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Abstract

This paper studies the optimal refund mechanism when an uninformed

buyer can privately acquire information about his valuation over time. In

principle, a refund mechanism can specify the odds that the seller requires

the product returned while issuing a (partial) refund, which we call stochastic

return. It guarantees the seller a strictly positive minimum revenue and facili-

tates intermediate buyer learning. In the benchmark model, stochastic return

is always sub-optimal. The optimal refund mechanism takes simple forms: the

seller either deters learning via a well-designed non-refundable price or encour-

ages full learning and escalates price discrimination via free return. This result

is robust to both positive learning and negative learning framework.
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1 Introduction

The rise of the Internet clears the way for consumers to acquire product information.

Even before purchase, there are lots of information available on the Internet and so-

cial media that can help the consumers to make better decisions. However, whether

it is necessary to acquire information; if yes, how much information the consumers

should acquire, clearly depend on the pricing and return policy. For example, if the

seller does not allow a return, then the consumer tends to make a more cautious

purchase as he will acquire all necessary information before purchase; conversely, if

the seller offers a free return, then there will be no regret for uninformed purchase.

In this sense, a refund mechanism determines the buyer’s value from learning. From

the sellers’ perspective, she can indirectly control the buyer’s endogenous learning

by designing different refund mechanisms, which will eventually affect the buyer’s

learning outcomes and then affect the seller’s expected sales revenue.

This paper studies the revenue-maximizing refund mechanism anticipating that the

buyer privately acquires information about his true valuation over time. A refund

mechanism specifies a product’s price and its return policy. In general, the return

policy could take many different formats. Free return (return with a full refund)

and no return are commonly used in practice. Moreover, a seller can offer a partial

refund while receiving a return request. For example, airlines usually charge a fixed

fee for a ticket refund. More surprisingly, e-commerce retailers such as Amazon

sometimes issue a refund without requiring a product return.

Given the flexibility in designing return policies, in principle, the seller can allow the

buyer to keep the item with some probability while issuing a refund. This generates

a positive trading surplus upon a return. Moreover, this guarantees the seller a

strictly positive minimum revenue since the buyer is willing to accept a partial

refund in exchange for positive odds to keep the item. We call such a return policy

stochastic return. Assuming quasi-linear consumer preferences, we can represent a

return policy as (1) the probability that the seller requires the product returned and

(2) the (expected) refund paid back to the buyer. This characterization can capture

all the above-mentioned return policies.

For concreteness, consider a seller (she) selling one unit of an indivisible good to

a buyer (he). The buyer’s valuation could be either high or low, vh > vl ≥ 0,
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and we normalize the seller’s opportunity cost to be zero so that the first-best

solution requires immediate consumption without learning. The buyer is initially

uninformed about his true product valuation, and we interpret this uncertainty

in product valuation as coming from match-specific factors so that the seller is

symmetrically uninformed ex-ante. Therefore, the seller’s major concern is to design

a mechanism to implement some ideal amount of buyer learning.

The buyer can privately acquire information both before and after purchase. For

example, a graphic designer, intending to buy an iPad, is initially uncertain about

whether it is good for drawing and image editing. He can explore related informa-

tion online or visit the Apple store to experience the product. Or he can purchase

the product first and evaluate it afterwards. We adopt positive Poisson learning in

the main model. Specifically, by exerting costly effort, e.g., spending time acquiring

information, good news arrives according to some Poisson rate if the true valuation

is high, otherwise no news arrives if the true valuation is low. Moreover, the learning

rate after purchase is weakly higher than the learning rate before purchase since the

information attainable before purchase is still attainable after purchase. Neverthe-

less, with the spread of information on the Internet, the consumer can obtain more

and more instructive information before purchase, rendering the extra information

generated by personal experience after purchase smaller. As a benchmark, we focus

on the case where the learning rate is the same before and after purchase.

At the outset, the seller commits to a refund mechanism, after which, the buyer

decides how much information to acquire and makes his purchase and subsequent

return decision based on the information outcomes. Essentially, a refund mechanism

offers the buyer two options: either to consume the item and obtain the consumption

utility, or to return it and obtain the return payoff. Therefore, it creates the buyer

an option value, which eventually affects the buyer’s learning outcomes.

Building our model under the exponential-bandit framework (Keller, Rady and

Cripps (2005)) allows us to disentangle the impacts of price and return policy on the

buyer’s learning behavior. Specifically, the price affects the buyer’s incentive to learn

and thereby determines his expected trading surplus. The return policy determines

the total amount of information that the buyer optimally acquires, since the buyer

makes the stopping decision comparing the return payoff and the continuation value

from learning.
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To find the revenue-maximizing refund mechanism, we first characterize the com-

plete set of buyer learning outcomes that are inducible under any arbitrary refund

mechanism. Next, we find the corresponding optimal mechanism that implements

each learning outcome. Last, we recast the seller’s objective function as the maxi-

mization over the inducible buyer learning outcomes rather than the feasible refund

mechanisms. It reduces the dimension of the seller’s choice variable.

The set of inducible buyer learning outcomes can be segmented into three groups:

full learning, partial learning, and no learning. Full learning refers to the scenarios

where the buyer stops learning when there is zero continuation value from learning.

It can be implemented by free return. Partial learning refers to the scenarios where

the buyer stops learning when there is still positive continuation value from learning.

To implement it, the seller has to offer the buyer positive odds to keep the item upon

return to compensate the opportunity information rent that the buyer could have

enjoyed if he continued to learn. Finally, No learning refers to the case that the

buyer consumes the product immediately without learning. To achieve this, the

seller does not allow a return, but she carefully designs a price making the buyer

just indifferent between consuming the item and continuing to learn.

Our main result in the benchmark model suggests that inducing partial learning is

always sub-optimal,1 implying the optimality of a deterministic mechanism. That

is, if the seller allows a return, she requires the buyer to return the product with

probability one. Otherwise, she does not allow a return. This bang-bang solution

comes from the result that the seller’s revenue is quasi-convex in the buyer’s stop-

ping belief if the price is also optimally adjusted. Intuitively, whenever the seller

wants to extend the buyer’s learning process–induce a lower stopping belief–in or-

der to increase the odds of a successful sale, she can further benefit by raising the

price simultaneously. Thus, it reinforces her incentive to drive down the stopping

belief. Conversely, when the seller tends to increase the buyer’s stopping belief to

guarantee a larger minimum revenue (the revenue she obtains after refund), she can

further raise this minimum revenue by lowering the price, reinforcing her incentive

to increase the stopping belief.

Hence, the revenue-maximizing mechanism either prevents the buyer from private
1Note that in our problem, the seller’s objective function is not linear in the allocation probabil-

ity upon return as the buyer’s stopping belief endogenously depends on the allocation probability.
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learning or encourages full learning via free return. The optimality between them

depends on the buyer’s prior belief, which measures how much the buyer values

information ex-ante and how optimistic the buyer initially is. Specifically, if the

buyer is well-informed ex-ante, i.e., his prior belief is close to 0 or 1, then information

is barely valuable to him. Therefore, the seller can induce immediate consumption

by decreasing the price just a little to capture a large fraction of the first-best

allocation surplus. However, if the buyer’s prior belief becomes more uncertain, then

information values a lot. Therefore, the seller must decrease the price significantly

to deter learning, which makes encouraging learning more appealing as it avoids

the compensation for the buyer’s opportunity information rent. In other words,

the seller significantly raises the price to encourage learning while allowing a free

return. However, encouraging learning causes inefficient allocation as the buyer

would eventually return the product. Nevertheless, this event becomes rare when

the prior is more optimistic. As a result, the seller optimally allows free return if the

buyer’s prior belief is less extreme but relatively optimistic. Otherwise, the optimal

mechanism prevents learning.

Interestingly, though the buyer enjoys a larger information rent if his prior belief is

less extreme, he can only benefit from it if the seller deters learning. In contrast, free

return causes a severe decline in the buyer’s trading surplus as the seller escalates

price discrimination. It means that the buyer takes the cost of learning and inefficient

allocation when the seller encourages him to learn.

When learning after purchase is more efficient than before purchase, the seller opti-

mally charges a cancellation fee (equivalent to partial refund) to extract the extra

information rent from post-purchase learning. Nevertheless, the main result is ro-

bust in the sense that deterministic mechanism is optimal if the difference between

the before-purchase and post-purchase learning is not very large. We also discuss

the scenarios where the learning rate after purchase converges to infinity so that

the buyer can almost learn his true valuation immediately. In another extension,

we discuss negative Poisson learning (no-news-is-good-news). The optimal refund

mechanism turns out to have the same structure as in the benchmark model. How-

ever, with this learning technology, the seller can use free return to fully extract

the buyer’s surplus. In other words, the buyer receives zero surplus if the seller

optimally allows free return.
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Related literature. Our paper relates to the sequential screening literature.

Courty and Li (2000) study the refund contract to price discriminate the buyer

who has imperfect private information ex-ante but observes his true valuation after

contracting. In contrast, we consider symmetric ex-ante information and study the

refund contract to elicit the buyer’s ex-post private information, which is the buyer’s

endogenous learning outcome. Krähmer and Strausz (2015) impose the ex-post par-

ticipation constraints in the standard sequential screening model to capture the

mandated consumer withdrawal right. In our paper, whether to offer the consumer

an option of ex-post participation is an endogenous choice of the seller.

There is a growing literature on mechanism design incorporating the buyer’s endoge-

nous information acquisition. For example, Shi (2012) and Mensch (2020) study

mechanism design when the buyer can privately acquire costly information. Shi

(2012) adopts rotational-ordered information technology, and Mensch (2020) dis-

cusses flexible information acquisition, with cost as the expected difference in a

posterior-separable measure of uncertainty. Mensch (2020) characterizes the set of

implementable mechanisms to screen the buyer with different interim information.

We adopt a similar method; however, our exponential bandit specification with ad-

ditive time cost allows us to analyze how the seller’s optimal mechanism varies with

the buyer’s initial belief, which cannot otherwise be accommodated in the flexible

information cost framework.2 In terms of sequential buyer learning,3 Lang (2019)

and Pease (2020) investigate the seller’s pricing policy when the buyer can acquire

information over time.

The closest work to our study are Matthews and Persico (2007), Board (2007) and

Daley, Geelen and Green (2021), which analyse sequential mechanism with endoge-

nous buyer learning. Specifically, Matthews and Persico (2007) discuss the seller’s

optimal choice of price and refund, anticipating that the buyer can acquire perfect

information at a fixed cost before purchase. Therefore, stochastic mechanism does

not have a bite since the buyer either acquires perfect information or no informa-

tion. We differ by discussing imperfect learning so that the seller has much greater
2In our model, the cost of the same Blackwell experiment is the same for different prior beliefs,

which is not true for flexible information. There does not exist a unified measure of uncertainty,

regardless of the prior beliefs, that can represent the additive time cost of Poisson signals: see

Appendix A of Mensch (2020) and Pomatto, Strack and Tamuz (2019).
3See Bonatti (2011), Bergemann and Valimaki (2000) and Bergemann and Valimaki (1996).
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flexibility in manipulating the buyer’s learning behavior. Board (2007) and Daley,

Geelen and Green (2021) investigate option contracts where the winning bidder can

choose whether to execute the option after collecting new information. In Board

(2007), a winning bidder can choose whether to use an asset at a contingent fee or

give up the upfront payoff and quit the market. Daley, Geelen and Green (2021)

discuss due diligence in M&A, wherein after the acquirer agrees on the price with

the target firm, he has the option not to execute the contract. Both papers focus

on deterministic execution, while in contrast, we allow stochastic execution.

Our paper also relates to mechanism design with information discrimination. Li and

Shi (2017) allow the seller to disclose different additional information to different

types of buyers to enhance price discrimination. Wei and Green (2020) study the

optimal information discrimination incorporating the buyer’s ex-post participation.

Instead of the seller restricting the buyer’s learning process, Roesler and Szentes

(2017) adopt a robustness perspective by allowing the buyer to acquire costless

information anticipating its impact on the seller’s pricing decision. Hinnosaar and

Kawai (2020) investigate robust refund mechanism to capture the situations where

the seller is unsure about the buyer’s private information prior to purchase. Johnson

and Myatt (2006) introduce rotations of demand curves to capture the dispersion of

consumer valuations and discuss how seller profits change with the level of dispersion.

The literature offers several complementary economic rationales for the optimality

of refund contracts. Che (1996) shows that the seller optimally insures risk-averse

buyers by offering a generous refund. Inderst and Ottaviani (2013), Shieh (1996)

and Inderst and Tirosh (2015) discuss the role of refund as a signaling device to

guarantee credible sales talk, product quality, and personal fit.

The remainder of this paper is organized as follows. Section 2 describes the model.

Section 3 characterizes the set of inducible buyer learning outcomes. Section 4 and 5

discuss the implementable mechanism and the seller’s optimization problem. Section

6 analyses the optimal mechanism. Section 7 discusses more efficient post-purchase

learning. Section 8 studies negative Poisson learning. Section 9 provides several

minor extensions. Section 10 concludes.
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2 Model

A seller (female) sells one unit of indivisible goods to a risk-neutral buyer (male).

The buyer is initially uninformed about his true product valuation, either high or

low, vh > vl ≥ 0. The seller is symmetrically uninformed, with µ0 being the common

prior belief that the product valuation is high. We use µ to represent the buyer’s

posterior belief after learning and sometimes call this the buyer’s type. A type-µ

buyer’s expected value of the product is E(v|µ) := µvh + (1 − µ)vl. Note that the

buyer’s type evolves depending on the learning process; we use τ to denote time

and write µ(τ) when needed. We focus on the scenario where efficiency requires

trade with probability one, and therefore normalize the seller’s opportunity cost to

0. There is no cost of production or return. We assume that neither party discounts

over time.4

The seller commits to a refund mechanism, which specifies (1) a price tb ≥ 0, which

is the transfer made from the buyer to the seller at the time of purchase; and (2)

a return policy that describes the probability that the buyer is required to return

the item and the (expected) refund paid back to the buyer. Given that the buyer

is assumed to be risk-neutral, only the expected refund matters. For the sake of

exposition, we use (xr, tr) to denote a return policy. Precisely, xr ∈ [0, 1] is the

probability that the buyer is allowed to keep the item after requesting a return. The

reader can interpret xr as the allocation rate at return. tr ∈ [0, tb] is expected final

payment made from buyer to seller if the buyer requests a return. We call it the

return transfer later on. A typical refund mechanism is characterized by {tb, (xr, tr)}.
Under this mechanism, the buyer pays the price tb at the time of purchase. If the

buyer requests a return, then the seller applies to a public randomization device:

with probability xr, she allows the buyer to keep the item, with the remaining

probability, she requires the buyer to return it. Meanwhile, the seller pays the

(expected) refund tb − tr regardless of whether the item eventually returns to her.

