Imperfect Financial Markets and the Cyclicality of Social Spending

Maren Froemel¹ Wojtek Paczos²

¹Bank of England

²Cardiff University & Polish Academy of Sciences

23.08.2022 EEA Annual Congress Bocconi University, Milan

Overview

- Financial markets & fiscal policy over the business cycle
 - Government expenditure
 - Taxes
 - External debt with endogenous risk
 - Inequality
- Why is this interesting?
 - · Countercyclical fiscal policies in advanced economies
 - Procyclical fiscal policies in emerging markets
 - Cross-country differences driven by social transfers

Research Question

Can sovereign risk explain the observed cross-country differences in the cyclicality of fiscal policy (and its components)?

Literature

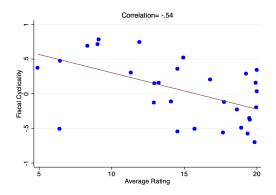
Empirical Literature: Fiscal Policy differences

Gavin & Perotti (1997), Kaminsky, Reinhart & Végh (2005), Végh & Vuletin (2012), Michaud & Rothert (2018)

Default Risk and Fiscal Policy

Eaton & Gersovitz (1981), Cuadra, Sanchez & Sapriza (2010), Ferriere (2015), Camous & Gimber (2018), Bianchi, Ottonello & Presno (2021)

Political Economy and Fiscal Policy

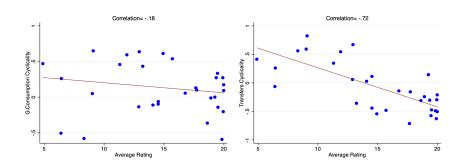

Andreasen, Sandleris and van der Ghote (2019), Talvi & Végh (2005), Ilzetzki (2011)

Redistribution with Uniform Transfers

Alonso-Ortiz & Rogerson (2010), Bhandari, Evans, Golosov & Sargent (2013)

Stylized facts

Fiscal Expenditure



- Correlations of cyclical components of GDP w. cyclical comp. of fiscal expenditure
- 30 countries, 1990-2015
- On average 40% of GDP (std. 11p.p.)

Expenditure Components

Government consumption (left) and transfers (right)

- Total expenditure = Transfers + Goods & Services + Employment Exp. + Interest + Other
- Transfers and Goods&Serv. cover on average 50% of total fiscal expenditures

Model

Environment: Households

- Time is discrete, t = 0, 1, 2, ...
- Households differ in labor productivity: $e^i \in [0,1]$
- Constant population of size 1, share σ^i have e^i .
- Aggregate, persistent TFP shock A_t

$$\begin{aligned} & \max_{c_{t}^{i}, h_{t}^{i}} [\kappa u(c_{t}^{i}, h_{t}^{i}) + (1 - \kappa) \nu(g_{t}^{P})], \\ & \text{s.t.:} \quad (1 + \tau_{t}) c_{t}^{i} = A_{t} e^{i} h_{t}^{i} + g_{t}^{T}. \end{aligned} \tag{1}$$

• Total output: $Y_t = A_t \sum_i \sigma^i e^i h_t^i$

Environment: Government (I)

State of economy is S = (A, b). Every period government decides whether to default:

$$V^{0}(S) = \max_{d \in \{0,1\}} \left(dV^{d}(S) + (1-d)V^{nd}(S) \right), \tag{2}$$

where after repayment it solves:

$$V^{nd}(S) = \max_{\{\tau, g^T, g^P, b'\}} \left[\kappa \sum_i \sigma^i u(c^{*i}, h^{*i}) + (1 - \kappa) \nu(g^P) \right] + \beta \mathbb{E}[V^0(S')|S]$$
 (3)

where c^{*i} , h^{*i} solve HHs problem, subject to gov't budget constraint:

$$g^{P} + g^{T} + b = \tau C^{*} + qb', \text{ where } C^{*} = \sum_{i=1}^{r} \sigma^{i} c^{*i}.$$
 (4)

and risk-neutral pricing of debt by foreign investors:

$$q(b', A) = \frac{\mathbb{E}(1 - d(b', A))}{1 + r}.$$
 (5)

