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Abstract

When is transparency optimal for the principal in principal-agent relationships?

We consider the following setting. The principal has private information that a¤ects

the agent�s incentives to exert e¤ort. Higher e¤ort leads to higher material utility

for both parties but the agent bears the cost of e¤ort. The principal can share

her information with the agent and can commit to any information structure. We

obtain interpretable and easily veri�able su¢ cient conditions for the optimality

of full disclosure. With this, we show that full disclosure is optimal under some

modeling assumptions commonly used in applied principal-agent papers.

JEL classi�cation: D82, D83

Keywords: information design, Bayesian persuasion, transparency

1 Introduction

In many principal-agent relationships, the principal has private information about some

exogenous factor that in�uences the agent�s incentives to exert e¤ort. In this paper we

address a simple question: when is it ex-ante optimal for the principal to implement

the policy of full disclosure of such information? The answer is non-obvious, because

disclosing states that motivate the agent to exert more e¤ort entails discouraging the

agent in other states.
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Following the Bayesian persuasion literature pioneered by Rayo and Segal (2010) and

Kamenica and Gentzkow (2011), we consider a principal who has commitment power over

the information she reveals to the agent. Without setting any restrictions on possible per-

suasion strategies, we search for conditions that make full disclosure optimal. Di¤erently

from other complicated information design schemes, just disclosing the truth seems to be

a realistic goal in many scenarios � e.g., with transparency policies in organizations.

As the state space in our model can be a continuum, the concavi�cation approach

of Kamenica and Gentzkow (2011) cannot be applied. Despite that, we manage to �nd

a rather mild and easy to check condition that ensures the optimality of transparency.

Di¤erently from several recent papers (Dworczak and Kolotilin (2019), Dworczak and

Martini (2019), Gentzkow and Kamenica (2016), Kolotilin (2018), Kolotilin et al. (2021),

Arieli et al. (2020)), our condition speaks directly to the underlying incentives of the

parties, as opposed to the indirect utility function of the principal, and we do not assume

that the sender�s (principal�s) payo¤ is a function of the expected state (or any moments

of the posterior distribution).

To see why the e¤ect of transparency may be non-trivial, consider a simple example.

The agent generates an output which he and the principal split in a �xed proportion.

The output is increasing in the agent�s e¤ort, and the agent bears the cost of e¤ort.

The underlying state of nature determines the productivity of e¤ort, with a higher state

resulting in higher productivity. At �rst sight, the principal would always want to commit

to revealing the state to the agent, as both parties seem to bene�t from e¤ort more when

the state is higher. Here is a simple argument why it does not have to be the case.

Suppose the agent is su¢ ciently risk averse. Then, good news about the productivity

may actually depress e¤ort. This is because a higher productivity implies that the agent

reaches a higher income, hence a lower marginal utility, at lower levels of e¤ort. If

the principal is risk neutral, then disclosure discourages the agent precisely when the

principal bene�ts more from e¤ort (and incentivizes the agent when the principal gains

less from e¤ort). In such a case, transparency is unlikely to be optimal. Alternatively,

the agent may increase e¤ort under the good news and reduce it under the bad news, as

the principal wants, but the increase may be smaller than the decrease, to the point that

the overall e¤ect on the principal�s utility is negative.

We look for conditions on the incentives of the parties that guarantee optimality of
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full disclosure in the following general setting. Both the principal and the agent derive

some material utility from the agent�s e¤ort. Higher e¤ort yields higher material utility

for both parties, but the agent also su¤ers a cost of e¤ort. The underlying state of nature

determines the e¤ect of e¤ort on the utility of the principal and the agent. The principal

can commit to any mapping from the state space to messages for the agent. We are after

a condition under which any message that pools (or partially pools) more than one state,

can be �split�so as to improve the principal�s ex-ante payo¤.

To understand our condition, consider the simple case of a message that pools two ex-

ante equally likely states � we provide an example of this kind in the next section. The

principal contemplates splitting this message into two messages that reveal the state.

Then, if this makes any di¤erence, the agent will increase e¤ort under one state and

decrease it under the other state. Two forces determine whether the principal gains from

the split or not: the changes in the agent�s e¤ort and the changes in the principal�s

utility per unit of e¤ort. Intuitively, the variations of e¤ort are driven by the speed at

which the agent�s marginal utility of e¤ort changes compared to its marginal cost. For

normalization, let us call the cost of e¤ort simply �e¤ort�. Then we show that what

matters is the ratio between the derivative of the principal�s utility with respect to e¤ort

and the absolute value of the second derivative of the agent�s utility with respect to e¤ort.

This ratio, in fact, measures how much the utility of the principal increases/decreases as

the agent increases/reduces e¤ort, per unit of the agent�s marginal utility of e¤ort that

is lost/gained in the process. We show that the principal bene�ts from the split if the

ratio is larger under the e¤ort-increasing state than under the e¤ort-decreasing state, for

any pair of e¤ort levels between the old one and the two new ones.

Our main result generalizes this argument to all possible messages. Speci�cally, in

Section 3.1, we show that any message with a non-singleton support can be split so as to

improve the principal�s welfare if the ratio introduced above increases under any change

in the e¤ort and state that involves an increase in both the e¤ort and the agent�s marginal

utility of e¤ort. This condition, hence, ensures the optimality of full disclosure. Under

the assumptions of continuity of the state space and di¤erentiability of the derivatives of

the parties�utilities with respect to the state, we also provide an equivalent �derivative�

condition, which may be easier to check in some economic applications.

In addition to our su¢ cient condition for transparency, we also derive a su¢ cient
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condition for suboptimality of transparency. Although there remains a �gap�between

the two conditions (one is not a negation of the other), the latter is still helpful to establish

when transparency is de�nitely not optimal, as we show in an example.

Then we consider a special case in which the principal�s utility is a convex transfor-

mation of the agent�s material utility. This feature naturally arises in settings when the

e¤ort is exerted to generate some monetary output (pro�t), the agent is more risk averse

than the principal and receives a compensation that is not too convex (e.g., linear) in

the output. Under the additional assumption that the agent�s material utility is super-

modular in e¤ort and state, we provide a su¢ cient condition for the optimality of full

disclosure that involves only the agent�s preferences.

Finally, we discuss several examples demonstrating that our condition is easy to check,

it is not very strong, and is often satis�ed in economic applications. The examples also

shed light on the role of risk aversion in the optimality/suboptimality of transparency.