Given this notation, a No Return mechanism can be represented as {tb, (1, tb)}. In

particular, xr = 1 means the buyer cannot return the item and therefore always
4Suppose there is discounting and the seller allows a free return. Then the seller gains a positive

payoff even if the buyer returns the item and receives a full refund. However, the time between

purchase and return is usually not very long, so we assume no discounting to get rid of this issue.
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has to keep it. Free Return can be represented as {tb, (0, 0)}, so that xr = 0 as the

buyer can return the product for a refund. Stochastic Return requires xr ∈ (0, 1),

so that the buyer can keep the item with strictly positive probability even upon

obtaining a refund. We capitalize the first letter of a return policy to represent a

refund mechanism and emphasize that the price can vary while fixing the return

policy. Without loss of generality, we assume vh − tb > vhxr − tr, i.e., a high-value

buyer purchases the item without requesting a further return. The buyer’s outside

option is normalized to zero.

A type-µ buyer’s payoff is realized when he consumes the item. If so, he cannot

request a return, regardless of the return policy. In particular, a type-µ buyer

obtains expected utility E(v|µ) − tb if he purchases the item without requesting a

return, or E(v|µ)xr − tr if he requests a return. Let Bτ be the indicator function

for whether a purchase has occurred up to and including time τ . Hence, the time of

purchase is τb = min{τ : Bτ = 1}. Analogously, Rτ denotes the indicator function

for whether a return has occurred up until time τ , and the time that the buyer

requests a return is τr = min{τ : Rτ = 1}. Naturally, τr ≥ τb. The seller’s revenue

Π is expressed as follows:

Π = E
[∫ ∞

0

tbdBτ + (tr − tb)dRτ

]
. (1)

The buyer can acquire information both before and after purchase. Specifically, we

adopt the exponential bandit framework, and in the main model, we consider the

case of “no-news-is-bad-news". If the buyer pays a fixed flow cost k to acquire infor-

mation, then good news arrives according to some Poisson rate if his true valuation

is vh and no news arrives if his true valuation is vl. We denote λB (λP ) as the

before-purchase (post-purchase) learning rate.

We assume λP ≥ λB since the information attainable before purchase is still at-

tainable after purchase. However nowadays, with the spread of information on the

Internet and social media, the consumer can obtain more and more instructive infor-

mation before purchase, and the extra information generated by personal experience

after purchase becomes smaller. Besides, many retailers, such as Apple store, al-

low the consumer to experience their products at the off-line store, therefore there

is not a large difference between the information attainable to the consumer be-

fore and after purchase. Thus, in the benchmark model, we focus on the case where
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λP = λB = λ. In section 7, we discuss the scenarios where λP > λB and let λP → ∞
to capture the case where the buyer can learn his true valuation immediately.

Given λP = λB = λ, the buyer’s belief evolves according to the following law of

motion if no Poisson jump occurs:

µ′(τ) = −µ(τ)(1− µ(τ))λ < 0.

Otherwise, if good news arrives, his belief jumps to one. Without loss of generality,

if the seller does not allow a return, the buyer acquire information before purchase;

conversely, if the seller allows a return, we assume the buyer purchases the item first

and acquires information afterwards.

3 A No Return Benchmark

In this section, we study the buyer’s learning strategy if the seller does not allow

a return. The result serves as a building block for the derivation of subsequent

results. Because the buyer can always give up the option to return, such as treating

all mechanisms as if no return is allowed. Therefore, the buyer’s valuation from

learning under a No Return mechanism imposes a lower bound on his expected

surplus.

Denote s := vh − tb as the net consumer’s surplus upon the arrival of good news. It

is endogenously chosen by the seller and it determines the value of experimentation,

V 0(µ(τ), s), which is characterized by the Bellman equation:

V 0(µ(τ), s) = max{ 0 , E(v|µ(τ))− (vh − s),

− kdτ + µ(τ)λdτs+ (1− µ(τ)λdτ)V 0(µ(τ + dτ), s)}.
(2)

At time τ , the buyer can walk away or purchase the item. If he continues to learn

for an interval of time dτ then, with probability µ(τ)λdτ , good news arrives, and he

purchases the item; with the remaining probability, no news arrives, and his belief

decreases to µ(τ + dτ). Conditional on learning, the Bellman equation leads to this

differential equation:

(1− µ)µλV1(µ, s) + µλV (µ, s) = µλs− k, (ODE)

where V1(µ, s) denotes the partial derivative with respect to the first argument.

Conventionally, for a fixed s, there exists two cutoff beliefs: the quitting belief q(s)
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and the trial belief Q(s), with q(s) ≤ Q(s), which determine the buyer’s optimal

learning strategy. That is, he continues to learn when his belief falls between the

two cutoffs; otherwise, he does not learn. The quitting belief q(s) is determined

by the standard value matching and smooth pasting conditions,5 and it adopts a

closed-form solution:

q(s) =
k

λs
.

The trial belief is the value of belief above which the buyer strictly prefers immediate

consumption to acquiring information:

Q(s) = {µ : V (µ, s) = E(v|µ)− (vh − s)}. (3)

With slight abuse of notation, in equation (3) and henceforth, we use V (µ, s) to

denote the solution of (ODE) with boundary point (q(s), 0).

The construction above involves one implicit assumption: when the buyer stops

learning at q(s), he prefers to quit the market than accept the price. Specifically,

E(v|q(s))− (vh − s) ≤ 0. (Learning-Feasibility)

We call it the Learning-Feasibility constraint. If it fails, no learning can be induced

because learning has no value when it does not affect the purchase decision. If this

constraint fails for all s ∈ [0, vh−vl],6 the buyer then considers learning sub-optimal

regardless of the price. The seller can set a No Return mechanism with a price

equal to the ex-ante expected value of the product and capture the entire allocation

surplus E(v|µ0). To avoid this trivial result, throughout the paper, we assume that

there exist two distinct roots s < s that the Learning-Feasibility constraint binds,

which is equivalent to the assumption below.

Assumption: (vh − vl)λ > 4k.

That is, if the learning cost is not very high or the Poisson rate is not very low, the

buyer would consider learning valuable for some values of s.

Proposition 1. If s /∈ [s, s], V 0(µ, s) = max{0,E(v|µ)− (vh − s)}; and if s ∈ [s, s],

V 0(µ, s) =


0, µ < q(s)

V (µ, s), q(s) ≤ µ < Q(s)

E(v|µ)− (vh − s), µ ≥ Q(s)

.

5q(s) = {µ : V1(µ, s) = 0 and V (µ, s) = 0}.
6s /∈ [0, vh − vl] means that the price is in between vl and vh.
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Proposition 1 characterizes the buyer’s learning strategy under no return while vary-

ing the surplus s through the price. For sufficiently high or sufficiently low surplus

s, learning is sub-optimal regardless of the buyer’s belief. With moderate s ∈ [s, s],

the standard results of exponential bandit apply: When the buyer’s prior belief falls

into [q(s), Q(s)), he optimally learns until either good news arrives and he purchases

the item, or no news arrives for a sufficient amount of time and he walks away at

the quitting belief q(s).

Nevertheless, the above characterization of the buyer’s learning strategy only ap-

plies to No Return mechanisms. If the seller varies the return policy, the buyer

changes his learning strategy accordingly. Therefore, Lemma 1 is an essential sim-

plification result as it pins down the buyer’s value function under any optimal refund

mechanism.

Lemma 1. For a fixed s, all optimal refund mechanisms provide the buyer with a

expected trading surplus of V 0(µ0, s).

That is, under any optimal refund mechanism, the buyer obtains the same continu-

ation value as if the mechanism prohibited a return. To see this, for a fixed price, if

the seller designs a benevolent return policy that provides the buyer with a continu-

ation value strictly larger than V 0(µ0, s), she can then increase the return transfer tr
and adjust the return allocation rate xr properly without affecting the total amount

of information that the buyer acquires, which implies a profitable deviation.

Given this simplification result, we are able to characterize the set of buyer learning

outcomes that are inducible under any potentially optimal refund mechanism. Fig-

ure 1 plots the quitting belief q(s) and trial belief Q(s) against s. These two beliefs

are decreasing in s and coincide at the two boundaries.7 Denote µ = q(s̄) = Q(s̄)

and µ = q(s) = Q(s).

7The quitting belief is decreasing in s because the buyer optimally learn for a longer time if the

benefit from good news becomes larger. The trial belief is also decreasing in s. Because if the seller

increases s by one unit, then the consumption utility increases by one unit, but the increment of

the buyer’s continuation value is smaller than one unit. q(s) = Q(s) at the boundaries is implied

by the Learning-Feasibility constraint and the definitions of q(s) and Q(s).
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Figure 1: Inducible learning outcomes

The shaded area in Figure 1 is the set of inducible learning outcomes for a buyer

with prior belief µ0. Specifically, an inducible learning outcome is a pair of (s, µ)

such that for a given s, there exists a return policy that induces the buyer to stop

learning and request a return at posterior belief µ ∈ [q(s), Q(s)]. Therefore, we

require s ∈ [q−1(µ0), Q
−1(µ0)] so that the type-µ0 buyer prefers to learn at the prior

belief. Meanwhile, the stopping belief µ ≤ µ0 since no news is bad news.

Before we move on, the corollary below describes an extreme case, µ0 /∈ [µ, µ], such

that the buyer is sufficiently informed upfront and deems learning to be sub-optimal.

Then the seller can extract the entire allocation surplus by setting a non-refundable

price equal to the ex-ante expected valuation of the good, which leaves the buyer

zero trading surplus. No learning is induced on path.

Corollary 1. If µ0 /∈ [µ, µ], the optimal mechanism is No Return, with tb = E(v|µ0)

and (xr, tr) = (1, tb).

However, if the buyer has a less extreme prior belief, µ0 ∈ [µ, µ], learning becomes a

valuable option to him, which prevents the seller from capturing the entire allocation

surplus. Then the seller faces a non-trivial tension between deterring learning and

encouraging learning. In Section 4 and 5, we find the refund mechanism that can

implement each inducible learning outcome in the shaded region, and then let the

seller maximize her expected revenue over the inducible learning outcomes.
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4 Learning Deterrence and Free Return

In this section, we characterize the refund mechanisms that can implement the

boundaries of the shaded area. In particular, the No Return mechanism named

Learning Deterrence implements the intersection of the shaded area and the orange

curve Q(s) (the orange dot in Figure 1), and Free Return mechanisms implement

the intersection of the shaded area and the blue curve q(s).

Learning Deterrence is a No Return mechanism with price tD := vh − Q−1(µ0).8

Under this mechanism, the type-µ0 buyer is just indifferent between acquiring in-

formation and consuming the item immediately (see the orange dot in Figure 1).

We let the buyer break indifference by purchasing the item immediately so that to

achieve efficient allocation. Notice that to deter learning, the seller has to lower

the price so as to give away part of the allocation surplus to compensate the buyer

until the value of information becomes non-positive.9 In other words, the buyer’s

expected trading surplus, which is just the consumption utility in this case, equals

his continuation value from learning, i.e., E(v|µ0) − tD(µ0) = V (µ0, Q
−1(µ0)). Fur-

thermore, the joint surplus equals the full allocation surplus E(v|µ0), and the seller

obtains revenue ΠD(µ0) = tD(µ0).

A Free Return mechanism {tb, (0, 0)}, with s ∈ [q−1(µ0), Q
−1(µ0)], encourages the

buyer to acquire information. Specifically, the type-µ0 buyer continues to learn

until good news arrives or no news arrives and his posterior belief falls to q(s). By

varying s, the seller can induce different quitting beliefs and thereby induce different

amounts of buyer learning. In Figure 1, the intersection of the shaded region and

the blue curve q(s) represents the learning outcomes that can be induced by Free

Return mechanisms. A common property of Free Return is that the buyer stops

learning when the continuation value from learning is 0. We define it as full learning

since it is the largest amount of information acquisition that the seller can induce

when the price is fixed.

Given the flexibility of varying price while allowing a free return, the seller faces a
8Note that any non-refundable prices strictly lower than tD can induce immediate consumption,

but the seller then has an incentive to increase the price.
9The value of information refers to the difference between the value function and the payoff

from optimally choosing between purchasing and walking away.
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trade-off between increasing the price and reducing the return rate. The revenue-

maximizing Free Return mechanism is determined by the constrained optimization

problem (F) below:

ΠF(µ0) := max
s

µ0 − q(s)

1− q(s)
(vh − s) (F)

s.t. q−1(µ0) ≤ s ≤ Q−1(µ0).

Note that µ0−q(s)
1−q(s)

is the ex-ante probability that good news arrives before the buyer’s

belief falls below q(s). Optimization over Free Return mechanisms is mechanical.

The unconstrained optimization admits a closed-form solution. We denote the un-

constrained maximizer as sF(µ0) and the corresponding revenue as ΠF(µ0).

Remark: (Robustness) Conditional on Lemma 1, if the seller sets s = Q−1(µ0),

type-µ0 buyer is indifferent between learning and immediate consumption regardless

of the return policy, as long as we assume the seller-preferred tie-breaking rule.

Nevertheless, We choose Learning Deterrence (no return) to implement immediate

consumption for the sake of robustness. Specifically, if the post-purchase learning

rate is just slightly higher than the before-purchase learning rate, then if the seller

allows a return while fixing s = Q−1(µ0), the buyer strictly prefers to purchase the

item and acquire information afterward. It causes inefficient allocation and strictly

reduces the seller’s expected revenue. For a similar reasoning, we choose Free Return

to encourage full leaning.

Let Π∗(µ0) be the expected revenue from an optimal refund mechanism. Given that

both Learning Deterrence and Free Return are feasible mechanisms, if µ0 ∈ [µ, µ],

Π∗(µ0) ≥ max{ΠD(µ0),Π
F(µ0)}.10

We close this section by discussing the welfare properties of Learning Deterrence

and the revenue-maximizing Free Return when the prior varies.

Proposition 2. Under Learning Deterrence and µ0 ∈ [µ, µ], the buyer’s trading

surplus V (µ0, Q
−1(µ0)) is non monotone and single-peaked in µ0, while the seller’s

revenue ΠD(µ0) is increasing in µ0. The joint surplus is E(v|µ0).