Environment: Government (II)

After default gov't solves:

$$V^{d}(S) = \max_{\{\tau_{d}, g_{d}^{T} g_{d}^{P}\}} \left[\kappa \sum_{i} \sigma^{i} u(c^{*i}, h^{*i}) + (1 - \kappa) \nu(g_{d}^{P}) \right] + \beta \mathbb{E}[\mu V^{0}(S') + (1 - \mu) V^{d}(S') | S],$$
(6)

subject to HHs constrains (4)-(5) and gov't budget constraint:

$$g_d^P + g_d^T = \tau_d C^*. (7)$$

After default economy incurs asymmetric proportional productivity loss.

Calibration

Calibration to Brazilian economy

Parameter	Value	Target/Source			
Set Parameters					
Interet rate r	1%	3 month T-Bill			
Risk aversion γ	2	CSS (2010)			
Frisch elasticity ψ	0.6	M&R (2018)			
	Calibration				
Labor disutility χ	0.82	1/3 time worked			
Consumption weight κ	0.839	Share of social spending			
TFP persistence ρ_A	0.919	GDP pers. 0.885			
TFP volatility σ_{ϵ}	0.00418	GDP vol. 2.65%			
Exclusion μ	0.2	Market exclusion 5qrts			
Discounting β	0.94 (0.99)	Def. feq. 2.8%			
Penatly θ	0.989 (0.01)	Debt service 2.1% GDP			
Productivities <i>eⁱ</i>	{0.2685, 0.4370,	Pre-tax income quintiles:			
-	0.4909, 0.557, 1}	{0.03,0.11,0.15,0.21,1}			

TFP follows AR(1) process, preferences are as in GHH (1988)

$$u(c,h) = \frac{\left[c - \chi \frac{h^{1+\psi}}{1+\psi}\right]^{1-\gamma}}{1-\gamma} \tag{8}$$

Results

Results: Current Account

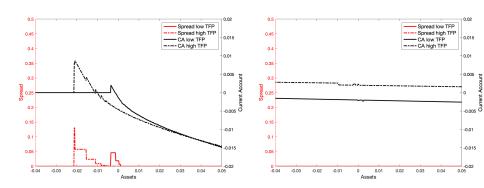


Figure: Current Account in risky (left) and safe economy (right)

Complete Markets vs Autarky

Results: Transfers

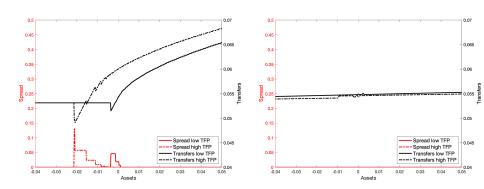


Figure: Transfers in risky (left) and safe (right) economy

Results: Public Good

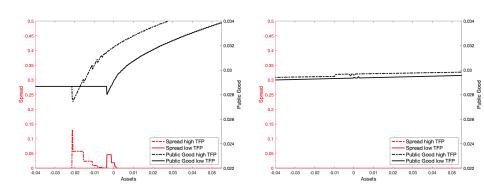


Figure: Public Good Spending in risky (left) and safe (right) economy

Results: Spending Composition

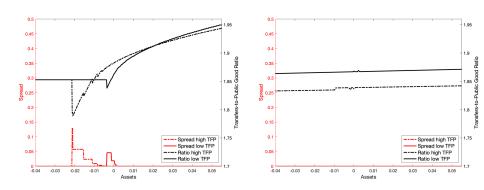


Figure: Transfers-to-Public Good in risky (left) and safe economy (right)

Empirical Check

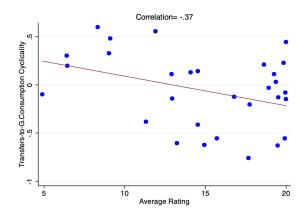


Figure: Cyclicality of the ratio of transfers to government consumption vs average rating