The �rst example follows the setting outlined in the fourth paragraph of the intro-

duction. In this example (Section 4.1), we assume that both parties exhibit CRRA and

look more closely at the e¤ects of the parties�risk aversion. Transparency turns out to

be optimal, when the agent is more risk averse than the principal (a typical textbook sit-

uation) but not too risk averse (with the coe¢ cient of relative risk aversion below one).

In this case, the preferences of the parties are su¢ ciently aligned. For both parties, state

and e¤ort remain complements. Disclosing the states raises the e¤ort in expectation, and

the principal bene�ts more from e¤ort in higher states. Instead, when the agent becomes

too risk averse (while the principal remains moderately risk averse), transparency ceases

to be optimal. As we have discussed in the beginning in this section, under high risk

aversion, good news about productivity depress e¤ort, that is, e¤ort and state become

substitutes for the agent while remaining complements for the principal.

Another interesting, though less realistic, case discussed in Section 4.1 is when the

agent is su¢ ciently risk averse, and the principal is at least as risk averse as the agent. In

that case, the average e¤ort falls but the principal nevertheless gains from transparency.

This happens because for the principal e¤ort and state are even more substitutes than

for the agent. Bad news about productivity encourages e¤ort, and the principal bene�ts

even more from e¤ort in lower states than the agent does.

In Section 4.2 we simplify preferences by assuming risk neutrality for both parties and
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focus instead on the properties of the production function that ensure the optimality of

transparency.

Finally, in Section 5 we consider a particular setting that allows deriving a necessary

and su¢ cient condition for transparency using Jensen�s inequality. We then provide

examples when our su¢ cient condition becomes necessary and su¢ cient, and when, on

the contrary, transparency can be optimal even when our condition is not satis�ed.

Two recent papers, Dworczak and Martini (2019) and Kolotilin (2018), have provided

conditions for the optimality of full disclosure in persuasion. Using a �duality approach�

and linear programming techniques, they provide a tractable solution method when the

indirect utility of the sender depends only on the expected state.1 As mentioned, dif-

ferently from us, they give conditions in terms of the sender�s indirect utility function,

abstracting away from the underlying economic problem.2 We focus instead on a (broad)

class of economic problems, but without any restriction on how the state a¤ects utilities.

More importantly, we directly look for conditions in terms of the utility functions of both

the principal and the agent, in order to gain economic intuition and policy implications.

In a framework similar to ours, under rather general assumptions on the payo¤s,

Kolotilin and Wolitzky (2020) provide a necessary and su¢ cient condition for the op-

timality of full disclosure. However, also their condition is expressed in terms of the

indirect sender�s utility function and has a very general form that does not provide a

tractable recipe for checking whether full disclosure is optimal for given utility functions

of the parties.

Using a concept analogous to the concept of �virtual value� in the mechanism de-

sign literature, Mensch (2021) o¤ers conditions for transparency jointly on the receiver�s

utility function and on a transformation of the sender�s utility function that takes into

account the incentive compatibility constraint of the receiver (�virtual utility�). His fo-

cus is on the importance of complementarities between states and actions, and whether

these complementarities �point in the same direction� for the sender and the receiver.

Our and Mensch�s papers can be viewed as complementary to each other. While Men-

sch�s condition for transparency (Theorem 5) is intuitive, it is rather abstract and not

1See also Dworczak and Kolotilin (2019), Dizdar and Kováµc (2020), Galperti and Perego (2018).
2On a completely di¤erent note, Jehiel (2004) shows that transparency is generically suboptimal.

Roughly speaking, this is because the conditions for transparency can only be expressed as conditions at
each and every point of the domain of the parameters space, so they are generically violated somewhere.
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straightforward to apply, as it requires a derivation of the �virtual utility�. Instead, our

conditions are directly on primitives of the model, that is, the shapes of the parties�utility

functions. We provide an additional discussion of the relationship between our results

and Mensch (2012) in Section 4.

The paper is organized as follows. Section 2 provides a simple example that aims

to deliver intuition for the main results. Section 3 derives su¢ cient conditions for the

optimality as well as suboptimality of full disclosure in a general framework. Section

4 discusses examples, the role of risk aversion and complementarity/substitutability be-

tween e¤ort and state. In Section 5, we compare our condition with a necessary and

su¢ cient condition in a simple example.

2 Example with two equally likely states

Consider the following principal-agent problem. The principal wants the agent to exert

e¤ort on a project. The cost of e¤ort for the agent is linear: c(e) = e. There is a binary

state of the world ! 2 f!1; !2g (!1 < !2), with common prior Pr(! = !1) = 1=2.

The principal�s utility from the project is g(!; e), increasing and di¤erentiable in e. The

agent�s material utility from the project is f(!; e), and his total utility is f(!; e)�e, where

f(!; e) is twice continuous and di¤erentiable, and strictly increasing and concave in e.

Assume also that f!e(!; e) > 0 for all ! and e, and, for each ! 2 f!1; !2g, fe(!; e) = 1

has a (�nite) solution e(!) > 0:

When does the policy of full disclosure of the state bene�t the principal, compared

to the policy of no disclosure? Although this question ignores other persuasion policies,

answering it will provide intuition for our general result in the next section. Let us have

a look at the �gure below, where f(!; e) denotes the average f(!; e).
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Figure 1.

Under pooling (no disclosure), the agent chooses e = e� so that

1

2
fe(!1; e

�) +
1

2
fe(!2; e

�) = 1: (1)

Under full disclosure, the choice of e¤ort, e�i , in state !i solves fe(!i; e
�
i ) = 1. Consider a

switch from pooling to full disclosure. The e¤ort rises from e� to e�2 in state !2 and falls

from e� to e�1 in state !1. So, given that the states are equally likely, if the increase in

the principal�s utility in the high state exceeds its decrease in the low state, the principal

bene�ts from transparency.

Now, since f(!; e) is strictly concave in e, fe(!; e) is monotonic in e. Therefore, instead

of looking at the change of e from e� to e�i in state !i, we can equivalently consider the

change of fe(!i; e) from fe(!i; e
�) to fe(!i; e�i ). Notice that fe(!1; e

�
1) = fe(!2; e

�
2) = 1.

Furthermore, from equation (1) it follows that fe(!1; e�) = 1 � a and fe(!2; e�) = 1 + a

for some constant a. Then, the increase in the principal�s utility in state !2 can be

represented as
1+aZ
1

� dg(!2; e)
dfe(!2; e)

dfe(!2; e);

and its fall in state !1 as
1Z

1�a

� dg(!1; e)
dfe(!1; e)

dfe(!1; e);
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Since the length of the interval of integration is the same in the two integrals, a su¢ cient

condition for the increase to exceed the fall is that

� dg(!2; e2)
dfe(!2; e2)

> � dg(!1; e1)
dfe(!1; e1)

for each e1 2 [e�1; e�); e2 2 [e�; e�2);

which can also be written as

� ge(!2; e2)
fee(!2; e2)

> � ge(!1; e1)
fee(!1; e1)

for each e1 2 [e�1; e�); e2 2 [e�; e�2)

(we show the equivalence of the two formulations in Section 3.1).