If µ0 = µ, µ, then V (µ0, Q
−1(µ0)) = E(v|µ0)− ΠD(µ0) = 0.

10If ΠF (µ0) ≥ ΠD(µ0), then we can verify that ΠF (µ0) adopts the same expression as ΠF (µ0).
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Learning Deterrence is different from the extreme case stated in Corollary 1, as the

buyer must be induced to give up his option to learn, and this option is valuable

when he is not very-well informed ex-ante, i.e., µ0 ∈ [µ, µ]. Therefore, to prevent

the buyer from private learning, the seller has to sufficiently lower the price so that

accepting the price is more attractive for the buyer than acquiring information.

When the prior belief moves to more intermediate region, the buyer enjoys larger

benefits from learning and thereby the seller must give away a larger amount of

allocation surplus for the buyer’s compensation if she wants to deter learning. This

hints at the non-monotonicity of the buyer’s trading surplus.

Proposition 3. Under Free Return and µ0 ∈ [µ, µ], both the price vh − sF(µ0) and

revenue ΠF (µ0) are increasing in µ0.

Under Free Return, a more optimistic prior belief increases the probability of a

successful sale, and the seller optimally puts more weight on getting a higher price

and less weight on raising the probability of making a sale, rendering both the price

and the revenue increasing in µ0.

5 Partial Learning

In this section, we study the interior region of the inducible learning outcomes. That

is, instead of encouraging the buyer to perform full learning or prevent the buyer

from private learning, the seller can induce the buyer to stop at any intermediate

belief in the shaded region in Figure 1. We define partial learning as the buyer stops

learning when there is still positive continuation value from learning. To achieve

this, the seller must provide the buyer with positive allocation rate at return in

order to compensate the buyer’s opportunity information rent which he could have

been enjoyed if he continued to learn. Therefore, Stochastic Return guarantees a

positive allocation surplus at return, and a positive minimum revenue for the seller.

However, in this section, we show inducing partial learning is always sub-optimal.

In other words, Stochastic Return is sub-optimal.

16



Theorem 1. If µ0 ∈ [µ, µ], Stochastic return is dominated by either Learning De-

terrence or the optimal Free Return. That is,

Π∗(µ0) = max{ΠD(µ0),Π
F(µ0)}.

Sketch of proof. The proof of this theorem proceeds in three steps.

In step 0, we characterize the refund mechanisms implementing the interior learning

outcomes (Lemma 2). Specifically, for a fixed s, the return policy (xr(µ, s), tr(µ, s))

as a function of buyer’s stopping belief µ induces the buyer to optimally stop learning

at belief µ. Then the seller maximizes the expected revenue–a weighted average

between the price and the return transfer–over the inducible set of (s, µ). We can

formulate the seller’s optimization problem for encouraging learning as below.

ΠP(µ0) := max
s∈[q−1(µ0),Q−1(µ0)]

{
max

µ
Π(µ, s) =

µ0 − µ

1− µ
(vh − s) +

1− µ0

1− µ
tr(µ, s)

}
(P)

s.t. q(s) ≤ µ ≤ Q(s)

µ ≤ µ0

In particular, the seller first choose an s that can encourage the type-µ0 buyer to

learn, and then she optimizes the expected revenue over the set of inducible return

beliefs. In the next two steps, we show that ΠP(µ0) ≤ max{ΠD(µ0),Π
F(µ0)} with

strict inequality for some values of prior belief.

In step 1, we study the inner maximization of (P) to derive the optimal stopping

belief for a fixed s (Lemma 3). We characterize the domain of s such that the

optimal stopping belief µ∗(s) is an interior solution, i.e., µ∗(s) ∈ (q(s), Q(s)). We

show that µ∗(s) is independent of µ0 and is strictly increasing in s. The solid

red curve in Figure 2 depicts µ∗(s). For simplification, we take µ0 = 0.5 while

illustrating the main idea of this theorem. In this case, the lower boundary point of

µ∗(s) is induced by a Free Return mechanism. While the upper boundary point can

be induced by either Stochastic Return or Learning Deterrence, we show Learning

Deterrence strictly dominates Stochastic Return at this point.

In step 2, we study the outer maximization and show that the seller’s revenue is

quasi-convex along the solid red curve, µ∗(s). Thus, we establish the sub-optimality

of partial learning. The revenue-maximizing mechanism is either Learning Deter-

rence or Free Return. In the following subsections, we discuss these steps in detail.
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Figure 2: Stochastic Return and interior solutions

5.1 Incentive Compatible Mechanisms

Lemma 2. For fixed s ∈ [s, s], the return policy (xr(µ, s), tr(µ, s)) induces the buyer

to stop learning and request a return at µ ∈ [q(s), Q(s)], where

xr(µ, s) =
V1(µ, s)

vh − vl
, (4)

tr(µ, s) = E(v|µ)V1(µ, s)

vh − vl
− V (µ, s). (5)

Furthermore, the return transfer tr(µ, s) increases with both µ and s and with cross

derivative equal to 0; and xr(µ, s) increases with µ.

Equations (4) and (5) are the familiar smooth pasting and value matching conditions

for the buyer to optimally stop at µ given the return policy. In Figure 3, a type-

µ buyer obtains expected utility E(v|µ)xr − tr if he requests a return, whereas he

attains continuation value V (µ, s) if he keeps learning. Making the buyer’s return

payoff tangent to his continuation value at µ, the buyer is willing to stop learning at

µ and request such a return. One can view the mechanism {vh−s, (xr(µ, s), tr(µ, s))}
as a direct mechanism to screen an interim-type buyer, such that (1) the buyer stops

acquiring information if his posterior reaches µ or 1; and (2) the buyer strictly prefers

to truthfully report his posterior beliefs.
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Figure 3: Partial Learning with Stochastic Return

Interestingly, Lemma 2 shows that tr(µ, s) increases with µ, meaning that the seller

actually obtains a larger return transfer if she enforces earlier stopping, even though

she has to compensate the buyer with more opportunity information rent. The main

reason is that the seller uses both xr and tr towards the buyer’s compensation. In

particular, when the seller intends to induce a higher stopping belief, she allows the

buyer to keep the item with greater probability upon return, thereby inducing the

buyer to make a larger return transfer. With similar reasoning, the return transfer

tr(µ, s) also increases with s. It means that, for a fixed stopping belief, the seller

obtains a larger return transfer by charging a smaller selling price.

Figure 4 plots the return transfer for a fixed s. For fixed s, the domain of tr(·, s) is

[q(s), Q(s)]. Note that,

lim
µ→q(s)

xr(µ, s) = 0 and lim
µ→q(s)

tr(µ, s) = 0;

lim
µ→Q(s)

xr(µ, s) < 1 and lim
µ→Q(s)

tr(µ, s) < vh − s.

That is, for fixed s, Free Return is the left limit of Stochastic Return. In contrast,

the right limit of Stochastic Return is strictly dominated by Learning Deterrence in

terms of seller revenue. This follows because the return transfer tr(Q(s), s) must be

smaller than the selling price, vh − s, which implies tr(µ,Q
−1(µ)) < vh − Q−1(µ) =

tD(µ). Regarding how much information the buyer acquires, Free Return and Learn-

ing Deterrence can be interpreted as opposite limits of Stochastic Return.
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Figure 4: Return transfer

5.2 Inner Maximization

For fixed s, and ignoring the constraint µ ≤ µ0, consider the internal maximization

problem of (P):
max

µ∈[q(s),Q(s)]
Π(µ, s). (R)

We readily verify that Π(·, s) is quasi-concave on [q(s), Q(s)], implying it attains a

maximum either at the boundaries (which reduces to no learning or full learning), or

at an interior solution characterized by the first-order condition (which corresponds

to partial learning). Denote µ∗(s) as the maximizer of (R) when it is the solution

to the first-order condition. Formally,

µ∗(s) = {µ ∈ [q(s), Q(s)] : Π1(µ, s) = 0}.

Recall that Π(µ, s) is a weighted average between the return transfer and the price.

Rearranging the first order condition, we obtain11

Pr(return)
∂tr(µ, s)

∂µ︸ ︷︷ ︸
larger return transfer

= [vh − s− tr(µ, s)]
dPr(return)

dµ︸ ︷︷ ︸
more frequent return

. (6)

Recall that the seller can gain a larger return transfer tr(µ, s) if the buyer stops

learning and returns the product at a higher belief µ. However, raising the stopping

belief µ increases the probability of receiving a refund request, reducing her revenue

from tb = vh − s to tr(µ, s). We can verify that µ∗(s) is independent of the prior

belief µ0.
11Denote Pr(return) = 1−µ0

1−µ as the ex-ante probability of return.
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Note that µ∗(s) is strictly increasing in s, shown as the red solid curve in Figure 2.

To see this, consider the above trade-off in equation (6) again. Recall that Lemma

2 establishes that the return transfer tr(µ, s) increases with s. Therefore, the refund

vh−s−tr(µ, s) becomes smaller when s is higher. The seller then cares less about the

return rate, and her incentive to gain a larger return transfer is relatively stronger.

Thus, she optimally adapts to gain a larger return transfer by inducing a larger

stopping belief, meaning that µ∗(s) increases with s. Furthermore, if s becomes

sufficiently high, the refund becomes sufficiently small that gaining a larger return

transfer becomes the seller’s dominant incentive. She then prefers to induce the

maximal stopping belief, rendering the upper boundary Q(s) the optimal return

belief. Conversely, if s is sufficiently small, the dominant incentive is to reduce the

return rate, and the seller induces the minimal stopping belief, rendering the lower

boundary q(s) the optimal stopping belief. Hence, in the last two scenarios, the

seller optimally induces no learning and full learning, respectively.

Lemma 3. Let µ∗ be the solution of Π1(µ, q
−1(µ)) = 0. Then µ∗ < 0.5.

(1) If s ≤ q−1(µ∗), full learning with return belief q(s) is optimal;

(2) If s ∈ (q−1(µ∗), Q−1(0.5)), partial learning with return belief µ∗(s) is optimal;

(3) If s ≥ Q−1(0.5), no learning is optimal.

Lemma 3 summarizes the optimal stopping belief as s varies. The second term of

this lemma indicates that partial learning can be seller-optimal if the value of s

is intermediate. Given µ∗(s) being strictly increasing in s, this means that partial

learning at stopping belief µ can be induced with optimality only when µ ∈ (µ∗, 0.5),

shown as in Figure 2. The value 0.5 comes from the observation that the first-order

equation, Π1(µ,Q
−1(µ)) = 0, has a unique solution at µ = 0.5.

5.3 Outer Maximization

If the solution to (P) turns out to be interior, it has to be located on the interior

path of µ∗(s). The seller’s profit along the path of µ∗(s) equals:

Π(µ, s∗(µ)) = tr(µ, s
∗(µ)) +

µ0 − µ

1− µ

[
vh − s∗(µ)− tr(µ, s

∗(µ))
]
. (7)

where s∗(µ) represents the inverse of µ∗(·) for µ ∈ [µ∗, 0.5]. The ratio µ0−µ
1−µ

is the ex-

ante probability of a successful sale. Note that the first term is the seller’s minimum
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revenue, and the second term refers to the extra revenue she can obtain if the buyer

discovers good news.

We show that seller’s profit is quasi-convex along the path of µ∗(s). Equivalently,

Π(µ, s∗(µ)) is quasi-convex on µ ∈ [µ∗, 0.5]. To see this, suppose that the seller

tends to lower the buyer’s stopping belief to induce more extended learning, thereby

increasing the odds of a successful sale. She can further benefit as the optimal price

vh−s∗(µ) increases simultaneously. In addition, as the seller adjusts the mechanism

to induce a lower stopping belief, the minimum revenue tr(µ, s
∗(µ)) also decreases,12

causing the extra revenue gain even more substantial, which reinforces the seller’s

motive to decrease the buyer’s stopping belief. It gives rise to a corner solution at

the lower boundary µ∗ (see the lower boundary of the solid red curve in Figure 2).

Conversely, suppose the seller tends to induce a higher stopping belief to raise her

minimum revenue tr(µ, s
∗(µ)). She further benefits as the optimal price vh − s∗(µ)

decreases simultaneously, reinforcing her incentive to increase the stopping belief and

raise the minimum revenue. It produces a corner solution at the upper boundary of

some feasible regions. When µ0 = 0.5, the upper boundary is just µ0 (see the upper

boundary of the solid red curve in Figure 2). Thus, the seller’s expected revenue

Π(µ, s∗(µ)) is quasi-convex in the stopping belief.

As we mentioned previously, inducing full learning corresponds to Free Return,

whereas inducing no learning via Stochastic Return is strictly dominated by Learn-

ing Deterrence. Therefore, inducing partial learning via Stochastic Return is sub-

optimal. In other words, if the seller allows a return in the optimal refund mecha-

nism, she requires the buyer to return the product with probability one while issuing

a refund. Otherwise, she does not allow a return.

6 Optimal Refund Mechanism

Given Theorem 1, max{ΠD(µ0),Π
F(µ0)} determines the value of the optimal mech-

anism. Let γ = k/λ be the effective learning cost. Let F be the set of µ0 such that

the seller weakly prefers to choose Free Return. Formally,

F = {µ0 ∈ [µ, µ] : ΠF(µ0) ≥ ΠD(µ0)}.
12Because tr(µ, s) increases with both arguments and s∗(µ) increases with µ.
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Theorem 2. There exists a γ∗ such that if k
λ
≤ γ∗, then F is a closed interval and

F ⊂ (vl/vh, µ̄); if k
λ
> γ∗, F = ∅. The optimal mechanism takes following form:

1. No Return (with tb = E(v|µ0) and (xr, tr) = (1, tb)) if µ0 /∈ [µ, µ];

2. Learning Deterrence (with tb = tD(µ0) and (xr, tr) = (1, tb)) if µ0 ∈ [µ, µ] and

µ0 /∈ F ;

3. Free Return (with tb = vh − sF(µ0) and (xr, tr) = (0, 0)) if µ0 ∈ F .

Figure 5: Learning Deterrence and Free Return revenue for small learning cost

Figure 5 depicts the expected revenue of Learning Deterrence (green curve) and the

revenue-maximizing Free Return mechanism (red curve) when k
λ
< γ∗. These two

curves cross twice as shown in the graph. That is, the seller optimally chooses Free

Return when the prior belief lies in the red interval F , otherwise, the seller optimally

chooses Learning Deterrence.

