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ABSTRACT. Recurrent boom-and-bust cycles are a salient feature of economic and financial history.
Cycles found in the data are stochastic, often highly persistent, and span substantial fractions of
the sample size. We refer to such cycles as “long”. In this paper, we develop a novel approach
to modeling cyclical behavior specifically designed to capture long cycles. We show that existing
inferential procedures may produce misleading results in the presence of long cycles, and propose a
new econometric procedure for the inference on the cycle length. Our procedure is asymptotically
valid regardless of the cycle length. We apply our methodology to a set of macroeconomic and
financial variables for the U.S. We find evidence of long stochastic cycles in the standard business
cycle variables, as well as in credit and house prices. However, we rule out the presence of stochastic
cycles in asset market data. Moreover, according to our result, financial cycles as characterized by
credit and house prices tend to be twice as long as business cycles.
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1. Introduction

This paper develops an econometric framework for the inference on the cyclical properties
of time series. We are particularly interested in stochastic cycles arising due to persistent low-
frequency oscillatory impulse responses. The period of such cycles spans a substantial fraction of
a sample, and the econometrician would be able to observe only a handful of peaks and troughs
in data. We refer to such cycles as “long”. It is also important to emphasize the stochastic nature
of such cycles. While their peaks may appear to be regularly spaced, the timing of the peaks and
even their number in a sample are determined by particular realizations of the shocks.

Long cycles are prevalent in macroeconomic and financial data. In a recent paper, Beaudry,
Galizia, and Portier (2020) estimate that many variables have cycles of length of approximately
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32–40 quarters, which can correspond to 15% and even 20% of their observed samples. Using
data from 1960 to 2011, Drehmann, Borio, and Tsatsaronis (2012) estimate that the length of the
cycle for credit is 18 years or approximately 35% of their sample. The first contribution of our
paper is to show that existing inferential procedures for the cycle length can be distorted in such
cases. We find that substantial distortions occur when the cycle length exceeds 25% of the sample
size.

In our second contribution, we propose a new econometric procedure for the inference on the
periodicity of cycles. The novel aspect of our methodology is that it is specifically designed to
take into account the possibility of long persistent stochastic cycles. Our procedure produces a
confidence intervals for the cycle length that has the following property: its asymptotic coverage
probability is correct regardless of the cycle length. Thus, the confidence interval is asymptotically
valid both when the period is small relative to the sample size, and when it spans a substantial
fraction of observed data. No other procedure in the existing literature has this property. When
the data generating process (DGP) is acyclical, in large samples our procedure is expected to
produce empty confidence intervals for the cycle length. Hence, the procedure can be used to
rule out the cyclical behavior.

Stochastic cycles naturally arise in AR(2) models with complex roots. For example, Sargent
(1987) describes the region for the values of the autoregressive coefficients that produce a spike
in the spectrum in the interior of the [0, π] range.1 The period of such cycles is determined by
the values of the autoregressive coefficients and has a fixed length in time units. According to
this model, the cycle length would amount to a negligible fraction of the sample size in large
samples. Thus, the long-cycle characteristics of data are not preserved asymptotically: while in a
finite sample the cycle length can represent a substantial fraction of the sample size, it would be
negligible in the asymptotic approximation. As a result, conventional asymptotic approximations
to the finite sample distributions of estimators and statistics would be inaccurate.

The problem can be better understood from the perspective of the literature concerned with
inference on the largest autoregressive root (Stock, 1991; Andrews, 1993; Hansen, 1999; Elliott
and Stock, 2001; Mikusheva, 2007, 2012).2 Long cycles correspond to low-frequency fluctua-
tions, which can be indicative of autoregressive roots near unity. However, it has been shown in
the literature that when autoregressive roots are close to unity, the conventional asymptotic the-
ory does not provide an accurate approximation to the finite sample distributions of estimators
and statistics. More accurate approximations can be obtained using the so-called local-to-unity
asymptotics developed in Phillips (1987, 1988). Moreover, the local-to-unity asymptotics nests
the conventional asymptotics as a limiting case. This is achieved by modeling the autoregressive
coefficients as drifting with the sample size toward unity at the appropriate rate. Such specifi-
cations are consistent with stationary parameter values for finite-sample DGPs and can produce
any desired level of persistence. Note also that investigating the asymptotic properties of statistics

1The region with an interior spike in the spectrum is a subset of the region with complex roots.
2Equivalently, the sum of the autoregressive coefficients.
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under specifications with drifting coefficients is required to verify the uniform size of inferential
procedures (Andrews, Cheng, and Guggenberger, 2020).

Borrowing from the insights of this literature, we model long cycles using autoregressive spec-
ifications with two complex roots as in Sargent (1987), however, the complex roots are drifting
and local to one. The drifting specification allows us to preserve the long-cycle feature asymp-
totically: regardless of the size of the sample, the length of a cycle as a fraction of the sample
size remains the same. This point is illustrated in Figure 1. It shows the difference between the
simulated sample paths of cyclical processes generated using the fixed-coefficient and drifting-
coefficient DGPs for small and large sample sizes. The figure demonstrates that in the model with
fixed autoregressive coefficients, by relying on asymptotic approximations one would distort the
cyclical properties of data. However, the long-cycle properties are preserved in the limit by relying
on asymptotic approximations with drifting coefficients.

While we adopt the local-to-unity modeling approach of Phillips (1987, 1988), there are a
number of important differences between our paper and the existing literature. First, since the
roots are complex conjugates, the long-cycle process is near I(2) instead of near I(1) in the sense
that there are two near-unity roots. Even though our processes are near I(2), they are stationary in
finite samples. Moreover, our data generating process captures a crucial feature of macroeconomic
and financial data: persistent low-frequency stochastic cycles. The latter point is demonstrated
in the empirical application in Section 7. Second, due to the presence of complex roots, we
obtain different asymptotic approximations from those in the literature. The previous results for
local-to-unity processes cannot accommodate long cycles, and we develop a novel theory for such
processes.

Thus, the third contribution of this paper is to the literature concerned with inference on au-
toregressive roots. Most of that literature is focused on the largest autoregressive roots (or the
sum of the autoregressive coefficients).3 In our paper, we also focus on another important and
empirically relevant aspect of data: low-frequency stochastic oscillations. To fully analyze such
processes, one has to consider complex autoregressive roots. Our results also lay out the founda-
tion for a new econometric framework that besides the inference on cyclicality, can also be used
to study cointegrating long cycles and phase shifts in macro-financial aggregates. However, the
latter are outside the scope of this paper and left for future research.

Our paper is further related to the literature on complex unit roots (Bierens, 2001; Gregoir,
2006). Unlike Bierens (2001), our data generating process is stationary in finite samples, and
persistent oscillations are achieved through local-to-unity modeling. Local-to-unity modeling with
complex roots has been previously considered by Gregoir (2006). However, Gregoir (2006) only
considers oscillations at fixed frequencies, while we focus on oscillations at local-to-zero frequen-
cies. This crucial feature allows us to accommodate arbitrary long cycles with persistent oscil-
lations at very low frequencies, which is an important attribute of many macroeconomic and
financial time series as demonstrated in Section 7. Our emphasis on low-frequency oscillations is

3In a recent paper, Dou and Müller (2021) propose a generalized local-to-unity ARMA model with multiple local-
to-unity autoregressive roots balanced local-to-unity roots in the moving average component. They do not consider
cyclical behavior, and their limiting distributions are different from those arising in our case.
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FIGURE 1. Time plots of AR(2) processes with fixed and drifting coefficients. In
the standard AR(2) specification with fixed coefficients, the period stays the same
as the sample size increases. In contrast, the period of an AR(2) process with
drifting coefficients grows proportionally with the sample size.

not inconsequential. As we show in Section 5, the conventional asymptotic theory fails to approx-
imate the finite-sample sample distributions of estimators and statistics not only when a process
is persistent, but also when it oscillates at a low-frequency. The validity of asymptotic approxi-
mations for long-cycle data hinges on both of these dimensions and following the arguments of
Andrews, Cheng, and Guggenberger (2020), one must verify the size properties of inferential
procedures under drifting local-to-zero frequencies in combination with local-to-unity persistence
parameters.

The fourth contribution of this paper is empirical, where we implement our procedure to study
the cyclical properties of key macroeconomic and financial indicators using U.S. data. Recurrent
boom-and-bust cycles are a salient feature of economic and financial history. A long-standing
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interest in understanding these ups and downs in the macro-financial aggregates has led to a vast
body of literature on business cycles, and a resurgence of research on financial cycles post the
financial crisis-induced Great Recession of 2008. Among these strands of work is the empirical
characterization of business and financial cycles. The traditional approach to such characteriza-
tion is to identify turning points or peaks and troughs in the time series using the dating algorithms
of Bry and Boschan (1971) and Harding and Pagan (2002). Based on the turning-point analysis,
Drehmann, Borio, and Tsatsaronis (2012) highlight the importance of medium-term cycles that
last 18 years for credit, 11 years for GDP and 9 years for equity prices. These findings are in-line
with studies using frequency-based bandpass filters (see Aikman, Haldane, and Nelson, 2015;
Comin and Gertler, 2006).

The cyclical properties of data have also been formally examined in the literature using a variety
of methods, including direct and indirect spectrum estimation (e.g. A’Hearn and Woitek, 2001;
Strohsal, Proaño, and Wolters, 2019) and structural time series modeling (e.g. Harvey, 1985;
Rünstler and Vlekke, 2018). However, they rely on the conventional asymptotic approximations
that may produce misleading results with long cycle data, as we argue in this paper. For example,
we show that the periodogram-based estimator is asymptotically biased in the case of long cycles.

Using our methodology, we find that long cycles cannot be ruled out for macroeconomic series
such as the real GDP per capita, unemployment rates, and hours per capita. Our results suggest
the possibility of much longer cycles than those previously reported in the literature. In addition,
we find that financial variables such as credit to non-financial sector and home prices exhibit long
cycles that are even longer than those for the macro variables. Our results support the position
that financial cycles operate at a lower frequency than business cycles. However, our most striking
result is that we decisively reject stochastic cycles for asset market variables such as the volatility
index, credit risk premium, and equity prices. This suggests that the mechanism for asset market
fluctuations is different from that of macroeconomic variables and financial variables such as
credit and home prices. Importantly, this finding rejects a view suggested in the macro-finance
literature that asset prices and economic fluctuations are driven by the same underlying forces:
time-varying risk premiums and risk-bearing capacity (see Cochrane, 2017).

The rest of the paper is organized as follows. In Section 2, we present our modeling approach
for long cycles. Section 3 presents our core asymptotic results. The results are extended in
Section 4 to allow for linear time trends and deterministic cycles. In Section 5, we discuss the
size distortions of the conventional inference approach. Section 6 describes our procedure for
constructing confidence intervals for the cycle length. Section 7 presents our empirical results. In
Appendix A, we discuss the asymptotic properties of the periodogram for long-cycle processes.
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2. A model for long cycles

In this section, we present a model for processes exhibiting long cycles. Our objective is to
develop a parsimonious modeling approach that allows for cycles with periods spanning non-
negligible fractions of observed data. More formally, the model should allow for the period as a
fraction of the sample size n to converge to a non-zero constant as n→∞.

As discussed in the introduction and following Sargent (1987), in the class of autoregressive
models, a cyclical behavior requires complex roots that come as conjugate pairs, which makes
AR(2) model with serially uncorrelated errors a natural starting point. Later in the paper, we
will extend the approach and allow for serially correlated errors. Hence, consider a process {yt}
generated according to

(1− φ1L− φ2L2)yt = ut, (2.1)

where L denotes the lag operator and {ut} is a mean-zero iid sequence with a finite variance. Let
λ1 and λ2 denote the roots of the characteristic equation for the lag polynomial in (2.1):

z2 − φ1z − φ2 = 0.

When |λ1| < 1 and |λ2| < 1, {yt} has the following MA(∞) representation:

yt =
1

λ1 − λ2

∞∑
j=0

(
λj+1
1 − λj+1

2

)
ut−j .

Suppose the roots λ1, λ2 are complex, and consider their polar form representation:

λ1, λ2 = re±iθ, (2.2)

where r denotes the modulus, and θ is the argument of the complex roots.
Given the polar coordinate representation for the roots and the MA(∞) representation for the

process, we can now write {yt} as

yt =

∞∑
j=0

rj
sin(θ(j + 1))

sin(θ)
ut−j . (2.3)

According to (2.3), the realized value of yt is a weighted infinite sum of past realizations of the
innovation sequence {ut}. When the characteristic roots are complex, the weights or impulse
responses are given by a damped sine wave: the impulse response of yt to ut−j is

wj = rj
sin(θ(j + 1))

sin(θ)
,

where the modulus r indicates the rate of decay4 or the persistence of the sine wave, and the
argument θ corresponds to the angular frequency and determines the period of the sine wave.

