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Abstract
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given comprehensive revision to obtain a better measurement of aggregate economic ac-

tivity by exploiting cointegration between the different measures and taking seriously the

vintage release calendar. We also combine overlapping comprehensive revisions to improve

our measurement of the most recent observations, with particular attention to the Great Re-

cession and the pandemic. We use the values of the estimated parameters of our dynamic

state space model to assess whether comprehensive revisions induce changes in the long-

run growth rate and the persistence of shocks to economic activity.
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1 Introduction

Despite the recent interest in alternative measures, such as the Human Development Index or

the different Gross National Happiness measures, Gross Domestic Product (GDP) remains the

dominant concept to gauge the aggregate performance of an economy over a given period of

time. In the United States of America, the estimates of aggregate economic activity that the

Bureau of Economic Analysis (BEA) publishes are used not only by policy makers and research

economists, but also by private sector agents, including households and companies, in making

their production and consumption decisions, as well as their financial plans.

The BEA uses a mixture of survey, tax and other business and administrative data, as well

as various indicators, which are subject to sampling errors and biases that cannot be directly

assessed. As time goes by, though, the BEA acquires more and better information, and for that

reason it systematically updates its measures, which results in a sequence of estimates for a

given quarter known as revisions. In fact, the whole revision process is rather elaborate, and

it is important to distinguish between three types: (i) subsequent releases for a given quarter,

usually called the “advance”, “second” and “third” estimates; (ii) annual (or “final”) revisions,

which simultaneously update all the quarters of the three previous calendar years; and (iii)

occasional comprehensive revisions, which recompute the entire history of the series after a

major methodological change that effectively modifies its definition. The importance of revi-

sions should not be underestimated. For example, Orphanides (2001) convincingly argues that

the use of preliminary versus final revisions can lead to different monetary policy recommen-

dations.

While in the last two decades there has been considerable progress in jointly modeling the

different vintages of data (see, for example, Aruoba (2008), Jacobs and van Norden (2011) and

the references therein), some of these studies have ignored a second important consideration:

the BEA produces not just one but two different measures of aggregate output and income:

Gross Domestic Expenditure (GDE) and Gross Domestic Income (GDI). GDE measures activity

as the sum of all final expenditures in the economy, which is reflected in the output side of

the national income and product accounts. In turn, GDI measures activity as the sum of all

income generated in production, and is therefore captured on the income side of the national

accounts (NIPAs). In theory, the flows of income and expenditure should be equal, and thus,

GDE and GDI should yield the same measure of economic activity. In practice, though, they dif-

fer not only because of the revisions, but because each is calculated from data from completely

different sources (see Landefeld, Seskin, and Fraumeni (2008) for a review). The systematic,
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and at times noticeable, deviation between them (officially known as statistical discrepancy)1

was traditionally regarded by many academic economists as a curiosity in the NIPAs. How-

ever, the Great Recession led to substantially renewed interest in academic and policy circles

about the possibility of obtaining more reliable economic activity figures by combining the two

measures, and various proposals for improved combinations have been discussed (see, e.g.

Nalewaik (2010), Nalewaik (2011), Greenaway-McGrevy (2011), Aruoba, Diebold, Nalewaik,

Schorfheide, and Song (2016) and Jacobs, Sarferaz, Sturm, and van Norden (2020)). For exam-

ple, the GDPplus measure of Aruoba et al. (2016) is currently released on a monthly schedule

by the Federal Reserve Bank of Philadelphia.

The purpose of our paper is to simultaneously tackle all these measurement issues within a

single, internally coherent, signal extraction framework.2 Intuitively, given that GDE and GDI

are based on different sources, and that these are subject to successive systematic revisions,

one would expect that a more accurate estimate of the underlying economic activity can be

obtained by exploiting the dynamic and static recurrent patterns in the observed series. In some

respects, the recurrent updating of our signal-extraction process can be regarded as analogous

to the criaderas and soleras system of sherry wine aging, whereby the final product is obtained

by fractional blending inputs from different vintages over a perennial dynamic procedure that

gives sherry its distinctive character.3

Despite involving a moderately large number of both latent and observed variables, our

model is both flexible and parsimonious thanks to the economic and statistical discipline that

we impose on the measurement errors. Our crucial point of departure from the previous litera-

ture is that we follow Almuzara, Amengual, and Sentana (2019) and Almuzara, Fiorentini, and

Sentana (2021) in imposing that (i) any two aggregate output and income measures (in logs)

are cointegrated, with cointegrating vector (1,-1); and that (ii) measurement errors are mean-

reverting and stationary, although they may be serially correlated. Thus, we are able to focus

not only in quarterly growth rates, but also look at the level of output, which is of considerable

interest in itself, particularly in regional or cross-country comparisons.

In addition, the data release calendar is at the core of our model. Specifically, we explicitly

take into account that the “advance” GDE estimate is published one month after the end of

the quarter, and that the “second” and “third” estimates are published two and three months

1See Grimm (2007) for a detailed methodological insight.
2Stone, Champernowne, and Meade (1942) is the first known reference to the signal-extraction framework of our

paper. Early literature is surveyed in Weale (1992). See also Smith, Weale, and Satchell (1998).
3As explained by agent 007 to M in the 1971 James Bond film Diamonds are forever.
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after the end of the quarter, respectively. We also acknowledge the fact that the timing of the

quarterly releases for GDI is slightly different, as it incorporates information from the quarterly

census of employment and wages. Importantly, we also consider the annual data revisions of

both series that are published in the summer of the following year, and which typically affect

the values for all the quarters of the previous three years.

The final novel ingredient of our model is the combination of data from different com-

prehensive revisions, which take place approximately every five years. These revisions in-

corporate changes in definitions, classifications, and statistical methodology. The most recent

comprehensive revision was published in July 2018, with a detailed analysis in a BEA paper

dated August 2019. In that report, the U.S. statistical office presented revised annual estimates

for 1929-2017 and revised quarterly estimates for 1947-2017.4 Often, comprehensive revisions

reflect either improved or totally new surveys on sectors of the economy that have become

increasingly important. Despite these systematic differences, the joint modeling of multiple

comprehensive revisions is particularly relevant at the time when a new one is released, which

is precisely when there is very little information about the statistical properties of its successive

vintages and annual revisions.

The closest paper to ours is Jacobs et al. (2020) who also exploit the release process of GDP

and GDI to obtain improved real-time estimates of economic activity. Nevertheless, they focus

on growth rates and abstract from comprehensive redefinitions of GDP.5

From the point of view of implementation, our model can be cast in linear state-space form

and is amenable to the use of Bayesian methods of inference for both parameters and latent

variables. In particular, we develop a Gibbs sampling algorithm that tackles estimation and

signal-extraction simultaneously, allowing for an efficient and conceptually simple integration

of uncertainty coming from different sources. Moreover, our strategy to model comprehensive

revisions is easily adaptable to cover a wide range of potential applications (e.g., price data)

and extensions of the basic dynamic model (e.g., nonnormality or stochastic volatility).

