversion coefficient for consumption		2.0		
χ_k	Type share of population	0.11	0.58	0.31	
π	Retirement pensions		0.68		
Т	Lumpsum transfers		0.14		
a	Borrowing constraint		-1.12		
τ^{UI}	Unemployment insurance tax rate	0.013	0.013	0.013	
τ^{SS}	Social security tax rate	0.050	0.050	0.050	
τ'	General income tax rate	0.100	0.100	0.100	
$\rho_{k,n}$	UI replacement rate		0.50		
b _{min}	UI floor		0.00		
b _{max}	UI cap		inf		

Table B.3: Remaining calibrated parameters of the baseline economy


• back

References

Model fit

Empirics 0000000 Model – Calibration 000● Model – Further results 00

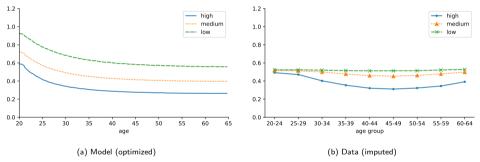
Figure B.3: Assets over income

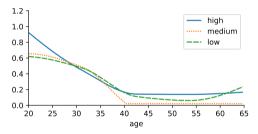
Notes: Life-cycle profiles of average simulated assets over income by worker type vs. empirical counterpart. Source: Simulation study with N=100,000 workers and SCF extracts (male sample, 1989–2019).

シック・目前 (川)・(川)・(日)・(日)・

Model – Calibration 0000 Model – Further results

Comparison to current U.S. system




Figure C.1: Effective replacement rates ("rate, floor, cap")

- Policy qualitatively in line with model optimum
- Indicative of potential welfare gains through moderate reforms ("tweaking the system")

Empirics 0000000

Welfare analysis - decomposition

Figure C.2: Optimal age-and-type-dependent replacement rates (fixed budget)

Model – Calibration

Model – Further results

Table D.1: Consumption equivalents (fixed budget)

Policy	low	Consumptic medium	n equiva high	llent average
Age-and-type-dependent	2.11	0.25	-0.45	0.35
Age-and-type-dependent (fixed budget)	0.26	0.25	0.27	0.26
Baseline	0.00	0.00	0.00	0.00

- holding UI budgets fixed by worker type, welfare gains from optimal age-and-type-dependent replacement rates are 0.25 ppt of consumption
- ca. two thirds of the welfare gains are due to improved targeting of the program; about one third due to increased redistribution across types