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Abstract

Anthropogenic climate change is subject to a multitude of highly uncertain
feedback processes making the long-run impact of current emissions also
highly uncertain. At present, we cannot reliably quantify the likelihood of
differing global warming scenarios. Decision theory distinguishes between
known, quantifiable risks and situations of ambiguity or deep uncertainty.
A fully rational decision maker can respond differently to ambiguity and to
risk, and real-world decision makers frequently do. We show how aversion
to ambiguity affects optimal climate policy in an integrated assessment of
climate change. We derive an analytic social cost of carbon formula for an
ambiguity averse decision maker in a generic integrated assessment model.
We also quantify the impact of recursive smooth ambiguity aversion for a
stochastic dynamic programming implementation of DICE. Previous and
paralleling approaches suggest substantial ambiguity premia on the optimal
carbon tax. Our results show that the ambiguity premium is very small
and optimal policy deriving from the standard Bayesian model is robust to
ambiguity concerns under moderately large ambiguity aversion if climate
policy is endogenous and policy maker’s have rational foresight.
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1 Introduction

Carbon dioxide emissions drive our current economy and harm our future cli-

mate and well-being. The immediate benefits of our emissions are usually known

(and priced). In contrast, future damages rely on a limited number of estimates,

subjective guesstimates, and incomplete modeling. Integrating uncertainty into

evaluations of climate change has been a major recent advancement. Unfortu-

nately, the underlying probability distributions are themselves unknown or highly

uncertain. A slowly growing literature takes “the next step” and incorporates am-

biguity or Knightian uncertainty into climate change evaluation; they incorporate

the lack of well quantified objective probabilities. These papers commonly find

major ambiguity premia for the price of carbon, increasing the optimal carbon

tax beyond the risk premium. The present paper argues that we have to carefully

distinguish between ambiguity and ambiguity aversion. Agreeing with earlier pa-

pers, we have little doubt regarding the ubiquity of ambiguity in climate change

evaluation. Yet, we argue that earlier results are less driven by ambiguity per

se, but by choices of ambiguity aversion and, at times, the exogeneity of climate

policy. We present a novel evaluation of the social cost of carbon under ambigu-

ous climate feedbacks. Our social planner respects certain rationality constraints

that give rise to the recursive smooth ambiguity model of Klibanoff et al. (2009).

Moreover, we incorporate a climate policy that responds optimally to the resolu-

tion of uncertainty. We show that the employed interpretation of rationality and

foresightedness shrinks the ambiguity premium to an almost negligible level.

A ton of carbon released today encounters several major uncertainties along

its path to causing future economic damages. The main climate uncertainty is

how atmospheric carbon affects temperatures, summarized by the climate sensi-

tivity; the equilibrium warming from doubling the CO2 concentration relative to

pre-industrial levels. It depends on a set of highly uncertain feedback processes.

There is substantial disagreement about its value, which is derived primarily

from different climate models but also instrumental records and paleo-climatic

research. The Intergovernmental Panel on Climate Change (IPCC) states that a

doubling of CO2 concentrations likely yields a warming between 2.5◦C and a 4◦C,

with a current best guess of 3◦C. ’Likely’ is defined by the IPCC as two-thirds
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subjective probability. Significantly higher warming still carries substantial prob-

ability mass (Masson-Delmotte et al. 2021). Hence the same emission trajectory

can result in drastically different economic realities, and there is substantial un-

certainty governing any probabilistic prediction. Sir Nicholas Stern, a prominent

figure in the climate change debate, argued already more than ten years ago that

“[t]he difference between risk and uncertainty (. . . ) is a very important issue and

a key topic for further research” (Stern 2008, p.3), a call that has been repeated

over the years (Burke et al. 2016).

We analyze the response of optimal climate mitigation policy to climate ambi-

guity in an integrated assessment model of climate change. We derive an analytic

social cost of carbon (SCC) formula for an ambiguity averse social planner in a

generic climate-economy model. We quantify this SCC using the functional forms

and their calibrations from the DICE integrated assessment model (Nordhaus

2017). Our analysis employs the smooth ambiguity model by Klibanoff et al.

(2009). The social planer is uncertain about the right probability distribution

for the climate sensitivity and also faces stochastic temperatures. The planner is

more averse to the subjective uncertainty about the climate sensitivity than to

the quantifiable temperature fluctuations.

Our analytic insights extend the analytic SCC formula in Jensen & Traeger

(2021) by two terms: An ‘ambiguity prudence’ term and an ‘ambiguity pessimism’

term. These terms weigh the different possible welfare outcomes resulting from

different possible climate sensitivities. The pessimism term gives more weight

to bad outcomes, i.e., high realizations of the climate’s sensitivity to emissions,

which incentivizes more abatement. The prudence term is similar to the one in the

precautionary savings literature, where a prudent decision maker saves more when

facing uncertainty over future wealth. Here, a prudent decision maker operates

in a more complex environment, hence her course of action isn’t as definite. For

decision maker’s whose ambiguity attitude exhibits prudence (decreasing aversion

in wealth and welfare) it generally raises the willingness to invest today into a

better future. However, the non-linear relation translating climate uncertainty

into welfare uncertainty can alter the effect’s magnitude and sign.

We quantify our finding in a stochastic dynamic programming model where

ambiguity and Bayesian learning govern the climate sensitivity prior. Today’s
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decision maker rationally foresees future uncertainty and learning. We solve the

infinite horizon problem and pin down the optimal carbon tax and the contri-

bution of ambiguity aversion. We find that, along the optimal policy time path,

ambiguity and ambiguity aversion hardly alter the optimal policy. For very high

levels of atmospheric carbon (much higher than optimal) the impact of ambiguity

aversion on the social cost of carbon is more pronounced but still not dominant.

