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Abstract

Conventional measurements of risk premiums are biased if the estimation models
are potentially misspecified and unstable. Say, factor interactions is one of the crucial
omitted specifications that standard models cannot involve. Motivated by this argu-
ment, we propose an interpretable factorization-based method to estimate the risk
premium of factors in a linear asset pricing model (we call it Factorization Asset Pric-
ing Model, FAPM), which is able to account for all interactions between factors using
factorized parameters. We emphasize the critical importance of the factor interactions
in measuring risk premiums. We show that our factorization approach can be iden-
tified as the best-performing method among current methodologies (including trees
and neural networks, among other nonlinear models), even in a parsimonious linear
framework. We also highlight that few factors input can predict well, while numerous
factors set may generate negative effects due to adverse factor interactions. Remark-
ably, weak factors in standard models may play important roles in FAPM because
their interactions with other factors can be significant.

Keywords: Factor Interactions, Tensor Factorization, Interpretable Machine Learning,
Approximation Error, Factorization Asset Pricing Model, FinTech.



1 Introduction

In this article, we investigate the central importance of the factor interactions by introduc-
ing a generalized linear framework based on the factorization method. We do so in the
context of estimating the risk premiums, thereby proposing a novel Factorization Asset
Pricing Model (henceforth, FAPM).

Our primary contributions are threefold. First, we provide a novel benchmark for an-
alyzing the factor interactions in a generalized linear framework. This benchmark model
can be exploited to extend current widely adopted multifactor models in various disci-
plines. In this paper, we extend the standard arbitrage pricing theory (APT) (see Ross
(1976)) by exploiting this factorization-based framework, thereby formalizing our Fac-
torization Asset Pricing Model (FAPM). Note that this extension is very straightforward,
in particular, we consider a generalized linear factor model that directly adds the com-
ponents of factor interactions based on the factorization method. Therefore, the FAPM
remains to be a linear model that can rule out the nonlinear effect explicitly. Remark-
ably, this linearity is beneficial for us to identify the fundamental mechanism of the factor
interactions in isolation.

Second, we synthesize the traditional empirical asset pricing methods with interpretable
machine learning, especially on factor interactions. Relative to the recent adoption of ma-
chine learning methods in empirical asset pricing studies, our FAPM can be identified
as a more logically straightforward and natural extension to the conventional empiri-
cal asset pricing models. Most remarkably, we show that our FAPM can be the best-
performing method among current methodologies, including trees and neural networks
among other nonlinear models, even in a parsimonious linear framework. The outstand-
ing performance of FAPM is summarized in two ways. The first is the highest out-of-
sample predictive R2 (over 2.5 times relative to the current frontier of risk premium
measurement) relative to preceding literature. Second, and more importantly, we push
the frontier of the current machine learning forecasts economic gains to investors using
FAPM. A value-weighted long-short decile spread strategy that takes positions based on
stock-level FAPM forecasts earns an annualized out-of-sample Sharpe ratio of 1.42, more
than 2.3 times the performance of a leading regression-based strategy, and over 46.7%

1



better than neural network forecasts-based strategy from the literature.1

Third, to the best of our knowledge, we are the first paper that systematically and pre-
cisely analyzes the factor interactions in a dedicated generalized framework.2 Our find-
ings are novel and can be summarized in two aspects. First, we highlight that the weak
factors in generalized linear models can be crucial in FAPM because the effect of their
interactions with other factors can be quite significant. Second, we identify a counterin-
tuitive result that the excessive factor loadings may diminish the performance of FAPM
because some adverse factor interactions due to redundant factors may generate negative
impacts on the model predictions.

To test the two aspects of former findings, we propose a novel FAPM-7 model against
the all-factor FAPM. In contrast to conventional factor asset pricing models (e.g., Fama
and French (1993), Jegadeesh and Titman (1993), and most recently Fama and French
(2015)), the FAPM-7 model no longer picks the most significant factors in the general-
ized linear factor models; instead, we select the strongest seven factors and the weakest
seven factors around 103 factors pool. Although this specification (the FAPM-7) may not
be the best approach that we can provide, it is good to identify the interaction effect of
the weak factors. For instance, we find that the performance of FAPM-7 is much better
than either the only strongest 7-factor FAPM or the only weakest 7-factor FAPM. This re-
sult indicates that the weak factors can generate significant interactions in FAPM, thereby
affecting the model predictions; however, this effect cannot be identified in the existing
methods so far. Otherwise, as Figure 5 illustrates, we can observe that the FAPM per-
forms worse after putting more than the first seven pair factors (seven strongest factors
and seven weakest factors) into the model. The phenomenon that more factor loadings
despite poor model performance can be recognized as the negative impact due to the ad-
verse factor interactions. However, no current approach can identify these adverse factor
interactions so far, including some nonlinear machine learning models, for example, the
neural network models.

1Note that the performance of FAPM is much more robust than a set of nonlinear machine learning mod-
els in recent literature. We struggle to replicate the results of neural network forecasts (the best performance
in current literature); however, unfortunately, we still cannot reach the best version of the neural network
models even after numerous experiments so far.

2Gu, Kelly, and Xiu (2020) also try to analyze the factor interactions via neural network methods. How-
ever, as the ”universal approximation” model, the neural network is neither dedicated to exploring factor
interactions nor logically straightforward in the analysis.
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At the very beginning, a conventional prediction of asset pricing models is that some
risk factors should command the risk premium. However, most theoretical multifactor
models assume that risk factors are independent and have no interaction effect with each
other (see Ross (1976), Roll and Ross (1980), Ingersoll Jr (1984), and Huberman, Kandel,
and Stambaugh (1987), among many others). As an important issue, factor interactions
has been paid more and more attention by scholars in recent years, for example, Gu et al.
(2020) emphasize the importance of the factor interactions and recognize that the con-
ventional generalized linear models are comparatively poorly suited for capturing factor
interactions.3 Therefore, the problem is, while different approaches have been proposed
to estimate risk premia, they are all affected by one common potential issue of model
misspecifications: omitted factor interactions.

Omitted factor interactions arise in standard linear predictions of asset pricing models
whenever the model used in the estimation cannot identify the high-order interactions
among the risk factors. This is a fundamental concern when estimating current asset
pricing theories, because theoretical models are parsimonious and usually suggest that
the risk factors are independent, whereby neglecting the impact of the factor interactions.
Namely, the standard generalized linear models are misspecified in approximating the
scenario that incorporates factor interactions, which we also refer to as the approximation
error.

While the possibility of model misspecification (or the approximation error), for ex-
ample, omitted factor interactions, is known in the literature (e.g., Bai (2009), Moon and
Weidner (2015), and Gu et al. (2020)), until now, no systematic and explicitly solution on
factor interactions has been proposed so far. In particular, papers focus on the interactive
fixed effect (e.g., Bai (2009)) typically add the multiplicative interacted term of individual

3Gu et al. (2020) highlight that the deep learning method may approximate the ambiguous functional
forms in a good way. They also point out that the nonlinear approximation based on deep learning may
also be related to factor interactions. However, unfortunately, the ambiguous theoretical mechanism for the
deep learning models (black box) leads to an unclear interpretation of the factor interactions. Namely, it
is really difficult to clearly isolate the factor interactions effect from the nonlinearity effect in the conven-
tional deep learning models. Note that the deep learning models indeed present a composition effect with
numerous unknowable effects. However, nobody can identify the specific factor interactions effect in the
deep learning models. That is, the deep learning models are hopefully incorporating the factor interactions
effect, but not for sure. By contrast, this paper builds up a linear framework, the Factorization Asset Pricing
Model (FAPM), that clearly rules out the nonlinearity effect and only the factor interactions present. One
advantage of our FAPM framework is its precise theoretical mechanism.
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and time fixed effect into the standard linear model to rule out some interactive effects.
However, the interactive fixed effect model is far from nesting all factor interactions as
well as analyzing their economic significance. Otherwise, papers using the deep learning
approach (e.g., Gu et al. (2020)) usually select a ”universal approximation” model such as
the neural network, thereby claiming that the model can entwine many telescoping layers
of nonlinear predictor interactions. Unfortunately, the ambiguous theoretical mechanism
for the deep learning models cannot clearly identify the mechanism of the factor inter-
actions in their analysis. There is, however, no methodology guarantee that the specific
effect of factor interactions and their economic mechanism can be precisely identified so
far.

In contrast to current literature, we propose a general solution for the omitted factor
interactions issue in generalized linear factor models, the FAPM. We introduce a novel
factorization-based methodology that exploits the factorized parametrization of available
test factors to nest all factor interactions correctly. We show that the FAPM depends
on a linear number of parameters and can be computed in linear time, allowing direct
optimization and storage of model parameters without storing any training data. Re-
markably, FAPM is able to estimate factor interactions even in problems with huge data
sparsity or omitted variable bias (see Giglio and Xiu (2021)).

1.1 Literature review

This paper sits at the confluence of several strands of literature, combining empirical asset
pricing with high-order factor interactions analysis.