After estimating our model exploiting all the available US data, we use it to answer a num-

ber of empirically relevant questions. First, do comprehensive revisions modify the descriptive

characteristics of economic growth, such as its mean and persistence? Second, what is the con-

tribution of the different estimates (i.e., advance, second, third, etc.) to the precision of signal

4The next comprehensive revision is expected in July 2023.
5One additional difference is that Jacobs et al. (2020) propose a framework to separate news from noise in the

revision process along the lines of Jacobs and van Norden (2011). Extending our model to incorporate a distinction
between news and noise is feasible and constitutes a promising avenue for future research. See appendix E for more
information.
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extraction about economic activity? Importantly, our estimates suggest that (i) comprehensive

revisions have not led to appreciable changes in the properties of growth rates, and that (ii)

most of the precision gains in signal extraction takes place by the time the third estimates of

GDE and GDI become available. Finally, we provide several additional empirical exercises,

including an assessment of our improved estimate of economic activity during the COVID-19

pandemic.

The rest of the document is organized as follows. We begin with a detailed description of

the data in Section 2. Section 3 introduces the model, while in Section 4, we give the details

of the estimation and filtering algorithms. Section 5 reports the empirical analysis, including

the improved “GDP solera” measure of economic activity produced by our method. Finally,

Section 6 concludes.

2 Data background

Our empirical analysis uses data on all the GDE and GDI vintages from the BEA. To get a

better sense of the data, it is instructive to review the timing of the release process as it happens

regularly over a typical year. Table 1 exemplifies the process in a recent period. Estimates for

quarterly GDP are released in the following order:6

(A) Advance estimate, based on source data incomplete or subject to further revision by the

source agency, and released near the end of the first month after the end of the quarter,

(B) Second/third estimates, which use broader and more detailed data, and are released near

the end of the second and third months, respectively,

(C) Latest estimates, which reflect the results of both annual and comprehensive updates.

For GDI only second, third and latest estimates are prepared because of data availability,

except for the fourth quarter of each year, for which only third and latest estimates are released.

Normally, a single estimate for the latest quarter is added to the GDE/GDI series at a time,

but there are two kinds of updates where multiple quarters are simultaneously updated:

(a) Annual updates, usually done in July, which cover at least the most recent three calendar

years (e.g. July 2017’s annual update revised 2017Q1, and all quarters from 2016, 2015 and

6Before 2009Q2, the BEA used the terminology “advance”, “preliminary” and “final” for what it now calls “ad-
vance”, “second” and “third”, respectively.
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2014). They incorporate newly available annual source data, and minor methodological

changes.

(b) Comprehensive (or benchmark) updates, which are done approximately every 5 years (the

last updates were in December 2003, July 2009, July 2013 and July 2018). They incorporate

major periodic source data (for example data released at frequencies lower than 1 year),

and some major methodological changes. Real GDP is usually rebased, with the reference

year chosen such that it will remain fixed during the subsequent annual updates.7

TABLE 1. GDE and GDI release schedule for the period 2016Q1-2018Q2.

Release Month Estimate GDE GDI
New Updated New Updated

Jan 2017 Advance 2016Q4
Feb 2017 Second 2016Q4

Mar 2017 Third 2016Q4 2016Q4

Apr 2017 Advance 2017Q1
May 2017 Second 2017Q1 2017Q1
Jun 2017 Third 2017Q1 2017Q1

Jul 2017 Advance* 2017Q2 2014Q1-2017Q1† 2014Q1-2017Q1†
Aug 2017 Second 2017Q2 2017Q2
Sep 2017 Third 2017Q2 2017Q2

Oct 2017 Advance 2017Q3
Nov 2017 Second 2017Q3 2017Q3
Dec 2017 Third 2017Q3 2017Q3

Jan 2018 Advance 2017Q4
Feb 2018 Second 2017Q4

Mar 2018 Third 2017Q4 2017Q4

Apr 2018 Advance 2018Q1
May 2018 Second 2018Q1 2018Q1
Jun 2018 Third 2018Q1 2018Q1

Jul 2018 Advance** 2018Q2 1947Q1-2018Q1 2018Q2 1947Q1-2018Q1

NOTES. [*] Annual update, [**] Comprehensive update, [†] 13 quarters, i.e. last 3 years

We will use all avaliable GDE and GDI vintages over the period 1984Q1-2020Q4 for our

main empirical analysis. Specifically, we will account for five versions of economic activity —

the result of 4 comprehensive revisions in 2003, 2008, 2013 and 2018.

The series (in levels) of different comprehensive revision releases are depicted in Figure

1 where we also plot data produced by early and annual revisions for the periods between

7Vintages Y2011Q2E1 and Y2014Q2E1 are exceptions because the reference year was also revised. This resulted
in change of the GDP deflator and, in turn, a change of real GDP for the whole series since 1947.
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two consecutive comprehensive revisions. Figure 2 zooms on two subperiods to illustrate the

different measures of economic activity.

3 Model

Let xt be an aggregate quantity of interest — in our empirical analysis, US economic output (in

logs) during quarter t. As most of the literature that followed Stone et al. (1942), we treat xt as

a latent variable of which only noisy measurements yt are available. The task is to construct

rules mapping measurements into inferences about the latent xt.
8

This section develops a framework that allows us to combine multiples yt’s for the purposes

of obtaining an improved estimate of economic activity. For clarity, we begin in subsection 3.1

with a version of our model that has no comprehensive revisions, adding them in subsection

3.2.

3.1 Modeling early and annual estimates

Let ym
it be a noisy measurement of xt, where, broadly speaking, the index i denotes type (e.g.,

GDE and GDI estimates) and the index m denotes release (e.g., early and annual estimates).

This distinction is important because we will assume orthogonality of measurement errors

along i but we will permit correlation over m for measurements with the same i. Orthogo-

nality across expenditure and income measures is useful to achieve identification of the serial

dependence in xt, while correlation between the measurement errors of different releases of the

same measure is to be expected.

The model is given by the set of measurement equations

ym
it = xt + vm

it , m = 1, . . . , Mi, i = 1, . . . , N,

where vm
it is the measurement error in ym

it . For each i, collect y1
it, . . . , yMi

it into the vector yit and

stack y1t, . . . , yNt into yt. Defining vit, for each i, and vt likewise, we obtain,

yt = 1M×1xt + vt,(1)

where M = ∑N
i=1 Mi and 1M×1 is an M-dimensional vector of ones.

In this context, we assume that the following conditions hold:

8For background on output measurements, see Landefeld et al. (2008), Nalewaik (2010), and Nalewaik (2011).
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Assumption 1.

(a) ∆xt is I(0);

(b) v1t, . . . , vNt are I(0);

(c) ∆xt, v1t, . . . , vNt are mutually orthogonal at all lags and leads.

Assumption 1(a) is made because yt measures economic activity in levels.9 Together with

assumption 1(b), it implies that yt is cointegrated with cointegration rank M − 1.10 Cointe-

gration is a feature that matters for our empirical analysis and a very plausible assumption for

aggregate measurement problems (see, e.g., Almuzara et al. (2021) for discussion). Assumption

1(c), on the other hand, is key for identification as asserted in the following proposition, whose

proof can be found in appendix A:

Proposition 1. Under assumption 1, if N > 1, the autocovariances of ∆xt, v1t, . . . , vNt are nonpara-

metrically identified from the autocovariances of ∆yt.