Lange & Treich (2008) discuss ambiguity aversion in a stylized two-period cli-

mate change mitigation model. They show that even in such a two-period linear

stock accumulation problem the qualitative effect of ambiguity on the optimal

policy cannot be signed uniquely. Berger et al. (2016) apply recent robust pref-

erences (Marinacci 2015) to a two-period climate-economy model. This robust

preference specification is in a two-period setting mathematically equivalent to

Klibanoff et al. (2009). Like Lange & Treich (2008), they find that the ambiguity

effect is not easily signed. They analytically derive an ’ambiguity prudence’ con-

dition and quantify the impact of their ambiguity preferences. To that end they

develop a version of the DICE model in which a catastrophe of fixed size either

happens at a known date or never. Berger & Marinacci (2020) review the ambi-

guity preference specifications that were recently used in climate economics. In a

stylized model they quantitatively compare the impact of the modeling choices on

optimal mitigation. Millner et al. (2013) model smooth ambiguity aversion over

climate sensitivity. In their model policy is exogenous and stochasticity derives

from switching between two different deterministic trajectories generated with

different assumptions on climate sensitivity. The authors find that ambiguity

aversion causes a small welfare loss under the standard DICE damage function

and large welfare loss when employing a more convex damage function. In our

stochastic model where the system evolves smoothly and the policy maker chooses

the mitigation policy endogenously we find a much smaller impact of ambiguity

aversion on welfare. Closest to the present paper is the recent work by Barnett

et al. (2020) who apply a continuous time version of the Hansen & Sargent (2001)

robust preferences to a climate-economy model with uncertain climate sensitiv-

ity and damages. They quantify the impact of ambiguity aversion (as well as

model misspecification) on the SCC, finding an economically significant increase.

Their model differs in important respects from ours: Their preference specifica-
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tion is closely related to Klibanoff et al. (2005), while we use Klibanoff et al.

(2009) (see below in section 2). They ’switch off’ the learning dynamics while

in our numeric analysis the social planner applies Bayesian updating. Finally,

their risk- and consumption smoothing preferences are logarithmic while ours are

the slightly more general constant relative risk aversion preferences. Lemoine &

Traeger (2016), inspired by the present analysis, test whether the impact of am-

biguity aversion is larger in a setting with tipping points that cause more abrupt

changes in system dynamics and welfare.1 They find that also in the case of

tipping points ambiguity over the location of the tipping threshold implies only

a moderate premium on the social cost of carbon. We further this literature by

providing the first application of the smooth ambiguity model by Klibanoff et al.

(2009) to analyze climate policy in a full-fledged integrated assessment model.

2 Climate Change and Ambiguity Evaluation

Climate feedbacks showcase the complexity of global warming and the resulting

depth of our uncertainty. These feedbacks responds to the initial warming (ra-

diative forcing) caused by our carbon dioxide emissions. (i) The initial warming

increases the atmospheric content of water vapor, which itself is a strong green-

house gas currently contributing the largest share to the ∼ 18◦C warming of the

natural greenhouse effect. (ii) Higher temperatures melt glaciers and ice caps,

reducing the reflectivity of our planet’s surface, further increasing its uptake of

solar radiation. (iii) Soils that are currently subject to permafrost will thaw and

release methane, which is another powerful greenhouse gas, potentially starting

a powerful thawing-warming cycle. (iv...) Other feedbacks affect the heat ex-

change in the atmosphere or carbon cycle processes, and yet others may still be

unknown. As a consequence of such feedbacks and their interactions, the actual

warming resulting from a given greenhouse gas concentration is deeply uncertain.

Figure 1 shows an overview over confidence intervals compiled by the IPCC in its

Fifth Assessment Report (AR5) (Stocker et al. 2013). How to aggregate vastly

different distributions into a single probabilistic estimate is not obvious. AR5

1The present paper is a continuation of work initially reported in Jensen & Traeger (2013).
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Figure 1: Subjective estimates of the equilibrium climate sensitivity from different
sources. Figure from the Fifth Assessment Report by the IPCC (Stocker et al.
2013).

stated that a doubling of CO2 concentrations ‘likely’2 yields a warming between

1.5◦C and a 4.5◦C, but refused to give a ‘best guess’. The Sixth Assessment Re-

port (Masson-Delmotte et al. 2021) changed this likely interval to 2.5◦C to 4◦C

with a best estimate of 3◦C.

Already Keynes (1921) suggests that the usual probabilistic model is ill-

equipped to deal with corresponding situations where we lack confidence into

our probabilistic description of the world. Decision theorists demonstrate in

experiments that, indeed, many decision makers do not adhere to our standard

economic models of objective or subjective expected utility when confronted with

unknown or highly subjective probability distributions. Today, decision theory

mostly summarizes this type of uncertainty under ‘ambiguity’; phrases such as

2They assign the term a subjective 66 percent probability.
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‘deep uncertainty’ or ‘hard uncertainty’ remain in circulation in the more applied

literature. We refer to, e.g., Machina & Siniscalchi (2014) for a discussion of the

literature. This literature offers a large variety of alternative approaches to evalu-

ate situations lacking a trusted and unique probabilistic description of the future.

We briefly review three of the more common classes of models. A first class aban-

dons the use of probabilities, replacing them by so-called capacities. Capacities

lack the additive nature of probabilities and an event can happen, not happen,

and then there is room for something else, which makes their interpretation and

application to the climate change evaluation rather intricate. As second class

introduces sets of probability distributions rather than singletons. This approach

seems more suitable for policy analysis. Indeed, this specification has been cho-

sen by several of the earlier applications in the integrated assessment of climate

change. The most popular models evaluate outcomes merely based on worst (or

best) expected outcomes, which holds in particular for all of the climate change

application in this category. The common evaluation based on the worst expected

outcome can also be recovered as a limiting case of a third approach. Here, the

set of possible probability distributions is governed by a subjective second order

distribution that weighs the different possible objective (stochastic) descriptions

of the world. The most famous model in this class is Klibanoff et al.’s (2005)

model of smooth ambiguity aversion. Here, ambiguity aversion governs the ad-

ditional aversion with respect to subjective second order beliefs. The approach

allows the authors to characterize ambiguity aversion in the same way as usual

risk aversion using Arrow-Pratt measures. Letting (relative) smooth ambiguity

aversion approach infinity brings us to the limit case of only evaluating the worst

possible expected outcome (as in the second class of models).