Our paper relates to the literature on factor empirical asset pricing models since the ar-
bitrage pricing theory (APT) Ross (1976). Chamberlain and Rothschild (1983) provide an
extension of this framework to approximate factor models. Connor and Korajczyk (1986),
Connor and Korajczyk (1988), and Lehmann and Modest (1988) try to estimate and test
in the APT setting by extracting principal components of returns. Most recently, Kozak,
Nagel, and Santosh (2018) show principal components can capture sizable fraction of the
cross-section of expected returns. Gu et al. (2020) use neural network models to capture
the model nonlinearity. In contrast to these papers, we extend the standard linear factor
models by incorporating factor interactions, thereby improving the model explanatory
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power to the cross-sectional variation of expected returns.
Our paper is also related to the literature that has pointed out misspecification in es-

timating and testing linear factor models. Kleibergen (2009) argue that ignoring model
misspecification and identification-failure leads to an overly positive assessment of the
pricing performance of spurious, otherwise biased risk premiums estimates of true fac-
tors in the model (see Jagannathan and Wang (1998)), and even useless factors (see Kan
and Zhang (1999)). Therefore, some inference methods have been used that are more re-
liable and robust to model misspecification (e.g., Shanken and Zhou (2007), Kleibergen
(2009), Kan and Robotti (2009), Kan, Robotti, and Shanken (2013), and Gospodinov, Kan,
and Robotti (2013)). Giglio and Xiu (2021) focus on the omitted variables bias and mea-
surement error. We study and correct the biases due to omitted factor interactions and
approximation error.

Note that our work indeed contributes to the existing investigations of the weak fac-
tors. Kan and Zhang (1999) first note that the estimation on risk premia from linear re-
gression becomes distorted when a factor to which test assets have zero exposure is in-
cluded in the model. Kleibergen (2009) highlights that standard estimation fails if the
betas are relatively small. Bryzgalova (2015) suggests eliminating weak factors via a pe-
nalized two-pass regression, and Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2019)
adopt instrumental variable estimator to correct the error-in-variables bias. Giglio, Xiu,
and Zhang (2021) argue that the weak factor problem is fundamentally an issue of test
asset selection, and Anatolyev and Mikusheva (2021) propose a four-split approach that
addresses the issues of weak factors. Besides current literature, our paper focus on the in-
teraction effect of the weak factors. We emphasize the importance of weak factors when
considering the factor interaction effect, in particular, our approach shows that the inter-
action of these weak factors with other factors can be significant in improving the model
predictions.

Our work extends the empirical asset pricing literature on machine learning adoption.
Rapach, Strauss, and Zhou (2013) predict global equity market returns using lagged re-
turns of all countries by adopting lasso regression. The neural network models have been
widely used in early studies, for example, the derivatives prices forcast (e.g., Hutchin-
son, Lo, and Poggio (1994)). More recently, various machine learning methods have been
used to investigate the cross-section of stock returns. Kelly, Pruitt, and Su (2019) use di-
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mension reduction methods to estimate and test factor pricing models. Kozak, Nagel,
and Santosh (2020) use shrinkage and selection methods to approximate a stochastic dis-
count factor, and Freyberger, Neuhierl, and Weber (2020) approximate a nonlinear func-
tion for expected returns by adopting similar method. Kelly et al. (2019), Gu, Kelly, and
Xiu (2021), and Feng, Giglio, and Xiu (2020) try to nest machine learning into equilibrium
asset pricing. Harvey and Liu (2021) study the multiple comparisons problem using a
bootstrap procedure. Gu et al. (2020) simultaneously explore a wide range of machine
learning methods to study the behavior of expected stock returns. The focus of our paper
is to identify the factor interactions and their impact on expected stock returns, with a
particular emphasis on our factorization asset pricing model, among other methods.

Gu et al. (2020) highlight that the deep learning method may approximate the ambigu-
ous functional forms in a good way. They also point out that the nonlinear approximation
based on deep learning may also be related to factor interactions. However, unfortu-
nately, the ambiguous theoretical mechanism for the deep learning models (black box)
leads to an unclear interpretation of the factor interactions. Namely, it is really difficult to
clearly isolate the factor interactions effect from the nonlinearity effect in the conventional
deep learning models. Note that the deep learning models indeed present a composition
effect with numerous unknowable effects. However, nobody can identify the specific fac-
tor interactions effect in the deep learning models. That is, the deep learning models
are hopefully incorporating the factor interactions effect, but not for sure. By contrast,
this paper builds up a linear framework, the Factorization Asset Pricing Model (FAPM),
that clearly rules out the nonlinearity effect and only the factor interactions present. One
advantage of our FAPM framework is its precise theoretical mechanism.

The rest of the paper is organized as follows. Section 2 discusses the methodology and
the key approximation error in the standard risk premia predictors, the omitted factor
interactions. Section 3 introduces our main results of estimation and discusses some of
the related empirical evidence. Section 4 provides the results of factorization portfolios
based on our FAPM, and Section 5 concludes.
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2 Methodology

In this section, we are going to describe our model, Factorization Asset Pricing Model
(FAPM). First, we formalized the problem of an asset’s excess return, along with a brief
introduction to the linear estimation approach. Then, we introduce our model, the FAPM,
which aims to estimate the risk premiums using second-order factor interactions. We also
present a comprehensive description of optimizing our model through an efficient and
scalable fashion.

2.1 Problem Formalization and Linear Approach

We aim to estimate the risk premiums according to the observed factors of the asset. Fol-
lowing Gu et al. (2020), we define the asset’s excess return for stock i on month t + 1
as:

ri,t+1 = Et(ri,t+1) + εi,t+1, (Excess Return)

where εi,t+1 is an unpredictable noisy, and Et(ri,t+1) = y(x(i,t)) is the risk premiums
estimation based on observed factors x(i,t) ∈ Rn. Note that the stocks are indexed as
i = 1, · · · , Nt, and months are indexed as t = 1, · · · , T. We will omit the superscript and
represent the factors of an asset as x if there is no ambiguity.

Remark 2.1. It is worth noting that the result of the function y(·) does not depend on any stock
or month. Namely, we use the same function estimator to estimate the asset’s excess for stocks
at different times. This function relies only on the factors of one period, without any information
about other stocks at any time. ri,t represents the excess return of stock i at time t. In this model,
output ri,t+1 represents the predicted excess return in time t + 1 of stock i. Also, if we talk about
portfolios, the output can be our average predicted excess return of a certain portfolio in time t+ 1.

To estimate the risk premiums for factor x ∈ Rn, an intuitive approach is to use linear
model, such as Ordinary Least-Squares (OLS) regression Hutcheson (2011) or Support
Vector Regression (SVR) Awad and Khanna (2015). The core idea is to model the result,
the estimated risk premiums ŷ(x) as a linear combination of input factors x ∈ Rn. That
is,

ŷ(x) = w0 + wTx = w0 +
n

∑
i=1

wixi, (Linear Model)
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where w0 ∈ R, w = (w1, w2, . . . , wn)T ∈ Rn are the parameters to be optimized.
However, the linear model assumes that the contributions of the input factors to the

result are independent. The interactions between factors are ignored, which also plays an
important role in risk premiums (see Gu et al. (2020)).

2.2 FAPM: Learning second-order factor interactions

The main idea of FAPM is to estimate the risk premiums using second-order factor inter-
actions, i.e., the second-order term xixj.

To begin with, we establish the naive Second-order Model.

ŷ(x) =w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=i+1

Bijxixj. (Second-order Model)

Proposition 1. In Second-order Model, the total number of parameters is O(n2)4.

Proof. The parameters needs to be optimized are w0 ∈ R, w = (w1, w2, . . . , wn) ∈ Rn, B =

[Bij]1≤i<j≤n. The size of each part of parameters are 1, n, n(n−1)
2 . The total size of parame-

ters is n(n−1)
2 + n + 1 = O(n2).

Note that the second-order weight parameter B is extremely high-dimensional, with
n(n−1))

2 parameters. This situation brings difficulties to the conventional learning method.
First, the more parameters a model has, the more training data it requires to make the
model well-generalize. Otherwise, the learned model will easily be overfitting (see Mohri,
Rostamizadeh, and Talwalkar (2018)). Second, the training data has to cover all the factor
interactions to optimize the whole parameter space. This is not realistic in many cases,
since the second-order factor interactions are usually sparse (see Rendle (2010)).

To reduce the dimension of the second-order weight parameter B, we factorize it by a
low-rank matrix V = (v1, v2, . . . , vn) ∈ Rk×n, i.e.,

B := V TV , (Factorization)

4Here O(·) is a function of the time complexity of the algorithm. That means that the algorithm takes
approximately · calculations
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where k << n is a hyperparameter, and vi ∈ Rk is the i-th column vector for the matrix
V . Based on the factorization, we get the proposed model, Factorization Asset Pricing
Model (FAPM):

ŷ(x) := w0 +
n

∑
i=1

wixi +
n

∑
i=1

n

∑
j=i+1

〈vi, vj〉xixj, (FAPM)

where 〈·, ·〉 is the dot product.

Proposition 2. By making B = V TV , we reduce the parameter space from O(n2) to O(nk).

Proof. The parameters needs to be optimized are w0 ∈ R, w = (w1, w2, . . . , wn) ∈ Rn, V =

(v1, v2, . . . , vn) ∈ Rn×k. The size of each part of parameters are 1, n, nk. The total size of
parameters is nk + n + 1 = O(nk).

Now we are going to better understand the factorization B = V TV . For any positive
definite matrix B, there exists a matrix V such that B = V TV if k is sufficiently large.
Therefore, by adjust k, FAPM can sufficiently express the interaction matrix B. We restrict
k to restrict the expressiveness of FAPM in order to better generalize under sparse factor
interactions.

