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Motivation

Estimating impulse response xt → yt+h via Local Projections
Jordà (2005)

yt+h = α(h)xt + β(h)′zt + u
(h)
t+h h = 0, 1, ...,H (1)

An underlying linearity assumption for every h
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Motivation

Implications: it cannot study dependence along..

1) state when shock hits

‘Is monetary policy still effective in a deep recession?’

2) size of shocks

‘Do financial shocks disrupt the economy more than
proportionally as the size of the shock increases?’

3) sign of shocks

‘Are the effects of positive uncertainty shocks the flipped
sign of the effects of negative uncertainty shocks?’
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Motivation

Nonlinear extensions usually assume functional forms

yt+h = F(gt)·
[
α1

(h)xt + β1
(h)′zt

]
+ (2)(

1− F(gt)
)
·
[
α2

(h)xt + β2
(h)′zt

]
+ u

(h)
t+h

with F(gt) ∈ [0, 1]
Auerbach & Gorodnichenko (2013), Ramey & Zubairy (2018)

Limitations

relies on functional form

estimation of parameters in F (.) very challenging

hard to study multiple nonlinearities jointly
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Contribution of the paper

We propose a non-parametric LP procedure: BART-LP

Bayesian Additive Regression Trees

1) take BART from machine learning literature
Chipman, George & McCulloch (2010), Hill, Linero & Murray

(2020),

2) adapt it to Local Projections

3) Monte Carlo simulations

4) application to financial shocks
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Contribution of the paper

Filling a gap in the literature

BART has been applied to Vector Autoregressive models
Huber & Rossini (2022)
Huber, Koop, Onorante, Pfarrhofer & Schreiner (2020)

Clark, Huber, Koop, Marcellino & Pfarrhofer (2021)

Has not been used yet in Local Projections
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Related literature

Bayesian Linear LPs
Miranda-Agrippino & Ricco (2021)

Nonlinear LPs
Ruisi (2019), Inoue, Rossi & Wang (2022)

VARs versus LPs
Kilian & Kim (2011), Alloza, Gonzalo & Sanz (2019), Breitung,
Brüggemann et al. (2019) Herbst & Johannsen (2021), and Bruns &
Lütkepohl (2022), Stock & Watson (2018) and Plagborg-Møller &
Wolf (2021), Lusompa (2021)

IRF approximations
Barnichon & Brownlees (2019)
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Plan of the talk

1 Introduce BART

2 Applying BART to LP

3 Application to financial shocks
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The idea of BART
Some unknown conditional expectation function

yt = E(yt|xt) + ϵt (3)

E(ϵt|xt) = 0 (4)

The parametric approach assumes a functional form

E(yt|xt) ≈ β′xt (5)

E(yt|xt) ≈ F (gt)δ
′
1xt + (1− F (gt))δ

′
2xt (6)

BART approximates it with a sum of J binary regression trees

E(yt|xt) ≈
J∑

i=1

fi(xt|Γ,µ) (7)

that build on splitting rules on the space of covariates
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BART, an introduction

Suppose you have data on yt and two explanatory variables
(x1t, x2t), want to compute prediction Ŷ for

x1 = 10 x2 = 1.3

The linear approach

use (yt, x1t, x2t) to estimate y = β0 + β1x1t + β2x1t + ϵt

compute Ŷ = β̂0 + β̂1 · 10 + β̂2 · 1.3

BART

use (yt, x1t, x2t) to estimate posterior distribution of the
tree structure and remaining parameters

simulate Ŷ using the trees
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Ŷx1=10, x2=1.3 = ?

Haroon Mumtaz and Michele Piffer



BART, an introduction
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BART, an introduction

Ŷx1=10, x2=1.3 = 2.22
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BART, an introduction

Ŷx1=10, x2=1.3 = − 1.12

Haroon Mumtaz and Michele Piffer



BART, an introduction

Ŷx1=10, x2=1.3 = 11.052
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BART, an introduction

BART can treat different parts of the parameter space of y,x
differently

A single tree generates

Ŷ = fi(x|Γ,µ) (8)

Sum of trees

E(yt|x) ≈
J∑

i=1

fi(x|Γ,µ) (9)
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BART, an introduction

A numerical illustration

yt = +1.7 · xt · I(xt < −5) +

−0.1 · xt · I(−5 ≤ xt < 5) + (10)

−1.1 · xt · I(xt ≥ 5) + ϵt

xt ∼ N(0, 1) (11)

ϵt ∼ N(0, 1) (12)
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Plan of the talk

1 Introduce BART

2 Applying BART to LP

3 Application to financial shocks
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Applying BART to LPs

Replace

yt+h = α(h)xt + β(h)′zt + u
(h)
t+h (13)

with

yt+h =

J∑
j=1

fh,j(xt, zt|Γj ,µj) + ϵ
(h)
t+h (14)
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Applying BART to LPs

Autocorrelation in ϵ
(h)
t+h, h ≥ 1

control for estimated residuals for h = 0, Lusompa (2021)

Identification

a preliminary SVAR for impulse vector, Jordà (2005)

controlled observables or instruments,
Barnichon & Brownlees (2019), Plagborg-Møller & Wolf (2021)

true shocks (in simulations)

Generalized impulse responses, Koop et al. (1996)

simulate from trees as difference in predictions

predictions depend on conditioning values
(sign, size, history matter)
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Application to financial shocks

Financial shocks and the real economy in the US

Barnichon, Matthes & Ziegenbein (2022) discuss a large
disagreement in the empirical effects of financial shocks

Large: narrative approach, Romer & Romer (2017)
(EBP → 1%, GDP -6%, persistent)
Small: linear SVAR, Gilchrist & Zakraǰsek (2012)
(EBP → 1%, GDP -2%, temporary)

Nonlinear model, find adverse shocks stronger effects than
favourable shocks. Confirmed by Forni et al. (2021)

We use BART-LP to revisit their result and extend to size
of shock
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Application to financial shocks

6 variables: growth of

industrial production
CPI inflation
unemployment rate
Excess bond premium by Gilchrist & Zakraǰsek (2012),
stock returns
federal funds rate

Sample size: 1973M1 - 2022M2 (can include Covid)

As in Gilchrist & Zakraǰsek (2012): financial shock affects
only fast moving variables contemporaneously (linear VAR)

Two nonlinearities, jointly

adverse versus favourable financial shocks
small (50 bps ≈ 1 std) versus large (100 bps ≈ 2 std) shocks
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Application to financial shocks
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Application to financial shocks
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Application to financial shocks
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Application to financial shocks
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Application to financial shocks
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Conclusions

Local projections are frequently used to estimate impulse
responses

We propose to use BART to estimate LPs non-parametrically

Large financial shocks generate asymmetric effects: stronger if
adverse shocks
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