Most ambiguity models are formulated in an atemporal setting. Applying

these models in a dynamic context gives rise to a variety of inconsistencies that

make them rather unattractive for social planning. In our view, the major ex-

ception is Klibanoff et al. (2009) recursive smooth ambiguity model, a dynamic

extension of the atemporal smooth ambiguity model. By recursively evaluating

the decision tree, the model achieves time consistency and is compatible with

simple Bayesian updating. The model also falls into Traeger’s (2011) normative

axiomatic foundation focusing on decision makers that satisfy the von Neumann

7



Pricing an Unknown Climate Jensen & Traeger

& Morgenstern (1944) axioms, once we distinguish between objective and sub-

jective (or low confidence) priors. As a result, we adopt Klibanoff et al.’s (2009)

recursive smooth ambiguity framework for our evaluation. Another advantage of

the framework is its distinction between ambiguity and ambiguity aversion.

Our evaluation of climate change will maximize welfare under constant rela-

tive (smooth) ambiguity aversion. In the limit of infinite ambiguity aversion, this

model converges to Gilboa & Schmeidler’s (1989) maximin expected utility; here,

a decision maker only considers the worst possible expected outcome under the

set of possible probability distributions. On the level of subjective priors, this ap-

proach is analogous to Arrow & Hurwicz’s (1972) maximin criterion judging a set

of possible outcomes merely by its worst outcome.3 Instead of simple outcomes as

in Arrow & Hurwicz’s (1972), the maximin expected utility model in consider a

set of possible distributions and expected outcomes. Just as we can obtain max-

imin utility in the limit of constant relative risk aversion going to infinite, we can

obtain maximin expected utility by letting aversion with respect to the subjective

prior over possible stochastic models go to infinity. Hansen & Sargent (2001) give

assumptions under which this limit of maximin expected utility is equivalent to

robust control. Robust control, maximin expected utility, and the transformation

between the two models is used repeatedly in the literature on ambiguity or deep

uncertainty in climate change (Brock & Xepapadeas 2021, Barnett et al. 2020,

Rudik 2020, Olijslagers & van Wijnbergen 2019, Xepapadeas & Yannacopoulos

2018, Berger et al. 2016). A similar approach is also known as “playing a game

against nature”, where nature always takes the worst possible move, i.e., draws

the worst possible realization. The first observation is that, from the perspective

of (smooth) ambiguity aversion, robust control or maximin expected utility cor-

respond to infinite smooth ambiguity aversion. Our second observation is that

Gilboa & Schmeidler’s (1989) maximin expected utility model, just like the sim-

ple smooth ambiguity model of Klibanoff et al. (2005) is atemporal. As Klibanoff

et al.’s (2009) explain, a naive combination of smooth ambiguity to a temporal

setting leads to inconsistencies. As a result, they develop a more sophisticated

model recursively evaluating over time and ambiguity. This recursive evaluation

3Arrow & Hurwicz (1972) show that under certain assumptions on ignorance, a decision
should only be based on the worst or the best possible outcome.

8



Pricing an Unknown Climate Jensen & Traeger

reflects that present decision maker’s incorporates how future decision maker’s

evaluate and respond to uncertainty. It turns out that this recursive consideration

of future decisions will lower the effective premium of ambiguity aversion. The

robust control approach has, to the best of our understanding, no such recursive

interpretation.

3 The General Model

This section introduces a simple and general integrated assessment model of cli-

mate change. It couples a growing world economy to the climate through green-

house gas emissions and economic impacts of climate change. Figure 2 presents a

schematic of our model (the full set of equations can be found in Appendix B). The

right hand side characterizes a standard Ramsey growth model. World output

is a function F (Kt, Tt, Et, t) of endogenous capital Kt, atmospheric temperature

Tt, carbon dioxide emissions Et, and a set of exogenous processes including la-

bor and technology levels that depend on time t. The temperature increase Tt

(measured in degree Celsius above 1900 levels) reduces the economy’s productiv-

ity. Output is spent either on consumption Ct, capital investment, or emission

reductions. We treat the economy’s carbon dioxide emissions as an input into

the production process; it is a reduced representation of an energy production

sector whose carbon dioxide emissions trade off with capital and labor.Emissions

build up the stock of atmospheric carbon Mt. Atmospheric carbon together with

other (exogenous) greenhouse gases trap our planet’s outgoing infrared radiation.

The resulting shift in the planet’s energy balance causes an initial warming and

induces further feedback processes.

The climate sensitivity s (‘CS’ in Figure 2) measures the medium to long-

run temperature increase resulting from a doubling of pre-industrial atmospheric

carbon dioxide concentration. The approximate “climate change law” specifies

that every doubling of atmospheric carbon dioxide (or fractions thereof) implies

a s degree Celsius temperature increase (or fraction thereof). It takes decades

to centuries to reach a new equilibrium temperature. As we discuss in the next

section, climate sensitivity is an unknown parameter governed by a prior and

Bayesian updating. The updating relies of the observation of temperature and
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Figure 2: The main relations in the climate-economy model. Dashed rectangles
represent control variables. Solid rectangles depict the main state variables of
the system. Climate sensitivity (‘CS’) is uncertain. The model with learning
represents climate sensitivity by a Bayesian prior (2 state variables). Temperature
is stochastic.

carbon concentrations. Temperature evolution is also subject to a annual volatil-

ity modeled as Gaussian white noise. The change in temperature feeds back into

economic production causing damages. The decision maker chooses emissions

and consumption (and implicitly investment) in every period. We discuss her

objective function in section 3.2 and solve the model using stochastic dynamic

programming. Our analytic results rely only on this general model structure. For

our numeric results, we pick the functional forms and quantitative assumptions

of the DICE model summarized in Appendix B.

3.1 Temperature stochasticity and Bayesian learning

A model of the (slow) structural learning observed in climate change requires a

model of Bayesian uncertainty over the medium to long-run temperature that

will prevail after the feedback processes adjusted. It also requires accounting

for temperature stochasticity, which shields the learning. For a given climate
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sensitivity s, temperature Tt evolves according to

T̃t+1 = χt(Mt+1)s+ ξt(Tt) + ϵ̃t . (1)

The factor χt captures the forcing from atmospheric CO2 and other greenhouse

gases. The term ξt reflects that atmospheric warming is a slow process and

approximately governed by an AR(1) type process with a moving target.