The second-order factor interaction part in Equation (FAPM) can be computed in
O(nk) as following:

n

∑
i=1

n

∑
j=i+1

〈vi, vj〉xixj =
1
2

n

∑
i=1

n

∑
j=1
〈vi, vj〉xixj −

1
2

n

∑
i=1
〈vi, vi〉xixi

=
1
2

(
n

∑
i=1

n

∑
j=1

k

∑
f=1

(xivi, f )(xjvj, f )−
n

∑
i=1

k

∑
f=1

v2
i, f x2

i

)

=
1
2

k

∑
f=1

[
(

n

∑
i=1

vi, f xi)(
n

∑
j=1

vj, f xj)−
n

∑
i=1

v2
i, f x2

i

]

=
1
2

k

∑
f=1

[
(

n

∑
i=1

vi, f xi)
2 −

n

∑
i=1

v2
i, f x2

i

]
.

(1)

Based on Equation (1), we can compute FAPM model efficiently with computation
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complexity O(nk):

ŷ(x) := w0 +
n

∑
i=1

wixi +
1
2

k

∑
f=1

[
(

n

∑
i=1

vi, f xi)
2 −

n

∑
i=1

v2
i, f x2

i

]
. (FAPM:O(nk))

Figure 1: The implementation of the algorithm on a batch.
The input is an M× N matrix, where M is the number of stocks in a batch and N is the
number factors of each stock. The output is an M-dimensional vector, the predicted risk
premiums for each stock. The yellow, green and red m-dimensional vectors before the
output are the result second-order term (see Equation (1)), linear term and bias term in
Equation (FAPM:O(nk)).

[Insert Algorithm 1 Here]
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Figure 1 and Algorithm 1 present the model’s predictive processing for each input,
specifically the implementation of the above equation.

Moreover, we establish a simple example to illustrate our approach.

Example 1. Assume that we have a simple asset pricing problem. For each stock, we define the
factor below and detailedly in figure 2:

[Insert Figure 2 Here]5

Assume that we have a simple asset pricing problem (see Figure 2). Each stock contains infor-
mation of permno, time, continuous factors, and domains (discrete factors). For each domain, the
0/1 value indicates that whether this stock belongs to the corresponding domain (1 for positive
and 0 for negative). We set the continuous factors and domains as the factors we use in our task.
Assuming that we set k = 3. As a result, the number of parameters of V is 8× 3 = 24, while the
number of different second-order interactions are 8×(8−1)

2 = 28.

2.3 Optimization

The gradients of the FAPM with respect to its parameters(w0, w, V ) are:

∂

∂θ
ŷ(x) =


1, f or θ = w0,
xi, f or θ = wi,

xi ∑n
j=1 vj, f xj − vi, f x2

i , f or θ = vi, f .
(2)

As a matter of result, the model parameters(w0, W , V ) of FAPM can be optimized effi-
ciently by gradient descent methods such as stochastic gradient descent (SGD) Bottou
(2012) for a variety of differentiable loss functions.

Denote r̂i,t+1 = ŷ(xi,t) and ri,t+1 as the estimated risk premiums and ground truth for
asset xi,t+1, respectively. To evaluate the performance of the predicted result in training,

5This figure shows a simple example of asset pricing problem. The first part is a batch of stock factors.
And the second part shows how to generate the second-order relationships.
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we define in-sample R2
is as

R2
is(r, r̂) = 1−

∑(i,t)∈τ4
(ri,t+1 − r̂i,t+1)

2

∑(i,t)∈τ4
r2

i,t+1
, (FAPM:R2

is)

where τ4 is the set of all the training samples, i.e., the assets that appeared in the training.
Since R2

is is differentiable with respect to the estimate result r̂i,t+1 = ŷ(xi,t). Therefore, we
can also use it as the loss function to optimize the parameters of FAPMthrough gradient
descent.

Similarly, we define out-of-sample R2
oos as

R2
oos(r, r̂) = 1−

∑(i,t)∈τ3
(ri,t+1 − r̂i,t+1)

2

∑(i,t)∈τ3
r2

i,t+1
, (FAPM:R2

oos)

where τ3 is the test set, whose data never enter into model training. R2
oos pools prediction

errors across firms and over time into a grand panel-level assessment of each model. It
can be used to evaluate the generalization ability of the learned model.

Remark 2.2. For the loss function, it is common to consider the L2 regularization Girosi, Jones,
and Poggio (1995). It can be used to constraint the parameters of the model to avoid overfitting.
However, it doesn’t work well in our experiments. It only works when the coefficient of regular-
ization is extremely large, with a significant increase of training time. Moreover, we found that
by only applying the R2

is loss (defined in Equation (FAPM:R2
is)) we can obtain an excellent model

which outperforms all the previous works. As a result, we only set R2
is as loss function.

2.4 Framework

[Insert Figure 3 Here]6

[Insert Algorithm 2 Here]

6This figure illustrates the general framework of FAPM algorithm operation. The model and data set are
initialized first. When the model and data set are in place, the training begins. We trained the epoch wheel
each time, and from the results of these multiple trainings, selected the model that performed best on the
validation set. Perform test set predictions on selected models, save and evaluate the results. By rolling
adjustment of training set, verification set and test set according to year, the final test set prediction result
of year was obtained.
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The figure 3 and algorithm 2 illustrate the general framework of FAPM algorithm oper-
ation. The model and data set are initialized first. The second-order parameters of the
model are initialized randomly according to the normal distribution, while the first-order
parameters are initialized according to the weights of the linear model. Such treatment
is in line with the demand, because FAPM degenerates into a simple linear regression
model without considering the second-order relationship. We only need a model that is
stronger than the linear model. If the FAPM is inferior to the linear model, there is no
need for us to study. In other words, we can build a second-order relationship based on a
first-order linear model. Then when training, we selected the model that performed best
on the validation set. Perform test set predictions on selected models, save and evaluate
the results. By rolling adjustment of the training set, verification set, and test set according
to year, we can obtain the yearly prediction result for the test set.

3 Empirical Evidence

3.1 Dataset and Implementation

Following Gu et al. (2020), we obtain monthly total individual equity returns from CRSP
for all firms listed in the NYSE, AMEX, and NASDAQ. The data starts in March 1957 (the
start date of the S&P 500) and ends in December 2017. As a result, we have 31,924 stocks
in 60 years. After that, we calculate individual excess returns from the Treasury-bill rate
to proxy for the risk-free rate. In addition, we build 94 factors (61 of which are updated
annually, 13 are updated quarterly, and 20 are updated monthly) based on a cross-section
of stock returns literature. Besides, there are 74 industry dummies corresponding to the
first two digits of Standard Industrial Classification (SIC) codes included.

We divide the whole dataset into the initial training set (the first 18 years, 1957-1974),
the initial validation set (the following 12 years, 1975-1986), and the out-of-sample testing
(the last 30 years, 1987-2016). To evaluate our algorithm, we adopt a “rolling training and
testing” approach. That is, we run the algorithm, including the training and testing, for 30
times with different training, validation and test set. At the beginning, the test set is the
data in 1987, the training set is the data from 1957 to 1974, and the validation set is the data
from 1975 to 1986. After we finish the training and testing procedure for the first setting,

13



we extend the training set as the data from 1957 to 1975, set the validation set as the data
from 1976 to 1987, and adopt the data in 1988 as the test set. Repeat the process above,
and we will obtain the resulted R2

oos for each year in the 30 years (1987-2016). The final
result is computed by averaging the result in each testing year. It’s worth noting that our
calculation for Roos here is very straightforward. In the process of model rolling training,
we will calculate the Roos of the year according to the annual predicted sequence and
actual sequence. At the end of model training, we spliced the 30-year predicted sequence
with the 30-year actual sequence to calculate the overall Roos.

Implementation. Figure 3 and Algorithm 2 illustrate the general framework of our al-
gorithm. Firstly, we set the training, validation and testing data via the “rolling training
and testing” approach described above. Then, we initialize V and w (the second-order
and linear parameters) randomly using normal distribution. During training, we select
the model that performs best on the validation set with respect to R2

oos. After we trained
the model, we evaluate it by computing R2

oos on the test set.

3.2 The cross-section of individual stocks

Here we present the empirical results of our FAPM model. We compare our model with
all the comparison method in Gu et al. (2020): OLS with all covariates, OLS-3 (which pre-
selects size, book-to-market, and momentum as the only covariates), PLS, PCR, elastic net
(ENet), generalized linear model with group lasso (GLM), random forest (RF), gradient
boosted regression trees (GBRT), and neural network architectures, proposed in Gu et al.
(2020) with one to five layers (NN1,...,NN5). The experiment results are shown in Table 1
and Figure 4.

[Insert Table 1 Here]7

[Insert Figure 4 Here]8

7In this table, we report monthly R2
oos for the entire panel of stocks using OLS with all factors (OLS),

OLS using only size, book-to-market, and momentum (OLS-3), PLS, PCR, elastic net (ENet), generalize
linear model (GLM), random forest (RF), gradient boosted regression trees (GBRT), neural networks with 1
to 5 layers (NN1–NN5), FAPM and FAPM-7. “+H” indicates the use of Huber loss instead of the l2 loss.We
also report these R2

oos within sub samples that include only the top-1,000 stocks or bottom-1,000 stocks by
market value.