The stochastic process {yt} inherits its oscillatory behaviour precisely from this damped peri-
odic sine weighting function. The closer r is to one, the more persistent is {yt}, and the closer
θ is to zero, the lower is the oscillating frequency and the longer the length of cycles in {yt}.
4In the more common exponential decay representation, rj = eln(r)j . Restricting to processes with non-explosive
roots, i.e. r ≤ 1, we have ln(r) ≤ 0 and − ln(r) is known as the decay constant.
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Stochastic cycles are therefore conveniently captured in an AR(2) model with a pair of complex
conjugate roots.

A cyclical process generated according to (2.1) with roots given by (2.2) has an expected cycle
length of 2π/θ. With any fixed parameter value θ, the period as a fraction of the sample size
becomes negligible for large n. Hence, asymptotic approximations assuming fixed values for
the argument θ can produce distinctly different cyclical behavior from that observed in finite
samples.5 In other words, conventional asymptotics with a fixed complex root argument θ can
distort the cyclical properties of the process. As a result, such asymptotic theory would provide
a poor approximation to the actual behavior of the process in finite samples. Since the expected
period of a process as a fraction of the sample size is given by 2π/(θn), to preserve the cyclical
properties in the limit as n → ∞, one has to consider a drifting sequence of the arguments {θn}
and allow for nθn → d ∈ [0,∞].6

We re-write the AR(2) model in (2.1) as follows:7

(1− φ1,nL− φ2,nL2)yt = ut, (2.4)

where φ1,n and φ2,n are now drifting coefficients that can change with n. We denote the corre-
sponding characteristic roots as λ1,n and λ2,n, and make the following assumption.

Assumption 2.1. The characteristic roots λ1,n, λ2,n associated with the lag polynomial equation
in (2.4) are given by

λ1,n = e(c+id)/n, λ2,n = e(c−id)/n (2.5)

where i =
√
−1 is the imaginary number, and c ≤ 0 and d > 0 are fixed localization parameters.

In the above assumption, we exclude positive values of c as they correspond to explosive roots.
The negative values of d can be excluded as d and −d define the same pair of roots. Note that the
autoregressive coefficients are related to the characteristic roots through the following equations:

φ1,n = λ1,n + λ2,n = 2ec/n cos(d/n), (2.6)

φ2,n = −λ1,nλ2,n = −e2c/n. (2.7)

Hence, the autoregressive coefficient φ1,n is local to 2 while φ2,n is local to −1. The sum of the
autoregressive coefficients is local to one, and the process can be mistaken for those considered
in the local-to-unity literature. As we discuss below, processes defined by (2.6)–(2.7) exhibit
persistent stochastic oscillations and, as a result, their asymptotic properties are different from
those considered in the local-to-unity literature.

The expressions for the characteristic roots in (2.2) and (2.5) are equivalent with r replaced by
rn ≡ exp(c/n), and θ replaced by θn ≡ d/n. The modulus rn in (2.5) has the same representation
as the autoregressive parameter in the local-to-unity model in Phillips (1987, 1988). Therefore,

5This point is illustrated in Figure 1.
6The approach can still accommodate conventional asymptotics by allowing nθn →∞.
7As in Phillips (1987, 1988), the solution to the difference equation (2.4) is a triangular array of the form {yn,t : t =
1, . . . , n;n ≥ 1}. However, we suppress the subscript n to simplify the notation.
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close to zero values of c correspond to persistent processes with two roots near unity. Hence, the
process defined by Assumption 2.1 can be viewed as near I(2).

The parameter d controls the length of the cycle, where long cycles correspond to values of d
near zero. Under Assumption 2.1, the expected period as a fraction of the sample size is given by

τθ ≡
2π

nθn
=

2π

d
. (2.8)

With this parametrization, the length of the cycle as a fraction of the sample size is independent
of the sample size, and resulting asymptotic approximations preserve the cyclical properties of
the process in the limit.

An alternative but related measure of the periodicity of a process can be constructed from its
spectral properties. The advantage of this measure is that it takes into account the persistence of
the process unlike that based solely on the argument θn of the complex roots. Let ω∗n denote the
frequency that maximizes the spectral density of the process in (2.4). As in Sargent (1987),

ω∗n = cos−1
(
−φ1,n(1− φ2,n)

4φ2,n

)
,

and the corresponding period of the process as a fraction of the sample size is given by

τω∗
n
≡ 2π/ω∗n

n
.

The proposition below provides an asymptotic approximation to the length of a cycle as a fraction
of the sample size when measured using the spectrum-based approach.

Proposition 2.1. Suppose that {yn,t} is generated according to (2.4) with characteristic roots sat-
isfying Assumption 2.1 and serially uncorrelated {ut} with a finite variance. Suppose further that
d ≥ |c|. Then its spectrum maximizing frequency ω∗n satisfies

nω∗n =
√
d2 − c2 +O(n−2),

and its corresponding spectrum-based period as a fraction of the sample size satisfies

τω∗
n

=
2π√
d2 − c2

+O(n−2).

The proposition shows that, when using spectrum-based measures of the period, the length of
a cycle relatively to the sample size can be approximated by

τω ≡
2π√
d2 − c2

. (2.9)

Unlike the angular frequency-based measure τθ, the spectrum-based measure τω takes into ac-
count the persistence of the process as captured by the value of the localization parameter c. Note
that larger negative values of c ≤ 0 produce less persistent processes. In such cases, the spec-
trum’s peak is closer to the origin, and as a result, less persistent processes may not exhibit any
visible cyclical behavior.

In Appendix A, we show that the periodogram-based estimation approach produces biased
estimates of τω. We, therefore, develop below an inference procedure for τθ and τω based on the
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estimates of the autoregressive coefficients φ1,n and φ2,n. For that purpose we proceed in two
steps. First, we develop a procedure for constructing asymptotically valid confidence sets for the
autoregressive parameters φ1,n and φ2,n. In the second step, we use projection arguments to build
confidence intervals for the proposed measures of the length of a cycle τθ and τω. The theory
developed below relaxes the iid/serially uncorrelated assumptions on {ut}.

3. Asymptotics for long-cycle processes

We now provide the asymptotic theory for the process defined in equations (2.4)–(2.5). The
theory will be subsequently used for establishing the asymptotic distributions of regression-based
statistics involving long-cycle time series. It is also required for developing robust and asymptoti-
cally valid inference about the cyclical properties of a process.

The specification proposed in equations (2.4)–(2.5) is akin to the first-order autoregressive
local-to-unity root model in Phillips (1987). Assuming that a process {xt} is generated according
to xt = anxt−1 + ut with an = exp(c/n), Phillips (1987) shows that the distribution of {xt} can
be approximated by an Ornstein-Uhlenbeck diffusion process:

n−1/2xbnrc = n−1/2
bnrc∑
t=1

ec(bnrc−t)/nut ⇒ σJc(r), (3.1)

where
Jc(r) ≡

∫ r

0
ec(r−s)dW (s),

r ∈ [0, 1], bxc denotes the largest integer less or equal to x, W (·) is a standard Brownian motion,
σ2 denotes the limit of the long-run variance of {ut}, “⇒” denotes the weak convergence of prob-
ability measures, and it is assumed that {ut} satisfies a Functional Central Limit Theorem (FCLT).
Note that the distribution of the Ornstein-Uhlenbeck process Jc(r) depends on the localization
parameter c. In what follows, we build on these insights.

We make the following assumption on the innovation sequence {ut}.8

Assumption 3.1 (FCLT). Let W (·) denote the standard Brownian motion, and let σ2 be the limit
of the long-run variance of {ut}: σ2 ≡ limn→∞ V ar(n

−1/2∑n
t=1 ut). Then for r ∈ [0, 1],

n−1/2
bnrc∑
t=1

ut ⇒ σW (r).

In the case of long-cycles, a different limiting process arises from that of the local-to-unity case,
with cyclicality reflected by the sine function. However, the process can be also described as an
integral with respect to a Brownian motion, and it also depends on the localization parameters c
and d. We define:

Jc,d(r) ≡
1

d

∫ r

0
ec(r−s) sin(d(r − s))dW (s). (3.2)

8Assumption 3.1 holds, for example, when {ut} is a mixing process such that E(ut) = 0 for all t, supt E|ut|β+ε ≤ ∞
for some β < 2 and ε > 0, and {ut} is α-mixing of size −β/(β − 2) (Phillips, 1987). Alternatively, it holds when {ut}
is a linear MA(∞) process satisfying the conditions in Phillips and Solo (1992, Theorem 3.15).
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The next proposition shows that in large samples and after appropriate scaling, the distribution
of a long-cycle process can be approximated by that of Jc,d(·).

Proposition 3.1. Suppose that {yt} is generated according to equation (2.4), and Assumptions 2.1
and 3.1 hold. Then,

n−3/2ybnrc ⇒ σJc,d(r).

Proof. The solution to (2.4) can be expressed in terms of the characteristic roots as

yn,t =
1

λn,1 − λn,2

t∑
k=1

(
λt−k+1
n,1 − λt−k+1

n,2

)
uk

=
1

2i · ec/n sin(d/n)

t∑
k=1

(
e(c+id)(t−k+1)/n − e(c−id)(t−k+1)/n

)
uk,

where the second equality follows by Assumption 2.1. By Assumption 3.1 and as in (3.1),

n−1/2
bnrc∑
k=1

(e(c+id)(t−k+1)/n − e(c−id)(t−k+1)/n)uk

⇒ σ

∫ r

0

(
e(c+id)(r−s) − e(c−id)(r−s)

)
dW (s)

= 2iσ

∫ r

0
ec(r−s) sin(d(r − s))dW (s).

The result follows since sin(d/n) = d/n+O(n−2). �

The continuous time Gaussian process Jc,d(·) plays the central role in our analysis. It can
be viewed as a continuous time version of the MA(∞) representation in (2.3): past shocks are
weighted by a damped sine wave. Again, the localization parameter c controls the persistence,
and the localization parameter d controls the cyclicality. Note also that the long-cycle process
requires stronger scaling than that in the local-to-unity case: n−3/2 instead of n−1/2. This is a
reflection of the fact that long-cycle processes are near I(2).

We now turn to the properties of the least-squares estimators and the corresponding test sta-
tistics for the second-order autoregressive model with long cycles. Let φ̂1,n and φ̂2,n denote the
least-squares estimator of (2.4):(

φ̂1,n

φ̂2,n

)
=

( ∑
y2t−1

∑
yt−1yt−2∑

yt−1yt−2
∑
y2t−2

)−1(∑
yt−1yt∑
yt−2yt

)
. (3.3)

As it turns out, the matrix on the right-hand side is asymptotically singular because all three
elements

∑
y2t−1,

∑
y2t−2, and

∑
yt−1yt−2 converge to the same random limit when properly

scaled. This is because
∑
yt−1yt−2 =

∑
y2t−1+ smaller order terms, which follows formally from

Lemma 3.1(b) below. The singularity complicates the derivation of the limiting distributions of
the estimators and the corresponding test statistics.
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To eliminate the singularity arising in the limit, we consider the following transformation of
the equation in (2.4):

yt = (φ1,n + φ2,n)yt−1 − φ2,n∆yt−1 + ut, (3.4)

where ∆yt−1 = yt−1 − yt−2. Since (3.4) is obtained from the original equation through a non-
singular linear transformation of the regressors and parameters, the OLS estimator of φ1,n + φ2,n

is given by φ̂1,n + φ̂2,n. Moreover, the usual Wald test statistic for testing joint hypotheses about
φ1 and φ2 is the same for both regressions. Thus, we have:(

φ̂1,n + φ̂2,n − φ1,n − φ2,n
φ̂2,n − φ2,n

)
=

( ∑
y2t−1 −

∑
yt−1∆yt−1

−
∑
yt−1∆yt−1

∑
(∆yt−1)

2

)−1( ∑
yt−1ut

−
∑

∆yt−1ut

)
. (3.5)

As we show below, the matrix on the right-hand side of (3.5) is no longer singular in the limit.
It follows from the representation in (3.5) that the asymptotic theory of the OLS estimator in-

volves the sample moments of (yt−1,∆yt−1). Hence, in addition to the asymptotic approximation
of yt−1, we also need the asymptotic approximation for ∆yt−1. The latter involves two additional
continuous time processes. We define:

Kc,d(r) ≡
1

d

∫ r

0
ec(r−s) cos(d(r − s))dW (s),

Gc,d(r) ≡ c · Jc,d(r) + d ·Kc,d(r). (3.6)

Note that the diffusion process Kc,d(r) is akin to the process Jc,d(r) except that it is defined with
a cosine function instead of a sine function. The next proposition shows that in large samples and
after scaling, the distribution of ∆ybnrc can be approximated by that of Gc,d(r).