Intuitively, the gain from transparency is determined by two things. First, how large is

the increase in the agent�s e¤ort in the high state relative to its decrease in the low state,

once we move from pooling to transparency? This is determined by the speed at which

the agent�s marginal utility changes in the low and high states, when the agent re-adjusts

his e¤ort in response to learning the state. Hence, we have fee(!1; e1) for e1 2 [e�1; e�)

and fee(!2; e2) for e2 2 [e�; e�2) in the formula. Second, what also matters is the change in

the principal�s utility per unit of e¤ort in the each state. Hence, we have ge(!1; e1) and

ge(!2; e2):

The next section extends the logic of this example to an arbitrary message with a

non-singleton support in a more general model.

3 General model

There are a principal (she) and an agent (he). The agent takes a non-contractible action

a 2 R+, which generates a disutility e = e(a) for himself, with function e(�) being strictly

increasing. As there is one-to-one correspondence between a and e, we will work with e

and call it �e¤ort�(having in mind �disutility of e¤ort�).

There is a state of the world ! 2 
 = [0; 1] with common prior p 2 �(
). E¤ort and

state jointly determine the agent�s material utility f(!; e). For brevity, we will call f(!; e)

simply �agent�s utility�. His total utility is f(!; e) � e � we are assuming separability

in the two components.

We assume that f(!; e) is twice continuous and di¤erentiable, and strictly concave in

e. We also assume that, for each !, fe(!; e) = 1 has a (�nite) solution e(!) in the set of
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admissible values for e.

The principal�s utility is g(!; e), and we assume it to be di¤erentiable in e. Until

Section 4, we abstract from where f(!; e) and g(!; e) originate from.

Before learning the state, the principal can commit to an information structure,

whereby the agent receives some information about the state before choosing the e¤ort.

Formally, following the standard Bayesian persuasion framework, the principal commits

to a mapping from the set of states 
 to distributions over messages m 2 R that are

sent to the agent. The information structure chosen by the principal is common knowl-

edge. The goal of the principal is to select an information structure that maximizes her

expected utility.

After hearing message m, the agent solves

max
e
fE(f(!; e)jm)� eg

Due to our assumptions on f(!; e), the optimal e¤ort chosen by the agent is unique under

every posterior belief about the state, and it changes continuously in the posterior belief.

With this, the persuasion problem of the principal is well-de�ned and has a solution.

We are going to �nd a su¢ cient condition for the optimality of full disclosure. Com-

mitment to full disclosure is typically easier to achieve than to �garbling� information

structures; for instance, it may be achieved with transparency policies. Note also that

the state may just represent whatever information is available in possession of the prin-

cipal/organization, about a �more primitive�state that in�uences the output.

We call �full disclosure�the information structure where the agent learns the state.

We are going to prove optimality of full disclosure by showing that any alternative in-

formation structure is suboptimal: a �vague�message about the state can be improved

upon by being fractioned into smaller messages.

3.1 Su¢ cient conditions for full disclosure

Consider the following condition on f and g:

For all e1; e2; !1; !2,

8<: e1 < e2

fe(!1; e1) < fe(!2; e2)
) ge(!1; e1)

�fee(!1; e1)
<

ge(!2; e2)

�fee(!2; e2)
: (2)
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The ratio �ge(!1; e1)=fee(!1; e1) measures how much the utility of the principal increases,

as the agent increases e¤ort, per unit of agent�s marginal utility of e¤ort that is lost in

the process. To see this, let y = fe(!; e) and compute the derivative of g with respect to

changes of the agent�s marginal utility, holding ! �xed:

@g(!; f�1e (!; y))

@y
= ge(!; f

�1
e (!; y))

@f�1e (!; y)

@y
=
ge(!; f

�1
e (!; y))

fee(!; f�1e (!; y))
=
ge(!; e)

fee(!; e)
:

Condition (2) essentially requires that this measure of the principal�s return from the

agent�s e¤ort improves as we move towards a state that generates stronger incentives for

the agent. More precisely, the marginal increase of the principal�s utility induced by a

marginal decrease of the agent�s marginal utility (which entails an increase of e¤ort) must

be higher under the state-e¤ort pairs that entail higher e¤ort and yet higher marginal

utility of e¤ort for the agent. This guarantees that revealing �good news�and �bad news�

is better than pooling them: under the news that correspond to a higher marginal utility

of e¤ort for the agent, as he increases e¤ort to readjust his marginal utility, the utility

gain for the principal in the process exceeds the utility loss of the symmetric process

under the alternative news. So, condition (2) is su¢ cient for optimality of full disclosure.

Theorem 1 Under condition (2), full disclosure maximizes the principal�s expected util-

ity.

Proof of Theorem 1 We show that transparency is optimal for the principal by show-

ing that any messagem� that generates a posterior with support 
� is either equivalent to

revealing the states in the support, or suboptimal; then transparency is optimal because,

as already argued, an optimal solution exists.

For each ! 2 
 and x 2 R+, let f�1e (!; x) denote the e¤ort e such that fe(!; e) = x,

if any. Let ef(m; e) denote the agent�s expected material utility under message m and

e¤ort e, E(f(!; e)jm). Let e� denote the agent�s optimal e¤ort upon receiving m�. It is

obtained by solving the �rst-order condition efe(m�; e) = 1.

If it is not true that revealing all states in 
� induces e¤ort e� for each of the states,

then there exist Borel subsets 
�1;

�
2 of 


� such that p(
�1)p(

�
2) > 0 and

x1 := sup
!12
�1

fe(!1; e
�) < 1 < inf

!22
�2
f(!2; e

�) =: x2; (3)
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and additionally, for all � 2 [0; 1], (!1; !2) 2 
�1 � 
�2, and (!01; !02) 2 
�1 � 
�23

fe(!2; f
�1
e (!

0
2; 1 + � [x2 � 1]))� fe(!1; f�1e (!01; x1 + � [1� x1])) > 0: (4)

To see that such 
�1;

�
2 exist, construct them as follows. Start with 


�
k = f!�kg (k = 1; 2)

for some !�1; !
�
2 2 
� that satisfy (3). Then, (4) becomes

[1 + � (x2 � 1)]� [x1 + � (1� x1)] > 0:

This inequality always holds as the left-hand side is equal to 1 � x1 + �(x2 � x1) > 0.