Simulation

Statistic	Data	Model-R	Model-S		
Targeted Moments					
Pre-tax Gini 0.53 0.54 0.54					
Output Persistence	0.885	0.883	0.904		
Output Standard Deviation	2.65%	2.69%	2.41%		
Debt service-to-GDP	2.1%	2.1%	13.4%		
Default Frequency	2.8%	2.8%	0%		
Transfers-to-Public Good	1.80	1.80	1.80		
Untargeted Moments					
Post-tax Gini	0.51	0.45	0.45		
Transfers-to-GDP	6.5%	21.9%	21.8%		
corr(Transfers,GDP)	0.43	0.85	-0.12		
corr(Public Good, GDP)	-0.52	0.91	0.45		
corr(Trade Balance, GDP)	-0.13	-0.23	0.83		
corr(Spread, GDP)	-0.40	-0.17	NaN		

Robustness

- **1** Pro-rich government $\alpha_i = \lambda^i / \sum_i \lambda^i, \lambda = 2.5$
- 2 Low inequality: Gini = 0.18, T/Y = +0.

Table: Robustness Analysis

Moment	Benchmark	Pro-rich gov.	Low inequality	
T/Y	21.9%	6.5%	0.1%	
Prob(Def)	2.8%	2.9%	0.15%	
B/Y	2.1%	2.1%	0.4%	
mean(spread)	0.029	0.030	0.001	
Pre-tax Gini	0.54	0.54	0.18	
Post-tax Gini	0.45	0.51	0.18	
corr(CA, Y)	-0.24	-0.32	-0.11	
corr(T, Y)	0.85	0.78	0.20	
$corr(\tau, Y)$	-0.23	-0.31	-0.11	
corr(G, Y)	0.91	0.93	0.99	

Summary

- Procyclical transfer policy can be rationalized by countercyclical borrowing constraints.
- While redistribution still possible, policy achieves opposite of consumption smoothing during periods of distress.
- Save economy crisis: saving on public good.
 Risky-economy crisis: saving on transfers.
- Procyclical bias.
- Role of IMF: Can IFI alleviate procyclicality?

The End

Thank you

Data

- Fiscal expenditure from Michaud & Rothert (2018)
 - Harmonized GFS (IMF)
 - 30 countries between 1990-2015
 - Total expenditure = transfers + goods & services + employment exp. + interest + other
 - Cyclicality: remove linear-quadratic trend and correlate with GDP
- Sovereign debt ratings from S&P, Fitch and Moody's
 - Encode on 0 to 20 scale
 - Time average (of yearly average) for each country

Cyclicality Data

	Rating	Total Expenditure		Transfers		Public Goods	
		% of GDP	corr w. GDP	% of GDP	corr w. GDP	% of GDP	corr w. GDF
Argentina	4.92	21.17	0.37	6.13	0.41	1.68	0.47
Austria	18.94	50.72	-0.50	22.19	-0.25	5.87	-0.02
Belgium	18.65	51.67	-0.23	22.39	-0.32	3.98	-0.37
Bolivia	6.42	21.27	-0.51	3.74	-0.07	4.26	-0.51
Brazil	8.33	26.23	0.69	8.33	0.56	2.44	-0.58
Canada	19.47	42.46	-0.36	9.56	-0.58	8.35	0.33
Chile	14.53	21.11	-0.55	4.81	-0.45	2.66	-0.07
Czech Republic	14.53	36.72	0.36	16.32	0.11	3.59	-0.10
Denmark	19.52	54.60	-0.38	18.40	-0.48	8.31	-0.15
Dominican Republic	6.45	12.24	0.47	0.74	0.25	2.00	0.25
Estonia	14.69	34.79		11.62		7.14	
Finland	19.38	50.51	-0.58	19.36	-0.31	8.95	0.27
France	19.85	51.83	-0.70	23.32	-0.49	5.10	-0.60
Germany	20.00	46.81	0.03	24.53	-0.21	3.87	0.09
Greece	11.32	46.85	0.30	17.01	0.34	5.64	0.46
Hungary	11.91	50.80	0.74	16.73	0.54	7.69	0.59
Iceland	14.94	40.56	0.52	6.25	-0.54	10.46	0.61
Ireland	17.68	36.69	-0.56	12.42	-0.72	5.07	0.13
Israel	14.09	43.58	-0.11	12.26	0.02	9.39	-0.12
Italy	16.79	48.72	0.20	19.64	-0.14	4.88	0.06
Luxembourg	20.00	37.48	0.34	19.44	-0.51	3.38	0.17
Netherlands	19.97	44.81	-0.20	19.59	-0.30	6.18	-0.21
Poland	13.25	43.44	0.16	17.30	-0.36	6.48	0.43
Portugal	15.73	43.93	-0.51	15.75	-0.48	4.74	0.53
Romania	9.02	33.85	0.72	10.83	0.59	6.62	0.05
Slovak Republic	12.96	43.20	0.15	17.05	0.66	6.02	0.64
Slovenia	15.51	43.58		17.72		6.39	
Spain	17.76	39.61	-0.12	15.57	-0.16	4.57	0.09
Sweden	19.27	52.08	0.28	17.55	0.14	7.42	-0.01
Thailand	12.91	17.09	-0.13	1.74	0.06	5.33	-0.14
United Kingdom	19.92	41.09	0.16	13.31	-0.63	9.77	0.27
Uruguay	9.11	26.82	0.78	12.82	0.82	3.72	0.65
Total	15.19	40.17	0.03	14.44	-0.08	5.84	0.13