To interpret this result, intuitively, the buyer’s prior belief measures (1) how much

the buyer values information ex-ante; and (2) how optimistic the buyer initially

is. The gray dotted curve plots the first best allocation surplus E(v|µ0). Recall

that if the buyer is very-well informed ex-ante, e.g., µ0 = µ, µ̄, the buyer considers

learning sub-optimal, therefore the seller can set a non-refundable price equal to

the buyer’s ex-ante expected valuation to capture the full allocation surplus. In

other words, the green curve coincides with the gray dotted curve at the two end

points. When the buyer’s prior belief becomes less extreme, information becomes

valuable. To deter learning, the seller must lower the price to compensate for the
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buyer’s opportunity information rent, which is the difference between the gray dotted

line and the green curve. The less extreme the buyer’s prior belief, the larger this

opportunity information rent. Therefore, as µ0 moves from either µ or µ toward a

more intermediate belief, the seller has to give away a larger amount of allocation

surplus to the buyer, rendering Learning Deterrence less profitable. However, if the

seller switched to Free Return to encourage learning, she can avoid compensating the

buyer’s opportunity information rent. That is, instead of significantly decrease the

price to deter learning, she can significantly increase the price to encourage learning.

Nevertheless, Free Return might induce inefficient trading ex-post, therefore the

seller only favors Free Return when the buyer’s prior belief is also more optimistic,

as it can guarantee a high probability of successful sale. As a result, Free Return is

optimal when the buyer’s prior belief is less extreme but also more optimistic. The

value of vl/vh is a measure of optimism as the left boundary of the red interval F

can never go below this ratio.

Figure 6: Optimal refund mechanism

When the effective learning cost is large, k
λ

> γ∗, the buyer obtains little value

from learning. Therefore, the amount of information rent that the seller has to pay

the buyer to deter learning is small regardless of his prior belief. Hence, Learning

Deterrence becomes more appealing to the seller. Meanwhile, Free Return becomes

less profitable as the buyer optimally quits learning earlier, which reduces the ex-

ante probability of a successful sale. Therefore, when learning becomes more costly,

the set of priors F that supports Free Return as the optimal mechanism shrinks;

and eventually becomes an empty set when k
λ
> γ∗. See Figure 6.

Though the buyer enjoys a larger information rent if his prior belief is less extreme,

he only gains the benefit from it if the seller deters learning. In contrast, if the seller
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allows Free Return, the buyer then suffers a strict decline in terms of his expected

trading surplus (see Figure 7(a)). This is because the seller escalates the price

discrimination while encouraging the buyer to learn (see Figure 7(b)). Meanwhile,

it is the buyer who takes the cost of learning and inefficient allocation if the seller

sets Free Return.

Figure 7: Buyer’s surplus and selling price

6.1 Comparative statics

Proposition 4. The Free Return revenue ΠF(µ0) is decreasing in the effective learn-

ing cost, while the Learning Deterrence revenue ΠD(µ0) is increasing in the effective

learning cost. The set of prior belief supporting Free Return as the optimal mecha-

nism expands if the effective learning cost goes down.

Figure 8 depicts the seller’s revenue, the optimal selling price and the buyer’s ex-

pected trading surplus while the effective learning cost k
λ

varies. Interestingly, when

learning becomes less costly, the seller optimally allows Free Return more often as

deterring learning becomes more expensive for her. This eventually hurts the buyer

with relatively optimistic prior.

Proposition 5. (A limit result)

lim
k
λ
→0

max{ΠD(µ0),Π
F (µ0)} =

vl, µ0 <
vl
vh

µ0vh, µ0 ≥ vl
vh
.

As the effective learning cost converges to zero, the buyer can learn almost perfect
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Figure 8: Comparative statics

information. Therefore, with Leaning Deterrence, the seller has to set a price ar-

bitrarily close to vl, because otherwise, the buyer always has an incentive to learn

to avoid consuming the item when his true valuation is low. It relates to the mass

market strategy. With Free Return, the seller optimally sets the price arbitrarily

close to vh and lets go of buyers who are almost sure to have a low valuation, which

corresponds to the niche market strategy. The ratio vl
vh

determines the cutoff prior

belief at which the seller is indifferent between Free Return and Learning Deterrence.

It converges to standard screening result when the buyer privately knows his true

valuation.

7 More Efficient Post-purchase Learning

In some scenarios, the learning process is more efficient after a transaction, such as

the market of database license, the buyer has access to quite limited information

before purchase. Therefore, the transaction itself generates extra information rent.
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However, the seller can fully extract this extra information rent by charging a can-

cellation fee to make the buyer just indifferent between acquiring information before

and after purchase. Note that charging a cancellation fee is equivalent to issuing a

partial refund, therefore the mechanism space remains the same. Nevertheless, we

consider the cancellation fee as a complementary instrument as it is used to extract

the additional information rent.

Denote tu as the cancellation fee. We can then represent the refund mechanism with

a cancellation fee as {tb, (xr, tr + tu)}. Specifically, if the buyer eventually requests

a return, the seller obtains a net return revenue tr + tu. If the refund mechanism

does not allow a return, we let tr = tb and tu = 0.

Proposition 6. If the optimal mechanism allows return, the cancellation fee tu is

the solution to the following equation,

V (µ0, s+ tu;λP )− tu = V 0(µ0, s;λB). (8)

Proposition 6 implies that, for any optimal refund mechanism, the buyer obtains

the same ex-ante surplus as if the mechanism prohibited return. If λP = λB, then

tu = 0. Thus, Proposition 6 is a generalization of Lemma 1.

If the optimal mechanism deters buyer learning, then it takes the same form as

Learning Deterrence, with price tb = tD(µ0;λB) and return policy (1, tb), regardless of

the post-purchase learning rate. If the optimal mechanism encourages learning, then

the return policy designed to induce some particular stopping belief µ is obtained

in the same way as in Lemma 2. In particular,

xr(µ, s) =
V1(µ, s+ tu;λP )

vh − vl
, and tr(µ, s) = E(v|µ)xr(µ, s)− V (µ, s+ tu;λP ).

Thus, to encourage learning, the seller’s optimization problem is the following.

max
s∈[q−1(µ0;λP ),Q−1(µ0;λB)]

{
max

µ

µ0 − µ

1− µ
(vh − s) +

1− µ0

1− µ
(tr(µ, s) + tu)

}
(9)

s.t. q(s+ tu;λP ) ≤ µ ≤ Q(s;λB)

µ ≤ µ0

If λP is close to λB,13 the main result in the benchmark model is robust in the sense

that deterministic mechanism is optimal, i.e., xr ∈ {0, 1}, since the cancellation fee
13For some prior belief µ0, the difference between λP and λB can be very large. For example, let

k = 0.2, λB = 5, vh = 2, vl = 1, µ0 = 0.6. Then inducing partial learning is sub-optimal if λP ≤ 64.
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is not very large. However, xr = 0 implies that there is no trading if the seller

matches with a low valuation buyer, which is inefficient as even the low valuation

buyer values the product more than the seller. The seller can mitigate this issue if

λP is sufficiently large.

Proposition 7. If λP → ∞ and µ0 ∈ [µ, µ], the optimal refund mechanism takes

one of the two forms below:

1. Learning Deterrence:

tb = vh −Q−1(µ0;λB), tu = 0, and (xr, tr) = (1, tb);

2. Stochastic Return:

tb = vh −
k(vh − vl)

λB(µ0vh − vl)
, and tu =

k

λB(1− µ0)

(
1 + (1− µ0) log

[
µ0vh

µ0vh − vl

])
,

xr =
k
(
vh − vl − (1− µ0)

(
vl + (µ0vh − vl) log

[
µ0vh

µ0vh−vl

]))
λB(1− µ0)(vh − vl)(µ0vh − vl)

, and tr = xrvl.

This proposition discusses the scenario where the buyer can almost learn his true

valuation immediately after purchase. Therefore, the buyer consumes the item when

his true valuation is high and requests a return if his true valuation is low. In this

case, the seller sets a positive allocation rate upon return and sets tr = xrvl to

extract the allocation surplus at return. Furthermore, she charges a cancellation fee

to extract the extra post-purchase surplus from the buyer.

Figure 9: Buyer’s surplus and optimal selling price if λP → ∞

In Figure 9, the left panel plots the buyer’s ex-ante trading surplus against µ0 under

the optimal refund mechanism for the case λP → ∞, while the right panel plots
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the price and the net return revenue tr + tu of the optimal refund mechanism. Note

that the buyer is still worse off if the seller encourages him to learn due to price

discrimination. The difference is that when the seller is indifferent between the

two forms of mechanism specified in Proposition 7, the buyer is also indifferent

(unlike the discontinuity in Figure 7). This is because the optimal price for the two

mechanisms remains the same and the allocation rate xr of the optimal Stochastic

Return is 1.14 Therefore, there is no efficiency loss, meanwhile, the cost for learning

converges to zero, meaning that encouraging the buyer to learn does not impose

additional cost to the buyer.

As the seller uses Stochastic Return to mitigate the efficiency loss when a low val-

uation buyer requests a return, then if vl = 0, such incentive is irrelevant and

deterministic mechanism can do equally well.

Corollary 2. If λP → ∞ and vl = 0, then the optimal Stochastic Return mech-
anism in Proposition 7 generates the same expected revenue as this deterministic
mechanism—Return with a cancellation fee,

tb = vh−
k(vh − vl)

λB(µ0vh − vl)
, tu =

k

λB(1− µ0)

(
1 + (1− µ0) log

[
µ0vh

µ0vh − vl

])
, and (xr, tr) = (0, 0).

8 Optimal Mechanism with Bad News

In this section, we consider the opposite learning technology—no news is good

news—such that bad news arrives at rate ρ if buyer’s true valuation is low (see

Keller and Rady (2015)). In this case, the buyer’s posterior belief goes up if no

news arrives. We call this learning technology negative learning. Conversely, we call

the good news model as positive learning. For simplicity, we assume the learning

rate is the same before and after purchase, and let the learning cost k remains the

same.

The key difference between positive learning and negative learning is that, under pos-

itive learning, buyer returns the product when he becomes sufficiently pessimistic,

while under negative learning, the buyer returns the product if he receives bad

news which indicates a sure low valuation. Therefore, the seller cannot manipulate

the buyer’s stopping belief by varying the return policy (xr, tr) in bad news model.
14xr is strictly less than one if λP < ∞.
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Moreover, if we denote η := vlxr−tr as the buyer’s surplus while requesting a return

upon observing bad news, then under all optimal mechanism,

η = vlxr − tr = 0.

Hence, under negative learning, the seller can only affect the buyer’s stopping belief

through the selling price tb, which then determines the buyer’s continuation value

from learning. For a fixed price, there exists two cutoff beliefs, g(tb) ≤ G(tb),

that determine the buyer’s learning behavior. Nevertheless, the lower cutoff g(tb)

becomes the trial belief, which is determined by the indifference between returning

the product and continuing to learn,

g(tb) = {µ : E(v|µ)xr − tr = V N(µ, tb)},

where V N(µ, tb) is the buyer’s continuation value for learning. The upper stopping

belief G(tb) becomes the consuming belief at which the buyer stops learning and

consumes the product. G(tb) adopts a close form solution in bad news model,

G(tb) = 1 +
k

ρ(vl − tb)
.

While varying the selling price, the seller can induce different stopping beliefs. A

higher price indicates a higher consuming belief which implies a smaller probability

of successful sale.

Denote G−1(µ) as the inverse function of G(tb). Thus, the seller can induce a

stopping belief of µ if she sets a price equal G−1(µ). For example, if tb = G−1(µ0),

then the seller deters buyer learning. Moreover, let Ḡ(µ0) := {µ : V N(µ0, G
−1(µ)) =

0} be the largest stopping belief that is inducible given the prior belief µ0. We can

then formulate the seller’s optimization problem (N ) as following.

ΠN (µ0) := max
µ

ΠN(µ) :=
µ0

µ
G−1(µ) +

µ− µ0

µ
tr (N )

s.t E(v|µ0)
tr
vl

− tr = V N(µ0, G
−1(µ))

µ0 ≤ µ ≤ Ḡ(µ0)

Similarly, the seller’s expected revenue is a weighted average between the selling

price and the return transfer. The relative weight depends on both the prior belief

and the stopping belief. The seller’s revenue equals the deterring learning price
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at µ0,15 i.e., ΠN(µ0) = G−1(µ0), therefore the objective function under negative

learning includes the situation of deterring learning, which implies ΠN (µ0) equals

the highest attainable profit. The first constraint comes from η = 0 and g(tb) = µ0,

since the lower stopping belief does not enter in the objective function, the seller can

always obtain a higher return transfer by increasing the lower stopping belief. The

second constraint comes from V N(µ0, tb) ≥ 0. Denote µN , µN as the two beliefs at

which the lower and the upper stopping beliefs coincide. Let µF be the prior belief

at which the seller is indifferent between deterring learning and inducing the longest

learning,

µF = min{µ0 ∈ (µN , µN ] : ΠN(µ0) = ΠN(Ḡ(µ0))}.

Proposition 8. There exists a γ∗∗ such that if k/ρ < γ∗∗, then µF < µN and the

optimal mechanism takes following form:

1. No Return (with tb = E(v|µ0) and (xr, tr) = (1, tb)) if µ0 /∈ [µN , µN ];

2. Learning Deterrence (with tb = G−1(µ0) and (xr, tr) = (1, tb)) if µ0 ∈ [µN , µF ];

3. Free Return (with tb = G−1(Ḡ(µ0)) and (xr, tr) = (0, 0)) if µ0 ∈ (µF , µN ].

Otherwise, if k/ρ ≥ γ∗∗, then µF = µN and the optimal mechanism induces no

learning for all prior belief and takes the form of No Return and Learning Deterrence.

Figure 10: Optimal refund mechanism with bad news

The optimal mechanism under negative learning (described in Proposition 8) takes

a similar form as under positive learning (described in Theorem 2). However, the

right boundary point of the prior belief that the seller optimally chooses Free Return

equals µN , shown as the second case in Figure 10. Intuitively, if µ0 = µN , the largest
15In good news model, the seller’s revenue equals the return transfer at µ0, Π(µ0, s) = tr(µ0, s),

which creates a discontinuity in terms of seller revenue at the prior belief.
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inducible stopping belief is just Ḡ(µN) = µN . Thus the seller’s expected revenue

from Learning Deterrence is the same as that from Free Return, i.e, ΠN(µ0) =

ΠN(Ḡ(µ0)) at µ0 = µN .