Hence, (4) is preserved by continuity when 
�1;

�
2 are su¢ ciently small neighbourhoods

of !�1; !
�
2. Such neighbourhoods have positive prior probability because they have positive

posterior probability by de�nition of support.

Now we decompose m� into three messages: m1;m2 that induce posteriors with sup-

ports 
�1;

�
2, and a complementary message em that induces e¤ort e� like m�. That is,

Pr(m1jm�) + Pr(m2jm�) + Pr(emjm�) = 1; efe(em; e�) = 1; efe(m1; e
�) < 1; efe(m2; e

�) > 1.

Such messages can be constructed because starting from m� and taking away probability

from 
�1 and 

�
2 has opposite e¤ects on the marginal expected utility by (3).

4

To simplify notation, let us drop the conditioning notation and denote the above

conditional probabilities simply by Pr(m1), Pr(m2), Pr(em). Since m� induces e¤ort e�,

we must have

Pr(m1) � efe(m1; e
�) + Pr(m2) � efe(m2; e

�) + Pr(em) � efe(em; e�) = 1;
Since message em induces e¤ort e� as well, efe(em; e�) = 1, hence

Pr(m1) � efe(m1; e
�) + Pr(m2) � efe(m2; e

�)

Pr(m1) + Pr(m2)
= 1;

3f�1e (!2; 1 + � [x2 � 1]) is well-de�ned because, by the existence of an optimal e¤ort, by (3), and by
continuity of fe, fe(!2; e) takes all the values between 1 and 1 + � [x2 � 1]; likewise for f�1e (!1; x1 +
� [1� x1]).

4Notice that we assume that the three messages are drawn after that m� has been drawn. This is not
important; we could equally assume that the messages are independent of m� conditional on the state,
we would only need to make sure that Pr(m1j!) + Pr(m2j!) + Pr(emj!) = Pr(m�j!) for any !.
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which can be rewritten as

Pr(m1)
h
1� efe(m1; e

�)
i
= Pr(m2)

hefe(m2; e
�)� 1

i
: (5)

Call e�1; e
�
2 the agent�s optimal e¤orts under m1;m2, i.e, efe(m1; e

�
1) =

efe(m2; e
�
2) = 1.

Notice that e�1 < e
� < e�2, as efe(m1; e

�) < 1 < efe(m2; e
�) and f is strictly concave in e.

We show that the principal�s expected utility increases after the decomposition, that is

Pr(m1)eg(m1; e
�) + Pr(m2)eg(m2; e

�) + Pr(em)eg(em; e�)
< Pr(m1)eg(m1; e

�
1) + Pr(m2)eg(m2; e

�
2) + Pr(em)eg(em; e�):

Rewrite this as

Pr(m1) [eg(m1; e
�)� eg(m1; e

�
1)] < Pr(m2) [eg(m2; e

�
2)� eg(m2; e

�)] ; (6)

and then as

Pr(m1)

Z e�

e�1

ege(m1; e)de < Pr(m2)

Z e�2

e�
ege(m2; e)de:

For each k = 1; 2, let xk = efe(mk; e), so that dxk = efee(mk; e)de and e = ef�1e (mk; xk),5

and operate a change of variable (noticing that efe(m1; e
�
1) =

efe(m2; e
�
2) = 1):

�Pr(m1)

Z 1

efe(m1;e�)

ege(m1; ef�1e (m1; x1)) �
1efee �m1; ef�1e (m1; x1)

�dx1 (7)

< �Pr(m2)

Z efe(m2;e�)

1

ege(m2; ef�1e (m2; x2)) �
1efee �m2; ef�1e (m2; x2)

�dx2:
Letting x1 = efe(m1; e

�) + �
h
1� efe(m1; e

�)
i
and x2 = 1 + �

h efe(m2; e
�)� 1

i
, inequality

(7) can be rewritten as

Z 1

0

ege(m1; ef�1e (m1; x1))

� efee �m1; ef�1e (m1; x1)
� Pr(m1)

h
1� efe(m1; e

�)
i
d�

<

Z 1

0

ege(m2; ef�1e (m2; x2))

� efee �m2; ef�1e (m2; x2)
� Pr(m2)

h efe(m2; e
�)� 1

i
d�:

5 ef�1e (mk; xk) is de�ned as the value of e such that efe(mk; e) = xk.
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Thus, by (5), a su¢ cient condition for (7) to hold is that, for each � 2 [0; 1],

ege(m1; ef�1e (m1; x1))

� efee �m1; ef�1e (m1; x1)
� < ege(m2; ef�1e (m2; x2))

� efee �m2; ef�1e (m2; x2)
� : (8)

Call e1 = ef�1e (m1; x1) and e2 = ef�1e (m2; x2). Note that, by the de�nition of x1 and x2

and the fact that the supports of m1 and m2 are 
�1 and 

�
2, we have efe(m1; e

�) � x1 andefe(m2; e
�) � x2. Therefore x1 � x1 + � [1� x1] and x2 � 1 + � [x2 � 1], which imply

e1 � ef�1e (m1; x1 + � [1� x1]); (9)

e2 � ef�1e (m2; 1 + � [x2 � 1]): (10)

Inequality (8) can be rewritten as

efee (m2; e2)efee (m1; e1)
<
ege(m2; e2)ege(m1; e1)

: (11)

For each !1 2 
�1 and !2 2 
�2, we have

fe(!1; e1) � fe(!1; ef�1e (m1; x1 + � [1� x1])) <

fe(!2; ef�1e (m2; 1 + � [x2 � 1])) � fe(!2; e2);

where the �rst and third inequalities are by (9) and (10), and the second inequality is by

(4). Notice also that e1 < e2, as even when x1 takes the minimum value, efe(m1; e
�), and x2

takes the maximum value, efe(m2; e
�), e1 = ef�1e (m1; efe(m1; e

�)) = ef�1e (m2; efe(m2; e
�)) =

e2. However, it is impossible that x1 = efe(m1; e
�) and x2 = efe(m2; e

�) at the same time.