Our empirical analysis features N = 2, as we use GDE and GDI measurements of output.11

3.2 Modeling comprehensive revisions

Our approach to modeling comprehensive revisions is to treat each version of the variable of

interest introduced by the revision process as a different latent variable, while at the same time

allowing for strong dependence among them.

Let C be the number of versions. Rather than a single variable, our extended model makes

xt a vector,

xt =


x1t
...

xCt

 .(2)

Here xct, for c = 1, . . . , C, represents the hypothetical value of economic output that could be

measured with the definitions and methods introduced by revision c if data sources and the

9We take the definition of I(0) process from the multivariate generalization of that in Stock (1994). Consider a
time series ωt = ∑∞

`=0 Θ`εt−` with Θ` an n× n matrix and εt and n-dimensional vector. Then, ωt is I(0) if (i) εt is a
weakly stationary vector m.d.s., (ii) ∑∞

`=0 Θ`Θ′` is nonsingular and (iii) ∑∞
`=0 `‖Θ`‖ < ∞.

10Any set consisting of M− 1 pairwise differences among the ym
it is a basis for the cointegration space.

11N = 1 may be relevant for other applications. In those cases, identification can be achieved by imposing
restrictions on the cross-dependence among v1

1t, . . . , vM1
1t (e.g., assuming vm1

1t and vm2
1t orthogonal at all lags and

leads), or by a sufficiently tight parametric structure.
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measuring tools were perfect. Analysts and policy makers typically focus on the latest version

xCt. However, there are important reasons for jointly modeling x1t, . . . , xCt: first, there is interest

in older definitions of economic activity from a historical perspective, since after all, those were

the only ones available at the time; second, there is also considerable interest in understanding

the impact of comprehensive revisions on the static and dynamic characteristics of the growth

rates in aggregate economic activity; finally, there is also substantial interest in quickly learning

about the dynamics of the measurement errors in the most recent version, which might lead to

improved inferences about xCt itself.

Measurement equation. Let δm
it be a 1× C array that has 1 in entry c if ym

it measures xct and

0 otherwise. The array δm
it is known since it can be easily computed by comparing the date of

comprehensive revisions and the release date of ym
it . Our model postulates that

ym
it = δm

it xt + vm
it , i = 1, . . . , N, m = 1, . . . , Mi.

Concatenating δm
it vertically to conform with yit and yt, we obtain the Mi × C array δit and the

M× C array δt, which lead to the measurement equation

yt = δtxt + vt.(3)

Equation (3) generalizes (1) into a deterministically time-varying measurement equation. We

also note that some of the entries of yt may be missing, e.g., because old methods are not

applied to the computation of new estimates or because the release protocol stipulates so.

Assumption 1 is adopted without change (except that ∆xt is a vector process now). This

way, our framework generalizes naturally the multiple measurements single latent variable

models of the literature (e.g., Weale (1992), Smith et al. (1998), Aruoba et al. (2016), Almuzara

et al. (2019), and Almuzara et al. (2021)) to a situation in which there are multiple latent vari-

ables of interest.

Identification revisited. Because the measurement equation is time-varying, the spectrum of

yt depends on t. However, given that the time-variation is deterministic, this entails a trivial

form of non-stationarity from the point of view of identification. In our empirical analysis,

moreover, there is a subvector of yt that is stationary since there is a time-invariant block in δt.

This allows us to establish identification exploiting a generalization of proposition 1 applied

9



to the time-invariant block. We state sufficient conditions for non-parametric identification in

proposition 2 (its proof is in appendix A).

Proposition 2. Suppose there are indices i1, i2 (i1 6= i2) and matrices Ei1 , Ei2 such that (i) Ei1 yt and

Ei2 yt are nonempty subvectors of yi1,t and yi2,t, respectively, (ii) Ei1 δt and Ei2 δt are time-invariant, and

(iii) rank(Ei1 δt) = rank(Ei2 δt) = C. Then, under assumption 1, the autocovariances of ∆xt, v1t, . . . , vNt

are nonparametrically identified from those of ∆yt.

As an example, consider a model with C = 2 versions of economic activity. Suppose N = 2

with M1 = M2 = 2 and δt =
(

I2 I2

)′
for all t. The measurement equation is


y1

1t

y2
1t

y1
2t

y2
2t

 =


1 0

0 1

1 0

0 1


x1t

x2t

+


v1

1t

v2
1t

v1
2t

v2
2t

 .

This setup clearly satisfies the conditions of proposition 2 with i1 = 1, i2 = 2, Ei1 =
(

I2 02×2

)
,

and Ei2 =
(

02×2 I2

)
. The autocovariances of ∆xt, v1t, v2t are, consequently, identified from

the autocovariances of ∆yt. Some intuition can be gained by first considering the measurement

sub-systems yc
1t

yc
2t

 = 12×1xct +

vc
1t

vc
2t

 , c = 1, 2.

Proposition 1 can be applied and immediately delivers the marginal serial dependence struc-

ture of the processes ∆x1t, ∆x2t, v1
1t, v2

1t, v1
2t, v2

2t. Next, it is possible to recover the cross-autocovariances

of the two signals by observing that

Cov
(
∆x1t, ∆x2,t−`

)
= Cov

(
∆yc

1t, ∆yc
2,t−`

)
holds for c = 1, 2 and all `. Finally, for i = 1, 2 and all `, we have

Cov
(

∆v1
it, ∆v2

i,t−`

)
= Cov

(
∆y1

it, ∆y2
i,t−`

)
−Cov

(
∆x1t, ∆x2,t−`

)
.

In our empirical analysis we rely on C = 5 versions of both GDE and GDI, in addition

to early and latest estimates. This implies that, for all t, δt contains two distinct blocks which
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are equal to IC, one corresponding to GDE measurements and another to GDI, and the condi-

tions in proposition 2 are automatically satisfied. Hence, the joint dynamics of ∆xt are non-

parametrically identified.12

Transition equation. Although the spectrum of xt is non-parametrically identified, to imple-

ment our empirical analysis we specify a parametric model for f∆x, fv1
, . . . , fvN

that satisfies

assumption 1 and, at the same time, is amenable to estimation by Bayesian methods. We adopt

a Bayesian approach because it allows us to easily integrate estimation and filtering uncertainty

when performing signal extraction, our main objective.

Specifically, we model ∆xt as a restricted VAR with a factor structure in the error term,

∆xt = µx + diag(ρx) (∆xt−1 − µx) + (λxηxt + diag(σx)εxt) ,(4)

ηxt
iid∼ N(0, 1) independent of εxt

iid∼ N(0C×1, IC).

We collect the unknown parameters of the ∆xt process into θx = (µx, ρx, λx, σx). In principle, we

allow for differences in the mean, persistence and variance of economic growth across versions.

In fact, estimating θx will allow us to empirically test whether comprehensive revisions had any

impact on the implied dynamic properties of economic activity.

The initial condition for the level is modeled as independent of ηxt, εxt for all t, and

x1 ∼ N(µ1, Σ1).

This accommodates potential differences in levels between versions xt (because, e.g., different

series use different base periods as deflator).13

For the measurement errors of type i we postulate a restricted VAR(1) model with a factor

structure in the error too, i.e.,

vit = diag(ρi)vi,t−1 + (λiηit + diag(σi)ε it) ,(5)

ηit
iid∼ N(0, 1) independent of ε it

iid∼ N(0Mi×1, IMi
).