Each year random events ϵ̃ shock temperature. These “weather fluctuations”

are normally distributed with mean zero. For a given value of climate sensitivity,

the next period’s temperature is then normally distributed

T̃t+1 ∼ N (µT,t+1(s), σ
2
T ) with σ2

T = 0.042.

The variance σ2
T is exogenous. Empirical estimates suggest annual volatility

in global mean temperature in σ2
T = 0.042.4 For analytic purposes we will also

use considerably larger values.

The social planner is uncertain about the value of climate sensitivity and

holds the following initial prior Π(s)

s̃0 ∼ Π(s) = N (µs,0, σ
2
s,0) with µs,0 = 3 σ2

s,0 = 3 .

Most commonly, estimates of climate sensitivity take fat-tailed distributional

forms such as the log-normal. To simplify the characterization of learning, we

assume a normal distribution. Given this limitation, σ2
s,0 = 3 is a rounded-up

empirical approximation to the set of distributions found in Stocker et al. (2013)5

We can learn the value of climate sensitivity from observing the CO2 stock

and temperatures over time. All the feedbacks that are not part of the climate

sensitivity are assumed to be known. Every period the decision maker foresees

what a future realization of the temperature teaches her about climate sensitivity

distribution and updates her prior accordingly.

4Kelly & Kolstad (1999) and Leach (2007) both use σ2
T = 0.1. Averaging temperatures over

174 countries and estimating yearly fluctuations with respect to a common trend over 109 years
results instead in the lower σ2

T = 0.042.
5A normal distribution with mean 3 and variance 3 has the one-standard-deviation bands

[1.27,4.73], which also mimics the IPCC’s “likely” range [1.5,4.5].
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Her posterior in period t is the prior conditional on historic temperature

realizations Π(s|T̂1, ..., T̂t). This posterior also depends on the historic CO2 stock

information which we suppress for notational convenience. Given the current

stock Mt, a realization of temperature T̂t+1 in the subsequent period results in

the updated posterior Π(s|T̂1, ..., T̂t+1). In Appendix B we show that the updated

posteriors are again normally distributed so that at all times Π(s|T̂1, ..., T̂t) =

N (µs,t, σ
2
s,t) for some µs,t and σ2

s,t. Moreover, we show the following updating

rules for the expected value

µs,t+1 =
χ2
tσ

2
s,t

T̂t+1−ξt
χt

+ σ2
Tµs,t

χ2
tσ

2
s,t + σ2

T

(2)

and the variance

σ2
s,t+1 =

σ2
Tσ

2
s,t

χ2
tσ

2
s,t + σ2

T

. (3)

The new expected value of the parameter s is a weighted mean of the previous

expected value and the inferred “climate sensitivity observation”, T̂t+1−ξt
χt

. The

weight on the new observation is proportional to the precision (the inverse of

the variance) of the temperature and the magnitude of the multiplicative factor

χt, which increases in the carbon stock. The decision maker learns faster the

lower the temperature stochasticity and the larger the carbon stock. This insight

follows from observing that the first summand in the bracket in equation (3)

grows in 1/σ2
T and in χt. With uncertainty about climate sensitivity, temperature

realizations are themselves uncertain (not only stochastic) and governed by the

predictive distribution T̃t+1 ∼ N (ξt+χtµs,t, χ
2
tσ

2
s,t+σ2

T ). We can conveniently use

this distribution (see Appendix B) to evaluate the uncertainty in the optimization.

3.2 Welfare and Aversion to Climate Change Ambiguity

The decision maker’s evaluation of future climate change depends on her uncer-

tainty preferences. As discussed in section 2, we follow Klibanoff et al.’s (2009)

axiomatization of smooth ambiguity aversion because it satisfies normatively at-

tractive axioms including time consistency. These preferences capture a decision
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maker who prefers a world with well-known probabilities to a world governed by

subjective uncertainty.

The social planner evaluates the risk resulting from stochastic movements of

temperature T with an increasing and concave utility function u(ct). As in the

common intertemporally additive expected utility model, this utility function de-

scribes her risk aversion as well as her desire to smooth consumption over time.

Another increasing and concave function f(z) captures the additional aversion

towards the subjective uncertainty. In our application, utility is a population-

weighted constant relative risk aversion function Ltu(ct) = Lt
c1−η
t

1−η
from per capita

consumption ct =
Ct

Lt
with the Arrow-Pratt coefficient of relative risk aversion η.

Similarly, we use a constant relative ambiguity aversion function characterized

by the coefficient of relative ambiguity aversion RAA.6 In our application, the

concavity of the magnitude of RAA (or concavity of f) captures additional aver-

sion when evaluating the future uncertainty resulting from the epistemological

uncertainty governing the climate sensitivity parameter. The following Bellman

equation pins down the social planner’s value function

V (Kt,Mt, t, Tt, µs,t, σs,t) = max
ct,µt

Ltu(ct) + (4)

exp[−δu] f−1

{∫
S

f
(
Eϵt [V (Kt+1,Mt+1, t+ 1, Tt+1, µs,t+1, σs,t+1)]

)
dΠ(s, t)

}
,

which is optimized subject to the dynamic equations summarized in Appendix B,

and the informational updating equations (2) and (3). The Bellman equation

states that the maximized social welfare today is equal to the sum of the instan-

taneous social welfare. and the future maximized social welfare. By choosing

the consumption level ct, the decision maker balances immediate consumption

against future physical capital stocks, and with her abatement decision µt she

trades off immediate consumption and lower future carbon concentration.

Next period’s temperature realization depends, apart from the atmospheric

carbon concentration and current temperature, on the climate sensitivity s and

6RAA stands for: Constant coefficient of Relative Ambiguity Aversion. For η > 1 the
utility and value function are negative. As a result, the power functional form of the constant
relative ambiguity aversion aggregator has to aggregate over the negative of utility resulting in
a slightly more sophisticated definion of RAA. See Traeger (2010) for a detailed and axiomatic
discussion of defining aversion in such a setting.
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the realization of the iid shock ϵt (see equation 1). For a given value of climate

sensitivity, next period temperature Tt+1 is objectively stochastic and normally

distributed with variance σ2
T . The expectation operator in the inner bracket

of the Bellman equation (4) takes expectations with respect to this well-known

stochasticity. Yet, the decision maker is also subjectively uncertain about the true

climate sensitivity, captured by the prior Π(s, t) ∼ N (µs,t, σ
2
s,t). The integral over

the space of possible climate sensitivity realizations S with respect to this prior

aggregates over this subjective uncertainty.7 Here, the increasing and concave

transformation f expresses additional aversion with respect to future payoffs that

are subject to the decision maker’s epistemological uncertainty.

