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Disentangling aggregate demand (AD) and aggregate supply (AS)

shocks is a key question in macroeconomics:

Economic impact can be different (e.g., Blanchard and
Quah, 1989)

Policy responses often different

However, practically, the identification is complex with many
assumptions (e.g., Canova and Paustian, 2011; Furlanetto,
Ravazzolo, and Sarferaz, 2019)

This paper: a methodology with minimal theoretical assumptions
relying only on unconditional higher-order moments in GDP
growth and inflation data
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This paper: distinguishing between aggregate
demand (AD) and aggregate supply (AS)
shocks uncertainty
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Recent interest in non-Gaussian uncertainty (e.g.,
Adrian, Boyarchenko, and Giannone, 2019;
Fernandez-Villaverde and Guerron-Quintana, 2020)

This paper: flexible econometric framework for
multivariate distribution of macro data

Formally outperforms other non-Gaussian models

Time-varying closed-form second/higher-order moments

Time-varying level and uncertainty/higher order moment
shock correlation (Gorodnichenko and Ng, 2017; Carriero et
al., 2018; Alessandri and Mumtaz, 2019)
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Aggregate Supply and Demand Shocks

Consider GDP growth and inflation shocks:

gt+1 = Et [gt+1] + εgt+1

πt+1 = Et [πt+1] + επt+1

Model them as functions of AD (ud
t )/AS (us

t ) shocks
(Blanchard, 1989):

εgt+1 = σd
g︸︷︷︸

>0

ud
t+1 + σs

g︸︷︷︸
>0

us
t+1,

επt+1 = σd
π︸︷︷︸

>0

ud
t+1 − σs

π︸︷︷︸
>0

us
t+1,

Cov(ud
t+1, u

s
t+1) = 0,Var(ud

t+1) = Var(us
t+1) = 1.
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Identification

”Demand” and ”supply” shocks are not identified in a Gaussian
framework (3 unconditional moments: 2 variances+covariance,
but 4 σ coefficients to estimate)⇒ use unconditional
higher-order moments

For example, identification via matching co-skewness moments:

E [ugt (uπt )2] = σd
g (σd

π)2E [(udt )3] + σs
g (σs

π)2E [(ust )3],

E [(ugt )2uπt ] = (σd
g )2σd

πE [(udt )3]− (σs
g )2σs

πE [(ust )3].

For example, suppose E [(ust )3] ≈ 0 and E [(udt )3] < 0:

E [ugt (uπt )2] ≈ σd
g (σd

π)2 E [(udt )3]︸ ︷︷ ︸
<0

E [(ugt )2uπt ] ≈ (σd
g )2σd

π E [(udt )3]︸ ︷︷ ︸
<0

co-skewness moments admit identification of σd
π and σd

g

if E [ugt (uπt )2] < E [(ugt )2uπt ] ⇒ σd
π > σd
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Modeling demand and supply shocks

Demand and supply shocks modeled using Bad
Environment-Good Environment (BEGE) structure
(Bekaert and Engstrom, 2017): component models of
two 0-mean shocks

ud
t+1 = σd

pω
d
p,t+1 − σd

nω
d
n,t+1,

us
t+1 = σs

pω
s
p,t+1 − σs

nω
s
n,t+1,

}
ωp,t+1 - good environment shock
ωn,t+1- bad environment shock

Shocks follow demeaned gamma distributions:

ωd
p,t+1 ∼ Γ(pdt , 1)− pdt ,

ωd
n,t+1 ∼ Γ(ndt , 1)− ndt ,

ωs
p,t+1 ∼ Γ(pst , 1)− pst ,

ωs
n,t+1 ∼ Γ(nst , 1)− nst .

 Γ(x , y)−
gamma distribution with
shape parameter x and scale
parameter y
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Bad Environment-Good Environment
Probability Density Function
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Time-varying variances

AR(1) process for shape parameters of demeaned gamma
distributions:

pdt+1 = p̄d + ρdp(pdt − p̄d) + σd
ppω

d
p,t+1︸ ︷︷ ︸

level shock

+ σdd
pp νp,t+1︸ ︷︷ ︸

pure variance shock

Similar processes for ndt+1, pst+1, nst+1

pdt /ndt = good (positively skewed)/bad (negatively skewed)
demand variances

pst /nst = good (positively skewed)/bad (negatively skewed) supply
variances

Flexible time-varying correlation between level and variance
shocks: good/bad variance positively/negatively correlated with
level shocks
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Bad Environment-Good Environment
Structure Properties

Flexible: e.g., Gaussian and rare disaster
distributions are special cases

Closed-form expressions for second and
higher-order moments

Outperforms other non-Gaussian models (e.g.,
regime-switching models)
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Data and Estimation

US quarterly data 1968Q4-2019Q2

3 step estimation:

Shocks to output growth and inflation: real-time
data from Survey of Professional Forecasters

Demand and supply shocks: invert from output
growth and inflation shocks after estimating
”structural” loadings via GMM using higher-order
moments (3rd and 4th order moments are
jointly highly significant and GMM fits them
well)

Conditional volatility/higher-order moment
dynamics (pdt , n

d
t , p

s
t , n

s
t ): maximum likelihood
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Loadings of GDP Growth and Inflation
Shocks onto Supply and Demand Shocks

uπt ugt
ust -0.4829 1.1802

(0.0566) (0.1129)
udt 0.5141 0.6035

(0.0685) (0.1064)

standard errors in parentheses
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AS/AD Shocks

NBER recessions shaded
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AS/AD shock distributions

Bad environment/good environment model selection
based on Akaike information criterion

AS:

Good component: Gaussian; level and variance shocks are
independent

Bad component: gamma with occasional medium-sized
left-tail realizations; level and variance shocks are perfectly
correlated

AD:

Good component: Gaussian; level and variance shocks are
perfectly correlated

Bad component: rare-disaster type; level and variance
shocks are perfectly correlated
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AS/AD Variances
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Real GDP Growth Skewness (Scaled)

Consistent with Jensen et al. (2021)
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Inflation Skewness (Scaled)
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Conditional Contour Plots of Joint Real
GDP Growth - Inflation Distribution

Numbers correspond to percentiles
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Conditional Correlation between Level and
Variance Shocks
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Conclusions

A novel method to identify AD and AS shocks
with minimal theoretical assumptions using
higher-order moments of macro data

New non-Gaussian dynamic model for joint
distribution of real GDP growth and inflation

Relative importance of non-Gaussian features
in macro data increasing over time due to
decreasing Gaussian volatility
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