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Abstract

We introduce a model of group behavior that combines expressive participation with

strategic participation. Building on the idea that expressive voting in elections is much like

rooting for a sports team we give applications to both sporting events and elections. In our

model there is an expressive externality: we generally prefer watching and cheering a match

at the pub with our friends to watching at home alone on television. We show that this

results in the possibility of �tipping� - that participation may jump up when the externality

becomes strong enough. We examine the implications for pricing by sports teams and for

voter turnout. In particular we show under certain circumstances tipping may lead to

twin peaked voter turnout in which low and high turnout are relatively more likely than

intermediate turnout levels. We examine this empirically for both US Presidential and UK

General elections and �nd substantial evidence for tipping in the UK.
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1. Introduction

There are two models widely used to address the �paradox of voting� - the fact that the

probability of being pivotal in large election is too small to justify individuals turning out to

vote. One is the �ethical� voter model and the more recent incarnation as the peer pressure

model,4 the other is the model of expressive voting.5 The peer pressure model incorporates

a simple and not terribly satisfying form of expressive voting: it allows for a �xed fraction of

committed voters. Here we integrate a more satisfactory model of expressive participation

into the peer pressure model. Our basic premise is that (as others have noted) expression

in voting is much like rooting for a sports team. Of particular importance in our view is

that there is an externality. That is, there is a social component to expression: we generally

prefer watching and cheering a match at the pub with our friends to watching at home alone

on television.

We develop a model that combines peer pressure with expression. A key conclusion that

follows from this model is the possibility of �tipping.� That is, in peer pressure models the

marginal cost of inducing additional participation is generally positive. When there is an

expressive externality it may become negative, meaning that it is optimal for everyone to

participate. Whether or not this is the case is endogenous, and we give two applications. The

�rst is to sporting events where we study how ticket pricing should be designed to exploit

the expressive externality, and in particular show that it may be desirable to keep ticket

prices low to encourage the externality. This leads to counter-intuitive pricing conclusions

for sports teams: for example, increasing stadium size may well cause tickets prices to rise.

Our second application is to voting where we demonstrate how voter turnout can change

discontinuously even though the underlying stakes are drawn from a continuous distribution.

This leads to a prediction that turnout should be twin-peaked. We conduct an empirical

analysis to see whether this is in fact true. We gather evidence from the US and UK and

show that there is substantial evidence that in the UK voter turnout does indeed have two

peaks.

The core of our model is one of collective provision of incentives to participate. We

know from the work of Ostrom (1990) and her successors how this can be achieved: groups

can self-organize to overcome the free rider problem and provide public goods (such as

participation) through peer monitoring and social punishments such as ostracism. In the

context of sports the so-called �soccer hooligans� provide this service of disciplining those

who fail to participate.

4See Levine and Mattozzi (2020).
5Recent and signi�cant empirical evidence in favor of the long-standing literature on expressive voting

can be found in Pons and Tricaud (2018).
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Formal theories of peer enforcement originate in the work of Kandori (1992) on repeated

games with many players and have been specialized to the study of organizations. The basic

idea is that groups choose norms consisting of a target behavior for the group members and

individual penalties for failing to meet the target; these norms are endogenously chosen in

order to advance group interests. Speci�cally the group designs a mechanism to promote

group interests subject to incentive constraints for individual group members, and it pro-

vides incentives in the form of punishments for group members who fail to adhere to the

norm.6

2. The Model

The natural context for studying expression is that of a social network, a simple model

of which is the following. A group k is composed of Nk members. Each group member faces

a participation decision: to root for the team or not to root for the team, and if the group

wins each group member has a utility vk. The same goes for other participation decisions

such as voting. We assume that members of group k derive utility hk > 0 from expression,

that is, participation. This is standard. In addition there is an externality: you bene�t

from the participation of your neighbors. Let us denote the strength of this externality by a

non-negative parameter λ, which re�ects both the number of neighbors whose participation

you bene�t from and how much you bene�t from each. Suppose in fact that the fraction of

the group that participates is φk and that each group member i independently draws a type

yi uniformly distributed on [0, 1] with cost of participation c(yi) = c0 + yi. Suppose that

in addition to the direct bene�t participation may result in the production of pk(φk) of a

public good with value vk where pk(φk) is non-decreasing. Then a non-participant receives

utility

pk(φk)vk + λφkhk (2.1)

while a participant receives utility

pk(φk)vk + (1 + λφk)hk − (c0 + yi) = pk(φk)vk + λφkhk − (c0 + yi − hk). (2.2)