Next period’s expected climate sensitivity also depends on both the present

epistemological prior Π(s, t) and the realization of the shock ϵt to global average

surface temperature (see equation 2). It depends on the objective shock because

of the Bayesian updating of climate sensitivity uncertainty based on the temper-

ature observation. Again, the uncertainty deriving from the subjective prior is

evaluated using the additional aversion embedded in the concave transformation

f , and the uncertainty deriving from the objective shock ϵt is evaluated ambiguity

neutrally.

4 The Social Cost of Carbon with Ambiguity

Aversion

An optimal mitigation policy equates the costs from mitigating a ton of CO2

with the present value of the future social damages from emitting a ton of CO2.

These damages are known as the social cost of carbon (SCC). Jensen & Traeger

(2021) derive the optimal social cost of carbon under uncertainty for standard

CRRA preferences from the first order conditions of the Bellman equation with-

out ambiguity aversion. We reproduce their intuitive presentation here and then

contrast it with the SCC under ambiguity aversion. We denote by ∂Mτ

∂E0
the

change of the carbon stock in period τ as a result of an additional ton of car-

7In our case S is a continuous paramter space, whereas it is a finite space in Klibanoff et al.’s
(2009) axiomatization.
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bon emitted today. The carbon stock change in period τ affects the tempera-

ture in subsequent periods t > τ as ∂Tt

∂Mτ
through direct radiative forcing and

feedbacks. The resulting change in future atmospheric temperature impacts the

output Yt = Ft(Kt, Tt, Et, t), causing a marginal damage of −∂Ft

∂Tt
. The output

loss reduces period t welfare proportional to marginal welfare u′
t(ct). Summing

the discounted welfare loss over an infinite time horizon and translating it into

present day consumption units results in the analytic expression for the SCC for

our integrated assessment model

SCC0 = − 1

u′
0(c0)

E0

∞∑
t=1

t∑
τ=1

u′
t(ct)

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0

.

The optimal carbon tax is the SCC evaluated along the optimal trajectory.

Starting from the recursive Bellman equation, Appendix XX shows that am-

biguity aversion adds two novel terms into the social cost of carbon formula: a

prudence term (R) and a pessimism term (P). The resulting formula is

SCC0 = − 1

u′(c0)
Es

0 E
T
0

[
∞∑
t=1

t∑
τ=1

t∏
j=1

Rj Es
j Pj ET

j u′
t (ct)

∂Ft

∂Tt

∂Tt

∂Mτ

∂Mτ

∂E0

]
.

Expectations Es
j are over the climate sensitivity prior conditional on information

in period j, and expectations ET
j govern the climate conditional on a given climate

sensitivity and information in period j. The novel pessimism term is

Pt =
f ′(·)

Es
t (f

′(·))
,

where f ′(·) = f ′ (EΩs [Vt+1(·)]). The pessimism term acts as a weighting bias. As-

suming ambiguity aversion (f ′′ < 0), events with a higher welfare Vt+1 contribute

a lower marginal weight f ′(·). Thus, the pessimism term gives more weight to

bad outcomes, which are the high realizations of the climate’s sensitivity to emis-

sions. More weight on the high sensitivity scenarios increases the incentives to

abate and the optimal carbon tax.

The novel prudence term is

Rt =
Es

t (f
′(·))

f ′ (f−1(·))
,
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where again f ′(·) = f ′ (EΩs [Vt+1(·)]). The prudence term is less symmetric in its

dependence on the value function than the pessimism term. As a result, it plays

a more important role how the value function Vt+1 itself responds to uncertainty.

Assume for the moment that the value function itself would be subject to mean-

zero shocks. Then the prudence term plays an analogous role to the prudence

term known in the standard precautionary savings model. We call the decision

maker ambiguity prudent if she exhibits decreasing ambiguity aversion in welfare,

i.e., in Vt+1 (rather than consumption or wealth as in the precautionary savings

case). Under mean-zero shocks to welfare, ambiguity prudence increases the

decision maker’s willingness to invest today into a better future; she does so

because a higher welfare level in the future will reduce her suffering when she is

hit by the uncertainty.8

5 Numeric Results

5.1 Numeric Implementation

The numeric model is s stochastic version of DICE with Bayesian learning about

climate sensitivity based on Traeger (2014) and Jensen & Traeger (2021). It sim-

plifies DICE’s carbon cycle and the ocean cooling. This adjustment saves us three

computationally costly state variables. Traeger (2014) explains the details of the

implementation and shows that our calibration compares at least as favorably to

the scientific climate change models (AOGCMs) as the original DICE model. We

model climate sensitivity uncertainty and -learning by Bayesian updating with a

conjugate normal prior for climate sensitivity and normal stochastic temperature

shocks. The mean and variance of climate sensitivity are the informational states

that fully capture uncertainty. After observing the temperature in a given year,

the decision maker infers the implied climate sensitivity and updates her prior

about it accordingly.

8The prudence term increases the SCC for mean-zero shocks over the next period welfare, if,

and only if, absolute ambiguity aversion − f ′′

f ′ decreases in welfare (?). This condition is always
met for our isoelastic preference specification that we will adopt in the quantitative assessment.
For a more detailed discussion of prudence and pessimism terms in integrated assessment, in
the context of standard risk with Epstein-Zin-Weil preferences, see Jensen & Traeger (2014).
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We solve the dynamic programming equation (4) by function iteration, using

the collocation method to approximate the value function. As basis functions we

choose Chebychev polynomials with 35, 200 Chebychev nodes and coefficients.

The normal distributions for temperature stochasticity and the climate sensitiv-

ity prior are approximated by Gauss-Legendre quadrature.9 Our convergence

criterion is a change in the value function coefficients of less than 10−4. The

code is written in Matlab, we use the CompEcon toolbox by Miranda & Fackler

(2002) to generate and evaluate the Chebychev polynomials, and we let the solver

KNITRO to carry out the optimization.