Proposition 3.2. Suppose that {yt} is generated according to equation (2.4), and Assumptions 2.1
and 3.1 hold. Then,

n−1/2∆ybnrc ⇒ σGc,d(r),

where the result holds jointly with that in Proposition 3.1.

Note that in contrast to the n−3/2 scaling applied to yt−1, its first difference ∆yt−1 requires
scaling by n−1/2. Hence, the first differences of long-cycle processes have convergence rates of
O(n1/2) tantamount to that of local-to-unity processes. However due to cyclicality, the large-
sample distribution of ∆yt−1 is different from that arising in the local-to-unity model.

Based on the results of Proposition 3.1 and 3.2, we can now provide the asymptotic theory
for the sample moments of long-cycle processes. Parts of the lemma below require the following
ergodicity property for {ut}.

Assumption 3.2. Let σ2u ≡ limn→∞ n
−1∑n

t=1Eu
2
t be the average variance of {ut} over time. We

assume that n−1
∑n

t=1 u
2
t →p σ

2
u.

Lemma 3.1. Suppose that {yt} is generated according to equation (2.4), and Assumptions 2.1 and
3.1 hold. The following results hold jointly.
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(a) n−4
∑
y2t−1 ⇒ σ2

∫ 1
0 J

2
c,d(r)dr.

(b) n−3
∑
yt−1∆yt−1 ⇒ σ2

∫ 1
0 Jc,d(r)Gc,d(r)dr.

(c) n−2
∑

(∆yt−1)
2 ⇒ σ2

∫ 1
0 G

2
c,d(r)dr.

Suppose in addition that Assumption 3.2 holds. The following results hold jointly with (a)–(c).

(d) n−2
∑
yt−1ut ⇒ σ2

∫ 1
0 Jc,d(r)dW (r).

(e) n−1
∑

∆yt−1ut ⇒ σ2
∫ 1
0 Gc,d(r)dW (r) + 1

2(σ2 − σ2u).

Note that in part (e) of the lemma, the limiting distribution of the sample covariance between
∆yt−1 and ut depends on the difference between the long-run and the average over time variances
of {ut}. This reflects the serial correlation in {ut} and is standard in the unit root literature.
However despite the serial correlation, the difference σ2 − σ2u does not appear in the limiting
expressions in part (d) for the sample covariance between yt−1 and ut. This is because of the
stronger scaling factor required for the near I(2) long-cycle process {yt}.

To simplify the notation, in the rest of the paper we use
∫
J2
c,d to denote

∫ 1
0 J

2
c,d(r)dr and∫

Jc,ddW to denote
∫ 1
0 Jc,d(r)dW (r). We use the same convention for the integral expressions

with Gc,d(r) with Jc,d replaced by Gc,d. Lastly, we use
∫
Jc,dGc,d to denote

∫ 1
0 Jc,d(r)Gc,d(r)dr.

Equipped with the results of Lemma 3.1, we can now describe the asymptotic distribution of
the least-squares estimators of φ1,n and φ2,n.

Proposition 3.3. Suppose that {yn,t} is generated according to equation (2.4), and Assumptions
2.1, 3.1, and 3.2 hold. The following results hold jointly with the results of Lemma 3.1.

(a) n2(φ̂1,n + φ̂2,n − φ1,n − φ2,n)⇒∫
G2
c,d ·

∫
Jc,ddW −

(∫
Gc,ddW + 1

2(1− σ2u/σ2)
)
·
∫
Jc,dGc,d∫

J2
c,d ·

∫
G2
c,d − (

∫
Jc,dGc,d)2

.

(b) n

(
φ̂1,n − φ1,n
φ̂2,n − φ2,n

)
⇒

(
−1

1

)
×

∫
Jc,dGc,d ·

∫
Jc,ddW −

(∫
Gc,ddW + 1

2(1− σ2u/σ2)
)
·
∫
J2
c,d∫

J2
c,d ·

∫
G2
c,d −

( ∫
Jc,dGc,d

)2 .

According to part (b) of the proposition, the joint asymptotic distribution of the least-squares
estimators of φ1,n and φ2,n is singular and determined by the same random variable. Moreover,
their rate of convergence is Op(n−1) despite the process {yt} being near I(2). This is a conse-
quence of the asymptotic singularity in (3.3) as previously discussed on page 10. However, in
part (a) of the proposition, the least-squares estimator of φ1,n + φ2,n has the faster convergence
rate Op(n−2) characteristic to I(2) processes. Note that the limiting distributions depend on the
localization parameters c and d.

Next, we discuss inference for the autoregressive coefficients. Consider testing a joint hypoth-
esis H0 : φ1 = φ2,0, φ2 = φ2,0 against H1 : φ1 6= φ2,0 or φ2 6= φ2,0. The usual Wald statistic is given

12



by

Wn(φ1,0, φ2,0) ≡

(
φ̂1,n + φ̂2,n − φ1,0 − φ2,0

φ̂2,n − φ2,0

)>
V̂ −1n

(
φ̂1,n + φ̂2,n − φ1,0 − φ2,0

φ̂2,n − φ2,0

)
, (3.7)

where

V̂n ≡ σ̂2n

( ∑
y2t−1 −

∑
yt−1∆yt−1

−
∑
yt−1∆yt−1

∑
(∆yt−1)

2

)−1
,

and σ̂2n is a consistent estimator of the long-run variance σ2 constructed using ût = yt− φ̂1,nyt−1−
φ̂2,nyt−2, see Newey and West (1987) and Andrews (1991). The infeasible estimator of σ2 that
uses ut is constructed as

σ̃2n = n−1
n∑
t=1

u2t + 2

mn∑
h=1

wn(h)n−1
n∑

t=h+1

utut−h,

where mn = o(n) is the lag truncation parameter, and wn(·) is a bounded weight function such
that limn→∞wn(h) = 1 for all h. The feasible estimator σ̂2n is constructed similarly using the
estimated residuals ût in place of ut. We make the following assumption.

Assumption 3.3. The infeasible estimator σ̃2n of the long-run variance σ2 is consistent: σ̃2n →p σ
2.

The conditions for consistency of the infeasible estimator can be found in Newey and West
(1987) and Andrews (1991). Our next result describes the asymptotic null distribution of the
Wald statistic for long-cycle processes.

Proposition 3.4. Suppose that {yn,t} is generated according to equation (2.4), Assumptions 2.1 and
3.1-3.3 hold, and mn = o(n). Then,

Wn(φ1,n, φ2,n)⇒

∫ {
Jc,d ·

(∫
Gc,ddW + 1

2(1− σ2u/σ2)
)
−Gc,d ·

∫
Jc,ddW

}2

∫
J2
c,d ·

∫
G2
c,d −

( ∫
Jc,dGc,d

)2 .

The asymptotic null distribution of the Wald statistic is non-standard and non-pivotal: it de-
pends on the ratio of the average over time and long-run variances σ2u/σ

2, and on the unknown
localization parameters c and d. While the ratio σ2u/σ

2 plays no role when {ut} are serially uncor-
related and can be estimated consistently otherwise,9 the dependence on c and d remains. Hence,
the quantiles of the limiting distribution can only be simulated given the values of c and d.

In Section 5, we discuss the differences between the usual χ2
2 critical values and the quantiles of

the asymptotic distribution in Proposition 3.4. Depending on the values of c and d, the differences
can be substantial especially when the model includes deterministic components discussed in the
next section.
9See the proof of Proposition 3.4.
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4. Extensions to models with deterministic components

For practical applications, it is important to allow the DGP to include non-zero means, trends,
and deterministic cycles. We discuss such adjustments in this section. As the results below show,
the limiting distributions of the regression estimators and test statistics take a similar form to those
in Section 3, but with Jc,d andGc,d replaced with their residuals from appropriate continuous time
projections. This property is standard in the unit root literature and continues to hold in our case.

Formally, we assume that the data {yt : t = 1, . . . , n} are generated according to

(1− φ1,nL− φ2,nL2)(yt −Dt) = ut, (4.1)

where Dt is non-random, can vary with t, and depends on unknown parameters. To control for
the deterministic part, estimation of the autoregressive coefficients requires projecting against
the components of Dt. The asymptotic distributions of the estimators and test statistics change
accordingly. We consider the following three formulations of Dt:

(i) Constant mean: Dt = µ for some unknown parameter µ.
(ii) Deterministic cycles: Dt = µ +

∑
k{θ1k cos(2πkt/n) + θ2k sin(2πkt/n)}, where k’s are

known positive integers, and θ1k, θ2k are unknown coefficients.
(iii) Linear time trend: Dt = µ+ ξt/n, where ξ is the unknown coefficient.

The specification in (i) allows {yt} to have a constant over time non-zero mean. The DGP in
(ii) can be used, for example, to distinguish between very low frequency fluctuations and long
cycles, as many time series in economics exhibit such patterns, see Beaudry, Galizia, and Portier
(2020).10 The Dt component in (ii) generates cosine and sine oscillations at frequencies 2πk/n.
The period of such oscillations relatively to the sample size is 1/k, and they can capture very low-
frequency cycles in data that are outside the range of the econometrician’s interest. For practical
purposes, we consider k = 1, 2, 3. Inclusion of such components can be viewed as de-trending of
data by removing fluctuations at the frequencies corresponding to the values of k. The asymptotic
results developed in this section can be used to account for de-trending in inferential procedures.

The DGP in (iii) allows for linear time trends, and such adjustments have a long history in the
unit root literature. The division by n is required for deriving the asymptotic properties and can
be absorbed into the unknown coefficient ξ. Hence, observationally the model in (iii) is identical
to the model with no adjustment by n.

The empirical application in Section 7 also considers the case where Dt consists of seasonal
dummies and a constant. However, as shown in Phillips and Jin (2002) for unit root testing, the
arising asymptotic distributions have the same form as those in the constant mean case.

As in the previous section and to avoid singularities in the limit, we use the transformed version
of the model with yt−1 and ∆yt−1:

yt = (φ1,n + φ2,n)yt−1 − φ2,n∆yt−1 + (1− φ1,nL− φ2,nL2)Dt + ut. (4.2)
10We thank Paul Beaudry for pointing our attention to this fact.
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4.1. Constant mean

In this section, we consider case (i) of a constant unknown mean. When Dt = µ, equation
(4.2) becomes

yt = αn + (φ1,n + φ2,n)yt−1 − φ2,n∆yt−1 + ut, (4.3)

where αn ≡ (1− φ1,n− φ2,n)µ = O(n−2).11 Let φ̂1,n and φ̂2,n be the least-squares estimator of the
corresponding coefficients in (4.3), and define ỹt−1 = yt−1 − ȳ and ∆̃yt−1 = ∆yt−1 −∆y, where
ȳn and ∆yn denote the sample averages of yt−1 and ∆yt−1 respectively. Then,(

φ̂1,n + φ̂2,n − φ1,n − φ2,n
φ̂2,n − φ2,n

)
=

( ∑
ỹ2t−1 −

∑
ỹt−1∆̃yt−1

−
∑
ỹt−1∆̃yt−1

∑
∆̃y

2

t−1

)−1( ∑
ỹt−1ut

−
∑

∆̃yt−1ut

)
.

and we have the following analogue of Lemma 3.1.

Lemma 4.1. Suppose that {yt} is generated according to equation (4.3), and Assumptions 2.1 and
3.1 hold. Define J̃c,d(r) ≡ Jc,d(r)−

∫ 1
0 Jc,d(s)ds and G̃c,d(r) ≡ Gc,d(r)−

∫ 1
0 Gc,d(s)ds. The following

results hold jointly.

(a) n−4
∑
ỹ2t−1 ⇒ σ2

∫
J̃2
c,d.

(b) n−2
∑

∆̃y
2

t−1 ⇒ σ2
∫
G̃2
c,d.

(c) n−3
∑
ỹt−1∆̃yt−1 ⇒ σ2

∫
J̃c,dG̃c,d.

Suppose in addition that Assumption 3.2 holds. The following results hold jointly with (a)–(c).

(d) n−2
∑
ỹt−1ut ⇒ σ2

∫
J̃c,ddW .