Note that the optimal Free Return mechanism induces the longest stopping belief

Ḡ(µ0) so that the type-µ0 buyer obtains zero participation value given the definition

of Ḡ(µ0). In other words, Free Return further hurts the buyer under negative learn-

ing.16 This is driven by the nature of the learning technology. Specifically, under

negative learning, the buyer becomes more optimistic if no news arrives and his

continuation value eventually goes up, therefore the seller can keep raising the price

until fully capturing the buyer’s ex-ante trading surplus. However, under positive

learning, the buyer becomes more pessimistic if no news arrives and his continuation

value eventually decreases to zero so that he requests a return. Therefore, the seller

has to provide the buyer with positive ex-ante surplus to fulfill his participation.

Figure 11 depicts the buyer’s participation value against his prior belief under both

negative learning and positive learning. Under negative learning, the buyer can only

obtain positive participation value if the mechanism deters learning.

Figure 11: The buyer’s ex-ante surplus

9 Discussion

In this section, we discuss several extensions of the baseline model. First, we consider

scenarios where the seller cannot freely adjust the selling price. In particular, we
16Under positive learning, the buyer can still obtains a positive surplus with Free Return.
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focus on the case of an exogenous price or a regulated price cap. We show that

Stochastic Return, which induces partial learning, can be optimal in such scenarios.

Next, we consider cases in which the seller values the product higher than a low-

valuation buyer does. Consequently, the seller intrinsically prefers to encourage

learning as return creates efficiency. This shrinks the set of priors that supports

Learning Deterrence. Lastly, we argue that the return mechanism we discussed in

the baseline model is without loss of generality under a more general framework.

9.1 Optimality of Stochastic Return

Given Lemma 3, Stochastic Return might turn out to be an optimal mechanism in

situations in which the seller cannot freely adjust the price, for example, if the price

is exogenously determined by other parties. This is the case for some online retail

platforms, which can control their return policies but must set prices determined by

their suppliers. Other scenarios in which Stochastic Return might be optimal can

arise if the prices are driven down by price competition when similar products are

sold by multiple sellers, or if a price cap is imposed by the regulator.

Corollary 3. Suppose that the price is constrained by a price cap tc = vh − sc with

sc ∈ (q−1(µ∗), Q−1(0.5)). If µ0 ∈ (µ∗(sc), Q(sc)), the optimal refund mechanism takes

one of the two forms below:

1. Learning Deterrence with tb = tD(µ0) and (xr, tr) = (1, tb);

2. Stochastic Return with tb = tc and (xr, tr) = (xr(µ
∗(sc), sc), tr(µ

∗(sc), sc)).

Suppose that the price tb = vh− s is exogenous with s ∈ (q−1(µ∗), Q−1(0.5)). Lemma

3 implies that for prior belief µ0 ∈ (µ∗(s), Q(s)), the optimal mechanism induces

a stopping belief µ∗(s), and takes the form of Stochastic Return with a price tb

and a return policy (xr(µ
∗(s), s), tr(µ

∗(s), s)). With a price cap tc, the seller can

adjust the price within the range of values smaller than tc. As the seller’s revenue is

quasi-convex in the price when taking into account changes in the optimal stopping

belief as the price varies, the optimal mechanism either reduces the price to tD(µ0) to

prevent the buyer from private learning, or raises the price to tc and induces partial

learning with the stopping belief µ∗(sc).
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9.2 Positive seller valuations

In this section, we discuss the situations in which the seller has a positive valua-

tion of the product. This could be, for example, because the seller stands to gain

positive revenue from a resale. We use u to denote the seller’s product valuation or

reservation value. Figure 12 depicts her revenue from Learning Deterrence (green

curves) and the optimal Free Return (red curves) as u varies from 0 to vh. The blue

dashed lines represent the values of u. Note that the seller’s revenue from Learning

Deterrence remains constant when u varies, as it equals the full allocation surplus

minus the information rent with which she compensates the buyer to deter learning.

Both parts solely depend on the buyer’s valuation. However, the seller’s revenue

from Free Return increases with u as she can collect her reservation value if the

buyer returns the product.17 Note that Free Return and Learning Deterrence are

only relevant when the buyer is less well-informed ex ante. In other words, if the

prior belief µ0 /∈ [µ, µ], the buyer deems learning sub-optimal and the seller can set

a price equal to the expected buyer valuation and capture the full trading surplus

(the black curves).

First, consider the cases where u ≤ vl. In this case, efficiency requires trading with

probability one, and the seller can always set a price tb = vl to prevent the buyer

from learning and obtain a revenue higher than her reservation value. That is, the

blue line is certainly to lie below the green curve and the black curves. Therefore, if

µ0 ∈ [µ, µ̄], the revenue from the optimal mechanism is determined by the maximum

revenue that lies between Learning Deterrence and Free Return. Meanwhile, as

larger u induces a greater Free Return revenue, the set of prior beliefs at which the

seller optimally chooses Free Return expands. Otherwise, for extreme prior beliefs,

the revenue is depicted by the black curves.18

Next, we discuss the cases where u > vl. If µ0 ∈ [µ, µ̄] and the prior belief is low

(e.g., E(v|µ0) < u), then deterring learning to induce immediate trading becomes

a dominated strategy, as keeping the item provides the seller with a higher payoff

(the blue line is higher than the green curve in some regions of each plot). Thus, the

17With a positive u, the objective function for Free Return becomes to: max
s

µ0−q(s)
1−q(s) (vh−u−s)+u.

18Alternatively, we can normalize the buyer’s valuation by subtracting the seller’s valuation.

That is, if u ≤ vl, the optimal mechanism is characterized by Theorem 2 after replacing the buyer

valuation with vh − u > vl − u ≥ 0 and setting the seller’s valuation to 0.

34



Figure 12: Simulation for different seller valuations (vl = 1, vh = 2, γ = 0.04)

seller has an even stronger incentive to encourage buyer learning, as a return would

create efficiency. As a consequence, the set of prior beliefs at which Free Return

dominates Learning Deterrence expands as u increases. Meanwhile, with a larger u,

the cutoff belief q(vh − u) above which the seller strictly prefers Free Return rather

than keeping the item also increases.19 Above all, the set of prior beliefs at which

the seller optimally chooses Learning Deterrence shrinks. However, the set of prior

beliefs that supports Free Return shifts to the right and may eventually vanish as

keeping the item becomes more attractive. For example, when u = vh, the seller

never sells.

9.3 A more general framework

Notice that a refund mechanism {tb, (xr, tr)} can actually be interpreted as a bi-

nary menu {(xb = 1, tb), (xr, tr)}. Essentially, the seller commits to such a binary
19If µ0 = q(vh − u), the optimal pricing for free return equals u.
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menu to screen the buyer who is initially uninformed but observes different in-

formation outcomes after private learning. In principle, the seller can design any

arbitrary menu containing arbitrary numbers of allocation-transfer pairs. With our

information process, it is without loss of generality to assume such a binary menu

{(1, tb), (xr, tr)}.20 More concretely, the buyer observes the binary menu and decides

how much information to acquire. Once he finds that the payoff from accepting ei-

ther option within the menu weakly dominates the continuation value from further

learning, he stops and chooses optimally between the two options. Anticipating this,

the seller chooses among different binary menus to maximize her expected revenue.

Within this framework, our results still hold.

To further elaborate, consider a standard adverse selection model where the agent’s

private type (valuation) is supported on a closed interval. The revelation principle

implies that the principal designs a menu that incentivizes the agent to truthfully

reveal his type. In other words, there is a one-to-one mapping from the agent

types to the menu options. Here, designing a menu to screen buyers with different

posterior beliefs requires more constraints. First, the interim incentive constraints

require buyers with different posterior beliefs to be willing to truthfully reveal these

beliefs. Second, the buyer must be willing to stop learning when his posterior belief

reaches either of the two posteriors for which the binary menu is designed (this

is referred to as “implementability” in Mensch (2020)). In our paper, by assuming

exponential experimentation, these two sets of constraints are directly implied by the

buyer’s optimality to stop learning at some particular posterior belief. That is, we

only require (xr, tr) to satisfy the well-known smooth pasting and value matching

conditions at that particular posterior belief (see Lemma 2). Furthermore, given

the buyer’s optimality of stopping, the first sets of constraints (interim incentive

constraints) are always slack; otherwise, learning would not be necessary.

Our reason for distinguishing between (1, tb) and (xr, tr) is that they play very dif-

ferent roles in shaping the buyer’s learning behavior. Specifically, the selling price,
20The optimality of such a binary menu is implied by Lemmas 1 and 2. For fixed tb, the seller

is maximizing her expected revenue over the distribution of the buyer’s posterior beliefs. Given

a binary state space, standard concavification implies the optimality of inducing binary posterior

beliefs. Mensch (2020) also claims the optimality of binary menus under binary state space, but

without requiring xb = 1, as he allows the buyer to acquire flexible information with a posterior-

separable information cost.
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(1, tb), determines the net surplus that the buyer obtains if a Poisson jump oc-

curs, and thereby determines the continuation value he can attain through learning.

Meanwhile, the return policy, (xr, tr), is designed to truncate the buyer’s sequential

learning, which allows the seller to induce more flexible buyer learning while keeping

the price constant.

10 Conclusion

This paper discusses the seller’s optimal refund mechanism when interacting with

a buyer who can privately acquire information before and after purchase. A refund

mechanism is essentially an option contract creating the buyer an option value,

which further affects the buyer’s learning outcomes. When the difference between

before-purchase learning and post-purchase learning is not very large, the optimal

refund mechanism is a deterministic mechanism and it either induces full learning

or deters the buyer from private learning. However, if the information attainable

before purchase is limited and the post-purchase learning is extremely informative,

the seller uses stochastic mechanism to increase trading efficiency and charges a

cancellation fee to extract the surplus from the buyer.
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Appendix

Proposition 1

Proof. We prove this proposition by verifying Q(s) ≥ q(s) if s ∈ [s, s̄], while the

equality holds at s and s̄. Recall that Q(s) = {µ : V (µ, s) = E(v|µ)− (vh − s)}. By

setting s = D(µ) := Q−1(µ), the type-µ buyer is indifferent between accepting the

price and exerting learning. Let µ̃(µ) := q(D(µ)) be the quitting belief if s = D(µ).

Claim 1. The domain of µ̃(µ) is [µ, µ]. µ̃(µ) ≤ µ and the equality holds only at

the two end points. µ̃(µ) is increasing and symmetric about the line 1-µ. µ − µ̃(µ)

increases first and then decreases in µ.

Proof. Recall the definition of D(µ),

V (µ,D(µ)) = E(v|µ)− (vh −D(µ)). (10)

By implicit differentiation w.r.t. µ, we have,

dD(µ)

dµ
=

k(k − λD(µ))

λ2(1− µ)2µD(µ)
=

k[µ̃− 1]

λ(1− µ)2µ
< 0. (11)

Besides,
dµ̃

dµ
=

d[k/λD(µ)]

dµ
=

k2(λD(µ)− k)

λ3(1− µ)2µD(µ)3
=

µ̃2(1− µ̃)

(1− µ)2µ
.

Thus, µ̃(µ) is a differential equation with initial point (µ, µ),21 and its solution is,22

− 1

µ̃
− log[1− µ̃] + log[µ̃] =

1

1− µ
− log[1− µ] + log[µ]− λ(vh − vl)

k
. (12)

Denote the LHS as f(µ̃) and the RHS as g(µ). The domain of both functions is

[µ, µ] and f(·) = g(·) at the two end points. Note that f ′(·) > g′(·) when the both

arguments are smaller then 0.5 and f ′(·) < g′(·) when both arguments are larger then

0.5.23 Therefore f(·) and g(·) cross only at the two boundary points and therefore
21To verify (µ, µ) is an initial point. Recall µ = q(s̄) and the binding Learning-Feasibility

constraint implying E(v|µ) − (vh − s̄) = 0. Meanwhile V (q(s̄), s̄) = V (µ, s̄) = 0. Given equation

(10), D(µ) = s̄. Thus, µ̃(µ) = q(D(µ)) = µ.
22The general solution is − 1

µ̃ − log[1− µ̃] + log[µ̃] = 1
1−µ − log[1− µ] + log[µ] + C. Conditional

on the initial point, (µ, µ), we can solve C = −λ(vh−vl)
k . Same result holds if we take (µ, µ) as the

initial point.
23f ′ = 1

µ̃2−µ̃3 and g′ = 1
(1−µ)2µ .
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µ̃(µ) < µ for all µ ∈ (µ, µ). For µ̃(µ) to be symmetric about 1 − µ, note that the

reflection point of (µ, µ̃) over line 1− µ is (1− µ̃, 1− µ). It is easy to verify that, if

equation (12) holds at a point (µ, µ̃), then equation (12) still holds at the reflection

point (1− µ̃, 1−µ). Now, we want to show that µ− µ̃(µ) is single-peaked, increasing

first and then decreasing in µ. Note that µ̃′(µ) < 1 and µ̃′(µ) > 1; therefore, if

µ̃′(µ) = 1 has a unique solution, then we are done. To show this, dµ̃
dµ

= µ̃2(1−µ̃)
(1−µ)2µ

= 1

implies µ̃(µ) = 1 − µ.24 As µ̃(µ) is increasing in µ and symmetric about 1 − µ, it

follows that µ̃′(µ) = 1 has a unique interior solution.

When s /∈ [s, s̄], as the Learning-Feasibility constraint fails, no learning is optimal.

If s ∈ [s, s̄], note that Q(D(µ)) − q(D(µ)) = µ − µ̃(µ). Taking the derivative

with respect to µ yields (Q′ − q′)D′ = 1 − µ̃′. Because D′(µ) < 0, Q′(s) − q′(s)

is positive for small s and then negative for large s, and Q(s) = q(s) at s and

s̄.25 The difference, Q(s) − q(s), is single-peaked in s. That is, for all s ∈ [s, s̄],

Q(s) ≥ q(s) with equality holding at the two end points. Then it is easy to verify

V (µ, s) ≥ max{0,E(v|µ) − (vh − s)} if µ ∈ [q(s), Q(s)]. Then the construction

of Proposition 1 is optimal based on the standard arguments in the exponential

experimentation.