12One qualification worth making is that because past versions are discontinued, we are truly learning about the
joint autocorrelation structure of xt within the period in which they overlap. This amounts to a long period in our
sample, spanning 1947Q1 to 2003Q2 (the time of the first comprehensive revision), yet a period that excludes the
instabilities originating with, e.g., the Subprime Crisis and the Pandemic.

13We will treat µ1 and Σ1 as known and take Σ1 to reflect a diffuse prior over x1. A relatively easy-to-implement
alternative would be to estimate µ1.
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We collect the unknown parameters into θi = (ρi, λi, σi). Note that serial correlation of mea-

surement errors in levels is permitted in our model, and in fact, the analysis of statistical dis-

crepancies highlights it as a relevant empirical feature. We also allow for variation in the auto-

correlations and volatilities across different releases.

State-space representation. The parameter vector of the model is θ = (θx, θ1, . . . , θN). Given

θ, we can cast equations (3), (4) and (5) (i = 1, . . . , N) in state-space form in a number of ways,

yt = HtXt,

Xt = C(θ) + F(θ)Xt−1 + G(θ)Ut,

Ut
iid∼ N(0(C+M+N+1)×1, IC+M+N+1).

Here we have defined

Xt =



xt

xt−1

v1t
...

vNt


and Ut =



ηxt

εxt

η1t

ε1t
...

ηNt

εNt


,

together with

Ht =
(

δt 0M×C IM

)
,

C(θ) =


(IC − diag(ρx))µx

0C×1

0M×1

 ,

F(θ) = diag

IC + diag(ρx) −diag(ρx)

IC 0C×C

 , diag(ρ1), . . . , diag(ρN)

 and

G(θ) = diag
((

λx diag(ρx)
)

,
(

λ1 diag(ρ1)
)

, . . . ,
(

λN diag(ρN)
))

.

For the initial condition we have X1 ∼ N(µ̃1, Σ̃1) where µ̃1, Σ̃1 are made compatible with µ1, Σ1

and covariance-stationarity of v1t, . . . , vNt.
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That the model admits a linear state-space representation with Gaussian errors is important

because it implies that X1:T, U1:T are jointly normally distributed conditioned on y1:T, θ, and the

algorithm of Durbin and Koopman (2002) can be used to efficiently simulate that distribution

(see subsection 4.2).

3.3 Some objects of interest

Our framework delivers inference about a number of empirically interesting objects that arise

in a wide range of applications. In this aside we develop a few of them that we report in

our empirical analysis in Section 5. An additional object that measures the L2-optimality of

estimates is discussed in appendix D.

GDP solera. Of course, the GDP solera x̂t = E [xt|y1:T] (and, more generally, the conditional

distribution of x1:T given y1:T) is a key output from our model.

The impact of comprehensive revisions. A relevant empirical question that can be answered

within our framework is whether comprehensive revisions modify the dynamic properties of

economic activity. We do so by looking at the posterior distribution of µx, ρx, λx, σx.

Measures of real-time precision gains. The release process for economic activity implies a

mapping between each month τ and the available measurements (for all periods). Let Yτ be

the σ-algebra generated by all such measurements. Fix c and t, and consider the quantity

Vτ
t = Var

(
E
[
xct
∣∣Yτ]− xct

)
,

as τ increases. This gives a measure of the precision gains from signal extraction in real time.

4 Inference for parameters and latent variables

4.1 Estimation

Our objective is to conduct inference on parameters θ and latent variables x1:T. A Bayesian

approach offers a convenient option to carry on both tasks, integrating estimation and signal-

extraction uncertainties in a unified, conceptually natural way. Moreover, the model lends itself

to stable and efficient algorithms, exploiting a Gibbs sampler for estimation and the Durbin and
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Koopman (2002) algorithm for signal extraction. Let p(·) denote a generic density (with respect

to an appropriate dominating measure).

Prior. We will specify a prior for θ by proposing N + 1 independent priors for θx, θ1, . . . , θN .

The family of priors we describe is fairly standard and permits a simple implementation of

the Gibbs sampler (as the priors are conjugate conditional on latent variables). It can also

accommodate a flat prior for certain values of the hyperparameters.

For the parameters of the signal we use

• πx = 1/σ2
x ∼ ΓC(dx/2, px/dx) (here divisions are made elementwise and ΓC represents a

vector of independent gamma-distributed random variables), and

• βx = ((IC − diag(ρx)µx, ρx, λx)|σx ∼ N(bx, Rx ⊗ diag(σ2
x)).

The hyperparameters px and bx control the prior mean of πx and βx, while dx and Rx govern

the informativeness of the prior distributions — higher dx and Rx produce tighter priors while

dx = 0C×1 and Rx = 03×3 give a flat prior over πx and βx (which is not necessarily flat for θx).

Likewise, for the parameters of measurement error we use for each i = 1, . . . , N

• πi = 1/σ2
i ∼ ΓMi

(νi/2, pi/νi), and

• βi = (ρi, λi)|σi ∼ N(bi, Ri ⊗ diag(σ2
i )).

Of course, the same considerations made for px, bx, dx, Rx apply to pi, bi, di, Ri.

Gibbs sampler. Although the prior p(θ) and the likelihood p(y1:T|θ) are readily available

(the likelihood is an output of the Kalman filter applied to the state-space representation of

the model), the posterior p(θ|y1:T) is not. Bayesian estimation can instead be performed via

MCMC, i.e., drawing a Markov chain {θs}s≥1 that has by invariant distribution the posterior.

A convenient approach to MCMC in our model is Gibbs sampling which, as a matter of

fact, tackles estimation and filtering at the same time by targeting p(θ, X1:T|y1:T) (assume X1:T

is expanded to include ηx,1:T, η1,1:T, . . . , ηN,1:T). The algorithm is described in detail in appendix

B.

4.2 Filtering

Signal extraction of xt is a by-product of estimation. The latent variable draws obtained in

step (1) from iteration over the Gibbs sampler algorithm (xs
0:T)s≥1 have the desired distribution
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p(x0:T|y1:T). Moreover, the Gibbs sampler already integrates estimation uncertainty since

p(x0:T|y1:T) =
∫

Θ
p(x0:T|θ, y1:T) p(θ|y1:T) dθ.

with Θ the parameter space.

It is worth noting that while p(x0:T|θ, y1:T) is a normal density, x1:T need not be normal

given y1:T once θ is integrated out. In particular, Var (xt|y1:T) may depend on the data through

the posterior density of θ in contrast to Var (xt|θ, y1:T) which is constant in y1:T.

Finally, the Markov chain (xs
0:T, θs)s≥1 is all that is needed to approximate by simulation the

posterior distribution of the objects of interest listed in subsection 3.3. Our empirically analysis

heavily relies on that technique.

5 GDP Solera: empirical analysis

To be completed

We estimate our model using a flat prior as described in Section 4, running the Gibbs sam-

pler for 55,000 iterations with a burn-in of 5,000 and a thinning of 1 every 5 iterations. The

result is a Markov chain (Xs
1:T, θs)S

s=1, S = 10, 000, that by all accounts appears well-converged

with low autocorrelation across draws. Our analysis is based on it.