(e) n−1
∑

∆̃yt−1ut ⇒ σ2
∫
G̃c,ddW + 1

2(σ2 − σ2u).

The results in Lemma 4.1 are parallel to those in Lemma 3.1. However, instead of Jc,d and
Gc,d, the distributions arising in the limit depend on J̃c,d and G̃c,d. Note that the latter processes
are obtained from Jc,d and Gc,d by subtracting their respective continuous time averages, which
matches the construction of ỹt and ∆̃yt in finite samples.

4.2. Deterministic cycles

In this section, we consider case (ii) of deterministic cycles. When Dt includes deterministic
cycles, equation (4.2) takes the form

yt = αn +
∑
k

{
γ1k,n cos

(
2πkt

n

)
+ γ2k,n sin

(
2πkt

n

)}
+ (φ1,n + φ2,n)yt−1 − φ2,n∆yt−1 + ut, (4.4)

where the intercept αn is as defined in the case of a constant mean. The lags of the cosine
and sine components can be written as linear combinations of cos(2πkt/n) and sin(2πkt/n) with
coefficients depending on n and, therefore, can be omitted. The least-squares estimators φ̂1,n and

11See Lemma C.1 in the Appendix.
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φ̂2,n can be obtained by estimating

yt = (φ1,n + φ2,n)ỹt−1 − φ2,n∆ỹt−1 + ut,

where ỹt−1 and ∆̃yt−1 are the residuals from the regressions of yt−1 and ∆yt−1 respectively on
cos(2πkt/n), sin(2πkt/n), and a constant.

The following result describes the asymptotic distributions of the sample moments of ỹt−1,
∆̃yt−1, and ut.

Lemma 4.2. Suppose that {yt} is generated according to equation (4.4), and Assumptions 2.1 and
3.1 hold. Define

J̃c,d(r) ≡ Jc,d(r)−
∫ 1

0
Jc,d(s)ds−

∑
k

{ψ1k cos(2πkr)− ψ2k sin(2πkr)} ,

G̃c,d(r) ≡ Gc,d(r)−
∫ 1

0
Gc,d(s)ds−

∑
k

{ϕ1k cos(2πkr)− ϕ2k sin(2πkr)} ,

where

ψ1k ≡ 2

∫ 1

0
cos(2πks)Jc,d(s)ds, ψ2k ≡ 2

∫ 1

0
sin(2πks)Jc,d(s)ds,

ϕ1k ≡ 2

∫ 1

0
cos(2πks)Gc,d(s)ds, ϕ2k ≡ 2

∫ 1

0
sin(2πks)Gc,d(s)ds.

The following results hold jointly.

(a) n−4
∑
ỹ2t−1 ⇒ σ2

∫
J̃2
c,d.

(b) n−2
∑

∆ỹ2t−1 ⇒ σ2
∫
G̃2
c,d.

(c) n−3
∑
ỹt−1∆ỹt−1 ⇒ σ2

∫
J̃c,dG̃c,d.

Suppose in addition that Assumption 3.2 holds. The following results hold jointly with (a)-(c).

(d) n−2
∑
ỹt−1ut ⇒ σ2

∫
J̃c,ddW .

(e) n−1
∑

∆ỹt−1ut ⇒ σ2
∫
G̃c,ddW + 1

2(σ2 − σ2u).

Lemma 4.2 is the analogue of Lemma 3.1 for the model with deterministic cycles. The co-
efficients ψ1,k and ψ2,k can be viewed as the least-squares coefficients in the continuous time
regression of Jc,d(s) against cos(2πks), sin(2πks), and a constant with s varying over the [0, 1]

interval. The coefficients ϕ1k and ϕ2k have a similar interpretation with Jc,d replaced by Gc,d.
The processes J̃c,d and G̃c,d are therefore the residuals from the corresponding continuous time
regressions. They are the continuous time versions of ỹt−1 and ∆̃yt−1 respectively. Hence, the re-
sults of Lemma 3.1 continue to hold with the processes Jc,d and Gc,d replaced by their respective
residuals from the continuous time regressions.

4.3. Linear time trend

In this section, we consider case (iii) of a linear time trend. The model in equation (4.2) now
takes the form

yt = δn + βn(t/n) + (φ1,n + φ2,n)yt−1 − φ2,n∆yt−1 + ut (4.5)
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where δn ≡ αn + (φ1,n + 2φ2,n)ξ/n = O(n−2), and βn ≡ ξ(1− φ1,n − φ2,n) = O(n−2).12 Similarly
to the previous cases, the least-squares estimators φ̂1,n and φ̂2,n can be obtained by estimating

ỹt = (φ1,n + φ2,n)ỹt−1 − φ2,n∆̃yt−1 + ũt

where ỹt−1 and ∆̃yt−1 are now the residuals from the regressions of yt−1 and ∆yt−1 respectively
against t/n and a constant.

Lemma 4.3. Suppose that {yt} is generated according to equation (4.5), and Assumptions 2.1 and
3.1 hold. Define

J̃c,d(r) ≡ Jc,d(r)− (4− 6r)

∫ 1

0
Jc,d(s)ds− (12r − 6)

∫ 1

0
sJc,d(s)ds,

G̃c,d(r) ≡ Gc,d(r)− (4− 6r)

∫ 1

0
Gc,d(s)ds− (12r − 6)

∫ 1

0
sGc,d(s)ds.

The following results hold jointly.

(a) n−4
∑
ỹ2t−1 ⇒ σ2

∫
J̃2
c,d.

(b) n−2
∑

∆̃y
2

t−1 ⇒ σ2
∫
G̃2
c,d.

(c) n−3
∑
ỹt−1∆̃yt−1 ⇒ σ2

∫
J̃c,dG̃c,d.

Suppose in addition that Assumption 3.2 holds. The following results hold jointly with (a)-(c).

(d) n−2
∑
ỹt−1ut ⇒ σ2

∫
J̃c,ddW .

(e) n−1
∑

∆̃yt−1ut ⇒ σ2
∫
G̃c,ddW + 1

2(σ2 − σ2u).

Lemma 4.3 is the analogue of Lemmas 4.1 and 4.2 for the case of the linear time trend. The
processes J̃c,d(r) and G̃c,d(r) can be similarly interpreted as the residuals from the continuous time
regressions of Jc,d(r) and Gc,d(r) respectively against a constant and r varying over the interval
[0, 1].

4.4. Asymptotic distributions of the estimators and test statistics

The results of Lemmas 4.1–4.3 can now be used to describe the asymptotic distributions of the
least-squares estimators of the autoregressive coefficients and the corresponding Wald statistics
for the models with a constant mean, deterministic cycles, and a linear time trend respectively.

Under the same assumptions as those in Proposition 3.3, however with the model in equation
(2.4) replaced by that in either (4.3), (4.4), or (4.5), the asymptotic distribution of the least-
squares estimators of the autoregressive coefficients now satisfies

n2(φ̂1,n + φ̂2,n − φ1,n − φ2,n)⇒∫
G̃2
c,d ·

∫
J̃c,ddW −

(∫
G̃c,ddW + 1

2(1− σ2u/σ2)
)
·
∫
J̃c,dG̃c,d∫

J̃2
c,d ·

∫
G̃2
c,d − (

∫
J̃c,dG̃c,d)2

,

12See Lemma C.1 in the Appendix.
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n

(
φ̂1,n − φ1,n
φ̂2,n − φ2,n

)
⇒

(
−1

1

)
×

∫
J̃c,dG̃c,d ·

∫
J̃c,ddW −

(∫
G̃c,ddW + 1

2(1− σ2u/σ2)
)
·
∫
J̃2
c,d∫

J̃2
c,d ·

∫
G̃2
c,d −

( ∫
J̃c,dG̃c,d

)2 , (4.6)

where the convergence holds jointly with the results of either Lemma 4.1, 4.2, or 4.3 respectively
with the correspondingly defined residual processes J̃2

c,d and G̃2
c,d.

For all three specifications in Sections 4.1–4.3, the Wald statistic for testing H0 : φ1 = φ2,0, φ2 =

φ2,0 against H1 : φ1 6= φ2,0 or φ2 6= φ2,0 takes the same form as in equation (3.7). However, V̂n is
now given by

V̂n = σ̂2n

( ∑
ỹ2t−1 −

∑
ỹt−1∆̃yt−1

−
∑
ỹt−1∆̃yt−1

∑
(∆̃yt−1)

2

)−1
,

with ỹt−1 and ∆̃yt−1 defined respectively for each specification. Provided that the assumptions of
Proposition 3.4 hold with the model in (2.4) replaced by that in either (4.3), (4.4), or (4.5), the
asymptotic null distribution of the Wald statistic is given by

Wn(φ1,n, φ2,n)⇒

∫ {
J̃c,d ·

(∫
G̃c,ddW + 1

2(1− σ2u/σ2)
)
− G̃c,d ·

∫
J̃c,ddW

}2

∫
J̃2
c,d ·

∫
G̃2
c,d −

( ∫
J̃c,dG̃c,d

)2 (4.7)

with the correspondingly defined residual processes J̃2
c,d and G̃2

c,d.
As in the base case with no deterministic components, the asymptotic null distributions of the

Wald statistics are non-standard and depend on the unknown parameters c and d. The differences
between the quantiles of these asymptotic distributions and the χ2

2 critical values are discussed
in Section 5. In comparison with the base case, inclusion of the deterministic components may
result in more substantial deviations from the χ2

2 critical values.

5. Size distortions of conventional tests

In this section, we discuss the size distortions one would see if the econometrician were to use
conventional χ2

2 critical values in place of the quantiles of the distributions derived in equation
(4.7) in the previous section. For the purpose of this exercise, we assume that there is no serial
correlation in {ut} and, as a result, non-centrality term 0.5(1− σ2u/σ2) is equal to zero. Note that
if {ut} is serially correlated, one can expect more substantial size distortions due to the presence
of the non-centrality term in the asymptotic distribution.

Let Fc,d(·) denote the CDF of the asymptotic null distribution in (4.7). Note that the CDF
depends on the unknown localization parameters c and d. Consider a test that rejects the null
hypothesis when the Wald statistic exceeds the conventional χ2

2,1−α critical value, where χ2
2,1−α

is the 1 − α quantile of the χ2
2 distribution. The asymptotic size of this test is 1 − Fc,d(χ2

2,1−α),
and size distortion are given by the difference between the asymptotic size and the nominal size
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TABLE 1. Asymptotic size of the conventional Wald test with χ2
2,1−α critical values

for α = 0.05 for different values of the localization parameters c, d and different
specifications of the deterministic component

d

c 5 15 25 35 45 55

constant mean

-1 .116 .059 .070 .054 .051 .050
-5 .110 .060 .052 .062 .054 .050
-10 .089 .064 .053 .049 .056 .051
-15 .077 .064 .055 .051 .049 .061
-20 .070 .062 .056 .051 .049 .049
-70 .051 .051 .050 .050 .049 .048

deterministic cycle: k = 1

-1 .746 .103 .071 .054 .051 .050
-5 .641 .161 .070 .063 .054 .050
-10 .441 .192 .090 .059 .056 .051
-15 .317 .186 .104 .069 .054 .059
-20 .242 .170 .109 .075 .058 .050

-130 .052 .052 .051 .051 .050 .048

linear time trend

-1 .317 .071 .072 .053 .051 .050
-5 .257 .089 .058 .062 .054 .051
-10 .188 .101 .066 .053 .056 .051
-15 .146 .101 .072 .057 .051 .060
-20 .121 .096 .074 .060 .052 .049

-100 .053 .052 .052 .052 .050 .049

τθ 1.26 0.42 0.25 0.18 0.14 0.11

τθ = 2π/d: cycle length as a fraction of the sample size.

α. We next examine the extent of size distortions for different values of c and d in the case of the
three specifications for the deterministic component Dt in Section 4.

Table 1 reports the asymptotic size for α = 0.05 and different values of c and d for each of the
three specifications of Dt. The CDF Fc,d(·) is computed by Monte Carlo simulation with 100,000
replications and Jc,d and Gc,d processed generated using the Euler-Maruyama method with a time
step ∆t = 0.01. The table also reports the length of the cycle as a fraction of the sample size
measured by τθ = 2π/d. The smaller is the value of d, the lower is the oscillation frequency, and
the longer is the cycle length relative to the sample size.

In the case of all three specifications for Dt, the table shows similar patterns: the asymptotic
size deviates from the nominal 0.05 values for values of c and d closer to zero. However, as c
becomes more negative and d becomes more positive, the asymptotic size starts to approach the
nominal value.