Because of the expressive externality and possibly due to the dependence of pk(φk) on

φk the group has a collective interest in participation. It is useful to start by de�ning the

committed members as those who have a net participation cost that is negative, that is,

c0 − hk + yi ≤ 0. These members need no encouragement to participate and the fraction

6See for example Levine and Modica (2016) and Dutta, Levine and Modica (2021b).
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who are committed is given by

ϕ =


0 if hk − c0 < 0

hk − c0 if 0 ≤ hk − c0 ≤ 1

1 if hk − c0 > 1 .

. (2.3)

Hereafter we will assume that hk− c0 ≤ 1 to avoid the uninteresting case in which all group

members are committed.

The group may also self-organize to encourage the participation of non-committed mem-

bers through monitoring and punishment. It does so by establishing a social norm whereby

members with relatively low costs are expected to participate. Speci�cally, a social norm

is speci�ed as a threshold ϕk ∈ [0, 1] for participation: those types with yi < ϕk are ex-

pected to participate and those with yi > ϕk are not. If the social norm ϕk is followed,

the expected fraction of the group that will participate is ϕk and in a large group we may

assume that since we are averaging over many independent draws the realized participation

is equal to the expected value. In particular, we may identify the social norm ϕk with the

fraction that participates φk. The action of a member, whether she has participated or not,

is observable by everyone, but for those who did not participate there is only a noisy signal

of their type yi. The signal is a binary signal zi ∈ {0, 1}, where 0 means �good, followed the

social norm� and 1 means �bad, did not follow the social norm,� and it works as follows. If

the social norm was violated, that is the member did not participate but yi < ϕk, the bad

signal is generated for sure; if i did not participate but yi > ϕk so that she did in fact follow

the norm, there is nevertheless a chance π of the bad signal where π is a measure of the

noise of the signal. If a member's behavior generates a bad signal she su�ers an endogenous

punishment Pk that the group applies through some form of ostracism. For the bulk of the

paper we will focus on the benchmark case in which the net marginal cost of participation

is constant: this corresponds to π = 1/2.

We model the behavior of the group as a mechanism design problem: to choose an

incentive compatible ϕk, Pk to maximize the common ex ante utility of group members.

3. Cost Minimization

As a �rst step in solving the mechanism design problem we consider that maximizing

utility requires that the cost of achieving a particular participation target ϕk be minimized.

In other words, the group must choose a punishment scheme Pk so that compliance with the

social norm is incentive compatible. If everyone complies with the social norm bad signals

are still generated with probability π so πPk is a cost to the group of inducing compliance.

We de�ne the total cost C(ϕk) to the group of the target ϕk as the sum of the direct cost of
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participation T (ϕk) plus the least cost of inducing compliance, which we call the monitoring

cost M(ϕk). Both these functions are de�ned for ϕk ≥ ϕ, because only these participation

rates can be realized in the model. We now study the problem of minimizing the total cost

for a given target ϕk.

Theorem 1. The direct, monitoring, and total costs of inducing compliance with a social

norm ϕk ≥ ϕ are

T (ϕk) = ϕk (ϕk + 2c0) /2 , ϕk ≥ ϕ (3.1)

M(ϕk) =

0 if ϕk = ϕ

π (1− ϕk) (c0 − hk + ϕk) if ϕk > ϕ
(3.2)

C(ϕk) =

ϕ
(
ϕ+ 2c0

)
/2 if ϕk = ϕ(

1
2 − π

)
ϕ2
k + [π (1 + hk) + (1− π) c0]ϕk − π (hk − c0) if ϕk > ϕ

. (3.3)

Proof. By de�nition the direct cost of participation above the committed level ϕ is T (ϕk) =∫ ϕk
0 c(y)dy for ϕk ≥ ϕ, and direct computation gives∫ ϕk

0
c(y)dy = ϕ2

k/2 + c0ϕk = ϕk (ϕk + 2c0) /2 , ϕk ≥ ϕ

Next we derive the monitoring cost. The incentive constraint is that members with yi ≤ ϕk
should be willing to participate, that is c0 − hk + yi ≤ Pk - therefore it must be Pk ≥
c0 − hk + ϕk; and members with yi > ϕk should not, that is πPk ≤ c0 − hk + yi or