Lemma 1

Proof. To simplify the exposition, we omit the notion of s in the buyer’s value

function, as the lemma is true for any fixed s. Let VB(µ(τ)) be the buyer’s value

function for pre-purchase learning (enter-the-market value). It is characterized by

the Bellman equation below:

VB(µ(τ)) = max{0, VP (µ(τ)),−kdτ+µ(τ)λdτs+(1−µ(τ)λdτ)VB(µ(τ+dτ))}. (13)

Different from the Bellman equation for No return, if the buyer stops learning by

purchasing the item, he obtains the purchase value VP (µ(τ)) instead of the con-

sumption value E(v|µ) − (vh − s), as he might also learn after purchase if a return
24µ̃2(1 − µ̃) = (1 − µ)2µ could have three solutions: µ̃ = µ = 0, µ̃ = µ = 1 or µ̃ = 1 − µ. The

previous two cannot be true when µ ∈ [µ, µ].
25Recall that D(µ) = s̄ and D(µ̄) = s by Learning-Feasibility.
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is allowed. The purchase value VP (µ(τ)) is characterized as below:

VP (µ(τ)) = max{E(v|µ(τ))− (vh − s),E(v|µ(τ))xr − tr,

− kdτ + µ(τ)λdτs+ (1− µ(τ)λdτ)VP (µ(τ + dτ))}.
(14)

Note that, while the buyer purchases the item, he instantaneously abandons his

outside option. In other words, upon stopping, he can either consume the item or

return it according to the pre-specified return policy. Conditional on learning, the

three Bellman equations (13), (14), and (2) lead to the same differential equation

(ODE). Obviously, VB(µ) ≥ VP (µ) and VB(µ) ≥ V 0(µ).

To show this lemma, we prove the following equality:

max{VB(µ), VP (µ)} = V 0(µ), ∀µ. (15)

Suppose the seller intends to set a harsh return policy with which, if the buyer

purchases the item and stops post-purchase learning at belief µ,26 he obtains payoff

VP (µ) < VB(µ). Then, a rational buyer could simply not purchase the item and

perform pre-purchase learning, which implies VB(µ) = V 0(µ) and equality (15) holds

.

Moreover, suppose the seller instead offers a benevolent return policy intending to

reward the buyer for purchasing the item early on. Under this policy, the buyer

purchases the item at some point and, while he stops post-purchase learning at

belief µ and requests a return, he gets payoff VP (µ) > V 0(µ). We can then calculate

the return transfer which equals the allocation surplus minus the buyer’s payoff:27

tr = E(v|µ)xr − VP (µ) = E(v|µ) V
′
P (µ)

vh − vl
− VP (µ).

The (ODE) is a general solution of VP (µ). Hence,

(1− µ)µλV ′
P (µ) + µλVP (µ) = µλs− k.

Slope V ′
P (µ) and magnitude VP (µ) of the buyer’s continuation value are the substi-

tutes that the seller can adjust to enforce the same stopping belief. For the purpose

of maximizing profit, the seller will reduce VP (µ) and raise V ′
P (µ) (constrained by

26Since the buyer always stops learning if his belief jumps to 1, our use of the term stopping

belief refers to the non-degenerate stopping beliefs.
27This is implied by the optimality (known by smooth-pasting) to stop learning at µ. Formally,

see Lemma 2.
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the above differential equation) to increase the return transfer and in the mean-

time preserve the same buyer’s optimal stopping rule,28 which is a contradiction of

optimality, and we obtain condition (15).

Corollary 1

Proof. Given Lemma 1, for all optimal refund mechanisms, VB(µ0, s) = V 0(µ0, s).

Given Proposition 1, if µ /∈ [µ, µ̄], then VB(µ0, s) = max{0,E(v|µ0) − (vh − s)}
and the buyer does not perform learning regardless of s. Suppose the seller offers

a "No Return" mechanism with price tb = E(v|µ0). Then, the buyer is indifferent

between purchasing and quitting, with the seller-preferred tie breaking rule, the

seller obtains a revenue equal to E(v|µ0). Note that the seller’s profit equals the

joint surplus minus the surplus that buyer obtains from the trade. In this case,

the joint surplus attains the full allocation surplus and the buyer gets zero trading

surplus. That is to say, the mechanism {E(v|µ0), (1,E(v|µ0))} is optimal.

Proposition 2

Proof. With Learning Deterrence, s = D(µ0) := Q−1(µ0), trading happens with

probability one and therefore the joint surplus attains the full allocation surplus

E(v|µ0).

First, we prove the first term. Proposition 1 and the Learning-Feasibility constraints

imply V (µ,D(µ)) = 0 at µ and µ̄. Rearranging equation (10) gives:

V (µ,D(µ)) = D(µ)− (1− µ)(vh − vl).

Taking derivative w.r.t µ and plugging in equation (11) gives:

dV (µ,D(µ))

dµ
= (vh − vl)

[
−A

(1− µ̃)

(1− µ)2µ
+ 1

]
,

where A = k
λ(vh−vl)

= (1 − µ)µ ∈ (0, 1
4
).29 It is easy to verify dV (µ,D(µ))

dµ
= 0 at

µ or µ. To prove that V (µ,D(µ)) is single-peaked in µ, we only need to show

28By inducing the same stopping beliefs, the ex-ante probabilities of return and successful sale are

the same regardless of when the buyer purchases the item, i.e., switches to post-purchase learning.
29From the binding Learning-Feasibility constraint, we can get k

λ(vh−vl)
= (1− µ)µ = (1− µ)µ.

Therefore, µ = 1− µ ∈ (0, 0.5). Hence, A ∈ (0, 1
4 ).
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that dV (µ,D(µ))
dµ

= 0 has a unique solution when µ ∈ (µ, µ), as V (µ,D(µ)) > 0 when

µ ∈ (µ, µ). That is, the two equations below have a unique solution when µ ∈ (µ, µ),

as µ̃ is the implicit solution of (12).

− A
(1− µ̃)

(1− µ)2µ
+ 1 = 0 (16)

− 1

µ̃
+ log

[
µ̃

1− µ̃

]
=

1

1− µ
+ log

[
µ

1− µ

]
− 1

A
(17)

Substituting equation (16) into (17), we have,

− A

A− (1− µ)2µ
+ log

[
A− (1− µ)2µ

(1− µ)2µ

]
−
(

1

1− µ
+ log

[
µ

1− µ

]
− 1

A

)
= 0.

Denote the LHS as h(µ). Now, we want to show that h(µ) = 0 has a unique solution

for µ ∈ (µ, µ). In particular, as we can verify that h(µ) = 0 at µ and µ, we want to

show that h(µ) first decreases and then increases and then decreases again on [µ, µ].

Taking the derivative of h(µ) w.r.t µ gives:

h′(µ) =
1

(1− µ)2µ

[
y(µ)

z(µ)
− 1

]
,

where y(µ) := A2(3µ−1)(1−µ) and z(µ) := [A− (1−µ)2µ]2. y(µ) is a second-order

polynomial function that is negative when µ < 1/3, increases on µ if µ < 2/3, and

decreases on µ if µ > 2/3. z(µ) is a high-order polynomial function and z′(µ) = 0

has at most 4 roots: 1/3, 1, and at most two roots from (1−µ)2µ−A = 0.30 We can

show that z(µ) crosses y(µ) twice in the support [µ, µ], first from above and then

from below.31

Next, the monotonicity of tD(µ0) = vh −D(µ0) can be directly obtained from (11).

Moreover, tD(µ0) = E(v|µ0) − V (µ0, D(µ0)) and V (µ,D(µ)) = V (µ,D(µ)) = 0,

therefore, tD(µ) = E(v|µ) and tD(µ) = E(v|µ).
30z′(µ) = 2[(1−µ)2µ−A](3µ−1)(µ−1). The derivative of (1−µ)2µ−A is (3µ−1)(µ−1). Hence

(1−µ)2µ−A is increasing if µ < 1/3 and decreasing afterwards. When A < 4/27, (1−µ)2µ−A = 0

has two distinct roots, r1 < 1/3 < r2. When A = 4/27, there is a unique root 1/3. When A > 4/27,

there is no root. Regardless of A, (1− µ)2µ−A < 0 when µ = µ, µ.
31(1) Suppose A < 4/27, then z(µ) > y(µ) for µ ≤ 1/3, z(r2) = 0 < y(r2) and z(µ) > y(µ).

Therefore, z(µ) double crosses y(µ). (2) Suppose A = 4/27, then z(µ) > y(µ) for µ < 1/3,

z(1/3) = y(1/3), z′(1/3) = 0 < y′(1/3), and z(µ) > y(µ). Therefore, z(µ) double crosses y(µ). (3)

Suppose A ∈ (4/27, 1/4), then z′(µ) < 0 when µ < 1/3, and z′(µ) ≥ 0 when µ ≥ 1/3. We can

check that z(1/2) < y(1/2) for A ∈ (4/27, 1/4), and hence we have the same double crossing given

y(µ) < z(µ) and y(µ) < z(µ).
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Propositions 3

Proof. We prove these two propositions together. First, we solve the explicit solution

for sF(µ0) and ΠF(µ0). Denote Π(q(s), s) = µ0−q(s)
1−q(s)

(vh − s) as the objective function

of (F), and it is concave given that the second order total derivative w.r.t s is

negative.32 Thus, the maximizer is pinned down by the first order condition, which

leads to be solution below:

sF (µ0) =
k

λ
+

√
k(µ0 − 1)µ0(k − λvh)

λµ0

,

and

ΠF (µ0) =
−2

√
k(µ0 − 1)µ0(k − λvh) + k − 2kµ0 + λµ0vh

λ
.

Taking the derivative of sF(µ0) w.r.t µ0 gives:

dsF

dµ0

=
k(k − λvh)

2µ0

√
kλ2(µ0 − 1)µ0(k − λvh)

< 0.

Hence, vh − sF(µ0) is increasing in µ0. Furthermore, ΠF(µ0) is increasing in µ0 due

to the envelope theorem.

Next, we need to verify that, if ΠF(µ0) ≥ ΠD(µ0) = tD(µ0), then q−1(µ0) ≤ sF (µ0) ≤
Q−1(µ0). It is obvious that, if ΠF(µ0) ≥ tD(µ0), then vh − sF (µ0) > tD(µ0) =

vh − Q−1(µ0), as the expected probability of a successful sale is less than one with

Free Return. Hence, sF (µ0) ≤ Q−1(µ0) holds trivially. To show q(sF (µ0)) < µ0,

we plug in the explicit expression of sF (µ0) and obtain,
√

µ0

1−µ0
>

√
k/(λvh)

1−k/(λvh)
. This

inequality is true because k
λvh

< µ < µ0.

Lemma 2

Proof. Given Lemma 1, VB(·, s) = V 0(·, s) ≥ VP (·, s) on the domain [0, 1]. To induce

the buyer to stop learning at a belief µ different from q(s), VP (µ, s) must be equal to

V 0(µ, s). Otherwise, the buyer strictly prefers to continue his pre-purchase learning

and does not stop. Furthermore, to ensure that it is a best response for the buyer

to stop at belief µ given the return policy (xr, tr), the buyer’s expected payoff from

requesting return E(v|·)xr − tr should smoothly pass V 0(·, s) at µ. Besides, the

32 d2Π
ds2 = 2kλ(µ0−1)(k−λvh)

(k−λs)3 < 0.
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induced stopping belief µ must belong to the set [q(s), Q(s)], in which V 0(µ, s) =

V (µ, s). That is,

value matching: E(v|µ)xr − tr = V (µ, s),

smooth pasting:
d[E(v|µ)xr − tr]

dµ
= V1(µ, s).

We then obtain the expression of xr and tr. Specifically,

tr(µ, s) = −
kvl − λµvls− kµvh

[
log

(
µ

1−µ

)
− log

(
k

λs−k

)]
λµ(vh − vl)

. (18)

Taking partial derivative w.r.t µ and s separately gives:

∂tr(µ, s)

∂µ
=

kE(v|µ)
λ(1− µ)µ2(vh − vl)

> 0,

∂tr(µ, s)

∂s
=

E(v|q(s))
(1− q(s))(vh − vl)

> 0,

and the cross derivative is 0. Moreover, as V (·, s) is convex in µ, xr(·, s)—proportional

to V1(·, s)—is therefore increasing in µ.

Lemma 3

Proof. First, we discuss the first-order condition. Explicitly,

Π1(µ, s) =
(1− µ0)

(1− µ)2(vh − vl)

[
vh(−vh + s+ vl) +

k(µ(vh − 2vl) + vl)

λµ2
+

kvh(log[
µ

1−µ ]− log[ k
λs−k ])

λ

]
︸ ︷︷ ︸

≡Υ(µ)

.

Since µ ∈ [µ, µ̄], Π1(µ, s) = 0 has the same solution with Υ(µ) = 0.

Υ′(µ) =
k(1− 2µ)µvh + 2k(1− µ)2vl

λ(µ− 1)µ3
.

The numerator of Υ′(µ) is a well-behaved second-order polynomial, which is verified

to have a unique root between 0 and 1, and is larger than 0 at µ = 0, and smaller

than 0 at µ = 1. Thus, Υ′(µ) crosses 0 only once and from below, which implies

Υ(µ) is initially decreasing and then increasing. Therefore, Υ(µ) has at most two

roots in [0, 1], denoted as µ∗
−(s) ≤ µ∗

+(s). Furthermore, Υ(µ) is increasing in s.

Therefore, the smaller root is the local maximizer of Π(µ, s) which is increasing in

s, while the larger root is the local minimizer of Π(µ, s) which is decreasing in s,
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and if the two roots coincide, µ∗
−(s) = µ∗

+(s) > 0.5.33 Thus, if there exists a µ∗
+(s),

it is larger than 0.5.

Let s∗(µ) = {s : Π1(µ, s) = 0}.34 Given the above argument, it is a single-valued

continuous function, which is initially increasing and then decreasing in µ. Fur-

thermore, it is clear that when µ ≤ 0.5, s∗(µ) is increasing. To introduce one

more notation, let t̄r(µ) := tr(µ,Q
−1(µ)). It is the envelope of all inducible return

transfers. Formally,

tr(µ, s) ∈ [0, t̄r(µ)] ⇐⇒ µ ∈ [q(s), Q(s)].