Hence, if (2) is satis�ed, then

ge(!1; e1)

�fee(!1; e1)
<

ge(!2; e2)

�fee(!2; e2)
;

or
fee(!2; e2)

fee(!1; e1)
<
ge(!2; e2)

ge(!1; e1)
:

Since this is true for all !1 2 
�1 and !2 2 
�2, (11) holds. �

Condition (2) can be expressed in terms of just derivatives of f and g. To see this,
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notice that it is equivalent to stating that, at each (!; e), �ge(!; e)=fee(!; e) is increas-

ing in all directions in which both e and fe(!; e) increase. So, by applying directional

derivatives, one can show the lemma below. Namely, consider the following conditions:

For each (!; e) s.t. fe! > 0,

8<: fee!ge � ge!fee
ge(feeefe! � fee!fee) � fee(geefe! � ge!fee)

;

with at least one inequality being strict

(12)

and

For each (!; e) s.t. fe! < 0,

8<: fee!ge � ge!fee
ge(feeefe! � fee!fee) � fee(geefe! � ge!fee)

;

with at least one inequality being strict

(13)

Lemma 1 Condition (2) is equivalent to (12) and (13):

Proof. See the Appendix.

Notice that (12) and (13) do not cover the case fe! = 0. This is because, when

fe! = 0, there is simply no direction in which both e and fe increase.

3.2 Su¢ cient condition for suboptimality of full disclosure

The previous subsection delivered a su¢ cient condition for the optimality of transparency.

It turns out that we can apply almost the same scheme of reasoning as above to derive

a su¢ cient condition for suboptimality of transparency. The di¤erence is that instead of

the existence of a welfare-improving split for any message with a non-sigleton support,

the suboptimality of transparency requires the existence of at least one pair of states that

can be pooled (or partially pooled) so as to improve the principal�s welfare.

Namely, �x a pair of states !1, !2 and consider the following condition

For all e1; e2;

8<: e1 < e2

fe(!1; e1) < fe(!2; e2)
) ge(!1; e1)

�fee(!1; e1)
>

ge(!2; e2)

�fee(!2; e2)
(14)

This condition resembles (2) except that it is formulated for given !1 and !2 and the sign

of the inequality between the ratios �ips.
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Theorem 2 Suppose there exist e1; e2; !1; !2 such that e1 < e2 and fe(!1; e1) <

fe(!2; e2). Then, if there exists a pair of states !1, !2, such that (14) holds, full dis-

closure is suboptimal.

Proof. See the Appendix.

Notice that the condition of Theorem 2 is not the negation of the condition of Theorem

1. That is, Theorem 2 does not imply that Theorem 1 delivers a necessary and su¢ cient

condition for the optimality of transparency. There may be a pair of states under which

the relation between the ratios does not keep the same sign for all e1; e2 such that e1 < e2

and fe(!1; e1) < fe(!2; e2). Also, of course, it may be the case that for no pair of states

there exist e1 and e2 such that e1 < e2 and fe(!1; e1) < fe(!2; e2). The simplest example

of such a situation is when fe(!; e) does not depend on !, as the concavity of f with

respect to e implies that fe(!; e) is decreasing in e.

To understand Theorem 2, one can recall the example of Section 2. There, a separation

of !1 and !2 was optimal if

� ge(!1; e1)
fee(!1; e1)

< � ge(!2; e2)
fee(!2; e2)

for each e1 2 [e�1; e�); e2 2 [e�; e�2)

Clearly, a pooling of !1 and !2 would be optimal if the relation between the ratios were

just �ipped

� ge(!1; e1)
fee(!1; e1)

> � ge(!2; e2)
fee(!2; e2)

for each e1 2 [e�1; e�); e2 2 [e�; e�2)

For each e1 2 [e�1; e�); e2 2 [e�; e�2), e1 < e2, and also fe(!1; e1) < fe(!2; e2) (as fe(!1; e�1) =

fe(!2; e
�
2) = 1). Hence, if (14) holds, pooling !1 and !2 is optimal.

3.3 Special case

Assume the principal�s utility is an increasing and weakly convex transformation of the

agent�s: g(!; e) = h(f(!; e)), where h is a weakly convex function. That means that

the agent�s utility is weakly concave in that of the principal. Such a feature naturally

arises in settings when the e¤ort is exerted to generate some monetary output (pro�t),

the agent is more risk averse than the principal and receives a compensation that is not

too convex (e.g., linear). Assume also that fe! > 0 and f(!; 0) is weakly increasing in !:
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that is, e¤ort and state are complements for the agent and f(!; e) is (weakly) increasing

in ! for any given e.

Condition
ge(!1; e1)

�fee(!1; e1)
<

ge(!2; e2)

�fee(!2; e2)
(15)

from (2) can be written as

h0(f(!1; e1)) � fe(!1; e1)
�fee(!1; e1)

<
h0(f(!2; e2)) � fe(!2; e2)

�fee(!2; e2)

Due to the assumptions of this section, e1 < e2 and fe(!1; e1) < fe(!2; e2) together imply

f(!1; e1) < f(!2; e2). Consequently, h0(f(!1; e1)) � h0(f(!2; e2)), and

fe(!1; e1)

�fee(!1; e1)
<

fe(!2; e2)

�fee(!2; e2)
(16)

implies (15). Hence, we can formulate the following su¢ cient condition for the optimality

of transparency

For all e1; e2; !1; !2,

8<: e1 < e2

fe(!1; e1) < fe(!2; e2)
) fe(!1; e1)

�fee(!1; e1)
<

fe(!2; e2)

�fee(!2; e2)
; (17)

and state the following result:

Theorem 3 Suppose the principal�s utility is a weakly convex transformation of the

agent�s material utility, the agent�s utility is (weakly) increasing in ! for a given e, and e

and ! are (weak) complements for the agent. Then, under condition (17), full disclosure

maximizes the principal�s expected utility.

Under the assumptions of this section (summarized in the theorem), (16) is stronger

than (15). Hence, our new condition is stronger than (2). Its advantage is that one does

not need to know how exactly the principal�s utility looks like. It is su¢ cient to know

that it is a convex transformation of the agent�s utility, that e¤ort and state are (weak)

complements for the agent, and that f(!; e) is (weakly) increasing in ! for any given e.

Condition (17) can also be expressed through the equivalent �derivative conditions�:

Lemma 2 Under the assumption that fe! > 0, condition (17) is equivalent to the fol-
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lowing condition:

For each (!; e),

8<: fee!fe � fe!fee
feeefe! � feefee!

; (18)

where at least one of the inequalities has to be strict.

Proof. See the Appendix.

4 Discussion and Examples

Mensch (2021) points at the role of complementarities between state and action. He

argues that it is important that complementarities for the sender and the receiver �point

in the same direction�for transparency to be optimal.6 Indirectly, the interaction between

e¤ort and state plays a role in our condition as well, because it a¤ects whether ge(!; e)

comoves with fe(!; e) when both e and fe(!; e) increase.