Posterior distributions of parameters are reported in table C.1 in Appendix C. It is notewor-

thy that the unconditional means, autoregressive coefficients, loadings and standard deviations

of shocks for the different version of economic activity are very similar. This seems to suggest

that the comprehensive revision process does not modify either the static or the dynamic prop-

erties of the object being measured, although it affects smoothed values. Moreover, common

shocks to the different elements of xt seem to be more important than individual shocks.

Figure 3 reports the smoothed estimates for GDP growth from six different GDP solera

releases, which are estimated every 18 months as follows: The first vintage uses data until July

of 2013 to provide estimates up to the 2013Q2. Similarly, the second one provides estimates up

to 2014Q4 using data until January of 2015; following in that manner until the sixth one which,

using data until January of 2021, delivers estimates of GDP growth until 2020Q4. As can be seen

in panel (a) of Figure 3, which depicts the six series starting from 2004Q1, all estimates display

very close paths until 2010Q1. Notice that the growth rates estimated for a few quarters near

the end of the series are somewhat different from the corresponding estimates obtained with

the next release, an effect that it is very likely due to smoothing. Additionally, in the second
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quarter of both 2011 and 2012, the two most recent vintages (green) present a different pattern

than the others. This could be explained by the fact that the vintages 2004Q1-2019Q2 and

2004Q1-2020Q4 incorporate modifications on the GDP definition due to the comprehensive

revision that took place in July of 2018. Indeed, panel (b), which only reports the two most

recent releases, shows an extremely similar pattern between them, although 2004Q1-2020Q4

include data from the pandemic. The post pandemic estimates for the pre-pandemic period are

remarkably stable to the inclusion of the large outliers in 2020 data.

To assess the impact of using data from all comprehensive revisions, we have also estimated

the model of Section 3 using only the most recent comprehensive revision data (i.e. July 2018).

Figure 4 reports the posterior medians of GDP growth and their point-wise 90% credible sets

based on both datasets for the period 2017Q1 to 2019Q4. As can be seen from comparing panels

(a) and (b), the importance of using all comprehensive data becomes evident as its inclusion is

associated with significantly tighter bands around the estimates of economic activity. In ad-

dition, using all comprehensive seems to deliver a smoother pattern for the dynamics of the

signal. In turn, Figures 5 and 6 reports the mean-square error
√

Var
(
∆xct

∣∣Yτ) for a sequence

of 24 months τ starting in April of the year corresponding to xct (when the advance estimate for

the first quarter becomes available). The main pattern is that most of the precision gains occur

when the third estimates are released, followed by a slight further gain from the annual esti-

mates. For the smoothed signal in 2017Q1 as new data arrives when using all comprehensive

data and the most recent one, respectively, we again offer a comparison of Figures 5 and 6. The

different panels of these figures clearly show how uncertainty about the signal gets reduced as

new releases arrive.

Next, we conduct a couple of exercises aimed to shed light on the effect of data revisions as

well as the arrival of information on successive quarters on the estimates of a given quarter. The

first example of concurrent and revised estimates -up to 24 months- focuses on 2008Q4, that is

the worst quarter of the so-called Great Recession, while the second one deals with 2019Q2,

which is supposed to be a relatively normal quarter which, however, includes the effect of the

pandemic data on parameter estimates towards the end of the period. Figures 8 and 9 report

the results as well as the credible sets from recursive estimation of the model on a monthly

basis. As in the previous figures, solid lines are the posterior medians and the shaded areas

represent 90% point-wise credible bands. Moreover, additional data releases for those specific

quarters are displayed too (GDE: blue crosses and GDI: red diamonds).

Regarding 2008Q4, it is interesting to notice in Figure 8 the fast adjustment of the posterior
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median of GDP growth to a -6% as early as the third releases are included in the exercise. It

is also noteworthy, the strong effect that the comprehensive revision corresponding to July of

2009 has on the precision of the estimates, reducing dramatically the length of the credible sets.

Similar features are also present when repeating the exercise but for 2019Q2 as Figure 9

displays, though mostly related to the annual update (covering the most recent calendar years)

that took place in July of 2019. Importantly, the effect of the pandemic data on the uncertainty

about the model parameters can be seen from the July of 2020’s annual update.

We finally compare our measure of economic activity GDP solera with the GDPplus of

Aruoba et al. (2016). First we look at estimates of GDP between the first quarter of 1984 and the

second quarter of 2021. For GDP solera we use all vintages of data available until September

2021 and, for comparison, we take the end of September release of GDPplus.14 The estimated

annualized growth rates are plotted in panel (a) of Figure 10, the two series are quite close to

each other with a contemporaneous correlation at 0.86, the average annualized growth over

the sample period is 2.64% for GDPplus and 2.59% for GDPsolera. The GDP solera estimates

appears to be more volatile with a standard deviation which is 40% larger than the GDPplus

one. The smoothness of GDPplus results in relatively conservative estimates of the large fall

and rise of economic activity after the start of the Covid 19 outbreak. To shed light on this

we have performed the exercise reported in panel (b) of Figure 10, where the two real time

estimates of economic activity for 2020Q1 and 2020Q2 are reported using real time data. Both

estimators of GDP for 2020Q1 are in agreement and quite stable as new information become

available. On the contrary, the estimators for 2020Q2 are very different and this difference arises

when the October 2020 releases of advance GDE for 2020Q3 is published, so that the big rise

in growth rate estimates with respect to the September estimates is probably due to the weight

assigned to this observation by the optimal GDPplus filter. The difference between GDPplus

and GDP solera growth rates estimates in the four quarters of 2020 are strikingly large. The

most recent figures produced by the BEA for the pandemic recession are closer to the GDP

solera series.

In the last exercise, we look at timely concurrent online estimates of GDP growth rates. First

we consider estimates for a given quarter based on the information available up to one month

after the end of that quarter, when only the “advance” GDE estimates is released. The results

are reported in panel (a) of Figure 11. Panel (b) displays the estimates of GDP growth rates

obtained three months after the end of the quarter when the figures for “third” releases of GDE

14GDPplus uses data sources from 1960Q1 but this should not affect too much estimates, at least for more recent
years
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and GDI are published. Real time estimates appear to be more similar than the corresponding

historical ones, however, in panel (a) a few differences are observed in the first two quarters

of 2015 and at the end of the series after the 2020Q2 drop due to the pandemic, while the two

series in panel (b) are remarkably similar.

