Identifying Aggregate Demand and Supply Shocks Using Sign Restrictions and Higher-order Moments

Geert Bekaert¹ Eric Engstrom² Andrey Ermolov³

The expressed views do not necessarily reflect those of the Board of Governors of the Federal Reserve System, or its staff.

37th Meeting of the European Economic Association August 22, 2022

¹Columbia Business School and CEPR

²Board of Governors of the Federal Reserve System

³Gabelli School of Business, Fordham University

Contribution 1/3

- Disentangling aggregate demand (AD) and aggregate supply (AS) shocks is a key question in macroeconomics:
 - Economic impact can be different (e.g., Blanchard and Quah, 1989)
 - Policy responses often different
- However, practically, the identification is complex with many assumptions (e.g., Canova and Paustian, 2011; Furlanetto, Ravazzolo, and Sarferaz, 2019)
- **This paper**: a methodology with minimal theoretical assumptions relying only on unconditional higher-order moments in GDP growth and inflation data

Contribution ○●○ Modeling AS/AD Shocks

Results 000000000

Contribution 2/3

Hi,

l am abundant and, unfortunately, do not fit this slide.

Best Wishes, Literature on Uncertainty and Business Cycles

 This paper: distinguishing between aggregate demand (AD) and aggregate supply (AS) shocks uncertainty

Contribution 3/3

- Recent interest in non-Gaussian uncertainty (e.g., Adrian, Boyarchenko, and Giannone, 2019; Fernandez-Villaverde and Guerron-Quintana, 2020)
- **This paper**: flexible econometric framework for multivariate distribution of macro data
 - Formally outperforms other non-Gaussian models
 - Time-varying closed-form second/higher-order moments
 - Time-varying level and uncertainty/higher order moment shock correlation (Gorodnichenko and Ng, 2017; Carriero et al., 2018; Alessandri and Mumtaz, 2019)

Aggregate Supply and Demand Shocks

• Consider GDP growth and inflation shocks:

•
$$g_{t+1} = E_t[g_{t+1}] + \epsilon_{t+1}^g$$

- $\pi_{t+1} = E_t[\pi_{t+1}] + \epsilon_{t+1}^{\pi}$
- Model them as functions of AD (u^d_t)/AS (u^s_t) shocks (Blanchard, 1989):

$$\begin{aligned} \epsilon_{t+1}^{g} &= \underbrace{\sigma_{g}^{d}}_{>0} u_{t+1}^{d} + \underbrace{\sigma_{g}^{s}}_{>0} u_{t+1}^{s}, \\ \epsilon_{t+1}^{\pi} &= \underbrace{\sigma_{\pi}^{d}}_{>0} u_{t+1}^{d} - \underbrace{\sigma_{\pi}^{s}}_{>0} u_{t+1}^{s}, \\ Cov(u_{t+1}^{d}, u_{t+1}^{s}) &= 0, Var(u_{t+1}^{d}) = Var(u_{t+1}^{s}) = 1. \end{aligned}$$

Identification

- "Demand" and "supply" shocks are not identified in a Gaussian framework (3 unconditional moments: 2 variances+covariance, but 4 σ coefficients to estimate)⇒ use unconditional higher-order moments
- For example, identification via matching co-skewness moments:

$$\begin{split} & E[u_t^g(u_t^{\pi})^2] = \sigma_g^d(\sigma_\pi^d)^2 E[(u_t^d)^3] + \sigma_g^s(\sigma_\pi^s)^2 E[(u_t^s)^3], \\ & E[(u_t^g)^2 u_t^{\pi}] = (\sigma_g^d)^2 \sigma_\pi^d E[(u_t^d)^3] - (\sigma_g^s)^2 \sigma_\pi^s E[(u_t^s)^3]. \end{split}$$

• For example, suppose $E[(u_t^s)^3] \approx 0$ and $E[(u_t^d)^3] < 0$:

•
$$E[u_t^g(u_t^{\pi})^2] \approx \sigma_g^d(\sigma_\pi^d)^2 \underbrace{E[(u_t^d)^3]}_{<0}$$

• $E[(u_t^g)^2 u_t^{\pi}] \approx (\sigma_g^d)^2 \sigma_\pi^d \underbrace{E[(u_t^d)^3]}_{<0}$
• co-skewness moments admit identification of σ_π^d and σ_g^d
• if $E[u_t^g(u_t^{\pi})^2] < E[(u_t^g)^2 u_t^{\pi}] \Rightarrow \sigma_\pi^d > \sigma_g^d$