Speci�cally, when e¤ort and state are complementary for the agent, higher fe(!; e)

together with higher e imply higher !, meaning that !2 > !1 in (2). Then, if e¤ort

and state are complementary for the principal as well, higher ! pushes ge(!; e) upward

for given e, thereby relaxing (2). In contrast, if e¤ort and state are substitutes for the

principal, higher ! pushes ge(!; e) downward for given e, thereby tightening (2).7 By

similar logic, if e¤ort and state are substitutes for the agent, (2) is more (less) likely to

be satis�ed when they are substitutes (complements) for the principal.

Examples below are aimed to shed more light on the role of the interaction between

e¤ort and state as well as on the e¤ects of the agent�s and principal�s risk-aversion. The

examples will also help us to grasp whether we shall expect (2) to be satis�ed in typical

economic applications.

In all examples of this section we consider the following classical setting: An agent

produces an output which he splits with a principal. Namely, there is output y(!; e), the

agent�s and the principal�s utilities of money are (weakly) concave functions u(�) and v(�)

respectively, the agent receives wage w(y), and the principal receives y � w(y). For the
6Instead of �complements�versus �substitutes�, the author speaks about �direction of complemen-

tarity�. Essentially, complemetarities pointing in �di¤erent directions� in Mensch�s terminology means
that action and state are complements for one party and substitutes for the other.

7To avoid confusion, complemetarity for both parties does not guarantee the optimality of trans-
parency. In a speci�c example of subsection 5.2, though state and e¤ort are complements for both
parties, condition (23) must be satis�ed for transparency to be optimal.
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sake of simplicity, we assume that the wage is linear, that is, the agent receives a �xed

share � of the output. Whereas we take the compensation scheme for the agent as given,

the conclusions about the optimality of transparency will not depend on �, as we will

see. However, allowing for a non-linear wage schedule and solving for the optimal wage

schedule and disclosure policy jointly could be an interesting avenue for future research.

4.1 E¤ects of risk aversion in a simple setting

Consider the following setting:

y(!; e) = !
p
e; w(y) = �y

u(x) =
x1�

1�  ; v(x) =
x1��

1� �

That is, both the agent and the principal exhibit CRRA with coe¢ cients  and �

respectively. We can compute:

f(!; e) =
1

1�  (�!)
1�e

1
2
(1�); fe(!; e) =

1

2
(�!)1�e�

1
2
� 1
2
; fee(!; e) = �(1 + )

1

4
(�!)1�e�

3
2
� 1
2


g(!; e) =
1

1� �((1� �)!)
1��e

1
2
(1��); ge(!; e) =

1

2
((1� �)!)1��e� 1

2
� 1
2
�

With some algebra, one can then derive

ge(!; e)

�fee(!; e)
= const � (fe(!; e))

��
1� � e

1��
1� ;

where const is a positive constant.

Consider �rst the case when  < 1. Notice, �rst of all, that there exists a direction in

which both fe and e go up: For any increase in e, ! can be increased so that fe rises as

well.

If � < , then the ratio is increasing in both fe and e. Hence, (2) holds, and trans-

parency is optimal.

If � 2 (; 1), then the ratio is decreasing in fe and increasing in e. Neither the su¢ cient

condition for transparency nor the su¢ cient condition for suboptimality of transparency

is satis�ed. Hence, our analysis is inconclusive in this case.

If � > 1, then the ratio is decreasing in both fe and e. According to Theorem 2,
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transparency is thus suboptimal.

Consider now the case when  > 1. Here again there exists a direction in which both

fe and e go up (now it necessitates a su¢ cient decrease in !).

If � > , then the ratio is increasing in both fe and e. Hence, (2) holds, and trans-

parency is optimal.

If � 2 (1; ), then the ratio is decreasing in fe and increasing in e. Neither the su¢ cient

condition for transparency nor the su¢ cient condition for suboptimality of transparency

is satis�ed. Hence, our analysis is inconclusive in this case.

If � < 1, then the ratio is decreasing in both fe and e. According to Theorem 2,

transparency is thus suboptimal.

We can notice that transparency fails to be optimal when � and  are on the opposite

sides from 1. This is related to the fact that, in this case, state end e¤ort are comple-

ments for one party and substitutes for the other, which can be seen by examining the

expressions for fe(!; e) and ge(!; e). In contrast, when � and  are both smaller or both

greater than 1, the direction of interaction between state and e¤ort is the same for both

parties, and, thus, transparency gets a chance.

For example, consider a typical textbook situation with a risk neutral principal (� = 0)

and a risk averse agent. If the agent is not too risk averse ( < 1), transparency is optimal.

Since state and e¤ort are complements for both parties, the principal bene�ts more from

e¤ort exactly when the agent has higher incentives to exert e¤ort.

Instead, when the agent becomes too risk averse ( > 1), while the principal remains

risk neutral, state and e¤ort turn substitutes for the agent. As a result, good news about

productivity depress e¤ort, while the principal still bene�ts more from e¤ort in higher

states. As a result, transparency ceases to be optimal.

When the principal is highly risk averse (� > 1) the story is reversed: now insu¢ cient

risk aversion of the agent ( < 1) becomes detrimental to the optimality of transparency.

This is because now the principal bene�ts more from e¤ort under lower states, while for

the agent state and e¤ort are complements. One needs to make the agent su¢ ciently risk

averse ( > 1) to align the interaction of e¤ort and state between the two parties, so that

transparency can be optimal.

What is interesting about the case of a highly risk averse principal is that transparency
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can be optimal despite lowering the expected e¤ort and can be harmful despite raising

the expected e¤ort. Indeed, one can easily derive that disclosure of states in the support

of any given message increases the expected e¤ort under  < 1 and lowers it under  > 1.

This observation demonstrates that an increase (decrease) in the average e¤ort due to

disclosure is not su¢ cient to make transparency optimal (suboptimal), as the direction

and strength of the interaction between state and e¤ort in the principal�s payo¤matters

too.

4.2 Risk neutral agent and principal, �multiplicatively-additively�

separable production function

In the previous example we assumed a simple production function and played with risk

aversion of the parties. Let us now simplify the preferences of both parties by assuming

that their material utilities are linear in output and focus instead on the properties of

the production function. Linearity in output for both parties would arise, for example,

in a setting where both parties are risk neutral and the wage is linear in output. Risk

neutrality is often assumed in applications, so it is interesting too see what it takes to

make transparency optimal in such a simple framework.