5.2 Ambiguity aversion along optimal policy trajectory

Figure 3 shows the impact of ambiguity aversion on socially optimal climate pol-

icy (abatement, emission levels and the social cost of carbon) and investment. We

plot time paths until 2050. The policy maker has an initial climate sensitivity

prior of N (3, 3) and expects stochastic temperature shocks N (0, 0.112). The time

paths are “expected draws”: Each period the actual shock is zero, and the deci-

sion maker hence observes the climate sensitivity she (correctly) expects (ŝt = 3).

Hence her expectation doesn’t change, only her confidence in the value grows over

time. That way, the only difference between the different scenarios derives from

the difference in policy, not different realizations of shocks and hence beliefs. The

scenarios depicted are known climate sensitivity (s = 3) with stochastic temper-

ature (solid black lines), uncertain climate sensitivity with constant relative risk

aversion preferences (dashed red), and uncertain climate sensitivity with relative

ambiguity aversion RAA= 20 (dashed-dotted blue) and RAA= 80 (dashed blue).

We see that the optimal policy is surprisingly unaffected by the presence

of ambiguity aversion, irrespective of its level. There is no sizable “ambiguity

premium”. We ‘zoom in’ on this result in Figure 4. The figure shows the social

cost of carbon in the year 2015 for different levels of ambiguity aversion. In the

left panel, we see the same scenario as before: the DICE specification with low

(but empirically accurate) temperature stochasticity. We see that the social cost

of carbon increases roughly linearly with the level of ambiguity aversion. But a

9The results are robust to increasing Gauss-Legendre nodes and Chebychev nodes.
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Figure 3: Abatement rate, social cost of carbon, investment rate and emissions for the
current century with stochastic temperature (σϵ = .011), uncertain climate sensitivity
with initial prior variance σ2

s,0 = 3 and three levels of ambiguity aversion: none, RRA=
20 and RRA=80. Stochastic paths generated by drawing expected value each period.

look at the scale reveals that the overall effect is small. An increase from RAA= 0

(no additional ambiguity aversion) to RAA= 80 increases the SCC by less than

USD 4. The right hand panel shows the same figure for cubic damages but lower

levels of relative ambiguity aversion. Why ambiguity aversion has so little impact

on optimal policy is not immediately obvious and requires further investigation.
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Figure 4: Social cost of carbon in 2015 over different levels of ambiguity aversion. The
left panel assumes quadratic damages (as before), and the right panes assume cubic
damages. Note the different scales of the axes. Climate sensitivity is uncertain with
prior N (µs = 3, σ2

s = 3).

5.3 Ambiguity aversion off the optimal policy path

Why do we observe no real impact of ambiguity and ambiguity aversion? Poten-

tially, the decision maker’s ability to affect the subjective uncertainty is limited.

She can increase her emissions in order to learn faster and reduce the uncertainty.

However, the additional learning is incremental, and it comes at the cost of being

even worse-off in if the climate sensitivity turns out to be high. Alternatively,

could it be that the subjective uncertainty doesn’t hurt the decision maker much?

To explore this second idea, we compare the numeric value functions for decision

makers with and without ambiguity aversion for the same scenario. If they are

identical over the state space, the ambiguity doesn’t harm the averse decision

maker.

For most of the state space, the value functions indeed are almost identical.

Exceptions are states of the world where the expected climate sensitivity is high

and highly uncertain, the levels of atmospheric carbon are high, and the physical

capital stock is vast. Figure 5 shows the relative value function difference for

decision makers with and without ambiguity aversion (RAA= 80) over sections

of the state space (the other state space variables are kept at the values they take

along the optimal time path). The scenario plotted features quadratic damages
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Figure 5: Relative difference in value function in percent for decision makers with
and without ambiguity aversion RAA= 80 for quadratic damages and temperature
stochasticity σϵ = .11. Plotted along optimal time path. Four state space variables are
kept fixed, two are plotted.

and low temperature stochasticity (N (0, 0.112)), as in the left panel of figure 4.

The scale suggest a difference of less than 0.2 percent.Figure 7 shows the same

difference for cubic damages with ambiguity aversion RAA= 10.

Figure 6 plots the relative difference in the social cost of carbon corresponding

to the value function difference in Figure 5.10 In the upper left panel we see a

relative difference of up to 33 percent. The blue dot indicates the optimal time

path trajectory, i.e. for the given state-space values for time, temperature and

the climate sensitivity prior, the carbon and capital stocks and the social cost

of carbon difference take those values. The lower left panel shows an ambiguity

10The social cost of carbon can be calculated from first derivates of the value function by
carbon, capital and temperature, see Jensen & Traeger (2021).
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Figure 6: Relative difference in social cost of carbon in percent for decision makers
with and without ambiguity aversion RAA= 80 for quadratic damages and temperature
stochasticity σϵ = .11. Plotted along optimal time path. Four state space variables are
kept fixed, two are plotted.

premium of almost 150 percent fir high carbon stocks and prior variance.

Figure 8 shows the same difference for cubic damages with ambiguity aversion

RAA= 10.

6 Conclusions

Uncertainties governing the level of future climate change are large and subjective.

We analyze how a social planner should or could account for the underlying

ambiguity when calculating the optimal carbon tax. Our evaluation framework

relies on two assumptions. First, future planners respond to the resolution of

uncertainty. Second, the planner employs a dynamically consistent framework.
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Figure 7: Relative difference in value function in percent for decision makers with and
without ambiguity aversion RAA= 10 for cubic damages and temperature stochasticity
σϵ = .11. Plotted along optimal time path. Four state space variables are kept fixed,
two are plotted.

In addition, our evaluation assumes moderately strong ambiguity aversion as

compared to a more extreme form of ambiguity aversion where the planner only

weighs the worst possible (expected) outcome.

In this framework, We show how smooth ambiguity attitude implies two mod-

ifications of the optimal carbon pricing formula. First, ambiguity aversion implies

pessimism weighting. Welfare in the high climate sensitivity scenarios receives

more attention than welfare in the scenarios with a low climate sensitivity. As a

result, the pessimism weighting effect increases the incentive to mitigate today.