To see this, consider the direction from the right to the left first. Recall that tr(µ, s)

is increasing in both arguments. If µ ≥ q(s), then tr(µ, s) ≥ tr(q(s), s) = 0; and

if µ ≤ Q(s), then s ≤ Q−1(µ) as Q(s) decreases in s, which then implies tr(µ, s) ≤
tr(µ,Q

−1(µ)). The opposite direction is trivial.35

To prove Lemma 3, we want to show that Π(µ, s) is quasi-concave on µ ∈ [q(s), Q(s)].

Specifically, we show tr(µ
∗
+(s), s) > t̄r(µ

∗
+(s)), which then implies µ∗

+(s) > Q(s). The

following claim pins down the set of µ such that tr(µ, s
∗(µ)) ∈ [0, t̄r(µ)].

Claim 2. t̄r(µ) with domain [µ, µ] first increases and then decreases in µ. tr(µ, s
∗(µ))

single crosses t̄r(µ) at 0.5 from below, and {µ : tr(µ, s
∗(µ)) ∈ [0, t̄r(µ)]} = [µ∗, 0.5].

Proof. It is obvious that t̄r(µ) ≥ 0 when µ ∈ [µ, µ], with equality hold at the two

end points. Recall that D(µ) := Q−1(µ). Taking derivative of tr(µ) w.r.t µ gives

dtr(µ)

dµ
=

∂tr(µ,D(µ))

∂µ
+

∂tr(µ,D(µ))

∂s

dD(µ)

dµ
=

(1− µ)µ

(1− µ)µ

[
E(v|µ)

µ
− E(v|µ̃(µ))

1− µ

]
.

The term in square brackets is decreasing. It’s positive when µ = µ̃(µ) = µ, and

negative when µ = µ̃(µ) = µ. Hence, t̄r(µ) is increasing first and then decreasing.

Next, we show that tr(µ, s
∗(µ)) = t̄r(µ) has a unique solution of 0.5. Since tr(µ, s)

is increasing in s, to find the solution of tr(µ, s∗(µ)) = tr(µ,Q
−1(µ)) is equivalent to

33To see this, note that Υ′(0.5) < 0. Suppose µ∗
−(s) = µ∗

+(s) = 0.5, then Υ′(0.5) = 0. Contra-

diction. Suppose µ∗
−(s) = µ∗

+(s) < 0.5, then Υ′(0.5) > 0. Contradiction.
34Sorry to abuse the notation. We can verify that if µ ∈ [µ∗, 0, 5], s∗(µ) is the inverse function

of µ∗(·) after we prove this lemma.
35Note that equation (18), the exact expression of tr(µ, s), is valid for all µ ∈ [0, 1].
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find the solution to the system of equations below,
Π1(µ, s) = 0,

V (µ,D) = E(v|µ)− (vh −D),

s = D,

which can be verified to have a unique non-negative solution µ = 0.5. This suggests

that Π1(µ,D(µ)) = Π1(µ,Q
−1(µ)) = 0 has a unique solution at 0.5. Moreover,

dtr(µ,D(µ))

dµ
=

∂tr(µ,D)

∂µ
+

∂tr(µ,D)

∂s

dD

dµ
,

dtr(µ, s
∗(µ))

dµ
=

∂tr(µ, s
∗)

∂µ
+

∂tr(µ, s
∗)

∂s

ds∗

dµ
.

Since ∂tr(µ,s)
∂µ

is independent of s, the first term of the two derivatives are the same.

Besides, dD
dµ

< 0 and ds∗

dµ
> 0 if µ ≤ 0.5. Hence, the slope of tr is smaller than

tr(µ, s
∗(µ)). That is, if we reduce µ from 0.5, tr(µ, s

∗(µ)) decreases faster than

tr(µ). Let µ∗ be the solution of tr(µ, s∗(µ)) = 0. Obviously, µ∗ ∈ (µ, 0.5). To pin

down µ∗, note that tr(µ, s) = 0 implies s = q−1(µ). Thus, µ∗ is the solution that

Π1(µ, q
−1(µ)) = 0. Explicitly,

Π1(µ, q
−1(µ)) =

(µ0 − 1)(λµ2vh(vh − vl)− k(2µ(vh − vl) + vl))

λ(1− µ)2µ2(vh − vl)
= 0,

which also has a unique solution that µ∗ = k
λvh

+ ( k
λvh

( k
λvh

+ vl
vh−vl

))
1
2 .36 Therefore,

we pin down the set [µ∗, 0.5] on which tr(µ, s
∗(µ)) ∈ [0, t̄r(µ)].

From this claim, we can see that tr(µ, s
∗(µ)) > t̄r(µ) if µ > 0.5. Moreover, given

that µ∗
+(s) > 0.5, if there exists a local minimizer µ∗

+(s), it is larger than Q(s).

Therefore, Π(µ, s) is quasi-concave on [q(s), Q(s)].

Denote t∗r(µ) := tr(µ, s
∗(µ)) for the domain [µ∗, 0.5]. Given the monotonicity of s∗(µ)

when µ ≤ 0.5, we can conclude that if s ∈ (q−1(µ∗), Q−1(0.5)), the local maximizer

µ∗
−(s) ∈ (q(s), Q(s)) hence µ∗(s) = µ∗

−(s) is the global maximizer. Besides, if

s ≥ Q−1(0.5), then Q(s) ≤ 0.5 ≤ µ∗
−(s), where the first inequality comes from Q(s)

being decreasing in s and the second inequality comes from µ∗
−(Q

−1(0.5)) = 0.5.

The inequality holds with equality only at s = Q−1(0.5). It is optimal to induce
36Since λµ2vh(vh − vl) − k(2µ(vh − vl) + vl) is increasing on µ > 0 (its derivative is −2(k −

λvhµ)(vh−vl) > 0), it is negative when µ is small and positive when µ is large. Hence, Π1(µ, q
−1(µ))

single crosses 0 from above and µ∗ is unique.
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a return belief Q(s). If s ≤ q−1(µ∗), q(s) ≥ µ∗ and then Π1(q(s), s) ≤ 0.37 Since

Π1(µ, s) is quasi-concave in [q(s), Q(s)], thus if Π1(µ, s) ≤ 0 at q(s), Π1(µ, s) ≤ 0

for all [q(s), Q(s)]. Still the inequality holds with equality only at s = q−1(µ∗). It is

optimal to induce return belief q(s).

Theorem 1

Proof. Substituting the first-order condition (6) into the seller’s expected revenue

(7), we can simplify the latter expression to write:

Π(µ, s∗(µ)) = t∗r(µ) +
∂tr(µ, s

∗(µ))

∂µ
(µ0 − µ). (19)

Taking the derivative w.r.t µ gives

dΠ(µ, s∗(µ))

dµ
=

dt∗r
dµ

− ∂t∗r
∂µ

+ (µ0 − µ)
∂2t∗r
∂µ2

=
∂t∗r
∂s

ds∗

dµ
+ (µ0 − µ)

∂2t∗r
∂µ2

=

[ ∂t∗r
∂s

ds∗

dµ

∂2t∗r
∂µ2

+ µ0 − µ

]
∂2t∗r
∂µ2

=

[
− (1− µ)

vh
E[v|q(s∗(µ))] + µ0 − µ

]
∂2t∗r
∂µ2

.

Note that ∂tr(µ,s∗(µ))
∂µ

is independent of s and we can verify ∂2t∗r
∂µ2 < 0.38 Let ϕ(µ) =

(1−µ)
vh

E[v|q(s∗(µ))]. The monotonicity of Π(µ, s∗(µ)) can be pinned down by the sign

of µ0 − µ − ϕ(µ). In particular, if µ0 − µ > ϕ(µ), Π(µ, s∗(µ)) is decreasing in µ,

otherwise, it is increasing in µ.

Claim 3. ϕ(µ) with domain [µ∗, 0.5] is decreasing and convex on µ, and ϕ′(0.5) >

−1.

The proof of this claim can be found subsequent to this theorem. Recall Lemma 3,

µ∗(s) is an optimal solution only for s ∈ [q−1(µ∗), Q−1(0.5)]. In particular, partial

learning is optimal for s ∈ (q−1(µ∗), Q−1(0.5)); and for the boundaries, either full

learning or no leaning is optimal. Consider the original problem (P) and reimpose

the two constraints: q−1(µ0) ≤ s ≤ Q−1(µ0) and µ ≤ µ0, then µ∗(s) could be an

optimal solution only if

[q−1(µ∗), Q−1(0.5)] ∩ [q−1(µ0), Q
−1(µ0)] ̸= ∅ and µ0 ≥ µ∗,

which is equivalent to

µ0 ∈ [µ∗, Q(q−1(µ∗))].

37See footnote 41.
38 ∂2t∗r

∂µ2 = k[(2µ−1)E(v|µ)−(1−µ)vl]
λ(1−µ)2µ3(vh−vl)

< 0.
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Figure 13 depicts this region. Note that when µ0 ̸= 0.5, the upper boundary of

µ∗(s), subject to the two constraints, is not 0.5. In particular, if µ0 ≤ 0.5, then the

optimal stopping belief µ ≤ µ0 (see Figure 13 (a)); if µ0 > 0.5, then the optimal

stopping belief µ ≤ µ∗(Q−1(µ0)) (see Figure 13 (b)), The lower boundary µ∗ can

always be achieved when µ0 ∈ [µ∗, Q(q−1(µ∗))].

Figure 13: Partial learning as optimal interior solution

We distinguish two cases. First, ϕ′(µ∗) ≥ −1 implies that Π(µ, s∗(µ)) is quasi-convex

in µ. Second, ϕ′(µ∗) < −1 implies there exists a local maximum of Π(µ, s∗(µ)), which

we can verify to be strictly worse than the revenue from Learning Deterrence. We

establish the proof case by case.

Case one: ϕ′(µ∗) ≥ −1. This is true in most scenarios. Denote Φ(µ) = µ + ϕ(µ).

Therefore when µ0 ∈ [Φ(µ∗),Φ(0.5)], µ0 − µ single-crosses ϕ(µ) from above, as

depicted in Figure 14, where the black lines represent the contour lines of µ0−µ for

different µ0.

• If µ0 < Φ(µ∗), then Π(µ, s∗(µ)) is increasing in µ. This implies that in-

ducing the upper boundary of µ∗(s), subject to the two constraints, is op-

timal, which further implies the optimality of Learning Deterrence. To see

this, when µ0 ≤ 0.5, the optimal return belief is µ0 and inducing no learning

via Stochastic Return is strictly dominated by Learning Deterrence. When

µ0 > 0.5, the optimal return belief is µ∗(Q−1(µ0)) < 0.5 < µ0. However, we
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Figure 14: Case one: seller’s expected revenue is quasi-convex

can show that Learning Deterrence is better than Stochastic Return that in-

duces stopping at µ∗(Q−1(µ0)). Specifically, suppose we ignore the constraint

that µ ∈ [µ∗, µ∗(Q−1(µ0))], then the seller obtains larger revenue by inducing

stopping at 0.5 with revenue as a weighted average between the selling price

tD(0.5) = vh − Q−1(0.5) and the return transfer tr(0.5, Q
−1(0.5)), which is

smaller than tD(0.5) and since tD(·) is increasing, tD(µ0) > tD(0.5), meaning

that Learning Deterrence generates strictly higher profit.39

• If µ0 ∈ [Φ(µ∗),Φ(0.5)), Π(µ, s∗(µ)) is quasi-convex in µ. When µ0 ≤ 0.5, the

optimal return belief is either µ∗ or µ0, which implies the optimality between

Free Return and Learning Deterrence. When µ0 > 0.5, we can still obtain

the optimality between Free Return and Learning Deterrence by applying the

same reasoning as above.

• If µ0 ≥ Φ(0.5), Π(µ, s∗(µ)) is decreasing in µ. Hence, Free Return is optimal.

Case two: When ϕ′(µ∗) < −1, there exists a local maximizer of Π(µ, s∗(µ)). Denote

r = {µ ∈ [µ∗, 0.5] : ϕ′(µ) = −1}. If µ0 ∈ [Φ(r),Φ(µ∗)], there exists a unique local

maximizer r1(µ0) = {µ ∈ [µ∗, r] : ϕ(µ) = µ0 − µ} (see Figure 15 for visualization).

If µ0 /∈ [Φ(r),Φ(µ∗)], then the expected revenue is quasi-convex and the argument

in case one validates. We want to show that if µ0 ∈ [Φ(r),Φ(µ∗)],

Π(r1(µ0), s
∗(r1(µ0))) < tD(µ0).

39The magnitude between Φ(µ∗) and 0.5 is ambiguous, but it does not affect the above argument.
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Figure 15: Case two: seller’s expected revenue is not quasi-convex

With slight abuse of notation, we write Π(µ, s∗(µ);µ0) instead of Π(µ, s∗(µ)). Note

that

Π(r1(µ0), s
∗(r1(µ0));µ0) < Π(r1(µ0), s

∗(r1(µ0)); Φ(µ
∗)) < Π(µ∗, s∗(µ∗); Φ(µ∗)).

The first inequality comes from Π increasing in µ0. The second inequality is due

to µ∗ = r1(Φ(µ
∗)), which is the local maximizer of Π when µ0 = Φ(µ∗). Recall

equation (19) and plug in the expression of µ∗,

Π(µ∗, s∗(µ∗); Φ(µ∗)) = 0 + (Φ(µ∗)− µ∗)
∂tr(µ, s

∗(µ))

∂µ

∣∣∣
µ=µ∗

= E(v| k

λvh
).

It is obvious that s < vh whenever learning is feasible. Thus,

E(v| k

λvh
) < E(v|µ) = tD(µ) < tD(µ0),

where the equality and the second inequality come from Proposition 2.

Claim 3

Proof. Denote w(µ) := E[v|q(s∗(µ))], then ϕ(µ) = 1−µ
vh

w(µ). Note that w(µ) is

decreasing in µ, as q(s) decreases in s and s∗(µ) increases in µ. Besides, we can

verify that s∗(µ) is concave for µ ∈ [µ∗, 0.5],40 hence w(µ) is convex.

40We can verify that d2s∗

dµ2 is proportional to q(s∗(µ))2M + µ2N , where M ≡ (µ(vh − 4vl) −
2µ2(vh − vl) + 2vl)

2 and N ≡ (−2 + (5− 4µ)µ)µv2h + 2(1− µ)2(−3 + 2µ)vlvh. We can verify that

M > 0, N < 0, and M +N < 0. Meanwhile q(s∗(µ)) < µ. Therefore d2s∗

dµ2 < 0.
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Note that
ϕ′(µ) = − 1

vh
[w(µ)− (1− µ)w′(µ)]

= − 1

vh

[
w(µ∗) +

∫ µ

µ∗
w′(µ)dµ− (1− µ)w′(µ)

]
.