6 Conclusion

To be completed

We exploit the information in all the vintages of GDE and GDI measurements from a given

comprehensive revision to obtain a better measurement of aggregate economic activity by ex-

ploiting cointegration between the different measures and taking seriously the vintage release

calendar. We also combine overlapping comprehensive revisions to improve our measure-

ments of the most recent observations, with particular attention to the great recession and the

pandemic. We use the values of the estimated parameters of our dynamic state space model to

assess whether comprehensive revisions induce changes in the long-run growth rate and the

persistence of shocks to economic activity.
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FIGURE 1. GDE and GDI data from the BEA. Solid lines represent data released under comprehensive
revisions while dashed lines represent data produced by early and annual revisions.
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FIGURE 2. GDE and GDI data from the BEA. Each subplot reports levels for a different version of
economic activity.
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FIGURE 3. GDP solera releases. The first release uses data until July of 2013 to provide estimates up to
the 2013Q2. Similarly, the second one provides estimates up to 2014Q4 using data until January of 2015;
following in that manner until the sixth one which, using data until January of 2021, delivers estimates
of GDP growth until 2020Q4.
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(a) Using all comprehensive revisions (five signals)

(b) Using the most recent comprehensive revision (one signal)

FIGURE 4. Signal extraction for ∆xCt. The indigo line is the median of ∆xCt given y1:T and the shaded
area represents t-wise 90%-probability intervals.
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(a) Year 0 / Quarter 1 (b) Year 0 / Quarter 2

(c) Year 0 / Quarter 3 (d) Year 0 / Quarter 4

FIGURE 5.
√

Var
(

xct
∣∣Yτ) for a sequence of months using all comprehensive revisions (five signals).

The solid green line is the posterior median of the root-MSEs while the shaded areas are month-wise
90% probability intervals.
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(a) Year 0 / Quarter 1 (b) Year 0 / Quarter 2

(c) Year 0 / Quarter 3 (d) Year 0 / Quarter 4

FIGURE 6.
√

Var
(

xct
∣∣Yτ) for a sequence of months using the most recent comprehensive revision

(one signal). The solid green line is the posterior median of the root-MSEs while the shaded areas are
month-wise 90% probability intervals.
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FIGURE 7. Real time filtering of ∆x2001Q1. The solid line is the posterior median and the shaded area
is a 90%-pointwise credible band. Data releases for GDE (blue crosses) and GDI (red diamonds) are
displayed too.
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FIGURE 8. Real time filtering of ∆x2008Q4. The solid line is the posterior median and the shaded area
is a 90%-pointwise credible band. Data releases for GDE (blue crosses) and GDI (red diamonds) are
displayed too.
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FIGURE 9. Real time filtering of ∆x2019Q2. The solid line is the posterior median and the shaded area
is a 90%-pointwise credible band. Data releases for GDE (blue crosses) and GDI (red diamonds) are
displayed too.
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FIGURE 10. GDPplus versus GDP Solera. Panel (a) displays GDPplus and GDP Solera series estimated
using data until August 2021. Panel (b) displays GDP revised estimates at the beginning of the Covid-19
outbreak across April 2020 to August 2021.
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FIGURE 11. Nowcast: GDPplus versus GDP Solera. Panel (a) displays GDPplus and GDP Solera series
estimated with information available one month after the end of the quarter when only advance of GDE
is available for the most recent quarter. GDPplus for 2018Q4 was released in February 2019. Panel (b)
displays GDPplus and GDP Solera series estimated with information available three months after the
end of the quarter.
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Appendix A Identification

A.1 Proof of proposition 1

Let fω denote the spectrum of a time series {ωt}. Of course, identification of the autocovari-

ance function of {ωt} is equivalent to identification of fω. Hence, an alternative statement to

proposition 1 is that under assumption 1, if N > 1, f∆x and fv1
, . . . , fvI

are nonparametrically

identified from f∆y.

To see why, let us write

f∆y(λ) = 1M×M f∆x(λ) + |1− eiλ|2 diag
(

fv1
(λ), . . . , fvN

(λ)
)

, 0 ≤ λ ≤ 2π.

If Ei is the Mi ×M matrix such that yit = Eiyt, we get Ei1 f∆y(λ)E′i2 = 1Mi1
×Mi2

f∆x(λ) for i1 6=
i2—such a pair i1, i2 exists only if N > 1. With f∆x pinned down, one then recovers

fvi
(λ) = |1− eiλ|−2Ei

(
fDy(λ)− 1M×M fDx(λ)

)
E′i ,

dealing with the removable singularity at λ = 0 by using that each entry fvi
is holomorphic

over the unit circle. �

It follows from the proof of proposition 1 that if in addition to N > 1 we have Mi > 1

for at least one i, the model imposes overidentifying restrictions and is, therefore, testable.

This is the case in our empirical analysis, although we do not pursue such tests. If the spec-

tra f∆x, fv1
, . . . , fvN

belong to a particular parametric class, an indirect approach to testing the

overidentifying restrictions is to use dynamic specification tests as in Fiorentini and Sentana

(2019).

A.2 Proof of proposition 2

By condition (ii) in the proposition, Di1 = Ei1 δt and Di2 = Ei2 δt are time-invariant. By as-

sumption 1 and condition (i), moreover, Ei1 vt and Ei2 vt are uncorrelated at all lags and leads.

Ergo,

Ei1 f∆y(λ)E′i2 = Di1 f∆x(λ)D′i2 , 0 ≤ λ ≤ 2π.
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Now, by condition (iii), rank(Di1) = rank(Di2) = C. In that case,

f∆x = (D′i1 Di1)
−1D′i1 f∆yDi2(D′i2 Di2)

−1.

Identification of fv1
, . . . , fvN

then follows by an analogous argument to that in proposition 1. �

Appendix B Details of estimation algorithm

The algorithm updates unknowns by drawing iteratively from the following distributions:

(1) p(X1:T|θ, y1:T): using the state-space representation of the model, X1:T is obtained from the

simulation smoother proposed by Durbin and Koopman (2002).

(2) p(θx|θ1, . . . , θN , X1:T, y1:T): first notice that (∆x1:T, ηx,1:T) are sufficient for θx, i.e.,

p(θx|θ1, . . . , θN , X1:T, y1:T) = p
(
θx
∣∣∆x1:T, ηx,1:T

)
,

and because of the conjugacy of the prior we recover µx, ρx, λx, σx from

(i) πx = 1/σ2
x |∆x1:T, ηx,1:T ∼ ΓC(d̃x/2, p̃x/d̃x) where

d̃x = dx + T − 1,

d̃x
p̃x

=
dx
px

+
T

∑
t=2

(∆xt − µx − diag(ρx)(∆xt−1 − µx)− λxηxt)
2 ;

(ii) βx = ((IC − diag(ρx)µx, ρx, λx)|σx, ∆x1:T, ηx,1:T ∼ N(b̃x, R̃x ⊗ diag(σ2
x)) where

R̃x = Rx +
T

∑
t=2


1 ∆xt−1 ηxt

∆xt−1 ∆x2
t−1 ∆xt−1ηxt

ηxt ∆xt−1ηxt η2
xt

 ,

R̃x b̃x = Rxbx +
T

∑
t=2


∆xt

∆xt−1∆xt

ηxt∆xt

 .

(3) p
(

θi

∣∣∣θx, (θj)j 6=i, X1:T, y1:T

)
for each i: first notice that (vi,1:T, ηi,1:T) are sufficient for θi, i.e.,

p
(

θi

∣∣∣θx, (θj)j 6=i, X1:T, y1:T

)
= p

(
θi
∣∣vi,1:T, ηi,1:T

)
,
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and because of the conjugacy of the prior we recover ρi, λi, σi from

(i) πi = 1/σ2
i |vi,1:T, ηi,1:T ∼ ΓMi

(d̃i/2, p̃i/d̃i) where

d̃i = di + T − 1,

d̃i
p̃i

=
di
pi

+
T

∑
t=2

(
vit − diag(ρi)vi,t−1 − λiηit

)2 ;

(ii) βi = (ρi, λi)|σi, vi,1:T, ηi,1:T ∼ N(b̃i, R̃i ⊗ diag(σ2
i )) where

R̃i = Ri +
T

∑
t=2

 v2
i,t−1 vi,t−1ηit

vi,t−1ηit η2
it

 ,

R̃i b̃i = Ribi +
T

∑
t=2

vi,t−1vit

ηitvit

 .