8The figure of Table 1
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We can see from the results that,

• It is difficult for OLS-3+H to reach a positive R2
oos, and its performance on top-1,000

stocks is extremely inferior.
• For all the comparison methods (without FAPM), NN4 gets the best performance in

all the settings. But in general, the gap between the generalized linear model and
NN4 is not large. Linear models have their own advantages.

• FAPM, as a novel generalized linear model, embodies this advantage. Compared
with all the baseline algorithms, FAPM-7 reaches the best R2

oos of 1.01%.
• For the top-1,000 stocks, the R2

oos increased from 0.67% to 1.28% (FAPM-7), far out-
performing the other models.

• For the Bottom-1000 stocks, the R2
oos(0.81%) of FAPM-7 outperforms all the compar-

ison algorithms as well.

Ideally, For FAPM, The more factors it has, the better performance it could reach.
However, during practice, we find that training with too many factors, especially the
redundant ones, may cause adverse factor interactions that are not conducive to pre-
diction. The underlying reason is that, the empirical data is usually noisy, thus all the
models, including FAPM, are easily overfitting. Inspired by this, we consider selecting
several representative factors for our model to train. We do so by selecting factors via a
“one strong factor with one weak factor” approach. That is, we set a specific number m
and then select M factors with the best performance and m factors with the worst perfor-
mance to train FAPM. As m increase, R2

is will fluctuate. The results are shown in Table 2
and Figure 5.

[Insert Table 2 Here]9

Table 2 shows the performance of FAPM when we train the model via the top-m and
bottom-m (for m ≤ 7) important factors. The importance of factor i is defined as the
first-order parameter wi of OLS model with all factors. We can see that The top-1 factor,
ntis, reaches the importance of 57%. This is the reason why a simple pair of factors can
make the predictive R2 up to 0.48%, and when 2 ≤ m ≤ 3, the result is close to the case

9The importance correspond to the top-7 and bottom-7 factors chosen for prediction. factor importance
each line is normalized to sum to one. The figure shows the standard R2 (all the factors) and the R2

is of only
m pairs factors using ”one strong factor with one weak factor”.
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when m = 1. However, when m ≥ 4, the performance of FAPM significantly improve
(from 0.43% to 0.80%). The performance even outperforms the FAPM model using all the
factors. The reason is that, as we will discuss later, there is a strong interaction between
the factor bm and ntis.

[Insert Figure 5 Here]10

In Figure 5, we further present the performance of FAPM using top-m and bottom-m
(For m ≤ 20) importance factors. We can observe that

• When M = 7, the R2
oos reaches the optimum value 1.01%. Notice that the selected

factors here are mostly macro factors.
• When M = 15, the R2 reaches 0.75%, which is the second maximum point.
• When M > 15, The relationship between R2

oos and m is no longer significant.

We define FAPM-m as FAPM using the top-m and bottom-m factors in training. In Ta-
ble 1, we can see the R2

oos of FAPM-7 significantly outperforms all the other algorithms,
including NN4.

When m = 7, since all factors are macro factors, we try to add individual stock fac-
tors to enhance interpretation, such as SIC2. At each feeding of a pair of factors, a 75-
dimensional SIC2 factor (one-hot treatment) is added. Follow the training method de-
scribed above, we get a set of R2

oos.

[Insert Table 3 Here]11

[Insert Figure 6 Here]12

Figure 6 and Table 3 show the comparison of overall R2
oos in the final test set before and

after the addition of SIC2 factors. In a word, the addition of domains has a negative influ-
ence on predictions, though SIC2 increases explanatory ability. When M = 1, addition of

10This figure reports the in-sample R2 of different pairs of factors. The blue line reports the total R2
is of

m-pairs factors, where m is x-axis. The blue line reports the R2 of the FAPM with all factors. The vertical
axis is R2 of monthly returns.

11In this table, we report the R2
oos of different pairs(1,2,· · · ,7) of factors with and without the discrete

factor SIC2.
12This figure reports the R2

oos of the FAPM with m-pair factors, with and without factor SIC2.
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SIC2 improves the R2 from 0.48% to 0.51%. When M = 7, addition of SIC2 decreases the
R2 from 1.01% to 0.87%. After adding SIC2, with the increase of training parameters, the
training effect gradually changed from improvement to equivalent, and then decrement.
Although theoretically, the addition of SIC2 should strengthen the interpretation of the
model, and the training effect will be better. Still, from the results of a few factors, the
effect may be better without the addition of SIC2. As for the follow-up, when there are
enough factors, adding SIC2 is obviously beneficial to model training and convergence,
but we do not consider it at present. We can see that the interpretation of few factors
is enhanced after the addition of SIC2, and the effect of the model is improved. In the
process of increasing factors, this effect is not obvious and will even weaken the model’s
prediction ability.

Figure 7 and 8 show year-by-year in-sample R2 of model with and without SIC2. From
the training results, after SIC2 is added, the influence of the increase of factors in the
initial training period would be decreased. In contrast, at the end of the training period
(2009-2020), the training effect of each model fluctuated violently and was uneven. And
if we don’t add the factor SIC2, all the models follow a trend generated by the data set
itself. For example, they all perform well in years 1 and 22, while in year 23 have a
terrible prediction. This may indicate that SIC2 has not correlated sufficiently with the
returns in recent years. However, the relationship between SIC2 and return was not weak
in previous years, which may lead to some bad first or second-order relationships with
enormous weights, thus affecting the forecast results.

[Insert Figure 7 Here]13

[Insert Figure 8 Here]14

Figure 9 shows the annual differences between each model and standard model (all
factors) R2. That is, we subtracted the annual prediction R2 of the full-factor model from
the annual prediction R2 of each model with a few exceptions. Almost all models consis-
tently outperformed standard models in year-to-year forecasting. The green line repre-

13We report different models’ in-sample R2 of each training year on train set. Those models are different
m-pair FAPM s with SIC2 factor

14We report different models’ in-sample R2 of each training year on train set. Those models are different
m-pair FAPM s without SIC2 factor
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sents the annual training R2 when M = 7, which is significantly higher than other models.
And the improvement even reaches 0.05% in the year 2003. This may further prove the
validity of the “strong factor and weak factor” approach.

[Insert Figure 9 Here]15

3.3 Factor importance

One advantage of FAPM is that we can precisely extract the parameters of the factors we
need. These parameters represent the extent to which this factor affects the dependent
factor. As we mentioned in the figure 1, we divided the model parameters into three
parts. The first-order parameter is actually the independent importance of each factor,
while the second-order parameter can calculate the importance of interaction between
factors. Using these parameters, we can also calculate the T-statistics of each factor and
so on, to evaluate the importance of the factor. Here, we simply show the 12 factors with
the highest absolute value of coefficients. We reduce the coefficients of these factors to 1 in
order to reflect the impact of different factors on model prediction intuitively. Obviously,
such a reduction does not affect the mutual ranking of factors.

Figure 10 shows the 12 largest coefficients, ranked from largest to smallest in abso-
lute value. They are: Short-term reversal(mom1m), Industry momentum(indmom), Recent
maximum return(maxret), Risk measures constitute the third influential group(retvol),
Real estate holdings(realestate), Earnings volatility( roavol), Log market equity(mve1), As-
set growth(agr), Revenue surprise(rsup), Share turnover(turn), stock Momentum(mom12m),
and Bid-ask spread(baspread). Noting that here we only report the individual factors, and
Short-term reversal(mom1m) has 48% importance of all factors, which makes sense. From
this, we can see the first-order importance of factors, and it’s democratic, drawing predic-
tive information from a broader set of characteristics.

[Insert Figure 10 Here]16

15We report the difference between the predicted R2 of different models and the full-factor predicted R2

by year
16factor importance for the top-12 most influential factors in each model. factor importance is an average

over all training samples. factor importance within the model is normalized to sum to one.
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Indeed, since most macro factors have a greater impact on returns than individual
stock factors, their importance is, of course, far greater than individual stock factors, so
we separate macro factors for alternative discussions. The Figure 11 and Table 4 show
the R2-based importance measure for each macroeconomic predictor (again normalized
to sum to one within a model). In Gu et al. (2020), book-to-market ratio (bm) is the most
important macroeconomic factor trained by FAPM. Therefore, according to the model in
this paper, the book-to-market ratio(bm) is still a significant macro factor. We can see that
the importance of bm reaches 57.2%, far larger than 27% in NN4. And default spread(d f y)
also plays a crucial role with the importance of 34%, next to 42% in the ENet model. Re-
garding the importance of other macro factors, the results of FAPM’s model are more sim-
ilar to those of linear and generalized linear models. This is mainly reflected in the high
importance of the default spread(d f y) factor and the low importance of dividend-price
ratio(dp), earnings-price ratio(ep), and other factors. So the ntis and tbl factors are much
lower than nonlinear model NN4. Many accounting characteristics have low importance
because they are not available at the monthly frequency.