Since w′ < 0 and w′′ > 0, then
∫ µ

µ∗ w
′(µ)dµ − (1 − µ)w′(µ) is decreasing in µ and

therefore ϕ′(µ) is increasing in µ. That is, ϕ(µ) is convex.

Denote q∗(µ) := q(s∗(µ)). Simplifying ϕ′(0.5) gives:

ϕ′(0.5) = −
[
4(vh − vl)vlq

∗(0.5)2

v2h
(1− q∗(0.5)) +

1

vh
E[v|q∗(0.5)]

]
.

We can show that ϕ′(0.5) is decreasing in vl. Hence plugging vl = 0 and vl = vh into

ϕ′(0.5), we have ϕ′(0.5)|vl=0 = −q∗(0.5) > −1 and ϕ′(0.5)|vl→vh = −1.41

Theorem 2

Proof. First, we want to show that F is either an empty set or a closed interval.

Note that tD(µ) > ΠF (µ) and tD(µ) > ΠF (µ). Hence, it is equivalent to show

ΠF (µ0) crosses tD(µ0) at most twice. Let ΠF (µ) = tD(µ) = vh−D(µ), then D(µ) =

vh −ΠF (µ). To simplify the exposition, let θ(µ) := γ
(vh−ΠF (µ))

. Recall equation (12)

and µ̃(µ) = γ
D(µ)

. Then we want to show g(µ)− f(θ(µ)) has at most two roots when

µ ∈ [µ, µ]. To verify this,

g′ − f ′θ′ =
1

1− µ

(
1

1− µ
+

1

µ

)
+

(
1
√
µ
− r√

1− µ

)
(
√
µ+ r

√
1− µ)3

(
√
µ+ r

√
1− µ)2 − 1

,

where r =
√

vh/γ − 1 >
√
3 given the assumption that vh > 4γ + vl. Let x =√

µ
1−µ

∈ (0,∞), which is a monotone transformation of µ. Rearranging g′−f ′θ′ = 0,

we have

m(x) :=
x(x+ r)3(1− xr)

(1 + x2)3(−1 + 2xr + r2)
= −1,

where m(x) is a rational function. The degree of the numerator is smaller than

that of the denominator, thus it has a horizontal asymptote m = 0. Note that

the denominator is positive due to θ(µ) ∈ [0, 1], hence it does not have a vertical

41Taking implicit differentiation w.r.t vl for Π1(µ, s
∗(µ))|µ=0.5 = 0, we have ds∗(0.5)

dvl
= q∗(0.5)−

1 < 0. Then dq∗(0.5)
dvl

> 0. Besides, q∗(0.5) < 0.5, then dϕ′(0.5)
dvl

= 1
v2
h
[(q∗(0.5) − 1)(vh + 4(vh −

2vl)q
∗(0.5)2)− (vh − vl)[vh + 4vl(2− 3q∗(0.5))q∗(0.5)]dq

∗(0.5)
dvl

] < 0.
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asymptote. Meanwhile limx→0m(x) = 0, limµ→∞m(x) = 0, m(x = 1) < 0, and

m(x) = 0 has a unique root x = 1/r < 1. Therefore, the graph of m(x) is the

following.

Then, m(x) = −1 has at most two roots. That is, if µ ∈ [µ, µ], g′(µ) − f ′θ′(µ) has

at most two roots and g′(µ)− f ′θ′(µ) < 0 when µ is between the two roots. Given

that g(µ)− f(θ(µ)) is strictly positive at µ and µ, we can verify g(µ)− f(θ(µ)) has

at most two roots. The existence of γ∗ is implied by Proposition 4, and the limit

result in Proposition 5 implies that the left endpoint of F is larger than vl
vh

. The

exact form of optimal refund mechanism is an immediate result of Corollary 1 and

Theorem 1.

Proposition 4

Proof. Recall that Π(q(s), s) = µ0−γ/s
1−γ/s

(vh − s). By the envelope theorem, we have:

dΠF

dγ
=

vh − sF

(sF − γ)2
(µ0 − 1)sF < 0.

Hence, ΠF is decreasing in γ.

To show that tD(µ0) = vh − D(µ0) is increasing in γ, we want to show D(µ0) is

decreasing in γ. Recall that µ̃(µ) = q(D(µ)). Taking the derivative w.r.t γ for both

sides of E(v|µ0)− (vh −D(µ0)) = V (µ0, D(µ0)), we obtain:

1− µ0

1− µ̃(µ0)

dD

dγ
=

1− µ0

1− µ̃(µ0)
− 1− (1− µ0) log

[
µ0/1− µ0

µ̃(µ0)/1− µ̃(µ0)

]
< 0.

Given that F is either empty or a closed interval, it is immediate that if γ1 < γ2,

then F (γ2) ⊆ F (γ1). Note that µ is the smaller root for E(v|µ)− (vh − q−1(µ)) = 0.
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By implicit differentiation,

dµ

dγ
(

γ

1− µ
− γ

µ
) = −1.

Hence, dµ

dγ
> 0. Meanwhile, µ = 1− µ, then [µ(γ2), µ(γ2)] ⊂ [µ(γ1), µ(γ1)].

Proposition 5

Proof. First we calculate the limit of tD(µ0) when γ → 0. Plugging D(µ0) =
γ

µ̃(µ0)

into equation (12) and multiplying by γ gives:

−D(µ0) + γ log
γ

D(µ0)− γ
=

γ

1− µ0

+ γ log
µ0

1− µ0

− (vh − vl).

If γ → 0 and µ0 does not converge to 0 or 1, the above equation converges to

vh − D(µ0) = vl.42 Hence, lim
γ→0

tD(µ0) → vl. For the expected revenue from Free

Return,

lim
γ→0

ΠF (µ0) = µ0vh + γ(1− 2µ0)− 2
√

γ(1− µ0)µ0(vh − γ) → µ0vh.

Therefore when γ → 0, the seller is indifferent between Learning Deterrence and

Free Return at µ0 =
vl
vh

.

Second, since the above limit of tD(µ0) may fail when µ0 → 0 or µ0 → 1, we have to

verify the extreme case that lim
γ→0

[µ, µ] → [0, 1]. Plugging µ = 1
2

(
1−

√
1− 4γ/(vh − vl)

)
,

we have

lim
γ→0

γ log
µ

1− µ
= γ log

1−
√
1− 4γ/(vh − vl)

1 +
√
1− 4γ/(vh − vl)

→ 0.

Hence, lim
γ→0

tD(µ) → vl. Thus, when µ0 <
vl
vh

, the seller’s expected revenue from the

optimal mechanism converges to vl.

Plugging µ = 1
2

(
1 +

√
1− 4γ/(vh − vl)

)
, we have

lim
γ→0

γ log
µ

1− µ
= γ log

1 +
√
1− 4γ/(vh − vl)

1−
√

1− 4γ/(vh − vl)
→ 0,

lim
γ→0

γ

1− µ
=

γ

1−
√

1− 4γ/(vh − vl)
→ vh − vl.

Hence, lim
γ→0

µ → 1, lim
γ→0

tD(µ) → vh, and lim
γ→0

ΠF (µ) = vh. If vl
vh

≤ µ0 ≪ 1,

lim
γ→0

ΠF (µ0) > lim
γ→0

tD(µ0). Then, when µ0 ≥ vl
vh

, the seller’s expected revenue

converges to µ0vh.
42 lim

γ→0
γ log γ

D(µ0)−γ = 0
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Proposition 6

Proof. For any fixed s, the lower bound of the buyer’s ex-ante surplus is still

V 0(µ0, s;λB) as the buyer can always treat the mechanism as if a return is pro-

hibited. Note that for a mechanism {tb, (xr, tr + tu)}, the buyer’s value function

for post-transaction learning is VP (µ, s + tu;λP ) − tu. This is obtained by simple

normalization.

Now we show there is a profitable deviation if the seller encourages post-transaction

learning and provides the buyer with a surplus strictly larger than V 0(µ0, s;λB).

Note that when the mechanism is {tb, (xr, tr + tu)}, the seller with reservation value

u obtains the following return revenue by inducing the buyer to stop learning and

request a return at belief µ,

tr + tu = E(v|µ)V
′
P (µ, s+ tu;λP )

vh − vl
− (VP (µ, s+ tu;λP )− tu), (20)

where V ′
P represents the partial derivative w.r.t to µ. From the (ODE) for post-

transaction learning with a normalized surplus s+ tu, we obtain

VP (µ, s+ tu;λP ) = s+ tu −
k

µλP

− (1− µ)V ′
P (µ, s+ tu;λP ).

Thus, equation (20) can be further reduced to

tr + tu =
vh

vh − vl
V ′
P − s+

k

µλP

Note that if lowering VP , V ′
P is increasing by the above differential equation. Besides,

the return revenue is increasing in V ′
P . Hence, if VP (µ, s+tu;λP )−tu > V 0(µ, s;λB),

the seller can gain larger expected revenue by raising the cancellation fee tu while

let the buyer preserve the same stopping belief. Thus, the optimality holds when

equation (8) holds.

Next, it is very easy to verify that for fixed s, the seller’s return payoff tr + tu is

always larger under post-transaction learning than inducing the the buyer to stop

at the same belief but under pre-transaction learning. To induce the same stopping

belief µ < µ0 while restricting V (µ0, s + tu;λP ) − tu = V (µ0, s;λB), we can verify

V ′(µ, s + tu;λP ) > V ′(µ, s;λB). Therefore, the allocation rate at return is larger

and the buyer’s continuation value is lower, implying the seller obtains larger return

revenue by inducing the same stopping belief with post-transaction learning.
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Proposition 7

Proof. From now on, we write tu(s, µ0) as the solution to equation (8). Denote

q−1
B (µ0) :=

k
λBµ0

which is the inverse of quitting belief for pre-transaction learning.

Similarly, denote q−1
P (µ0) := k

λPµ0
and Q−1

B (µ0) = Q−1(µ0;λb). Notice that (1)

when s ∈ [q−1
P (µ0), q

−1
B (µ0)), V (µ0, s + tu;λP ) − tu = V 0(µ0, s;λB) ≡ 0. And (2) if

s > q−1
B (µ0), V (µ0, s+ tu;λP )− tu = V 0(µ0, s;λB) > 0. Therefore the return revenue

tr(µ, s) + tu(s, µ0) follows different expression for the above two cases. We discuss

them separately.

Case one: s ∈ [q−1
P (µ0), q

−1
B (µ0)). Substitute equation (8) into equation (20), we

obtain:

tr(µ, s) + tu(s, µ0) =
1

λPµ(vh − vl)

[µ(k − λP sµ0)vh
µ0 − 1

− kvl + λP sµvl

+kµvh

(
log

[
µ

1− µ

]
− log

[
µ0

1− µ0

]) ]
.

We can verify that

lim
λP→∞

tr(µ, s) + tu(s, µ0) =

(
vh

(1− µ0)(vh − vl)
− 1

)
s

Thus, the seller’s expected revenue equals,

lim
λP→∞

µ0(vh − s) + (1− µ0)[tr(µ, s) + tu(s, µ0)] = µ0vh +
vls

vh − vl

which is increasing in s. Therefore the seller optimally sets an s = q−1
B (µ0) in this

case.

Case two: s ∈ [q−1
B (µ0)), Q

−1
B (µ0)). Substitute equation (8) into equation (20), we

obtain:

tr(µ, s) + tu(s, µ0) = −
kvh log

[
k

λBs−k

]
λB(vh − vl)

+
−kvl + λP sµvl + kµvh log

[
µ

1−µ

]
λPµ(vh − vl)

+
k(λP − λB)vh(1 + (1− µ0) log

[
µ0

1−µ0

]
)

λBλP (1− µ0)(vh − vl)
.

We can verify that

lim
λP→∞

tr(µ, s)+tu(s, µ0) =
kvh + λBs(1− µ0)vl + k(1− µ0)vh

(
log[ µ0

1−µ0
]− log[ k

λBs−k
]
)

λB(1− µ0)(vh − vl)
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Take the first order derivative of limλP→∞ µ0(vh − s) + (1 − µ0)[tr(µ, s) + tu(s, µ0)]

w.r.t s, we obtain,
λB(1− µ0)vhs

(λBs− k)(vh − vl)
− 1,

which is decreasing in s. Therefore, the seller’s revenue is increasing in s if s ≤
k(vh−vl)

λB(µ0vh−vl)
, otherwise, it is decreasing in s if s > k(vh−vl)

λB(µ0vh−vl)
.

(1) If µ0 ≤ vl/vh, then s > 0 > k(vh−vl)
λB(µ0vh−vl)

and the seller’s revenue is always

decreasing in s, which renders s = q−1
B (µ0) the locally optimal solution. However,

we can verify that the locally optimal solution is dominated by setting s = Q−1
B (µ0)

to deter learning. (2) If µ0 ∈ (vl/vh, µ], then k(vh−vl)
λB(µ0vh−vl)

> q−1
B (µ0). We can verify

that there exists µ′
0 and µ′′

0 such that vl/vh < µ′
0 < µ′′

0 < µ, and if µ0 ∈ [µ′
0, µ

′′
0], then

q−1
B (µ0) ≤ k(vh−vl)

λB(µ0vh−vl)
≤ Q−1

B (µ0), rendering the optimal solution s = k(vh−vl)
λB(µ0vh−vl)

.

Otherwise, if µ0 /∈ [µ′
0, µ

′′
0], the optimal solution is s = Q−1

B (µ0). Given this, suppose

the optimal s = k(vh−vl)
λB(µ0vh−vl)

. Then the optimal price when λP → ∞ is

vh −
k(vh − vl)

λB(µ0vh − vl)
.

The optimal cancellation fee when λP → ∞ is

k

λB(1− µ0)

{
1 + (1− µ0) log

[
µ0vh

µ0vh − vl

]}
.

The optimal return transfer when λP → ∞ is

kvl

(
vh − vl − (1− µ0)vl − (1− µ0)(µ0vh − vl) log

[
µ0vh

µ0vh−vl

])
λB(1− µ0)(vh − vl)(µ0vh − vl)

.

The optimal allocation rate at return when λP → ∞ is

k
(
vh − vl − (1− µ0)vl − (1− µ0)(µ0vh − vl) log

[
µ0vh

µ0vh−vl

])
λB(1− µ0)(vh − vl)(µ0vh − vl)

.
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