A small comment is that the choice of hyperparameters dx = 0C×1, Rx = 03×3, di = 0Mi×1,

and Ri = 02×2, despite implying improper priors, still leads to a well-defined algorithm and a

proper posterior distribution.

Appendix C Posterior distributions

Parameter Post. mean 90%-CI MC stderr Autocorr

µx
(1) 2.234 [1.879, 2.617] 0.0142 0.78

µx
(2) 2.324 [2.012, 2.666] 0.0134 0.89

µx
(3) 2.307 [1.978, 2.664] 0.0145 0.92

µx
(4) 2.394 [2.077, 2.747] 0.0142 0.93

µx
(5) 2.437 [2.121, 2.791] 0.0143 0.92

ρx
(1) 0.444 [0.395, 0.495] 0.0013 0.66

ρx
(2) 0.439 [0.397, 0.481] 0.0013 0.79

ρx
(3) 0.439 [0.397, 0.48] 0.0014 0.83

ρx
(4) 0.43 [0.39, 0.471] 0.0014 0.86

ρx
(5) 0.397 [0.354, 0.439] 0.0014 0.85

λx
(1) 3.079 [2.819, 3.332] 0.0074 0.84

λx
(2) 3.014 [2.841, 3.199] 0.0065 0.88

λx
(3) 3.208 [3.036, 3.387] 0.007 0.89

λx
(4) 3.199 [3.037, 3.375] 0.0066 0.9

λx
(5) 3.356 [3.188, 3.534] 0.0065 0.88

σx
(1) 0.464 [0.376, 0.573] 0.0011 0.37

σx
(2) 0.299 [0.248, 0.36] 0.0004 0.23

σx
(3) 0.276 [0.234, 0.331] 0.0004 0.18

σx
(4) 0.25 [0.213, 0.296] 0.0003 0.14
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σx
(5) 0.284 [0.238, 0.346] 0.0006 0.3

ρnc
GDE

(1) 0.043 [-0.058, 0.144] 0.0007 0.07

ρnc
GDE

(2) 0.027 [-0.035, 0.088] 0.0007 0.35

ρnc
GDE

(3) 0.047 [-0.032, 0.126] 0.0007 0.21

ρnc
GDE

(4) 0.522 [0.374, 0.661] 0.001 0.04

ρnc
GDE

(5) 0.479 [0.376, 0.576] 0.001 0.17

ρnc
GDE

(6) 0.322 [0.232, 0.418] 0.0017 0.6

ρc
GDE

(1) 0.106 [0.038, 0.181] 0.0012 0.67

ρc
GDE

(2) 0.019 [-0.024, 0.062] 0.0007 0.59

ρc
GDE

(3) 0.028 [-0.011, 0.067] 0.0006 0.56

ρc
GDE

(4) 0.057 [0.02, 0.098] 0.0006 0.56

ρc
GDE

(5) -0.002 [-0.043, 0.039] 0.0005 0.46

λnc
GDE

(1) -0.749 [-0.923, -0.561] 0.0057 0.74

λnc
GDE

(2) -0.727 [-0.878, -0.564] 0.0054 0.92

λnc
GDE

(3) -0.684 [-0.84, -0.515] 0.0055 0.86

λnc
GDE

(4) 0.377 [0.144, 0.618] 0.0047 0.29

λnc
GDE

(5) 1.013 [0.815, 1.215] 0.0032 0.27

λnc
GDE

(6) 1.309 [1.166, 1.453] 0.0033 0.49

λc
GDE

(1) 1.593 [1.442, 1.743] 0.0033 0.74

λc
GDE

(2) 1.182 [1.079, 1.28] 0.0034 0.87

λc
GDE

(3) 1.178 [1.083, 1.271] 0.0035 0.87

λc
GDE

(4) 1.171 [1.08, 1.266] 0.004 0.87

λc
GDE

(5) 1.093 [0.996, 1.189] 0.0038 0.86

σnc
GDE

(1) 0.637 [0.551, 0.743] 0.0006 0.1

σnc
GDE

(2) 0.204 [0.15, 0.272] 0.0007 0.58

σnc
GDE

(3) 0.34 [0.28, 0.407] 0.0005 0.26

σnc
GDE

(4) 1.471 [1.262, 1.727] 0.0028 0.16

σnc
GDE

(5) 0.892 [0.772, 1.039] 0.001 0.07

σnc
GDE

(6) 0.464 [0.355, 0.605] 0.002 0.54

σc
GDE

(1) 0.288 [0.188, 0.419] 0.0019 0.74

σc
GDE

(2) 0.145 [0.113, 0.191] 0.0004 0.51

σc
GDE

(3) 0.14 [0.111, 0.178] 0.0003 0.43

σc
GDE

(4) 0.143 [0.113, 0.184] 0.0004 0.46

σc
GDE

(5) 0.16 [0.125, 0.206] 0.0005 0.47

ρnc
GDI

(1) 0.671 [0.541, 0.788] 0.0009 0.11

ρnc
GDI

(2) 0.674 [0.552, 0.792] 0.0008 0.06

ρnc
GDI

(3) 0.718 [0.622, 0.812] 0.0008 0.17

ρnc
GDI

(4) 0.741 [0.672, 0.808] 0.0007 0.19

ρnc
GDI

(5) 0.707 [0.646, 0.768] 0.0008 0.27

ρc
GDI

(1) 0.106 [0.009, 0.256] 0.003 0.72

ρc
GDI

(2) 0.743 [0.696, 0.786] 0.0005 0.36

ρc
GDI

(3) 0.577 [0.522, 0.625] 0.0008 0.51

ρc
GDI

(4) 0.568 [0.519, 0.612] 0.001 0.81

ρc
GDI

(5) 0.597 [0.55, 0.639] 0.0009 0.77

λnc
GDI

(1) 0.905 [0.588, 1.248] 0.0034 0.11

λnc
GDI

(2) 0.826 [0.5, 1.15] 0.0029 0.08

λnc
GDI

(3) 1.253 [0.956, 1.542] 0.0031 0.14

λnc
GDI

(4) 1.322 [1.071, 1.586] 0.0026 0.14

λnc
GDI

(5) 1.535 [1.315, 1.757] 0.0029 0.25
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λc
GDI