[Insert Table 4 Here]17

[Insert Figure 11 Here]18

Next, we explore interaction between factors. As we mentioned in equation (Fac-
torization), we can get the second-order coefficient matrix of the factors. Table 5 illus-
trates the 20 most important interactions which are showed in Figure 12 and 13. The
strongest second-order relationship exists between ntis and bm, which reaches 37%. Gu
et al. (2020) also reports the high interaction between ntis and bm factors, although using
an absolutely different approach. Meanwhile, among all the factors, the interaction be-
tween macroeconomic factors is obviously stronger than that between a macroeconomic
factor and an individual stock factor. The latter is also obviously stronger than the inter-
nal interaction between individual stock factors. Interactions between individual stock
factors are not large, and the macroeconomic factors play the chief characteristic. That

17factor importance for eight macroeconomic factors in each model. factor importance is an average over
all training samples. factor importance within each model is normalized to sum to one.

18The figure of Table 4
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interaction makes economic sense. For example, the strong second-order relationship be-
tween bm and ntis indicates that the size effect is more pronounced when low aggregate
valuations (bm is high). When equity issuance (ntis) is low, the low volatility anomaly
is powerful in high valuation and issuance environments. As for interactions between
individual factors, Cash flow volatility(stdc f ), Earnings volatility(roavol) and Corporate
investment(cinvest) perform strongest.

[Insert Table 5 Here]19

[Insert Figure 12 Here]20

[Insert Figure 13 Here]21

Through Table 5, we also find that ntis has a better performance in interactions than
any other macroeconomic factors. And also, Cash flow volatility(stdc f ) performs best
among individual factors. We suspect some factors might be better at maintaining second-
order relationships, even though first-order relationships are less meaningful. These fac-
tors make it easier to establish many effective second-order relationships, so much so that
all of them are involved. This is an evaluation of the importance of metrics on another
level. We think roughly that the second-order significance of a factor is the sum of all its
related second-order relationships. To prove that, we compute the average interactions
of each factor and report in Table 6 and Figure 14. Apparently, ntis-related interactions
accounted for 36.6% of all interactions, the highest of all. This means that the level of
ntis to some extent, affects the impact of other factors on asset returns. The sensitivity of

19In this table, we rank all the interaction of the total 95 individual and 8 macroeconomic factors and
choose some on the top. Then we normalize all the interaction in order to easily report the comparison. The
first row of the table reports the interactions between macroeconomic factors, and the second row reports
the interactions between an individual factor and another.

20In this figure, we report the interaction between macroeconomic factors and between macro and indi-
vidual factors. We rank all those interactions and choose the top-12. All the interactions are normalized
to 1. Actually, we report the interaction of bm − ntis, ntis − dp, ntis − ep, ntis − d f y, bm − dp, bm − ep,
ntis− tms, bm− d f y, ntis− sgr, ntis− tbl, ntis− cash, ntis− stdc f .

21In this figure, we report the interactions between individual factors. In fact, we only choose the top-6
and normalize them to 1 to report.
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many factors to R2 is affected by the size of ntis factor.

[Insert Table 6 Here]22

[Insert Figure 14 Here]23

4 Factorization Portfolios

So far, we have analyzed the predictability of individual stock earnings. FAPM has an
excellent performance in predicting individual stocks. Next, we compare the results of
FAPM and other models in portfolio return prediction to reflect the superiority of FAPM.
The analysis of the investment portfolio has vital practical significance.

[Insert Figure 15 Here]24

First, portfolio forecasting provides additional indirect evaluation of the model. By
establishing new sample data based on the original data set, the robustness of the model
is guaranteed.

Second, in real life, portfolios are more common than individual stocks. A good port-
folio usually makes the returns much more robust. We evaluate the predictive perfor-
mance of models by studying value-weighted portfolios, providing economic significance
for models in the most valuable (and essential) assets.

Third, the distribution of portfolio returns is sensitive to the dependence of stock re-
turns, so a good stock return prediction model cannot guarantee the accurate prediction
of the portfolio level. Bottom-up portfolio forecasting enables us to evaluate the model’s
ability to translate its asset forecasting into a broader and more complex investment en-
vironment.

22In this table, we also deal with the interactions between all the 103 factor. Consider the absolute value
of the coefficient as the interaction. Then we compute the average of all the interactions of each factor. Sum
the average returns to one, and choose the top-20.

23This figure reports the average interaction of each factor using pie. The 20 most significant factors are
ntis, bm, dp, ep, d f y, securedind, tms, stdc f , cash, tbl, roeq, roaq, stdacc, roavol, cinvest, aeavol, rsup, nincr,
ear, chtx. Their corresponding colors are shown in the legend. Gray represents other factors.

24This figure shows how to generate portfolios from dataset
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4.1 Prespecified portfolios

We build bottom-up forecasts by aggregating individual stock return predictions into
portfolios. This bottom-up approach works for any target portfolio whose weights are
known a priori. The portfolio return forecast is constructor as

r̂p
t1
=

n

∑
i=1

wp
i,t+1r̂i,t+1, (3)

where p is a portfolio and is denoted as wp
i,t+1 for stock i. r̂i,t+1 is a model-based out-of-

sample forecast for stock i.
In this part, we compare the performance of FAPM , partial generalized linear model

(OLS-3+H,PLS,PCR,ENet+H,GLM+H,RF,GBRT+H) and neural network (NN4) in port-
folio prediction. Refer to Gu et al. (2020) for detailed definitions of these models. For
each model, we made bottom-up predictions for the 30 best-known portfolios in the pre-
vious empirical studies. These portfolios include S&P 500, the Fama-French size, value,
profitability, investment, and momentum factor portfolios (SMB, HML, RMW, CMA, and
UMD, respectively), and subcomponents of these Fama-French portfolios, including six
size and value portfolios, six size and investment portfolios, six size and profitability port-
folios, and six size and momentum portfolios. The subcomponent portfolios are long only,
and SMB, HML, RMW, CMA, and UMD are zero-net-investment long-short portfolios.
We create the portfolios ourselves using CRSP market equity value weights in all cases.
According to the current data, we adjust positions at time t and adjust the portfolio at
time t + 1. Although different from the approach of S&P 500 index and the characteristic-
based Fama-French portfolios(Fama and French (2021)), we can clearly track the weight
of each portfolio and adjust it flexibly. The figure 15 and algorithm 3 shows how to gen-
erate portfolios. The purple and red lines mean splitting the dataset and ranking them by
the factor in the rectangle. The blue and pink lines mean combining them with small and
big groups. The green lines refer to especially calculating for common factor portfolios.

[Insert Table 7 Here]25

25In this table, we report the out-of-sample predictive R2s for thirty portfolios using OLS with size,
book-to-market, momentum, OLS-3, PLS, PCR, elastic net (ENet), generalized linear model with group
lasso (GLM), random forest (RF), gradient boosted regression trees (GBRT), neural networks (NN4), FAPM,
FAPM-7. ”+H” indicates the use of Huber loss instead of the l2 loss. The six portfolios in panel A are the
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Table 7 reports the monthly R2
oos over our 30-year testing set. Actually, we calculate

the predicted index and the actual index for all the stocks in each period, and then use
the index sequence to compute R2. Mostly, generalized linear models are poor predictors
of the CMA portfolio returns. The FAPM-7 can improve the out-of-sample prediction R2

from 0.99% to 1.89%, which is a significant improvement. It is worth mentioning that the
R2

oos of neural network(NN4) in Gu et al. (2020) can reach 1.84%, while it is only 1.36%
in this paper. It means that the neural network may not be robust enough relative to the
FAPM . Figure 16 reports the comparison among those 10 models. Obviously, the gener-
alized linear model is difficult to give a good prediction of the portfolio, with negative R2

appearing on many indices. In particular, OLS-3 has a much lower fitting effect than other
models. The performance of the neural network (NN4) is also unsatisfactory. Although it
performed well in the portfolio “Big Market value”, it did not achieve the expected effect
in general. However, FAPM and FAPM-7 model always maintains a high R2. Especially
in the common Factor portfolios, the FAPM-7 has a surprising advantage.

[Insert Figure 16 Here]26

Compared with other famous portfolio predictors, we can find the advantage of FAPM.
In the survey, Welch and Goyal (2007), nearly all the macroeconomic return predictor fac-
tors failed to produce a positive R2

oos. Kelly and Pruitt (2013) find that PLS’s R2
oos can

reach 1%, though their forecast is not based on the bottom-up approach. Even Cochrane
(2007), the most well-studied portfolio predictors, just produce an in-sample predictive
R2 around 1%, which is lower than that we find in FAPM.

Next, we compare neural network (NN4) and FAPM in detail. First, positive R2 is
obtained for all portfolio predictions of both, which is in line with the conclusion of Gu
et al. (2020). But only in a few portfolios, such as HML, did NN4 outperform FAPM by
0.59%. For most portfolio forecasts, FAPM performance is significantly better than NN4
results. In some subcomponents of factor portfolios, the difference between them can
reach 1.2%. And on average, FAPM was almost twice as good as NN4.

S&P 500 indices and the Fama-French SMB, HML, CMA, RMW, and UMD factors. The twenty-four port-
folios in panel B are 3× 2 size double-sorted portfolios used in the construction of the Fama-French value,
investment, profitability, and momentum factors.

26The figure of Table 7
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Campbell and Thompson (2007) indicates that a minimal change in R2 can cause a
massive shift in utility gains for a mean-variance investor. They define the Sharpe ratio
(SR∗) earned by an active investor exploiting predictive information improves over the
Sharpe ratio (SR) made by a by-and-hold investor according to

SR∗ =

√
SR2 + R2

1− R2 , (4)

Where R2 stands for the performance for the predictor. When the predictive informa-
tion is more valuable, we can gain a more significant improvement in SR.