Second, ambiguity prudence implies a tendency to save for the future through

mitigation and standard savings in order to be “less affected” by the future deep

uncertainty. This effect is similar to the implications of prudence in the precau-
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Figure 8: Relative difference in social cost of carbon in percent for decision makers
with and without ambiguity aversion RAA= 10 for cubic damages and temperature
stochasticity σϵ = .11. Plotted along optimal time path. Four state space variables are
kept fixed, two are plotted.

tionary savings literature. Yet, in the more complex climate change context, the

non-linearity between climate uncertainty and welfare shocks alters the nature of

the common prudence effect.

Quantitatively, we find that the resulting carbon tax is surprisingly close to

the simpler Bayesian learning model where the decision maker compounds all

uncertainties into a simple best guess probability distribution. The results is

encouraging in that even under deep uncertainty we should simply let the best-

guess compilations of our probabilistic scientific guesstimates guide our actions.

Ambiguity and ambiguity aversion add a minor premium to the social cost of

carbon, which is always positive in our quantitative assessment. The results

suggest that we should not shy away from using state of the art stochastic dynamic
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programming models for the assessment of climate change even if probability

distributions governing the uncertainty are no more than the current scientific

best guess.

Our model relies on optimal response to uncertainty resolution. We show

that ambiguity premia can be substantially larger in cases where we deviate

substantially from the expected optimal path. In particular, this finding explains

why studies that merely evaluate exogenous scenarios without adaptive policy

can find much larger ambiguity premia. If the climate’s sensitivity to emissions

turns out very high, and we do not expect future policy makers to respond to

this information, then current policy makers should set a higher carbon tax. Yet,

it might be questionable to suggest that present policy makers should tax carbon

emissions even higher because we do not expect future policy makers with more

knowledge that climate change turns out really bad further increasing the taxes.

Two clarifications remain. First, our model does not analyze fat-tails. Fat

tails can deliver even larger uncertainty premia and possibly also increase the

ambiguity premium. Second, variants of an alternative approach in the literature

have found substantial risk premia even though these models endogenize policy.

These models essentially employ a robust control approach. From a decision

theoretic perspective, the common robust control approach relates closely to our

limiting case of infinite ambiguity aversion. In such a model, it becomes crucial

to manage the worst possible model of the world. Our model permit worlds

that are far too bad to usefully employ an approach with infinite ambiguity

aversion. Instead, we would have have to decide on how to limit the worlds we

permit, reducing the underlying ambiguity. Such an approach follows a different

philosophy and we merely emphasize that from our decision-theoretic perspective,

the approaches rely on extreme ambiguity attitude rather than ambiguity per se.
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A Details on the climate enriched economy model

The following model emulates DICE The three most notable differences are the

annual time step, the infinite time horizon, and the replacement of the ocean

feedbacks by exogenous processes. This simplification is neccessary because the

ocean carbon sink and ocean temperature would each require an own state vari-

able in a recursive framework, which is computationally too costly. Instead we

calibrate a decay rate for atmospheric carbon and a temperature difference be-

tween atmosphere and ocean which closely match the behavior of DICE’s original

carbon cycle. For a detailed description of the procedure, see Traeger (2014), who

also shows how to reformulate the decision problem when expressing capital stock

and consumption in efficient labor units.

Global average temperatures respond with a delay to the forcing from at-

mospheric carbon stocks Mt (above preindustrial level Mpre) and other non-CO2

forcing. Restating Equation (1) with climate sensitivity as a uncertain parameter

T̃t+1 = (1− σ)Tt + σs̃

[
ln Mt

Mpre

ln 2
+

EFt+1

λ

]
− σocean∆Tt + ϵ̃t .

The ocean temperature difference ∆Tt replicates the relation between oceanic

and atmospheric temperatures in DICE. It follows the simple quadratic equation

∆Tt = max{0.7 + 0.02. ∗ t− 0.00007. ∗ t.2 , 0} .

Exogenous forcing EFt from non-CO2 greenhouse gases, aerosols and other pro-

cesses is assumed to follow the process

EFt = EF0 + 0.01(EF100 − EF0)×max{t, 100} .

Note that it starts out slightly negatively. Carbon in the atmosphere accumulates

according to

Mt+1 = Mpre + (Mt −Mpre) (1− δM(t)) + Et with

δM,t = δM,∞ + (δM,0 − δM,∞) exp[−δ∗M t] .

The stock of CO2 (Mt) exceeding preindustrial levels (Mpre) decays exponentially

at the rate δM(M, t). This decay rate falls exogenously over time to replicate the
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carbon cycle in DICE-2007, mimicking that the ocean reservoirs reduce their

uptake rate as they fill up (see Traeger 2014). The variable Et characterizes

yearly CO2 emissions, consisting of industrial emissions and emissions from land

use change an forestry Bt

Et = (1− µt)σtAtLtk
κ
t +Bt .

Emissions from land use change and forestry fall exponentially over time

Bt = B0 exp[gB t] .

Industrial emissions are proportional to gross production AtLtk
κ
t . They can be

reduced by abatement µt. As in the DICE model, the carbon intensity of pro-

duction falls at an exogenous rate of decarbonization σt

σt = σt−1 exp[gσ,t] with gσ,t = gσ,0 exp[−δσ t] .

The economy accumulates capital according to

kt+1 = [(1− δk) kt + yt − ct] exp[−(gA,t + gL,t)] ,

where δK denotes the depreciation rate, yt denotes production net of abatement

costs and climate damage, and ct denotes aggregate global consumption of pro-

duced commodities (both in per effective labor units, i.e. yy =
Yt

AtLt
). Population

grows exogenously

Lt+1 = exp[gL,t]Lt with gL,t =
g∗L

L∞
L∞−L0

exp[g∗L t]− 1
.

Here L0 denotes the initial and L∞ the asymptotic population. The parameter g∗L
characterizes the convergence from initial to asymptotic population. Technology

grows exogenously

At+1 = At exp [gA,t] with gA,t = gA,0 ∗ exp [−δAt] .