For example, in model with a constant mean, the asymptotic size at c = −1 and d = 5 is 0.116,
which means that the Wald test based on the conventional χ2

2,1−α critical value over rejects the
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null by 0.066. As we move down the rows and across the columns of Table 1, the process becomes
less persistent and with a shorter cycle period, and as a result size distortions become negligible.
Note, however, that the relationship can be non-monotone.

While in the case of the constant mean model, the size distortions are relatively minor, they
are much more prominent in the case of the models with deterministic cycles and linear trends.
In particular, the usage of conventional χ2

2 critical values may result in severe size distortions
in the case of deterministic cycles. For example when c = −1 and d = 5, the null rejection
probability is approximately 75% instead of 5%. It is approximately 32% in the case of the
linear time trend specification. While d = 5 corresponds to very long cycles as measured by
τθ, size distortions remain substantial even for shorter cycles. For example, in the model with
deterministic cycles, the size of the conventional test is approximately 19% for c = −10, d = 15.
These values correspond to τθ = 0.42 and τω = 0.56.

Note again that the size distortions can be non-monotone across the rows/columns. However,
for large negative values of c or large values of d, size distortions disappear. This is consistent with
the results in Phillips (1987), who shows that in the local-to-unity model, the null distribution of
the t-statistic for the autoregressive coefficient converges to the standard normal as c→ −∞.

To conclude, depending on the values of c and d, the expression on the right-hand side of (4.7)
can generate a wide range of different asymptotic distributions. The distributions can deviate
substantially from the χ2

2 for values of c, d sufficiently close to zeros. Such specifications corre-
spond to longer cycles. For values of c, d sufficiently far from zero, which correspond to shorter
cycles, the distributions converge to χ2

2. In particular, across all specifications of the deterministic
component, the size distortions from using χ2

2 critical values become negligible for τθ ≤ 0.14.
However, when the length of the cycle as measured by τθ exceeds 14% of the sample size, con-
ventional inference procedures can results in size distortions. The distortions are typically more
pronounced for longer cycles.

6. Inference for cyclicality

In this section, we propose a procedure for inference on the cycle length in terms of the angular
frequency-based measure τθ and the spectrum-based measure τω that were introduced in Section
2. Recall that the two measures can be deduced from the autoregressive coefficients φ1n and
φ2,n through the relationships in (2.6)–(2.9). Therefore, we first construct confidence sets for
the autoregressive parameters by collecting values (φ1, φ2) consistent with cyclical behavior and
not rejected by data. In the second step, we use projection arguments to construct confidence
intervals for τθ and τω. By multiplying the values of τθ and τω in the confidence intervals by n, the
length of the cycle can be also expressed in time units instead of fractions of the sample size.

The proposed confidence sets have the following property: If the true DGP is indeed cyclical,
the coverage probability is at least 1 − α asymptotically whether the roots of the autoregressive
equation are close to one or far from it. However, if the true DGP is inconsistent with cyclical
behavior, we expect the confidence sets to be empty in large samples. Hence, the proposed
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procedure can be used to detect cyclical specifications consistent with data. It can also be used
to rule out cyclical behavior. However, our procedure is not designed for ruling out non-cyclical
specifications.

When the roots of the autoregressive polynomial are local to unity as in Assumption 2.1, the
least-squares estimators of the autoregressive coefficients are consistent regardless of whether
{ut} is serially correlated or not. This is established in Proposition 3.3 for the base case and in
(4.6) for the cases with deterministic components. Serial correlation in {ut} and the resulting cor-
relation between (yt−1,∆yt−1) and ut is reflected by the non-centrality term 0.5(1−σ2u/σ2) in the
asymptotic distributions. The non-centrality proliferates from the estimators into the asymptotic
null distribution of the Wald statistic. This is standard for the unit root literature and continues
to hold in our framework.

However, when the roots of the autoregressive polynomial are sufficiently far from unity, the
least-squares estimators of the autoregressive coefficients are no longer consistent and suffer from
first order bias. Therefore, to design an inferential procedure that remains valid regardless of the
magnitude of the roots, we explicitly control for potential serial correlation in {ut}.

We proceed as follows. First, in Section 6.1 we discuss how to construct confidence intervals
for τθ and τω when {ut} are serially uncorrelated. Then, in Section 6.2 we extend the procedure
to a serially correlated innovation process {ut} by assuming that it satisfies an AR(p) formulation
with real roots bounded away from one. We employ the BIC selection procedure to choose the
appropriate number of lags p as well as the specification for the deterministic part Dt.

6.1. Serially uncorrelated {ut}

Suppose that {ut} is serially uncorrelated and, therefore, the least-squares estimators of the
autoregressive coefficients φ1,n and φ2,n are consistent whether the roots are close to unity or far
from it. Recall that the expression on the right-hand side of (4.7) with 1−σ2u/σ2 = 0 approximates
well the asymptotic distribution of the Wald statistic for any configuration of the localization pa-
rameters c and d. Moreover, recall that given the sample size n, there is a one-to-one relationship
between (φ1,n, φ2,n) and the localization parameters (c, d), and let

φ1,n = Φ1,n(c, d) and φ2,n = Φ2,n(c, d),

where the functions Φ1,n(c, d) and Φ2,n(c, d) are defined according to (2.6) and (2.7) respectively.
Because the relationship is one-to-one for any given n, confidence sets for (φ1, φ2) can be equiva-
lently represented as confidence sets in terms of (c, d).

By running the regressions of yt against yt−1 and yt−2 with different specifications of the deter-
ministic part Dt, one can use the Bayesian Information Criterion (BIC) based selection procedure
to consistently choose the appropriate specification between the constant mean, deterministic
cycle, and linear time trend. Once the specification for Dt has been selected, consider the corre-
sponding Wald statistic Wn(Φ1,n(c, d),Φ2,n(c, d)). LetW1−α(c, d) denote the 1−α quantiles of the
asymptotic distribution in (4.7) with 1 − σ2u/σ2 = 0, i.e. W1−α(c, d) is the 1 − α quantile of the
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distribution of

W(c, d) ∼

∫ {
J̃c,d ·

∫
G̃c,ddW − G̃c,d ·

∫
J̃c,ddW

}2

∫
J̃2
c,d ·

∫
G̃2
c,d −

( ∫
J̃c,dG̃c,d

)2 , (6.1)

where the definitions of J̃c,d and G̃c,d correspond to the specification for Dt. The confidence set
for (c, d) can now be constructed by test inversion as

CSn,1−α ≡
{

(c, d) : Wn

(
Φ1,n(c, d),Φ2,n(c, d)

)
≤ W1−α(c, d)

}
.

The confidence set CSn,1−α is bounded as W1−α(c, d) → χ2
2,1−α when c → −∞ or d → ∞.

In practice, the confidence set can be approximated by choosing a dense two-dimensional grid
of values c and d. We use a grid with c ≤ 0 and 2π < d < nπ, where the lower bound of 2π is
imposed to rule out cycles longer than the sample size when measured by τθ.

The construction of CSn,1−α is akin to the grid bootstrap procedure of Hansen (1999), however,
we use the asymptotic critical values instead of their bootstrap approximation. Note that the
critical values must be adjusted for every considered point (c, d). The validity of CSn,1−α is due
to the following facts. First, (c, d) is included in the confidence set only if the null hypothesis
H0 : φ1,n = Φ1,n(c, d), φ2,n = Φ2,n(c, d) cannot be rejected by the Wald test with the critical
value W1−α(c, d). Second, the critical values are computed using the same values (c, d) as those
specified under H0. Third, the distribution in (6.1) nests the χ2

2 distribution, which arises under
the fixed (φ1, φ2) asymptotics, as a limiting case. Note that having correct size under both drifting
and fixed parameters specifications is required for the uniform validity (Andrews, Cheng, and
Guggenberger, 2020).

We construct confidence intervals for τθ and τω from CSn,1−α by projection:

CIτθn,1−α ≡
[

inf
d:(c,d)∈CSn,1−α

2π

d
, sup
d:(c,d)∈CSn,1−α

2π

d

]
, (6.2)

CIτωn,1−α ≡
[

inf
(c,d)∈CSn,1−α

2π√
d2 − c2

, sup
(c,d)∈CSn,1−α

2π√
d2 − c2

]
. (6.3)

The confidence interval for τθ is bounded as long as the grid of d values used to construct
CSn,1−α excludes zero. On the other hand, the confidence interval for τω can be unbounded if
pairs (c, d) with c = d are included in CSn,1−α.

6.2. Serially correlated {ut}

In this section we assume that the innovations process {ut} is generated as AR(p):

(1− ρ1L− . . .− ρpLp)ut = εt, (6.4)

where {εt} are iid (0, σ2ε), and the roots of the polynomial 1 − ρ1L − . . . − ρpL
p are real and

bounded away from unity. By running the regressions of yt against different specifications of
the deterministic part Dt and yt−1, yt−1, . . . , yt−2−m for some m > p, one can again use the BIC
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selection procedure to consistently estimate the specification for Dt and the number of lags p. We
now proceed assuming that the model for Dt and the number of lags p are known.

Let ỹt denote the residuals from projection of yt against the components of Dt. Under H0 :

φ1,n = φ1,0, φ2,n = φ2,0, the values φ1,n and φ2,n are known and can be computed from the values
of c and d. Let

ũt,0 ≡
(
1− φ1,0L− φ2,0L2

)
ỹt.

Using the null-restricted residuals ũt,0, one can estimate the autoregressive coefficients ρ1, . . . , ρp.
Let ρ̂1,0, . . . , ρ̂p,0 denote their least-squares estimators. Note that under H0, these estimators are
consistent. We can now remove the autoregressive part in ut:

x̂t,0 ≡ (1− ρ̂1,0L− . . .− ρ̂p,0Lp)ỹt.

Thus, to construct the process x̂t,0, we have filtered out the deterministic part Dt and serial
correlation in {ut}. Note that under the null, the population counterpart of x̂t,0 satisfies:

x̃t ≡ (1− ρ1L− . . .− ρpLp)ỹt =
ε̃t

1− φ1,nL− φ2,nL2
,

where ε̃t is the residual from the projection of εt against the components of Dt.
One can now use {x̂t,0} for inference on the cyclical properties of {yt}, however, additional

adjustments are required to account for estimation of ρ1, . . . , ρp. The main purpose of the adjust-
ments discussed below is to ensure that the modified Wald statistic has the correct asymptotic
null distributions both under the long-cycle asymptotics proposed in the paper as well as under
the standard asymptotics with φ1 and φ2 fixed in the stationary range.13

Let φ̂1,n and φ̂1,n now denote the least-squares estimators of φ1 and φ2 respectively from the
regression of x̂t,0 against x̂t−1,0 and x̂t−2,0:

x̂t,0 = φ̂1,nx̂t−1,0 + φ̂2,nx̂t−2,0 + ε̂t,0,

where ε̂t,0 denotes the least-squares residuals. The modified Wald statistic takes the form

Wn,p(φ1,0, φ2,0) ≡
1

σ̂2ε,n

(
φ̂1,n − φ1,0
φ̂2,n − φ2,0

)>
MnΣ−1n Mn

(
φ̂1,n − φ1,0
φ̂2,n − φ2,0

)
,

where σ̂2ε,n ≡ n−1
∑
ε̂2t,0, and the matrix Mn is given by

Mn ≡

( ∑
x̂2t−1,0

∑
x̂t−1,0x̂t−2,0∑

x̂t−1,0x̂t−2,0
∑
x̂2t−2,0

)
.

To construct Σn, we first define ẋt,0 and ẍt,0 as the residual from the least-squares regression of
x̂t,0 and x̂t−1,0 respectively against ũt,0, . . . , ũt−p+1,0:

x̂t,0 = ζ̇1,nũt,0 + . . .+ ζ̇p,nũt−p+1,0 + ẋt,0, (6.5)

x̂t−1,0 = ζ̈1,nũt,0 + . . .+ ζ̈p,nũt−p+1,0 + ẍt−1,0,

13Recall that having correct size under both drifting and fixed parameters specifications is required for the uniform
validity (Andrews, Cheng, and Guggenberger, 2020).
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where ζ̇1,n, . . . , ζ̇p,n and ζ̈1,n, . . . , ζ̈p,n are the OLS estimators. The matrix Σn is given by

Σn ≡

( ∑
ẋ2t−1,0

∑
ẋt−1,0ẍt−2,0∑

ẋt−1,0ẍt−2,0
∑
ẍ2t−2,0

)
.