We first calculate the full-time Sharpe ratio of each portfolio earned by a by-and-hold
investor. Then we translate the predictive R2

oos and the SR calculated into an improvement
in annualized Sharpe ratio, SR∗− SR, for an investor exploiting machine learning predic-
tions for portfolio timing. For example, the buy-and-hold Sharpe ratio of the S&P500,
which is 0.51 in the 30-year out-of-sample period, improved to 0.54 by a market-timer
exploiting forecasts from the FAPM . For characteristic-based portfolios, FAPM learning
methods improve Sharpe ratios by anywhere from a few percentage points to over 27
percentage points.

[Insert Table 8 Here]27

Table 8 reports the annualized Sharpe ratio gains (relative to a buy-and-hold strategy) for
timing strategies based on machine learning forecasts. “-“ means the predicted R2 < 0. In
our results, the strongest and most consistent trading strategies are mostly based on non-
linear models (without FAPM). They all get improvement in all portfolios. Remarkably,
in FAPM-7, the HML index is improved 27%, and the CMA index of FAPM is 45% higher
than a buy-and-hold position, which is significantly better than that reports in Gu et al.
(2020). Figure 17 shows that in detail. Clearly, in a subcomponent of factor portfolios,
FAPM-7 performs much better than other models, especially in the “small market value”
group.

[Insert Figure 17 Here]28

27This table documents improvement in annualized Sharpe ratio SR∗ − SR. We compute the SR∗ by
weighting the portfolios based on a market timing strategy (see Campbell and Thompson (2007)).

28The figure of Table 8
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4.2 Machine learning portfolios

Since the discussion above uses only R2, not all the forecast information, we will discuss
none of the portfolios above. We tried to construct a new portfolio to make predictions
directly using machine learning approach. At the end of each month, we forecast the
information for the next month, dividing the forecast into ten fractions from the smallest
to the largest, and using market weight to restructure the ten portfolios. We construct a
zero-net portfolio, buying the group with the best forecast(decile 10) and selling the group
with the worst prognosis (decile 1).

Table 9 reports the results. For each machine learning prediction, the actual gains
are monotonously increased. The grouping of each model is of practical significance. In
the table, all data except SR are percentages. We noted that the SR of the portfolio con-
structed according to the OLS-3 model can reach 0.61, which is consistent with Gu et al.
(2020). However, the SR of the neural network (NN4), which performed well in the pre-
vious test, was only 0.80, which was like that of the PCR-model in Gu et al. (2020), not
quite in line with the author’s expectation. To explain this problem, in fact, the training of
neural networks may have different degrees of fitting in different parts of the data. The
prediction results of the neural network in this paper may not fit well at the beginning
and end, resulting in the final SR no longer reaching the previous desirable outcome.
Neural network(NN4) is less stable in such a structured portfolio. Among the models
compared in this paper, FAPM-7 still has outstanding performance, with its correspond-
ing SR reaching 1.42, nearly two times higher than the best model performance in the
current stage.

[Insert Table 9 Here]29

29In this table, we report the performance of prediction-sorted portfolios over the 30-year out-of-sample
testing period. All stocks are sorted into deciles based on their predicted returns for the next month.
Columns ”Pred”, ”Avg”, ”SD”, and ”SR” provide the predicted monthly returns for each decile, the av-
erage realized monthly returns, their standard deviations, and Sharpe ratios, respectively. All portfolios are
value weighted.
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5 Conclusion

We propose a generalized linear framework based on the factorization method to inves-
tigate factor interactions. We adopt this novel approach to estimate the risk premium of
observable factors in a linear asset pricing model, thereby proposing a Factorization Asset
Pricing Model (the FAPM). Our methodology relies on a simple generalized linear factor
model plus the components of factor interactions based on the factorization method. In a
linear framework, the FAPM can correct the omitted factor interactions problem in cases
where the data sets are sparse. In this case, the risk premiums for observable factors are
estimated more accurately, and the model performance is the best around the currently
existing methods.

Our FAPM can be viewed as an extension of the conventional factor asset pricing mod-
els, including the Capital Asset Pricing Model (the CAPM) and Arbitrage Pricing Theory
(the APT). In particular, it can be thought of as the first formalized model that incorpo-
rates factor interactions. It can also be thought of as the benchmark to evaluate the ded-
icated model for identifying the factor interactions. The main advantage of our FAPM is
that it provides a linear, specific, and systematic way to tackle the concern that the model
predicted by theory is misspecified because of omitted factor interactions. Rather than
relying on arbitrarily chosen interactive fixed effects and ”universal approximations’. It
also explicitly takes into account the possibility of approximation error in any linear factor
models with observed factors.

26



References

Anatolyev, Stanislav, and Anna Mikusheva, 2021, Factor models with many assets: strong
factors, weak factors, and the two-pass procedure, Journal of Econometrics .

Awad, Mariette, and Rahul Khanna, 2015, Support vector regression, in Efficient learning
machines, 67–80 (Springer).

Bai, Jushan, 2009, Panel data models with interactive fixed effects, Econometrica 77, 1229–
1279.
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Table 1: Monthly out-of-sample stock-level prediction performance(percentage R2
oos)

OLS+H OLS-3+H PLS PCR ENet+H GLM+H RF GBRT+H NN1 NN2 NN3 NN4 NN5 FAPM FAPM-7

All -3.46 0.16 0.27 0.26 0.11 0.19 0.33 0.34 0.33 0.39 0.4 0.39 0.36 0.47 1.01
Top 1000 -11.28 0.31 -0.14 0.06 0.25 0.14 0.63 0.52 0.49 0.62 0.7 0.67 0.64 0.73 1.28

Bottom 1000 -1.3 0.17 0.42 0.34 0.2 0.3 0.35 0.32 0.38 0.46 0.45 0.47 0.42 0.42 0.81

Note: In this table, we report monthly R2
oos for the entire panel of stocks using OLS with all factors (OLS), OLS using only size,

book-to-market, and momentum (OLS-3), PLS, PCR, elastic net (ENet), generalize linear model (GLM), random forest (RF),
gradient boosted regression trees (GBRT), neural networks with 1 to 5 layers (NN1–NN5), FAPM and FAPM-7. “+H” indicates
the use of Huber loss instead of the l2 loss. We also report these R2

oos within subsamples that include only the top-1,000 stocks
or bottom-1,000 stocks by market value.

Table 2: Importance of the top and bottom 7 factors

m 1 2 3 4 5 6 7

Top-7 ntis(57.18) svar(39.00) dp(1.35) bm(0.87) dfy(0.46) ep(0.48) tms(0.40)
Bottom-7 ear(2.49e-5) mom36m(2.57e-5) herf(4.70e-5) salerec(17.30e-5) rd sale(20.21e-5) std turn(20.86e-5) opperprof(28.76e-5)
R2

oos(percentage) 0.48 0.43 0.43 0.80 0.80 0.88 1.01

Note: The importance correspond to the top-7 and bottom-7 factors chosen for prediction. Factor importance each line is
normalized to sum to one. The table shows the standard R2 (all the factors) and the R2

is of only m pairs factors using ”one strong
factor with one weak factor” style.
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Table 3: R2
oos with and without factor SIC2

1 2 3 4 5 6 7

With sic2 0.51 0.56 0.52 0.72 0.64 0.78 0.87
Without sic2 0.48 0.42 0.44 0.80 0.80 0.88 1.01

Note: In this table, we report the R2
oos of different pairs(1,2,· · · ,7) of factors with and without the discrete factor SIC2.

Table 4: Factor importance for macroeconomic predictors

PLS PCR ENet+H GLM+H RF GBRT+H NN1 NN2 NN3 NN4 NN5 FAPM

dp 12.52 14.12 2.49 4.54 5.80 6.05 15.57 17.58 14.84 13.95 13.15 1.46
ep 12.25 13.52 3.27 7.37 6.27 2.85 8.86 8.09 7.34 6.54 6.47 1.81
bm 14.21 14.83 33.95 43.46 10.94 12.49 28.57 27.18 27.92 26.95 27.90 57.20
ntis 11.25 9.10 1.30 4.89 13.02 13.79 18.37 19.26 20.15 19.59 18.68 0.19
tbl 14.02 15.29 13.29 7.90 11.98 19.49 17.18 16.40 17.76 20.99 21.06 0.48
tms 11.35 10.66 0.31 5.87 16.81 15.27 10.79 10.59 10.91 10.38 10.33 2.15
dfy 17.17 15.68 42.13 24.10 24.37 22.93 0.09 0.06 0.06 0.04 0.12 34.39
svar 7.22 6.80 3.26 1.87 10.82 7.13 0.57 0.83 1.02 1.57 2.29 2.30

Note: This table presents the factor importance for eight macroeconomic factors in each model. Note that factor importance is
an average overall training sample, and the factor importance within each model is normalized to sum to one.
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Table 5: Interaction between factors

Macroeconomic factor bm-ntis ntis-dp ntis-ep ntis-dfy bm-dp bm-ep ntis-tms bm-dfy ntis-tbl

Interaction 0.37 0.13 0.11 0.08 0.06 0.05 0.04 0.04 0.03

Individual factor ntis-sgr ntis-cash ntis-stdcf stdacc-stdcf cinvest-roabol divi-stdcf chtx-rsup securedind-roavol divi-cinvest

Interaction 0.310 0.279 0.271 0.032 0.025 0.024 0.022 0.019 0.018

Note: In this table, we rank all the interaction of the total 95 individual and 8 macroeconomic factors and choose some on the top.
Then we normalize all the interaction in order to easily report the comparison. The first row of the table reports the interactions
between macroeconomic factors, and the second row reports the interactions between an individual factor and another factor.