The material utilities of the agent and the principal under these assumptions are (up

to a¢ ne transformations) �y and (1� �)y, respectively. Then, (2) becomes simply

For all e1; e2; !1; !2,

8<: e1 < e2

ye(!1; e1) < ye(!2; e2)
) ye(!1; e1)

�yee(!1; e1)
<

ye(!2; e2)

�yee(!2; e2)
: (19)

Consider output functions of the following form:

y(!; e) = �(!)'(e) + �(!) + �(e); (20)

with �(�) > 0; �0(�) > 0; '(�) > 0; '0(�) > 0; '00(�) < 0; �0(�) � 0; �00(�) � 0. This

output function can be called �multiplicatively-additively�separable in state and e¤ort;

we will call it just �separable�, for simplicity. Special cases of this form (such as !'(e)

employed in the previous subsection) are commonly used in the literature.

Notice that (19) is the same as (17) but with y instead of f . Furthermore, due to

our assumption on �0(�) and '0(�), state and e¤ort are complements. Thus, we can apply
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Lemma 2 to argue that (19) is equivalent to (18) with y instead of f . Then, given (20),

one can easily derive that the corresponding derivative conditions become:8<: '00(e)�0(e) � '0(e)�00(e)

�(!) ['000(e)'0(e)� ('00(e))2] � �00(e)'00(e)� �000(e)'0(e)
; (21)

where at least one inequality has to be strict.

Notice �rst that �(!) does not enter the conditions in any way. This is intuitive: As

�(!) has no e¤ect on e¤ort, it is irrelevant for the disclosure policy.

Let us now examine some commonly used functional forms. To begin with, assume

that �(�) is a constant. Then, the �rst condition holds as equality, and the second one

becomes '000(e)'0(e) � ('00(e))2. Then, if '(�) is a concave power function, '(e) = aes

with a > 0; s 2 (0; 1), it is straightforward to check that the second condition is satis�ed.

Assume now both '(�) and �(�) are concave power functions: '(e) = aes; �(e) =

bet; with a > 0; b > 0; s 2 (0; 1); t 2 (0; 1). It is straightforward to derive that the

�rst condition boils down to s � t, and the second one in (21) always holds as a strict

inequality whenever s � t. Thus, s � t becomes a su¢ cient condition for the optimality

of transparency.

As another example, let us assume that '(e) = s � ln e and �(e) = t � ln e. Then the �rst

inequality holds as equality, and it can be easily derived that the second one is always

satis�ed as a strict inequality.

5 Necessary and su¢ cient conditions under a sepa-

rable output and linear utilities

In the previous sections we provided su¢ cient conditions for the optimality of trans-

parency. Can we hope that they are also necessary? In this section, we give examples

when they are and when they are not. We stick to the speci�c setting of subsection 4.2.

Hence, (21), with at least one inequality being strict, is a su¢ cient condition for the

optimality of transparency.

It turns out that, in this setting, the principal�s utility turn out to depend only on

the expected �(!), and, hence, its convexity in � becomes the necessary and su¢ cient

condition for the optimality of transparency (likewise, its concavity will be necessary and
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su¢ cient for the optimality of complete pooling).8

5.1 Jensen�s inequality application

Consider a decomposition of message m� into m1 and m2 (i.e., Pr(m1jm�)+Pr(m2jm�) =

1). Let

�� : = E(�(!)jm�); �1 := E(�(!)jm1); �2 := E(�(!)jm2);

�� : = E(�(!)jm�); �1 := E(�(!)jm1); �2 := E(�(!)jm2):

Let A be the set of all values of �(!) as ! runs from 0 to 1.

The choice of e¤ort will depend only on the expected �(!), given a message. Namely,

for given m, e�(�) solves
@E(�y(!; e)jm)

@e
= 1;

or

�'0(e�) + �0(e�) = 1=�, where � 2 f��; �1; �2g:

Then, under the separation of m� into m1 and m2, the principal�s payo¤, divided by

(1� �), conditionally on m� is

Pr(m1jm�) [�1'(e
�(�1)) + �1 + �(e

�(�1))]

+Pr(m2jm�) [�2'(e
�(�2)) + �2 + �(e

�(�2))]

� �� + Pr(m1jm�) [�1'(e
�(�1)) + �(e

�(�1))]

+Pr(m2jm�) [�2'(e
�(�2)) + �(e

�(�2))]

Under pooling, it is

Pr(m1jm�) [�1'(e
�(��)) + �1 + �(e

�(��))]

+Pr(m2jm�) [�1'(e
�(��)) + �2 + �(e

�(��))]

� �� + ��'(e�(��)) + �(e�(��))

Hence, given that �� = Pr(m1jm�)�1 + Pr(m2jm�)�2, the comparison of the two

8This result is a simple extension of the results derived in Dworczak and Martini (2019) obtained for
a setting when the sender�s utility depends only on the expected state.
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payo¤s boils down to checking if (�) � �'(e(�)) + �(e(�)) is convex or concave, where

e(�) solves �'0(e) + �0(e) = 1=�, and applying Jensen�s inequality. Namely, we can state

the following lemma.

Lemma 3 When the output has form (20) and the principal�s and the agent�s payo¤s

are linear in the output, full disclosure is optimal for the principal if and only if function

(�) � �'(e(�)) + �(e(�)), where e(�) solves �'0(e) + �0(e) = 1=�, is convex for all

� 2 A.

Proof. The lemma immediately follows from Jensen�s inequality: If the payo¤ is convex

everywhere, any split of any message with a non-singleton support is bene�cial. If it is

concave somewhere, full transparency cannot be optimal, because pooling messages in

the concavity region improves the expected payo¤.

Notice that the lemma can obviously be extended to claiming that complete pooling

is optimal if and only if (�) is concave. Notice also that the condition of Lemma 3 only

depends on the functions of e¤ort, and not of the state (i.e., on '(�) and �(�), but not

on �(�) or �(�)). At the same time, the second inequality in the su¢ cient condition (21)

contains �(!). This hints that the (21) is generally only a su¢ cient condition but not

necessary. The following example provides more detail on this matter.