The next proposition shows that under the conventional stationary asymptotics, the asymptotic
null distribution of the Wald statistic is the usual χ2

2 distribution.

Proposition 6.1. Suppose that {yt} is generated according to (1 − φ1L − φ2L2)yt = ut with the
coefficients φ1 and φ2 fixed in the stationary range, and {ut} satisfying (6.4) with the coefficients
ρ1, . . . , ρp in the stationary range and εt ∼ iid(0, σ2ε). Then,

Wn,p(φ1, φ2)⇒ χ2
2.

In the case of a long-cycle specification, the null asymptotic distribution of the modified Wald
statistic is the same as in (6.1).

Proposition 6.2. Suppose that {yt} is generated according to (4.1), where {ut} satisfies (6.4) with
the coefficients ρ1, . . . , ρp in the stationary range and εt ∼ iid(0, σ2ε). Suppose further that Assump-
tion 2.1 holds. Then,

Wn,p(φ1,n, φ2,n)⇒W(c, d),

where W (c, d) is defined in (6.1) with J̃c,d and G̃c,d defined according to the specification of Dt.

Using the results of Propositions 6.1 and 6.2, one can now construct confidence sets for (c, d)

using the modified Wald statistic as

CSn,p,1−α ≡
{

(c, d) : Wn,p

(
Φ1,n(c, d),Φ2,n(c, d)

)
≤ W1−α(c, d)

}
.

Similarly to the construction in (6.2) and (6.3), the confidence set CSn,p,1−α can be projected to
construct confidence intervals for τθ and τω.

7. Cyclical properties of macroeconomic and financial variables

In this section, we apply our inference procedure to the quarterly series of a set of macroe-
conomic and financial variables for the U.S. All data are publicly available from FRED, Federal
Reserve Bank of St. Louis. A detailed description of the data is summarized in Table 3 in Ap-
pendix B. All the series are measured in natural logs except for the credit-to-GDP ratio (for the
private non-financial sector), which is in percentage points, and the interest rate spread between
Moody’s seasoned BAA corporate bond yield and the 10-year treasury constant maturity, which is
expressed in levels. For each series, we take the longest and the most updated sample ending in
2020. Depending on the series, our samples span periods ranging from 34 to 73 years.

We use the empirical models in (4.1). Let yt denote the observed data series such that

yt = yct +Dt,

yct = φ1,ny
c
t−1 + φ2,ny

c
t−2 + ut,
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TABLE 2. Length of cycle in quarters

nτθ nτω n Linear time trend Deterministic cycles Autocorr. ut

Macroeconomic variables

Real GDP per capita
—

(23, 264)
—

(25, 512) 294 Yes No No

Unemployment rate
52

(22, 260)
—

(27, 185) 290 No No No

Hours per capita
22

(18, 64)
25

(18, 198) 294 Yes k = 1 No

Financial variables

VXO
S&P 100 volatility index

—
∅

—
∅ 139 No k = 3 No

Credit risk premium
BAA to 10Y

—
∅

—
∅ 269 Yes No No

Equity price index
—
∅

—
∅ 197 Yes No No

Private non-financial sector
credit % GDP

—
(50, 245)

—
(54, 358) 273 Yes No AR(1)

Home price index
63

(42, 120)
77

(43, 234) 134 Yes No No

1 All data series are sampled at quarterly frequencies with the sample size of each series given by n.
2 Columns 1 and 2 indicate respectively the length of cycles measured based on angular frequency nτθ and spectrum-maximizing

frequency nτω.
3 In columns 1 and 2, the numbers on top indicate the point estimates of the cycle length. A dash line “—” is used when the point

estimate corresponds to an acyclical process and when the point estimate is unavailable in case of autocorrelation. Enclosed in the
parentheses are the minimum and maximum cycle lengths implied by the 95% confidence intervals of τθ and τω. When the interval is
empty, it is indicated by the symbol ”∅”. All numbers are in quarters.

4 The intercept is included in all specifications.
5 Credit to private non-financial sector (% GDP) are seasonally adjusted by including seasonal dummies in the regression.

where yct is the latent cyclical part, the innovations {ut} are potentially serially correlated accord-
ing to an AR(p) specification with unknown p, and Dt may contain linear deterministic trends
and deterministic cycles as discussed in Section 4. In all specifications, the intercept (constant)
is included by default. The raw data for the credit-to-GDP ratio is not seasonally adjusted and,
therefore, its specification for Dt also allows for seasonal dummies.

We use the BIC to select the appropriate specification for Dt (i.e. whether to include a linear
time trend, deterministic cycles or seasonal dummies). We also rely on the BIC to determine
the presence of autocorrelation in {ut}. Note that a BIC estimate of the lag order p + 2 ≥ 3 for
{yt} implies an autocorrelation of order p for {ut}. In our empirical application, most of the time
series do not exhibit autocorrelation in {ut} except for credit to GDP ratio, as indicated by the BIC.
Moreover, credit-to-GDP ratio is the only series where we have included the seasonal dummies.

Table 2 presents our results. Note that the last three columns of the table describe the specifica-
tion selected by the BIC for Dt and the order of autocorrelation for {ut}. For example, hours per
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capita contains a linear time trend and deterministic cycles of cosine and sine waves with k = 1,
which corresponds to a periodicity of n/k = n. According to the BIC, the errors {ut} are serially
uncorrelated. Columns 1 and 2 of the table report respectively the angular frequency-based mea-
sure nτθ and the spectrum-maximizing frequency-based measure nτω for the cycle length. The
point estimates for nτθ and nτω are indicated as “—” when the autoregressive coefficient esti-
mates of φ1,n and φ2,n correspond to acyclical processes, or when they are not available as in the
case of autocorrelation. The minimum and maximum cycle length implied by the 95% confidence
intervals of nτθ and nτω are given in the parentheses.

The two alternative measures of cycle length generally produce similar lower bound estimates.
Based on the 95% confidence intervals, we are unable to reject the null that macroeconomic
variables, such as real GDP per capita, unemployment rate and hours per capita, contain stochastic
cycles with periodicity of at least 5-6 years. Partly due to the projection-based construction of the
nτθ and nτω confidence intervals, the implied range of the cycle length is typically wide. The upper
bound confidence estimates usually are large and differ considerably between the two measures.
Nevertheless, our results point to the presence of cyclicality among macroeconomic variables,
conforming to the view of endogenous business cycles (Beaudry, Galizia, and Portier, 2020). On
the financial side, we find that credit to private non-financial sector as a percent of GDP and home
prices exhibit cycles of at least 10 years in duration, twice as long as the minimum detected cycle
length in the macroeconomic variables.

The most striking finding of this section is that for the asset market variables (the volatility
index, credit risk premium, and equity prices), our procedure returns empty confidence sets. This
suggests that the underlying mechanism for asset market fluctuations is different from that of
the macro variables and the financial variables such as the credit and home prices. Our results
are in favour of the dichotomy between the asset market and the real economy. Moreover, the
results do not support the view that the recessions are driven by risk perception, risk premiums
and risk-bearing capacity suggested in the macro-finance literature (see Cochrane, 2017). Note
that the S&P 100 Volatility Index, a measure of market uncertainty, has a deterministic cycle of
approximately 46 quarters in length according to the BIC model selection. However, it is different
in nature from stochastic cycles detected in the other variables.
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(A) Real GDP per capita (B) Unemployment rate (C) Hours per capita

(D) Credit to private non-financial sector
% GDP

(E) Home price index

FIGURE 2. Impulse responses to a one-standard-deviation shock to innovations

27



To better visualize the cyclical dynamics consistent with the data, for each series yt, we plot
in Figure 2 the impulse responses to a one-standard-deviation shock to the innovation u0 of all
cyclical specifications in the 95% confidence sets CSn,1−α.14 The dynamics shown in the figure
resonate with the results in Table 2. Financial variables such as credit to private non-financial
sector and home prices exhibit much longer cycles than the business cycle variables. The duration
from peaks to troughs is at least 25-30 quarters in financial cycles and at least 15 quarters in
business cycles. In addition, the financial cycles are also more pronounced. For a one-standard
deviation shock, the initial amplitude of the cyclical response is approximately 3 to 7 times the
standard deviation for credit and home prices, and about 1.5 to 3 times for unemployment rate
and hours per capita.

For real GDP per capita, the impulse responses are split into two parts. On the left, the axis
corresponds the set of impulse responses similar to those observed in unemployment rate and
hours per capita. On the right, the axis maps to the set of cyclical impulse responses with large
amplitudes and high persistences. Note that the scale of the axis on the right has increased by
10-fold. While the possibility of having much longer and highly persistent stochastic cycles cannot
be rejected, real GDP per capita do also share similar dynamics to unemployment rate and hours
per capita.15

In sum, our results suggest that business cycles as marked by the expansions and contractions
of the aggregate economic activity are not just recurrent but periodic with an average duration
of at least 5-6 years. Furthermore, financial cycles as characterized by the booms and busts in
credit and home prices are much longer than the business cycles: at least 10 years in duration.
In addition, these financial cycles have more prominent oscillations with much larger amplitudes
than business cycles. Moreover, we find that equity prices, though commonly included in the
characterization of financial cycles, do not exhibit stochastic cycles, and therefore merits separate
consideration from credit and home prices. Lastly, our results suggest that asset market fluctua-
tions are a different phenomenon from the changes in real economic activities.

Appendix A. The periodogram of long-cycle processes

A.1. Asymptotic properties

Periodogram-based nonparametric estimators are commonly used to infer on cyclical behaviour
of time series. In this section, we derive the asymptotic properties of the periodogram in the case
of long-cycle processes. For −π ≤ ω ≤ π, the periodogram of {yt} is defined as

In(ω) ≡ 1

2πn

∣∣∣∣∣
n∑
t=1

yte
−iωt

∣∣∣∣∣
2

, (A.1)

14For credit to private non-financial sector, the standard deviation of the innovation is computed assuming no serial
correlation.
15Note also that hours per capita is much more persistent than unemployment rate and real GDP per capita.

28



see, for example, equation (6.1.24) in Priestley (1981). In the case of covariance stationary
processes with continuous spectral densities, it is well known that the periodogram is an asymp-
totically unbiased estimator of the spectral density at ω (see equation (6.2.12) in Priestley, 1981).

Given the results of Proposition 2.1, in the case of long-cycle processes, we are interested in
the spectrum near the origin at frequencies of the form ωn = h/n for a constant h ∈ R. Suppose
that {yn,t} is generated according to the DGP in equation (2.4) with the roots as in Assumption
2.1. Assume also that {ut} are serially uncorrelated with a zero mean and the variance σ2u. In this
case, the spectral density of {yt}, denoted fn(ω), satisfies16

n−4fn(h/n) =
σ2u

2πn4
1

|1− λ1,neih/n|2|1− λ2,neih/n|2

→ σ2u
2π

1

(c2 + (d+ h)2)(c2 + (d− h)2)
.

We show below that, in the case of long-cycle processes and near the origin frequencies, the
periodogram is a biased estimator.

Proposition A.1. Suppose that {yn,t} is generated according to equation (2.4) and Assumption 2.1,
and {ut} are serially uncorrelated with a zero mean and the variance σ2u > 0. Then for a constant h,
the periodogram of {yn,t} satisfies

lim
n→∞

n−4E

[
In

(
h

n

)]
=
σ2u
π

∫ ∞
−∞

1− cos(h− x)

(h− x)2
1

(c2 + (d+ x)2)(c2 + (d− x)2)
dx. (A.2)

The result can be extended to allow for strictly stationary and serially correlated {ut}, when the
spectral density ϕ(ω) of {ut} is bounded, bounded away from zero and continuously differentiable
with the derivative satisfying supx∈[−πn,πn] |ϕ′(x/n)| = O(n−1). For example, the condition holds
when {ut} is an MA(p) process. In that case, σ2u in equation (A.2) should be replaced with ϕ(0).

The result in Proposition A.1 can be used to assess the magnitude of the bias implied by the
periodogram as we illustrate below. When the cyclical properties of a process are assessed using
its spectrum, the appropriate measure of the cycle length is τω. The solid line in Figure 3 plots
the limiting expression for the expected values of the periodogram of a long-cycle process at near
the origin frequencies. Its maximizing frequency is shown by the solid vertical line. The dashed
line displays the limit of the true spectral density. The vertical dashed line indicates the true
spectrum maximizing frequency

√
d2 − c2 derived in Proposition 2.1. To construct the plot, we

use the following values of the localization parameters: c = 4 and d = 10.
The numerical results displayed in the figure demonstrate that the periodogram may under

estimate the spectrum maximizing frequency and, as a result, over estimate the length of the
cycle. According to the true spectrum, the cycle length relatively to the sample size is τω = 0.69,
while according to the periodogram it is τω = 0.73. For quarterly data and a sample size n = 200,
this corresponds to the upward bias of 8 quarters for the cycle length.