Complete Markets vs Autarky

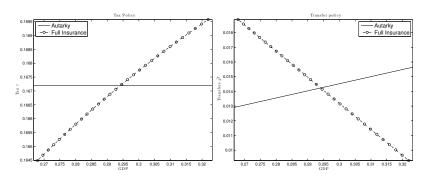
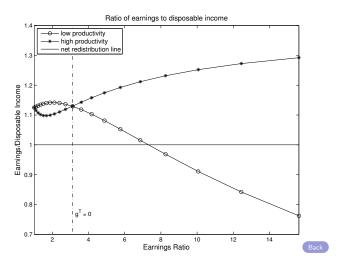



Figure: Optimal taxes (left) and transfers (right) as a function of GDP in complete markets and autarky

Optimal Static Redistribution

Static Redistribution

Figure: Redistribution with constant marginal tax rates and uniform transfers: Ratio of disposable income and earnings.

Optimality Conditions

Risk sharing condition:

$$\kappa \sum_{i} \sigma^{i} u_{c}^{i}(c_{t}^{i}, h_{t}^{i}) = (1 - \kappa) v'(G_{t}^{P}) = \text{MU of resources}$$
 (9)

Distribution of tax distortion.

$$\sum_{i} \left[\kappa u_c^i(c_t^i, h_t^i) - (1 - \kappa) v'(G_t^P) \right] \sigma^i c_t^i = (1 - \kappa) v'(G_t^P) w_t \sum_{i} \sigma^i \epsilon^i h_t^i \xi_{h,\tau}$$
 (10)

weighted sum of rs wedges

weighted sum of output wedges

$$\xi_{h,\tau} = \frac{\partial h}{\partial \tau} \frac{\tau}{h} = -\frac{1}{\phi} \frac{\tau}{1 - \tau} \tag{11}$$

Equilibrium

A stochastic dynamic recursive equilibrium in this economy is a set of households decisions $\{c^i(S), h^i(S), c^i_d(S), h^i_d(S)\}$ government default policy d(S), government policies $\{g^T(S), g^P(S), b'(S), \tau(S), g^T_d(S), g^P_d(S), \tau_d(S)\}$, and a bond price policy function q(S) such that:

- (a) Given bond prices and government policies, the household decisions solve the households' maximization problem.
- (b) Given bond prices and household decisions, the government policies solve the government's maximization problem.
- (c) Lenders' beliefs are consistent with default probabilities and the resulting bond prices satisfy the zero profit condition.

Summary: Taxes

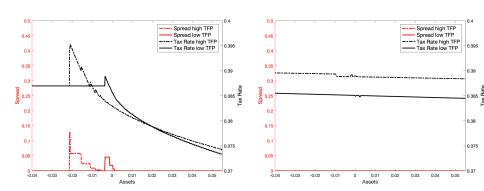


Figure: Taxes in risky (left) and safe (right) economy