5.2 The case when the separate term depending on e¤ort is

linear

For convenience, let t := 1=�. Using the expression for (�) and the relationship �'0(e)+

�0(e) = t, we can derive

0(�) = '(e) + �'0(e)e0(�) + �0(e)e0(�) = '(e) + te0(�)

= '(e)� t '0(e)

�'00(e) + �00(e)

Suppose �(�) is linear, with �0(�) = s. Then �00(e) in the above expression disappears,

and, using �'0(e) + �0(e) = t, we can rewrite

0(�) = '(e)� t '0(e)
t��0(e)
'0(e) '

00(e)
= '(e)� t ('0(e))2

(t� s)'00(e)
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Hence,

00(�) =

�
'0(e)� t

t� s
2'0(e)('00(e))2 � '000(e)('0(e))2

('00(e))2

�
e0(�)

Since e0(�) > 0 the sign of 00(�) is determined by the expression in brackets. Straight-

forward algebra yields that this expression is positive if and only if

t'000(e)'0(e) > (t+ s)('00(e))2 (22)

When �(e) is a constant, the condition becomes:9

'000(e)'0(e) > ('00(e))2 (23)

Due to Lemma 3, condition (22) is necessary and su¢ cient for full transparency to be

optimal.

Now, the su¢ cient condition (21) in the case of linear �(�) writes:8<: '00(e)s � 0

'000(e)'0(e) � ('00(e))2
; (24)

where at least one of the inequalities has to be strict.

For s > 0, (24) is so strong that it never holds, as the �rst condition is never satis�ed.

For s < 0, the �rst condition in (24) always holds, but the second one is obviously stronger

than (22). For s = 0, the �rst condition holds as an equality, hence the second condition

must hold as a strict inequality, which coincides with (23). Hence, for s = 0 (that is,

when �(�) is a constant), our su¢ cient condition is also necessary.

6 Conclusion

In this paper we have addressed the following question: When is commitment to a full

disclosure of payo¤-relevant information to the agent bene�ts the principal? In a rather

general setting, we have obtained an interpretable and easily veri�able su¢ cient condition

for the optimality of transparency. We have also provided a su¢ cient condition under

9In applications, people sometimes assume a linear output but a convex cost of e¤ort. Obviously,
there exists a tansformation a := z(e) such that �(a) � '(e) is a linear function of a and k(a) � e is a
convex function of a. Then the condition is equivalent to k000(a)k0(a) < 2(k00(a))2:
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which transparency is suboptimal. There are several avenues for further research. One

interesting question is: When is complete non-transparency optimal? Another issue is the

interaction between explicit compensation schemes for the agent and disclosure policy,

and joint determination of the optimal compensation and disclosure.

7 Appendix

Proof of Lemma 1. Let h(!; e) :=
ge(!; e)

�fee(!; e)
. Condition (2) is equivalent to the

statement that h(!; e) increases in all directions in which e and fe(!; e) jointly increase.

So, let us de�ne a direction through a function !(e) and take the full derivative of h(!; e)

wrt e:

dh

de
=

�dge
de
fee +

dfee
de
ge

(fee)2
> 0

, dfee
de
ge �

dge
de
fee > 0

Taking into account that

dge
de

= gee + ge!
d!

de
dfee
de

= feee + fee!
d!

de

the inequality becomes

feeege + fee!ge
d!

de
�
�
geefee + ge!fee

d!

de

�
� feeege � geefee + (fee!ge � ge!fee)

d!

de
> 0 (25)

We need that it holds for all !(e) such that
dfe
de

> 0 (i.e., all directions in which fe

increases as well). As
dfe
de
= fee + fe!

d!

de
, we have that

dfe
de
> 0 is equivalent to

8><>:
d!

de
> � fee

fe!
if fe! > 0

d!

de
< � fee

fe!
if fe! < 0
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Consider �rst the case when fe! > 0. Then, the necessary and su¢ cient conditions for

(25) to hold for all !(e) such that
dfe
de
> 0, given that

d!

de
can take any value above � fee

fe!
,

are the following: 8><>:
fee!ge � ge!fee � 0

feeege � geefee � (fee!ge � ge!fee)
fee
fe!

� 0
;

which becomes 8<: fee!ge � ge!fee
ge(feeefe! � fee!fee) � fee(geefe! � ge!fee)

; (26)

where at least one of the inequalities has to be strict.

Consider now the case when fe! < 0. Then, following the same steps we get8<: fee!ge � ge!fee
ge(feeefe! � fee!fee) � fee(geefe! � ge!fee)

;

where at least one of the inequalities has to be strict.

Proof of Lemma 2. To prove the lemma we just need to replace g with f in the proof

of Lemma 1 and consider the case when fe! > 0. That is, the su¢ cient condition is (26)

with f instead of g: 8<: fee!fe � fe!fee
feeefe! � feefee!

;

where at least one of the inequalities has to be strict.

Proof of Theorem 2. To prove the theorem we borrow the construction and notation

we used in the proof of Theorem 1 with a few simpli�cations and the �opposite�ultimate

goal: deriving a condition when pooling two states bene�ts the principal.

Consider two states, !1 and !2, such that they generate di¤erent e¤ort levels, if

revealed. Consider pooling of !1 and !2 into one messagem�. Denote its support f!1; !2g

by 
�. Let e� denote the agent�s optimal e¤ort upon receivingm�. Clearly fe(!i; e�) must

be above 1 in one state and below 1 in the other one, so WLOG let fe(!1; e�) < 1.

Sets 
�1 and 

�
2 from the proof of Theorem 1 are simply !1 and !2 now. Respectively,
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formula (3) simpli�es to

x1 := fe(!1; e
�) < 1 < f(!2; e

�) =: x2

Now, with !1 and !2 replacing m1 and m2 and dropping message em (we do not have

it now), we obtain the counterpart of (5):

Pr(!1) [1� fe(!1; e�)] = Pr(!2) [fe(!2; e�)� 1] ;

where Pr(!i) denotes Pr(!ij
�), for simplicity. Then, calling e�1; e�2 the agent�s optimal

e¤orts under !1; !2, pooling improves the principal�s welfare whenever

Pr(!1)g(!1; e
�) + Pr(!2)g(!2; e

�) > Pr(!1)g(!1; e
�
1) + Pr(!2)g(!2; e

�
2);

or

Pr(!1) [g(!1; e
�)� g(!1; e�1)] > Pr(!2) [g(!2; e�2)� g(!2; e�)] ;

which is a counterpart of (6) but with the opposite sign.

Now, repeating the same steps as in the proof of Theorem 1 with !1 and !2 rather

than m1 and m2 and with tildes removed we obtain the counterpart of (11) but with the

opposite sign:
ge(!1; e1)

�fee(!1; e1)
>

ge(!2; e2)

�fee(!2; e2)
(27)

Obviously the relationships e1 < e2 and fe(!1; e1) < fe(!2; e2) hold, as they are based on

the properties of 
�; 
�1; 

�
2, which remain the same as in the proof of Theorem 1.

Hence, if there exist !1, !2 such that e1 < e2 and fe(!1; e1) < fe(!2; e2) imply (27),

transparency cannot be optimal.
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