Table 6: Top-20 Average interactions of each factor

factor Av — factor Av — factor Av — factor Av

nits 0.066 — bm 0.032 — dp 0.011 — ep 0.009
dfy 0.008 — securedind 0.004 — tms 0.003 — stdcf 0.003
cash 0.003 — tbl 0.002 — roeq 0.0026 — roaq 0.0025

stdacc 0.002 — roavol 0.0021 — cinvest 0.0021 — aeavol 0.0021
rsup 0.0021 — nincr 0.0020 — ear 0.0019 — chtx 0.001829332

others 0.053

Note: In this table, we deal with the interactions between all the 103 factor as well. Consider the absolute value of the coefficient
as the interaction. Then we compute the average of all the interactions of each factor. Sum the average returns to one, and
choose the top-20.

33



Table 7: Monthly portfolio-level out-of-sample predictive R2

OLS-3 PLS PCR ENet GLM RF GBRT NN4 FAPM FAPM-7
+H +H +H +H

A. Commom factor portfolios
S&P500 -0.02 -0.42 -0.83 0.05 0.37 1.03 1.25 0.17 0.48 0.53
SMB 0.57 1.87 0.34 1.33 2.08 0.49 0.44 0.53 1.36 1.33
HML 0.78 0.56 0.75 0.53 0.92 0.77 0.02 1.27 0.68 1.52
RMW -0.29 0.89 -0.46 -1.03 0.12 -0.82 -1.21 0.64 0.44 1.38
CMA 0.27 -0.54 -0.15 -0.67 0.99 -0.06 -0.93 0.68 0.74 1.89
UMD -0.63 -0.75 -0.35 0.37 -0.10 -0.25 -0.04 0.59 1.18 0.50

B. Subcomponents of factor portfolios
Big value 0.31 0.06 -0.13 0.59 0.32 1.01 1.03 0.88 0.35 0.52
Big growth 0.38 -1.17 -1.47 0.20 0.19 1.01 0.89 0.89 1.07 0.88
Big neutral 0.37 -0.09 -1.16 0.38 0.73 1.23 0.78 0.97 0.82 0.64
Small value -0.07 0.73 0.35 0.37 0.72 0.54 0.73 0.11 0.84 1.09
Small growth 0.10 0.29 -0.27 -0.13 -0.29 0.62 0.84 0.39 0.34 1.48
Small neutral 0.08 0.28 0.27 0.39 0.15 0.94 0.36 0.51 1.47 1.86

Big conservative 0.53 -0.28 -0.57 1.19 0.53 1.05 0.53 1.05 0.49 0.69
Big aggressive 0.33 -0.38 -1.09 0.35 0.57 1.38 1.20 0.85 0.87 0.95
Big neutral 0.47 -1.38 -1.36 0.73 0.48 1.03 0.76 0.99 0.27 0.29
Small conservative 0.31 1.17 0.66 -0.01 0.45 0.83 0.66 0.64 1.85 1.93
Small aggressive 0.01 0.48 0.05 -0.18 0.06 0.73 1.46 0.03 0.28 0.90
Small neutral 0.07 0.28 0.38 0.22 0.37 0.78 -0.05 0.42 1.17 1.70

Big robust 0.42 -0.78 -1.36 0.76 0.55 1.04 0.33 0.93 0.47 0.29
Big weak 0.31 0.98 0.46 0.76 0.89 1.23 0.96 0.80 1.00 1.08
Big neutral -1.02 -0.86 0.61 0.53 0.70 0.99 0.91 0.99 0.31 0.54
Small robust 0.04 0.54 0.29 -0.48 -0.14 -0.52 0.39 0.26 1.54 1.66
Small weak 0.01 0.82 0.49 -0.43 0.54 1.25 1.12 0.36 1.55 1.77
Small neutral 0.06 0.18 -0.38 -0.29 -0.38 0.54 -0.19 0.25 0.36 1.07

Big up 0.32 -0.18 -1.02 0.46 0.87 0.92 0.79 0.76 0.18 0.37
Big down 0.27 -1.53 -1.75 0.54 -0.34 1.07 0.61 0.70 1.13 1.09
Big medium 0.49 -1.31 -1.84 0.68 -0.19 1.34 1.70 0.99 0.14 0.21
Small up 0.01 0.88 0.76 -0.17 0.15 0.52 -0.13 0.23 1.03 1.54
Small down -0.01 0.27 -0.38 0.65 -0.19 1.37 1.34 0.33 1.16 1.32
Small medium 0.06 0.28 0.32 0.59 0.28 1.02 0.86 0.28 0.68 1.47

Note: In this table, we report the out-of-sample predictive R2s for thirty portfolios using OLS with size,
book-to-market, momentum, OLS-3, PLS, PCR, elastic net (ENet), generalized linear model with group
lasso (GLM), random forest (RF), gradient boosted regression trees (GBRT), neural networks (NN4),
FAPM, FAPM-7. ”+H” indicates the use of Huber loss instead of the L2 loss. The six portfolios in panel A
are the S&P 500 index and the Fama-French SMB, HML, CMA, RMW, and UMD factors. The twenty-four
portfolios in panel B are 3× 2 size double-sorted portfolios used in the construction of the Fama-French
value, investment, profitability, and momentum factors.

34



Table 8: Marketing timing Sharpe ratio gains

OLS-3 PLS PCR ENet GLM RF GBRT NN4 FAPM FAPM-7
+H +H +H +H

A.Commom factor portfolios
S&P500 - - - 0.00 0.02 0.13 0.19 0.00 0.03 0.03
SMB 0.03 0.36 0.01 0.18 0.44 0.02 0.02 0.03 0.19 0.18
HML 0.07 0.04 0.07 0.03 0.10 0.07 0.00 0.19 0.05 0.27
RMW - 0.09 - - 0.00 - - 0.04 0.02 0.21
CMA 0.01 - - - 0.13 - - 0.06 0.07 0.45
UMD - - - - - - - 0.05 0.18 0.03

B.Subcomponents of factor portfolios
Big value 0.01 0.00 - 0.04 0.01 0.12 0.12 0.09 0.01 0.03
Big growth 0.02 - - 0.00 0.00 0.11 0.08 0.08 0.12 0.08
Big neutral 0.02 - - 0.02 0.06 0.17 0.07 0.11 0.08 0.05
Small value - 0.11 0.02 0.03 0.10 0.06 0.11 0.00 0.14 0.23
Small growth 0.00 0.02 - 0.00 0.02 0.11 0.19 0.04 0.03 0.55
Small neutral 0.00 0.01 0.01 0.02 0.00 0.09 0.01 0.03 0.23 0.37

Big conservative 0.03 - - 0.17 0.03 0.13 0.03 0.13 0.03 0.06
Big aggressive 0.01 - - 0.01 0.03 0.20 0.15 0.08 0.08 0.10
Big neutral 0.03 - - 0.06 0.03 0.13 0.07 0.12 0.01 0.01
Small conservative 0.01 0.15 0.05 - 0.02 0.07 0.05 0.04 0.37 0.40
Small aggressive 0.00 0.07 0.00 - 0.00 0.16 0.57 0.00 0.02 0.23
Small neutral 0.00 0.01 0.01 0.00 0.01 0.06 0.00 0.02 0.14 0.30

Big robust 0.02 - - 0.07 0.04 0.13 0.01 0.10 0.03 0.01
Big weak 0.01 0.10 0.02 0.06 0.08 0.15 0.09 0.06 0.10 0.12
Big neutral - - 0.04 0.03 0.06 0.11 0.09 0.11 0.01 0.03
Small robust 0.00 0.03 0.01 0.02 - - 0.02 0.01 0.24 0.28
Small weak 0.00 0.13 0.05 0.04 0.06 0.31 0.25 0.03 0.46 0.59
Small neutral 0.00 0.00 0.02 0.01 - 0.04 0.00 0.01 0.02 0.14

Big up 0.01 0.00 - 0.02 0.09 0.10 0.07 0.07 0.00 0.02
Big down 0.01 - - 0.03 - 0.12 0.04 0.05 0.13 0.12
Big medium 0.03 - - 0.06 - 0.22 0.35 0.12 0.00 0.01
Small up 0.00 0.10 0.07 - 0.00 0.03 - 0.01 0.13 0.30
Small down - 0.01 - 0.05 - 0.22 0.21 0.01 0.16 0.20
Small medium 0.00 0.03 0.03 0.11 0.03 0.32 0.23 0.03 0.15 0.61

Note: This table documents improvement in annualized Sharpe ratio SR∗ − SR. We compute the SR∗

by weighting the portfolios based on a market timing strategy (see Campbell and Thompson (2007)).
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Table 9: Performance of the machine learning portfolios