16See the proof of Proposition A.1.
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FIGURE 3. The limits of the expected value of the periodogram (solid line) and
the true spectrum (dashed line) for c = 4 and d = 10. The corresponding vertical
lines indicate the maximizing frequencies in terms of h, where h is determined by
ωn = h/n, and ωn denotes frequencies

Proposition 3.1 can be used to describe the asymptotic distribution of the periodogram of a
long-cycle process at near-the-origin frequencies. The next result shows that asymptotic distri-
bution of the periodogram depends on a continuous time Fourier transform of the asymptotic
approximation of the long-cycle process.

Corollary A.1. Suppose that {yn,t} is generated according to equation (2.4), and Assumptions 2.1
and 3.1 hold. Then,

n−4In

(
h

n

)
⇒ 1

2π

∣∣∣∣∫ 1

0
Jc,d(r)e

−ihrdr

∣∣∣∣2 ,
where the process Jc,d(r) is defined in equation (3.2).

A.2. Proofs of the asymptotic properties of the periodogram

Proof of Proposition A.1. The spectral density of {yn,t} is given by

fn(ω) =
σ2u
2π

1

|1− λn,1eiω|2|1− λn,2eiω|2
. (A.3)

By the results in Priestley (1981), equations (6.2.10)–(6.2.11),

EIn

(
h

n

)
=

∫ π

−π
fn(x)Fn

(
x− h

n

)
dx =

1

n

∫ πn

−πn
fn

(x
n

)
Fn

(
x− h
n

)
dx, (A.4)

where the second result holds by the change of variable, and

Fn(x) =
sin2(nx/2)

n sin2(x/2)
=

1− cos(nx)

n(1− cos(x))
.
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Applying a series expansion cos((h− x)/n) = 1− 0.5((h− x)/n)2 +O((h− x)/n)4, we obtain

Fn

(
h− x
n

)
=

2n(1− cos(h− x))

(h− x)2
(

1 +O
(
h−x
n

)2) . (A.5)

Next, we consider an expansion of the elements of fn(x/n).

1− λn,1eix/n

= 1− ec/n
(

cos

(
d+ x

n

)
+ i sin

(
d+ x

n

))
= 1−

(
1 +

c

n
+O

(
1

n2

))
×

(
1− 1

2

(
d+ x

n

)2

+O

(
d+ x

n

)4

+ i

(
d+ x

n
+O

(
d+ x

n

)3
))

= − c
n

+O

((
d+ x

n

)2

+
(d+ x)2

n3
+

(
d+ x

n

)4

+
1

n2

)

+i

(
d+ x

n
+O

(
d+ x

n2
+

(d+ x)3

n4

))
.

Hence, ∣∣∣1− λn,1eix/n∣∣∣2 =
c2 + (d+ x)2

n2
+O

(
d+ x

n

)4

. (A.6)

Similarly, ∣∣∣1− λn,2eix/n∣∣∣2 =
c2 + (d− x)2

n2
+O

(
d− x
n

)4

. (A.7)

By (A.3) and (A.6)–(A.7),

1

n
fn

(x
n

)
=

n3σ2

2π
(
c2 + (d+ x)2

(
1 +O

(
d+x
n

)2))(
c2 + (d− x)2

(
1 +O

(
d−x
n

)2)) . (A.8)

The result of the proposition follows from (A.4), (A.5), and (A.8).
�

Proof of Corollary A.1. Since∫ (t+1)/n

t/n
e−ihsds =

e−iht/n

n

(
1 +O(n−1)

)
,

we have

n−5/2
n∑
t=1

yte
−iht/n =

1

1 +O(n−1)

n∑
t=1

n−3/2yt

∫ (t+1)/n

t/n
e−ihsds

=
1

1 +O(n−1)

n∑
t=1

∫ (t+1)/n

t/n
n−3/2ybnsce

−ihsds

=
1

1 +O(n−1)

∫ 1

0
n−3/2ybnsce

−ihsds+Op(n
−1)
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⇒
∫ 1

0
Jc,de

−ihsds, (A.9)

where the equality in the third line holds because ybnsc = yt for t/n ≤ s < (t + 1)/n, and the
equality in the last line holds by the Continuous Mapping Theorem (CMT) and Proposition 3.1.
The result of the corollary follows by (A.9) and the CMT. �

Appendix B. Description of the data in Section 7

Table 3 in this appendix provides a description of the variables used in the empirical application
in Section 7. The description includes the source with exact identifiers for each variable, any
transformations applied to the raw data, and the sample periods.

TABLE 3. Data description

Source Identifier Construction Sample

Real GDP per capita FRED A939RX0Q048SBEA Natural logarithm 1947Q1 to 2020Q2

Unemployment rate FRED UNRATE Natural logarithm 1948Q1 to 2020Q2

Hours per capita FRED
HOANBS

B230RC0Q173SBEA
Ratio of non-farm business hours
to population, Natural logarithm 1947Q1 to 2020Q2

VXO
S&P 100 volatility index FRED VXOCLS Natural logarithm 1986Q1 to 2020Q3

Credit risk premium
BAA to 10Y FRED BAA10YM — 1953Q2 to 2020Q2

Credit to non-financial sector
% GDP FRED QUSPAM770A — 1952Q1 to 2020Q1

Home price index FRED CSUSHPISA
S&P/Case-Shiller U.S. National

Home Price Index, Natural logarithm 1987Q1 to 2020Q2

Equity price index FRED
WILL5000IND

CPALTT01USQ661S
Wilshire 5000 Total Market Index
divided by CPI, Natural logarithm 1971Q2 to 2020Q2

In the case where aggregation is needed, the end of period values are used.

Appendix C. Proofs of the main results

Proof of Proposition 2.1. By Assumption 2.1 and (2.6)–(2.7),

−φ1,n(1− φ2,n)

4φ2,n
= 0.5 cos

(
dn−1

)
(exp

(
cn−1

)
+ exp

(
−cn−1

)
)

= (1− 0.5d2n−2 +O(n−4))(1 + 0.5c2n−2 +O(n−4))

= 1− 0.5(d2 − c2)n−2 +O(n−4).

Since the argument of cos−1 converges to one, it follows that

ω∗n = cos−1
(
1− 0.5(d2 − c2)n−2 +O(n−4)

)
= o(1). (C.1)
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Consider cos−1(1 − s) = t or 1 − s = cos(t), where s and t are small. Expanding cos(t) around
t = 0, we obtain s = t2/2 +O(t4). Hence, 2s = t2(1 +O(t2)), and it follows that

t =
√

2s(1 +O(t2))

=
√

2s(1 +O(2s(1 +O(t2)))

=
√

2s+O(s3/2).

Therefore,
nω∗n =

√
d2 − c2 +O(n−2).

�

Lemmas C.1, C.2, and C.3 below present auxiliary results that are needed for the proof of
Proposition 3.2 and Lemma 3.1. In particular, Lemma C.3 establishes the properties of the diffu-
sion processes that appear in the limiting expressions for the estimators and test statistics.

Lemma C.1. Suppose that Assumption 2.1 holds. The following approximation holds for the long-
cycle autoregressive coefficients in (2.6) and (2.7):

(a) φ1,n = 2 + 2c
n + c2−d2

n2 +O(n−3).
(b) −φ2,n = 1 + 2c

n + 2c2

n2 +O(n−3).
(c) φ1,n

1−φ2,n = 1− d2+c2

2n2 +O(n−3).

(d) 2
1−φ2,n = 1− c

n −
c2

n2 +O(n−3).

(e) φ1,n + φ2,n = 1− c2+d2

n2 +O(n−3).
(f) −(φ1,n + φ2,n)φ2,n = 1 + 2c

n + c2−d2
n2 +O(n−3).

(g) 1− (φ1,n + φ2,n)2 = 2(c2+d2)
n2 +O(n−3).

(h) φ22,n = 1 + 4c
n + 8c2

n2 +O(n−3).

Lemma C.2. Suppose {yn,t} is generated according to (2.4). We have:

(a)
∑n

t=2 y
2
t−2 =

∑n
t=1 y

2
t−1 − y2n−1.

(b)
∑n

t=3 yt−1yt−2 =
φ1,n

1−φ2,n
∑n

t=2 y
2
t−1 + 1

1−φ2,n (
∑n

t=2 yt−1ut − ynyn−1) +
φ2,n

1−φ2,n y0y1.
(c)

∑n
t=2 yt−2ut =

∑n
t=2 yt−1ut −

∑n
t=2(yt−1 − yt−2)ut.

(d) yn = yn−1 + (yn − yn−1).
(e) ynyn−1 = y2n − yn(yn − yn−1).
(f) y2n−1 = y2n − 2yn(yn − yn−1) + (yn − yn−1)2.
(g)

∑
yt−1(∆yt −∆yt−1) = yn−1∆yn −

∑
(∆yt−1)

2.

Lemma C.3. The diffusion processes Jc,d(·), Kc,d(·), and Gc,d(·) have the following properties:

(a) dJc,d(r) = c · Jc,d(r)dr + d ·Kc,d(r)dr = Gc,d(r)dr.
(b) dKc,d(r) = c ·Kc,d(r)dr − d · Jc,d(r)dr + 1

ddW (r).

(c)
∫ r
0 e

2c(r−s)Jc,d(r)ds = 1
c2+d2

{∫ r
0 e

2c(r−s)dW (s)−
(
c · Jc,d(r) + d ·Kc,d(r)

)}
.

(d) d
(
Jc,d(r) ·Kc,d(r)

)
= 2c · Jc,d(r) ·Kc,d(r)dr + d · (K2

c,d(r)− J2
c,d(r))dr + 1

dJc,d(r)dW (r).

(e)
∫ 1
0 G

2
c,d(r)dr = (c2 + d2)

∫ 1
0 J

2
c,d(r)dr + Jc,d(1)Gc,d(1)−

∫ 1
0 Jc,d(r)dW (r)− c · J2

c,d(1)

(f) J2(1) = 2
∫ 1
0 Jc,d(r)Gc,d(r)dr
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(g) (G2
c,d(1)−1)/2 = c

∫ 1
0 G

2
c,d(r)dr+cd

∫ 1
0 Kc,d(r)Gc,d(r)dr−d2

∫ 1
0 Jc,d(r)Gc,d(r)dr+

∫ 1
0 Gc,d(r)dW (r).

Proof of Lemma C.3. To prove part (a) and (b), note that by applying trigonometric identities,
we have

Jc,d(r) =
1

d

∫ r

0
ec(r−s) {sin(dr) cos(ds)− cos(dr) sin(ds)} dW (s),

Kc,d(r) =
1

d

∫ r

0
ec(r−s) {cos(dr) cos(ds) + sin(dr) sin(ds)} dW (s).

By applying stochastic differentiation of Jc,d(r) and Kc,d(r),

d · dJc,d(r) = (c · ecr sin(dr) + d · ecr cos(dr))

∫ r

0
e−cs cos(ds)dW (s) · dr

+ecr sin(dr)e−cr cos(dr)dW (r)

−(c · ecr cos(dr)− d · ecr sin(dr))

∫ r

0
e−cs sin(ds)dW (s) · dr

−ecr sin(dr)e−cr cos(dr)dW (r)

= c

∫ r

0
ec(r−s) {sin(dr) cos(ds)− cos(dr) sin(ds)} dW (s) · dr

+d

∫ r

0
ec(r−s) {cos(dr) cos(ds) + cos(dr) sin(ds)} dW (s) · dr,

d · dKc,d(r) = (c · ecr cos(dr)− d · ecr sin(dr))

∫ r

0
e−cs cos(ds)dW (s) · dr

+ecr cos(dr)e−cr cos(dr)dW (r)

+(c · ecr sin(dr) + d · ecr cos(dr))

∫ r

0
e−cs sin(ds)dW (s) · dr

+ecr sin(dr)e−cr sin(dr)dW (r)

= c

∫ r

0
ec(r−s) {cos(dr) cos(ds) + sin(dr) sin(ds)} dW (s) · dr

+d

∫ r

0
ec(r−s) {sin(dr) cos(ds)− cos(dr) sin(ds)} dW (s) · dr

+dW (r).