Contr	ib	uti	on

Modeling demand and supply shocks

 Demand and supply shocks modeled using Bad Environment-Good Environment (BEGE) structure (Bekaert and Engstrom, 2017): component models of two 0-mean shocks

$$\begin{array}{l} u_{t+1}^{d} = \sigma_{p}^{d} \omega_{p,t+1}^{d} - \sigma_{n}^{d} \omega_{n,t+1}^{d}, \\ u_{t+1}^{s} = \sigma_{p}^{s} \omega_{p,t+1}^{s} - \sigma_{n}^{s} \omega_{n,t+1}^{s}, \end{array} \right\} \begin{array}{l} \omega_{p,t+1} \text{ - good environment shock} \\ \omega_{n,t+1} \text{ - bad environment shock} \end{array}$$

• Shocks follow demeaned gamma distributions:

$$\begin{split} & \omega_{p,t+1}^d \sim \Gamma(p_t^d,1) - p_t^d, \\ & \omega_{n,t+1}^s \sim \Gamma(n_t^d,1) - n_t^d, \\ & \omega_{p,t+1}^s \sim \Gamma(p_t^s,1) - p_t^s, \\ & \omega_{n,t+1}^s \sim \Gamma(n_t^s,1) - n_t^s. \end{split} \right\} \begin{array}{c} \text{gamma distribution with} \\ & \Gamma(x,y) - \text{shape parameter x and scale} \\ & \text{parameter y} \end{split}$$

・ロト ・ 日 ・ ・ 正 ・ ・

Results 000000000

Bad Environment-Good Environment Probability Density Function

Time-varying variances

AR(1) process for shape parameters of demeaned gamma distributions:

$$p_{t+1}^{d} = \bar{p}^{d} + \rho_{p}^{d}(p_{t}^{d} - \bar{p}^{d}) + \underbrace{\sigma_{pp}^{d}\omega_{p,t+1}^{d}}_{\text{level shock}} + \underbrace{\sigma_{pp}^{dd}\nu_{p,t+1}}_{\text{pure variance shock}}$$

• Similar processes for
$$n_{t+1}^d$$
, p_{t+1}^s , n_{t+1}^s

- *p*^d_t/*n*^d_t = good (positively skewed)/bad (negatively skewed) demand variances
- *p*^s_t/*n*^s_t = good (positively skewed)/bad (negatively skewed) supply variances
- Flexible time-varying correlation between level and variance shocks: good/bad variance positively/negatively correlated with level shocks

Results 000000000

Bad Environment-Good Environment Structure Properties

- Flexible: e.g., Gaussian and rare disaster distributions are special cases
- Closed-form expressions for second and higher-order moments
- Outperforms other non-Gaussian models (e.g., regime-switching models)

Data and Estimation

- US quarterly data 1968Q4-2019Q2
- 3 step estimation:
 - Shocks to output growth and inflation: real-time data from Survey of Professional Forecasters
 - Demand and supply shocks: invert from output growth and inflation shocks after estimating "structural" loadings via GMM using higher-order moments (3rd and 4th order moments are jointly highly significant and GMM fits them well)
 - Conditional volatility/higher-order moment dynamics (p^d_t, n^d_t, p^s_t, n^s_t): maximum likelihood

Results ●00000000

Loadings of GDP Growth and Inflation Shocks onto Supply and Demand Shocks

	u_t^{π}	u_t^g
u_t^s	-0.4829	1.1802
	(0.0566)	(0.1129)
u_t^d	0.5141	0.6035
	(0.0685)	(0.1064)

standard errors in parentheses

Modeling AS/AD Shocks

AS/AD Shocks

AS/AD shock distributions

- Bad environment/good environment model selection based on Akaike information criterion
- AS:
 - Good component: Gaussian; level and variance shocks are independent
 - Bad component: gamma with occasional medium-sized left-tail realizations; level and variance shocks are perfectly correlated
- AD:
 - Good component: Gaussian; level and variance shocks are perfectly correlated
 - Bad component: rare-disaster type; level and variance shocks are perfectly correlated

Modeling AS/AD Shocks

Results 000●00000

AS/AD Variances

A D > A D >

Modeling AS/AD Shocks

Results

Real GDP Growth Skewness (Scaled)

Modeling AS/AD Shocks

Results ○○○○●○○○

Inflation Skewness (Scaled)

< 口 > < 同 >

Results

Conditional Contour Plots of Joint Real GDP Growth - Inflation Distribution

Numbers correspond to percentiles

Conditional Correlation between Level and Variance Shocks

conditional correlation between supply level shocks and supply variance shocks

うくで 19 / 20

Conclusions

- A novel method to identify AD and AS shocks with minimal theoretical assumptions using higher-order moments of macro data
- New non-Gaussian dynamic model for joint distribution of real GDP growth and inflation
- Relative importance of non-Gaussian features in macro data increasing over time due to decreasing Gaussian volatility

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A