OLS-3+H NN4

Pred Avg SD SR Pred Avg SD SR
Low(L) 0 0.4 5.9 0.24 -0.48 0.02 5.79 0.01
2 0.17 0.58 4.65 0.43 -0.08 0.13 5.32 0.08
3 0.35 0.6 4.43 0.47 0.24 0.49 4.85 0.35
4 0.49 0.71 4.32 0.57 0.32 0.51 4.57 0.38
5 0.62 0.79 4.57 0.6 0.57 0.74 4.44 0.58
6 0.75 0.92 5.03 0.63 0.79 0.77 4.53 0.59
7 0.88 0.85 5.18 0.57 0.98 0.79 4.62 0.59
8 1.02 0.86 5.29 0.56 1.13 0.86 4.69 0.63
9 1.21 1.18 5.47 0.75 1.37 1.04 4.58 0.78
High(H) 1.51 1.34 5.88 0.79 1.69 1.16 5.65 0.71
H-L 1.67 0.94 5.33 0.61 2.17 1.14 4.91 0.80

FAPM-7 FAPM

Pred Avg SD SR Pred Avg SD SR
Low(L) -0.06 -0.08 3.15 -0.13 -0.18 -0.63 7.17 -0.09
2 0.31 0.15 3.08 0.01 0.59 0.13 6.16 0.33
3 0.49 0.46 3.05 0.07 0.86 0.22 5.14 0.57
4 0.64 0.55 3.02 0.12 1.37 0.24 4.13 1.14
5 0.78 0.79 2.98 0.17 1.46 0.35 4.12 1.22
6 0.96 0.83 2.96 0.23 1.66 0.48 4.11 139
7 1.19 1.12 2.91 0.32 1.78 0.59 4.11 0.99
8 1.47 1.38 2.84 0.43 1.82 0.83 5.11 1.23
9 1.72 1.84 2.81 0.52 1.87 1.12 6.11 1.05
High(H) 2.02 2.01 2.76 0.64 1.45 7.24 6.09 0.70
H-L 2.08 2.09 2.45 1.42 2.09 1.63 4.28 1.15

Note: In this table, we report the performance of prediction-sorted portfolios over the 30-year out-
of-sample testing period. All stocks are sorted into deciles based on their predicted returns for the
next month. Columns ”Pred”, ”Avg”, ”SD”, and ”SR” provide the predicted monthly returns for each
decile, the average realized monthly returns, their standard deviations, and Sharpe ratios, respectively.
All portfolios are value weighted.
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Figure 2: A simple example
This figure shows a simple example of asset pricing problem. The first part is a batch of
stock factors. And the second part shows how to generate the second-order relationships.
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Figure 3: Algorithm Framework
This figure presents the general framework of FAPM algorithm operation. The model and data set are
initialized first. When the model and data set are in place, the training begins. We trained the epoch wheel
each time, and from the results of these multiple pieces of training, selected the model that performed
best on the validation set. Perform test set predictions on selected models, save and evaluate the results.
By rolling adjustment of the training set, verification set, and test set according to year, the final test set
prediction result of the year was obtained.
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Figure 4: Monthly out-of-sample stock-level prediction performance(percentage R2
oos)

This figure report monthly R2
oos for the entire panel of stocks using OLS with all factors (OLS), OLS using

only size, book-to-market, and momentum (OLS-3), PLS, PCR, elastic net (ENet), generalize linear model
(GLM), random forest (RF), gradient boosted regression trees (GBRT), neural networks with 1 to 5 layers
(NN1–NN5), FAPM, and FAPM-7. “+H” indicates the use of Huber loss instead of the L2 loss. We also
report the R2

oos within subsamples that include only the top-1,000 stocks(black) or bottom-1,000 stocks(blue)
by market value.
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Figure 5: R2
is of m Pairs factors and all features

This figure reports the in-sample R2 of different pairs of factors. The blue line reports the total R2
is of m-pairs

factors where m is x-axis. The blue line reports the R2 of the FAPM with all factors. The vertical axis is R2

of monthly returns.
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Figure 6: R2 with and without SIC2
This figure reports the R2

oos of the FAPM model with m-pair factors, with and without SIC2 factor.

0 2 4 6 8
0.000

0.005

0.010

0.015

m

R
2 i
s

without sic

with sic

41



Figure 7: R2
is with SIC2 by year

We report different models’ in-sample R2 of each training year on the train set. Those models are different
m-pair FAPM models with SIC2 factor.
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Figure 8: R2
is without sic by year

We report different models’ in-sample R2 of each training year on the train set. Those models are different
m-pair FAPM models without SIC2 factor.
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Figure 9: R2
is of m-pairs factors on the basis of all-factors

We report the difference between the predicted R2 of different models and the full-factor predicted R2 by
year.
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Figure 10: Factor importance
Factor importance for the top-12 most influential factors in each model. Note that factor importance is an
average overall training sample, and the factor importance within the model is normalized to sum to one.
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Figure 11: Macroeconomic factor importance
Factor importance for eight macroeconomic factors in each model. Note that the factor importance is an
average over all training samples, and the factor importance within each model is normalized to sum to
one.
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Figure 12: Interaction between Macroeconomic factors
In this figure, we report the interaction between macroeconomic factors and between macro and individual
factors. We rank all those interactions and keep the top-12 factor interactions. All the interactions are
normalized to 1. Eventually, we report the interaction of bm− ntis, ntis− dp, ntis− ep, ntis− d f y, bm− dp,
bm− ep, ntis− tms, bm− d f y, ntis− sgr, ntis− tbl, ntis− cash, and ntis− stdc f .
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Figure 13: Interaction between Individual factors
In this figure, we report the interactions between individual factors. In fact, we only choose the top-6 factor
interactions and normalize them to 1 to report.
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Figure 14: Average interaction of each factor
This figure reports the average ineraction of each factor using pie. The 20 most significant factors are ntis,
bm, dp, ep, d f y, securedind, tms, stdc f , cash, tbl, roeq, roaq, stdacc, roavol, cinvest, aeavol, rsup, nincr, ear,
and chtx. Their corresponding colors are shown in the legend. Gray represents other factors.
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Figure 15: Portfolio calculation process
This figure shows how to generate portfolios from a given dataset.
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Figure 16: Monthly portfolio-level out-of-sample predictive R2

In this figure, we report the out-of-sample predictive R2 for thirty portfolios using OLS with size, book-to-
market, momentum, OLS-3, PLS, PCR, elastic net (ENet), generalized linear model with group lasso (GLM),
random forest (RF), gradient boosted regression trees (GBRT), neural networks (NN4), FAPM, and FAPM-7.
”+H” indicates the use of Huber loss instead of the L2 loss.
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Figure 17: Marketing timing Sharpe ratio gains
This figure illustrates the improvement in annualized Sharpe ratio SR∗ − SR. We compute the SR∗ by
weighting the portfolios based on a market timing strategy (see Campbell and Thompson (2007)).
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Algorithm 1 Predict risk premiums via FAPM.

Input: X = (x[1], x[2], . . . , x[M])T ∈ RM×N: Asset data set.
Output: r̂ = (r̂[1], r̂[M], . . . , r̂[M])T ∈ RM: The predicted risk premiums.

1: function PREDICT(X)
2: for i = 0→ M do
3: Get ŷ(x[i]) by Equation FAPM:O(nk)
4: r̂[i] ← ŷ(x[i])
5: end for
6: r̂ ← (r̂[1], r̂[M], . . . , r̂[M])T

7: return r̂
8: end function

Algorithm 2 FAPM Train and Test: this algorithm shows how to train and test FAPM in
experiments

Input: X, Y : Asset data set and the corresponding ground truth (the real asset price) from
1957 to 2016. I > 0: The number of iterations in training.

Output: R2
oos: The evaluation metric.

1: function TRAIN AND TEST(X, Y)
2: for i = 1→ 30 do
3: Xtrain, Ytrain ← X[1957,1974+i−1], Y[1957,1974+i−1]
4: Xvalid, Yvalid ← X[1975+i−1,1986+i−1], Y[1975+i−1,1986+i−1]
5: Xtest, Ytest ← X1987+i−1, Y1987+i−1
6: R2

max, index← 0, 0
7: for j = 1→ I do
8: optimize the model parameters via gradient descent on R2

is using
Xtrain, Ytrain

9: compute R2
valid using Xvalid, Yvalid

10: if R2
valid > R2

max then
11: R2

max, index← R2
valid, j

12: end if
13: end for
14: select the model in the index-th iteration.
15: compute R2

oos[i] using Xtest, Ytest
16: end for
17: R2

oos ← average value of R2
oos[1], R2

oos[2], . . . , R2
oos[30]

18: return R2
oos

19: end function
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Algorithm 3 Portfolio: this algorithm shows how to calculate the portfolios and their
subcomponent.

Input: Some certain columns of dataset, bm, operpro f , agr, mom1m, mvel1, and we merge
them to a subset subdata. The actual vector of returns RET, and the predicted returns
Y

Output: The R2 of the actual portfolio returns and the predicted portfolio returns.
1: function PORTFOLIO(subdata, RET, Y)
2: for year = 1987→ 2017 do
3: Get the subdata of year
4: label ←Rank the columns bm, operpro f , agr, mom1m. Then for each column,

label subdata into three parts.
5: subcomponent←According to label and get 30 portfolios
6: sub1 ← Cal port f olio return(mve1, RET)
7: sub2 ← Cal port f olio return(mve1, Y)
8: common1, common2 ←Calculate the common portfolios’ returns using

sub1, sub2
9: end for

10: R2 ←Calculated by the sequence of sub1, sub2, common1, common2
11: end function
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