Parts (a) and (b) now follow from the trigonometric identities. To prove part (c), use the results
from (a) and (b) and evaluate the following integrals using integration by parts:∫ r

0
e2c(r−s)Jc,d(s)ds =

d

c

∫ r

0
e2c(r−s)Kc,d(s)ds−

1

c
Jc,d(r),∫ r

0
e2c(r−s)Kc,d(s)ds =

1

cd

∫ r

0
e2c(r−s)dW (s)− d

c

∫ r

c
e2c(r−s)Jc,d(s)ds−

1

c
Kc,d(r).

With some algebraic manipulations, we obtain part (c).
By Ito’s lemma,

d
(
Jc,d(r) ·Kc,d(r)

)
= dJc,d(r) ·Kc,d(r) + Jc,d(r) · dKc,d(r).
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Note that the quadratic covariation is negligible in this case. Using (a) and (b), part (d) follows
immediately.

Next we proceed to prove (e). From (d), it follows that

d · Jc,d(1)Kc,d(1) = 2cd

∫ 1

0
Jc,d(r)Kc,d(r)dr + d2

∫ 1

0
(K2

c,d(r)− J2
c,d(r))dr +

∫ 1

0
Jc,d(r)dW (r),

By the definition of Gc,d(·),

Jc,d(1)Gc,d(1) = c · J2
c,d(1) + d · Jc,d(1)Kc,d(1).

By applying the two results from above, we obtain the result in (e):∫ 1

0
G2
c,d(r)dr = c2

∫ 1

0
J2
c,d(r)dr + 2cd

∫ 1

0
Jc,d(r)Kc,d(r)dr + d2

∫ 1

0
K2
c,d(r)dr

= (c2 + d2)

∫ 1

0
J2
c,d(r)dr + d · Jc,d(1)Kc,d(1)−

∫ 1

0
Jc,d(r)dW (r)

= (c2 + d2)

∫ 1

0
J2
c,d(r)dr + ·Jc,d(1)Gc,d(1)− c · J2

c,d(1)−
∫ 1

0
Jc,d(r)dW (r).

To prove (f) and (g), we use stochastic differentiation of J2
c,d(r) and G2

c,d(r), respectively:

dJ2
c,d(r) = 2Jc,d(r)dJc,d(r) = 2Jc,d(r)Gc,d(r)dr,

dG2
c,d(r) = 2Gc,d(r)dGc,d(r) + (dGc,d(r))

2

= 2Gc,d(r)(c · dJc,d(r) + d · dKc,d(r)) + dr

= 2c ·Gc,d(r)Gc,d(r)dr + 2cd ·Gc,d(r)Kc,d(r)dr − 2d2 ·Gc,d(r)Jc,d(r)

+2Gc,d(r)dW (r) + dr.

The results in (f) and (g) follows by integrating both sides of the stochastic differential equations
above with respect to r over [0, 1].

�

Proof of Proposition 3.2. By Lemma C.1(a) and (b),

yt =

(
2 +

2c

n
+
c2 − d2

n2
+O(n−3)

)
yt−1 −

(
1 +

2c

n
+

2c2

n2
+O(n−3)

)
yt−2 + ut, and

∆yt =

(
1 +

2c

n

)
∆yt−1 +

(
c2 − d2

n2
+O(n−3)

)
− yt−1

(
2c2

n2
+O(n−3)

)
yt−2 + ut

=
t∑

j=0

(
1 +

2c

n

)t−j
uj +

(
c2 − d2

n2
+O(n−3)

) t∑
j=0

(
1 +

2c

n

)t−j
yj−1

−
(

2c2

n2
+O(n−3)

)) t∑
j=0

(
1 +

2c

n

)t−j
yj−2.
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Define Sn(r) ≡
∑bnrc

t=1 ut. We have:

∆ybnrc =

bnrc∑
j=0

(
1 +

2c

n

)bnrc−j ∫ j
n

j−1
n

dSn(s)

+

(
c2 − d2

n
+O(n−2)

) bnrc∑
j=0

∫ j
n

j−1
n

(
1 +

2c

n

)bnrc−j
ybn j−1

n
cds

−
(

2c2

n
+O(n−2)

) bnrc∑
j=0

∫ j
n

j−1
n

(
1 +

2c

n

)bnrc−j
ybn j−2

n
cds.

By the CMT and Proposition 3.1,

n−1/2∆ybnrc ⇒ σ

∫ r

0
e2c(r−s)dW (s)− σ(c2 + d2)

∫ r

0
e2c(r−s)Jc,d(s)ds,

= σ(c · Jc,d(r) + d ·Kc,d(r)),

where the result in the last line follows by Lemma C.3(c). The result of the proposition now
follows by the definition of Gc,d(r) in (3.6). �

Proof of Lemma 3.1. Parts (a)–(c) follow immediately from Propositions 3.1 and 3.2 by the
CMT. To prove the result in part (d), by squaring both sides of equation (2.4) and summing
over t, we obtain:∑

y2t = (φ1,n + φ2,n)2
∑

y2t−1 + φ22,n
∑

(∆yt−1)
2 +

∑
u2t

− 2(φ1,n + φ2,n)φ2,n
∑

yt−1∆yt−1 + 2(φ1,n + φ2,n)
∑

yt−1ut − 2φ2,n
∑

∆yt−1ut.

After rearranging and applying the results of Lemmas C.1–C.2, we have:∑
yt−1ut =

c2 + d2

n2

∑
y2t−1 + yn∆yn −

∑
(∆y2t−1)−

2c

n

∑
yt−1∆yt−1 +Op(n).

By the results in parts (a)–(c) of the lemma, and using the shortened notation as explained on
page 12,

n−2
∑

yt−1ut ⇒ σ2
(

(c2 + d2)

∫
J2
c,d + Jc,d(1)Gc,d(1)−

∫
G2
c,d − 2c

∫
Jc,dGc,d

)
= σ2

∫
Jc,ddW,

where the result in the last line is by Lemma C.3(e) and (f).
To prove part (e), we follow the same steps as in part (d) using (3.4) to obtain

1

n

∑
∆yt−1ut =

c2 + d2

n3

∑
yt−1∆yt−1 −

2c

n2

∑
(∆yt−1)

2 − 1

2n

∑
u2t +

1

2n
(∆yn)2 +O(n−1)

⇒ σ2(c2 + d2)

∫
Jc,dGc,d − 2cσ2

∫
G2
c,d −

1

2
σ2u +

1

2
σ2G2

c,d(1)

= σ2
∫
Gc,ddW +

1

2
(σ2 − σ2u),

36



where the equality in the last line is by part (g) of Lemma C.3 and the definition of Gc,d. �

Proof of Proposition 3.3. By (3.5),(
φ̂1,n + φ̂2,n − φ1,n − φ2,n

φ̂2,n − φ2,n

)
=

1∑
y2t−1

∑
(∆yt−1)2 − (

∑
yt−1∆yt−1)2

×

( ∑
(∆yt−1)

2
∑
yt−1∆yt−1∑

yt−1∆yt−1
∑
y2t−1

)( ∑
yt−1ut

−
∑

∆yt−1ut

)
.

The result in part (a) and the result in part (b) for φ̂2,n follow immediately by Lemma 3.1 and the
CMT. The result in part (b) for φ̂1,n follows since

n(φ̂1,n − φ1,n) = n(φ̂1,n + φ̂2,n − φ1,n − φ2,n)− n(φ̂2,n − φ2,n)

= Op(n
−1)− n(φ̂2,n − φ2,n),

where the second equality holds by the result in part (a).
�

Proof of Proposition 3.4. The result follows from Lemma 3.1(a)-(c) and Proposition 3.3, pro-
vided that σ̂2n →p σ

2. The long-run variance estimator σ̂2n is given by

σ̂2n = σ̂2u,n + 2

mn∑
h=1

wn(h)n−1
n∑

t=h+1

ûtût−h, where σ̂2u,n = n−1
n∑
t=1

û2t .

Denote φ12,n ≡ φ1,n + φ2,n and φ̂12,n ≡ φ̂1,n + φ̂2,n. We have:

σ̂2u,n =
1

n

∑
u2t − (φ̂12,n − φ12,n)

2

n

∑
yt−1ut + (φ̂2,n − φ2,n)

2

n

∑
∆yt−1ut

+
1

n

∑(
(φ̂12,n − φ12,n)yt−1 + (φ̂2,n − φ2,n)∆yt−1

)2

=
1

n

∑
u2t +Op(n

−1)

→p σ2u,

where the equality in the line before the last holds by Lemma Lemma 3.1(d),(e) and Proposition
3.3, and the result in the last line holds by Assumption 3.2. By the same arguments and since the
weight function wn(·) is bounded,

n−1
n∑

t=h+1

ûtût−h = n−1
n∑

t=h+1

utut−h +Op(n
−1).

Hence,
σ̂2n = σ̃2n +Op(mn/n),

and the result follows by Assumption 3.3. �
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Proof of Lemma 4.1. By the results of Propositions 3.1, 3.2, and the CMT,

n−3/2ȳn/σ ⇒
∫ 1

0
Jc,d(s)ds, n−1/2∆yn/σ ⇒

∫ 1

0
Gc,d(s)ds.

Hence,

n−3/2(ybnrc − ȳn)/σ ⇒ Jc,d(s)−
∫ 1

0
Jc,d(r)ds = J̃c,d(r),

n−1/2(∆ybnrc −∆yn)/σ ⇒ Gc,d(r)−
∫ 1

0
Gc,d(s) = G̃c,d(r)ds.

The results of the lemma now follow by the CMT using the same arguments as those in the proof
of Lemma 3.1

�

Proof of Lemma 4.2. The results of the lemma follow by the same arguments as those in the
proofs of Lemma 3.1 and 4.1 after observing that

∫ 1
0 cos2(2πks)ds =

∫ 1
0 sin2(2πks)ds = 1/2. �

Proof of Lemma 4.3. The results of the lemma follow by the same arguments as those in the
proofs of Lemma 3.1 and 4.1 after observing that(

1
∫ 1
0 sds∫ 1

0 sds
∫ 1
0 s

2ds

)−1
=

(
4 −6

−6 12

)
.

�

Proof of Proposition 6.1. To simplify the presentation, we prove the result for p = 1. For the
general case, the proof is similar but requires more a complicated notation. Under H0, ũt,0 = ũt,
where {ũt} are the residuals from the projection of {ut} against the components of Dt. Since

(1− φ1L− φ2L2)x̂t,0 = ε̃t − (ρ̂1,0 − ρ1)ũt−1,

ρ̂1,0 − ρ1 =

∑
ũt−1εt∑
ũ2t−1

,

the estimators of φ1 and φ2 satisfy:(
φ̂1,n − φ1
φ̂2,n − φ2

)
=

( ∑
x̂2t−1,0

∑
x̂t−1,0x̂t−2,0∑

x̂t−1,0x̂t−2,0
∑
x̂2t−2,0

)−1(∑
x̂t−1,0(ε̃t − (ρ̂1,0 − ρ1)ũt−1)∑
x̂t−2,0(ε̃t − (ρ̂1,0 − ρ1)ũt−1)

)
,

with (∑
x̂t−1,0(ε̃t − (ρ̂1,0 − ρ1)ũt−1)∑
x̂t−2,0(ε̃t − (ρ̂1,0 − ρ1)ũt−1)

)
=


∑(

x̂t−1,0 −
∑
x̂s−1,0ũs−1∑

ũ2s−1
ũt−1

)
ε̃t∑(

x̂t−2,0 −
∑
x̂s−2,0ũs−1∑

ũ2s−1
ũt−1

)
ε̃t

 . (C.2)

The result follows since under the null, ρ̂1,0 − ρ1 = Op(n
−1/2) and x̂t,0 = x̃t − (ρ̂1,0 − ρ1)ỹt−1. �

Proof of Proposition 6.2. Similarly to the proof of Proposition 6.1, we prove the result for p = 1.
For the general case, the proof is analoguous, but requires more a complicated notation. Consider
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ζ̇1,n in (6.5):

ζ̇1,n =

∑
ũt(x̃t − (ρ̂1,0 − ρ1)ỹt−1)∑

ũ2t
= Op(n),

where the second equality holds by the lemmas in Section 4. Next, consider the elements of the
matrix Σn:

n−4
∑

ẋ2t−1,0 = n−4
∑

(x̂t,0 − ζ̇1,nũt,0)2

= n−4
∑

x̃2t + op(1)

⇒ σ2ε

∫
J̃2
c,d,

where the results in the second and third lines hold again by the lemmas in Section 4. After
applying the same arguments to the other elements in Σn, the elements ofMn, and the expressions
on the right-hand side of (C.2), the result of the proposition follows by the CMT.

�
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