Net global GDP is obtained from the gross product as follows

yt =
1− Λ(µt)

1 +D(Tt)
kκ
t
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where production is expressed in per effective labor units and

Λ(µt) = Ψtµ
a2
t

characterizes abatement costs as percent of GDP depending on the emission con-

trol rate µt ∈ [0, 1]. The coefficient of the abatement cost function Ψt follows

Ψt =
σt

a2
a0

(
1− (1− exp[gΨ t])

a1

)
with a0 denoting the initial cost of the backstop, a1 denoting the ratio of initial

over final backstop, and a2 denoting the cost exponent. The rate gΨ describes

the convergence from the initial to the final cost of the backstop.

Climate damage as percent of world GDP depends on the temperature differ-

ence Tt of current to preindustrial temperatures and is characterized by

D(Tt) = b1T
b2
t .

Nordhaus (2008) estimates b1 = 0.0028 and b2 = 2, implying a quadratic damage

function with a loss of 0.28% of global GDP at a 1 degree Celsius warming.

B Updating rules for climate sensitivity prior

and predictive distribution

This appendix derives the updating rules for the climate sensitivity prior and the

predictive distribution for temperature. Let lt(xt+1|s) = N (µx,t+1, σ
2
T |s, xt, ht)

denote the likelihood function in period t. Then11

Π(s|T̂1, ..., T̂t+1) =
lt(xt+1|s)Π(s|T̂1, ..., T̂t)∫∞

−∞ lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds
.

11This simplified updating equation only using the latest prior and the latest observation is
a consequence of our convenient choice of the conjugate prior.
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We the sign∝ to denote proportionality and suppress the normalization constants

of the distributions, finding

lt(x|s) Π(s|T̂1, ..., T̂t) ∝ exp

(
−(x− µx,t+1(s))

2

2σ2
T

)
exp

(
−(s− µs,t)

2

2σ2
s,t

)
∝ exp

(
−(x− (sχt + ξt))

2

2σ2
T

− (s− µs,t)
2

2σ2
s,t

)

∝ exp

(
−x2 − 2x(sχt + ξt) + (sχt + ξt)

2

2σ2
T

−
s2 − 2sµs,t + µ2

s,t

2σ2
s,t

)

∝ exp

(
−x2 − 2xsχt − 2xξt + s2χ2

t + 2sχtξt + ξ2t
2σ2

T

−
s2 − 2sµs,t + µ2

s,t

2σ2
s,t

)

∝ exp

(
−1

2

[
s2

(
χ2
t

σ2
T

+
1

σ2
s,t

)
− 2s

(
(x− ξt)χt

σ2
T

+
µs,t

σ2
s,t

)
+

x2 − 2xξt + ξ2t
σ2
T

+
µ2
s,t

σ2
s,t

])

∝ exp

(
−1

2

[
s2

(
χ2
t

σ2
T

+
1

σ2
s,t

)
− 2s

(
(x− ξt)χt

σ2
T

+
µs,t

σ2
s,t

)
+

(x− ξt)
2

σ2
T

+
µ2
s,t

σ2
s,t

])

∝ exp

−1

2

(
χ2
t

σ2
T

+
1

σ2
s,t

)s−
(x−ξt)χt

σ2
T

+ µs,t

σ2
s,t

χ2
t

σ2
T
+ 1

σ2
s,t

2
︸ ︷︷ ︸

≡Π̄

· exp

−1

2

−
(

(x−ξt)χt

σ2
T

+ µs,t

σ2
s,t

)2

χ2
t

σ2
T
+ 1

σ2
s,t

+
(x− ξt)

2

σ2
T

+
µ2
s,t

σ2
s,t




∝ Π̄ · exp

1

2
��

����(
(x−ξt)χt

σ2
T

)2

+ 2 (x−ξt)χt

σ2
T

µs,t

σ2
s,t

+
�

�
�
�(

µs,t

σ2
s,t

)2

−
�

����(x−ξt)2

σ2
T

χ2
t

σ2
T
− µ2

s,t

σ2
s,t

χ2
t

σ2
T
− (x−ξt)2

σ2
T

1
σ2
s,t

−
�

�
��µ2

s,t

σ2
s,t

1
σ2
s,t

χ2
t

σ2
T
+ 1

σ2
s,t


∝ Π̄ · exp

− 1

2σ2
Tσ

2
s,t

(x− ξt)
2 − 2(x− ξt)χtµs,t + µ2

s,tχ
2
t

χ2
t

σ2
T
+ 1

σ2
s,t


∝ Π̄ · exp

(
−1

2

(x− ξt − χtµs,t)
2

χ2
tσ

2
s,t + σ2

T

)
.
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The following predictive distribution Pt+1 governs the temperature realization in

period t+ 1 incorporating stochasticity and parameter uncertainty

Pt+1(x) =

∫ ∞

−∞
lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds ∝ exp

(
−1

2

(x− ξt − χtµs,t)
2

χ2
tσ

2
s,t + σ2

T

)
.

It is the normal distribution N (χtµs,t, χ
2
tσ

2
s,t + σ2

T ). We find the posterior

Π(s|T̂1, ..., T̂t+1) =
lt(xt+1|s)Π(s|T̂1, ..., T̂t)∫∞

−∞ lt(xt+1|s)Π(s|T̂1, ..., T̂t)ds

∝ exp

−1

2

(
χ2
t

σ2
T

+
1

σ2
s,t

)s−
(T̂t+1−ξt)χt

σ2
T

+ µs,t

σ2
s,t

χ2
t

σ2
T
+ 1

σ2
s,t

2
 .

Thus, if Π(s|T̂1, ..., T̂t) is distributed normally with expected value µs,t and vari-

ance σs,t, then the posterior in the subsequent period Π(s|T̂1, ..., T̂t+1) is also

distributed normally with expected value

µs,t+1 =

χ2
t

σ2
T

T̂t+1−ξt
χt

+ 1
σ2
s,t
µs,t

χ2
t

σ2
T
+ 1

σ2
s,t

=
χ2
tσ

2
s,t

T̂t+1−ξt
χt

+ σ2
Tµs,t

χ2
tσ

2
s,t + σ2

T

and variance

σs,t+1 =

(
χ2
t

σ2
T

+
1

σ2
s,t

)−1

=
σ2
Tσ

2
s,t

χ2
tσ

2
s,t + σ2

T

.
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