(1) 0.907 [0.742, 1.093] 0.0046 0.82

λc
GDI

(2) 1.073 [0.892, 1.257] 0.0036 0.56

λc
GDI

(3) 1.732 [1.557, 1.917] 0.0035 0.52

λc
GDI

(4) 1.929 [1.778, 2.086] 0.0036 0.8

λc
GDI

(5) 2.034 [1.878, 2.201] 0.0037 0.74

σnc
GDI

(1) 1.738 [1.478, 2.077] 0.0021 0.17

σnc
GDI

(2) 1.821 [1.587, 2.103] 0.0016 0.05

σnc
GDI

(3) 1.693 [1.464, 1.973] 0.0019 0.11

σnc
GDI

(4) 1.268 [1.101, 1.47] 0.0014 0.09

σnc
GDI

(5) 1.001 [0.856, 1.181] 0.0016 0.16

σc
GDI

(1) 0.275 [0.185, 0.412] 0.0023 0.75

σc
GDI

(2) 0.498 [0.408, 0.606] 0.001 0.31

σc
GDI

(3) 0.533 [0.456, 0.625] 0.0009 0.21

σc
GDI

(4) 0.272 [0.201, 0.35] 0.0008 0.52

σc
GDI

(5) 0.351 [0.272, 0.432] 0.0009 0.46

TABLE C.1. Posterior distribution of parameters of the model

NOTES. Unconditional means µx, loadings λx, λGDP, λGDI and standard deviations, σx, σGDP, σGDI are annualized.
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FIGURE C.1. Parameter estimation. Priors (light area) and posteriors (dark area) distributions of the
parameters.

35



FIGURE C.2. Parameter estimation. Priors (light area) and posteriors (dark area) distributions of the
parameters.
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FIGURE C.3. Parameter estimation. Priors (light area) and posteriors (dark area) distributions of the
parameters.
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Appendix D Implications of L2-optimality

Consider the following model for the release process. For each type of estimate i and quarter

t, the statistical office collects inputs ι1it, . . . , ι
Jit
it on which the estimates ym

it are based — e.g.,

sectoral surveys. The point we want to make is that if estimates are produced to minimize

expected square loss (i.e., the L2-distance between the estimate and xt), the optimal signal-

extraction rule maps xt to its most recent release. For ease of exposition, let C = 1 (which gives

the model with no comprehensive revisions).

Fix i and t and let σ(·) denote generated σ-algebra. We will assume that (i) there are integers

{Jm
it }

Mi
m=1 such that Jm

it ≤ Jm+1
it and ym

it is Im
it -measurable with Im

it = σ{ι1it, . . . , ι
Jm
it

it } for all m, and

(ii) the statistical office minimizes L2(ym
it − xt) = E

[
|ym

it − xt|
2
]
.15 We also assume xt has finite

variance (by appropriate choice of initial conditions). From (i) we obtain Im
it ⊂ I

m+1
it for all m,

and from (ii),

ym
it = E

[
xt
∣∣Im

it
]

, m = 1, . . . , Mi.

Let Ĩit be a σ-algebra such that Ĩit ⊂ I
m
it for all m.16 With a slight abuse of notation,

E
[

xt

∣∣∣y1
it, . . . , ym

it , Ĩit

]
= E

[
E
[
xt
∣∣Im

it
]∣∣∣y1

it, . . . , ym
it , Ĩit

]
= E

[
ym

it

∣∣∣y1
it, . . . , ym

it , Ĩit

]
= ym

it ,

by an application of the law of iterated expectations.

In words, if measurements minimize expected square loss, all measurements of xt but the

most recent one contain no useful information to extract xt. A reasonable situation is one where

the statistical office computes ym
it using input data corresponding only to quarter-t economic

activity. A measure that captures L2-optimality in that context would compare the expected

loss of ym
it with that of E

[
xt

∣∣∣y1
it, . . . , ym

it

]
(i.e., taking Ĩit = ∅). For example,

Dm
it = Var

(
E
[

xt

∣∣∣y1
it, . . . , ym

it

]
− xt

)/
Var

(
vm

it
)

.

We have 0 ≤ Dm
it ≤ 1 with Dm

it = 1 indicating full L2-optimality. That Dm
it < 1 may be evidence

that, e.g., the measurements optimize a different loss function or the weights given to the inputs

do not exploit the dynamic model.

15Assumption (i) allows for data on past and future periods to be included among the time-t inputs.
16For example, if the time-t inputs include all the data needed to construct past measurements, Ĩit may be the

σ-algebra generated by all past measurements.
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Appendix E News and noise model

Consider a setup in which N = 1 (we will omit the subindex indicating type which would be

1), M = M1 = 3, and there is a single comprehensive version of GDP (i.e., C = 1). Suppose the

data follows the news-noise model of Jacobs and van Norden (2011) and Jacobs et al. (2020):

∆yt =


∆y1

t

∆y2
t

∆y3
t

 =


1

1

1

∆ỹt +


ν1

t

ν2
t

ν3
t

+


ζ1

t

ζ2
t

ζ3
t

 = 13×1∆ỹt + νt + ζt,

where νm
t and ζm

t are news and noise components. News are defined by the condition that

Cov
(

νm
t , ∆ỹt + νm′

t

)
= 0 for all m′ ≤ m, while noise must satisfy Cov

(
ζm

t , ∆ỹt + νm
t
)
= 0.

These, however, are not enough to pin down a unique decomposition of yt in terms of ỹt, νt, ζt

and we will further impose ζ1
t , ζ2

t , ζ3
t are uncorrelated to each other.

To simplify the argument, we will assume that (i) ∆ỹt + ν3
t follows an AR(1) process and (ii)

νt and ζt are uncorrelated over time. Moreover, we note that the news-noise model is typically

applied to measurements of GDP growth, as opposed to our model which focuses on the level.

The goal is to understand how the news-noise model maps to ours,


y1

t

y2
t

y2
t

 =


1

1

1

 xt +


v1

t

v2
t

v3
t

 = 13×1xt + vt.

We can write

∆yt =


∆y1

t

∆y2
t

∆y3
t

 =


1

1

1

 (∆ỹt + ν3
t ) +


(ν2

t − ν3
t ) + (ν1

t − ν2
t )

(ν2
t − ν3

t )

0

+


ζ1

t

ζ2
t

ζ3
t

 ,

where ν1
t − ν2

t , ν2
t − ν3

t , ζ1
t , ζ2

t , ζ3
t are mutually orthogonal white noise processes. If we set

∆xt = ∆ỹt + ν3
t ,

∆v1
t = (ν2

t − ν3
t ) + (ν1

t − ν2
t ) + ζ1

t ,

∆v2
t = (ν2

t − ν3
t ) + ζ2

t ,

∆v3
t = ζ3

t ,
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we obtain a particular case of our model in which, not surprisingly, ρ = 13×1. Measurement

error are therefore white noise in first differences with a particular variance matrix,

Var (∆vt) =


Σ11 Σ12 0

Σ12 Σ22 0

0 0 Σ33

 .

If we give ∆vt the factor structure in (5) (again maintaining ρ = 1M×1),

∆vt =


∆v1

t

∆v2
t

∆v3
t

 =


λ1

λ2

λ3

 ηt +


σ1ε1

t

σ2ε2
t

σ3ε3
t

 = ληt + diag(σ)εt,

with ηt
iid∼ N(0, 1), εt

iid∼ N(03×1, I3) and ηt independent of εt, the news-noise model implies the

restriction λ3 = 0. The rest of the parameters, λ1, λ2, σ1, σ2, σ3, can be recovered from Var (∆vt).
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