πPk ≤ c0 − hk + ϕk. Minimization of cost implies that the constraint should bind, that is,

πPk = c0 − hk + yi. Notice that without monitoring (that is, no punishment or incentive

provided not to participate) the participation rate is lowest and equal to ϕ. Therefore,

M(ϕ) = 0. For ϕk > ϕ, recalling that for these values Pk = ϕk − hk + c0, the monitoring

cost is ∫ 1

ϕk

πPkdy = π (1− ϕk) (c0 − hk + ϕk)

Taking these results together, we obtain (3.2). Hence the total cost C(ϕk) ≡ T (ϕk)+M(ϕk)

of inducing participation above the committed level of ϕ is easily veri�ed to be as in the

statement.

To simplify the analysis in the remainder of the paper we assume π = 1/2 unless

explicitly speci�ed otherwise. In this case it follows directly from (3.3) that the cost function
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C(ϕk) is given by the following;

Corollary 1. Suppose π = 1/2. Then

C(ϕk) =

ϕ
(
2c0 + ϕ

)
/2 if ϕk = ϕ

1+hk+c0
2 ϕk − hk−c0

2 if ϕk > ϕ
. (3.4)

4. No Public Good and Tipping

We now consider the optimal choice of ϕk in the special case in which vk = 0, that is,

the only bene�t to the group from participation are the individual bene�ts. As indicated,

we shall focus on the case π = 1/2. Our goal is to understand how the optimal ϕk depends

upon the strength of the externality λ. In particular we will show that there is tipping

in the sense that there is a critical value λ∗ for which participation jumps discontinuously

as this threshold is exceeded. It is this tipping phenomenon that is the main topic of the

paper.

Let

λ∗ ≡


1−(hk−c0)

2hk
if hk − c0 ≥ 0

1
hk

(
1
2 − (hk − c0)

)
if hk − c0 < 0

and ϕ∗k be the optimal choice for group k. Note that λ∗ is higher in the case hk − c0 < 0.

In Appendix A we show that

Theorem 2 (Tipping Theorem). Suppose vk = 0 and π = 1/2. Then the optimal partici-

pation increases discontinuously in λ at threshold λ∗:

ϕ∗k =

ϕ if λ < λ∗

1 if λ > λ∗
(4.1)

The threshold λ∗ is increasing in c0 and decreasing in hk.

For 0 ≤ hk − c0 we show in Appendix A that utility is −ξϕk + (hk − c0)/2 where

ξ ≡ (1/2) − (hk − c0)/2 − λhk. This can be interpreted as a marginal cost of increasing

participation net of the bene�t of externality. The key point is that this is positive for λ = 0

(since we assume hk − c0 ≤ 1) but becomes negative when the externality λ is su�ciently

large. It is this switch from positive to negative marginal cost at λ∗ that leads to tipping.

Robustness to π 6= 1/2: The Steep Slope Theorem

In what follows we assume π 6= 1/2 and examine whether tipping is robust to perturba-

tions of π away from 1/2. The result is the following:
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Theorem 3 (The steep slope theorem). Suppose vk = 0. If π > 1/2, then ϕ∗k is the same

as with π = 1/2 (that is Theorem 2 still applies). If π = 1/2 − ε for 0 < ε < 1/2 and

hk − c0 ≥ 0, then

ϕ∗k =


ϕ if λ ≤ (1− 2ε)λ∗

hk
2ε (λ− λ∗) +

1+ϕ

2 if λ ∈ ((1− 2ε)λ∗, (1 + 2ε)λ∗)

1 if λ ≥ (1 + 2ε)λ∗

(4.2)

For hk − c0 < 0 and π < 1/2 the result is qualitatively the same, but the statement is

more involved so we deal with it in Appendix B, where the above theorem is proven.

Observe that for π = 1/2−ε and ε small the result is that ϕ∗k as a function of λ increases

steeply from ϕ to 1 in the interval ((1− 2ε)λ∗, (1 + 2ε)λ∗) whose width tends to zero. We

therefore conclude that tipping is a robust prediction when π > 1/2, and it is a good

approximation if π = 1/2− ε for ε su�ciently small.

5. Sports Team

We consider now the problem faced by a sports team whose fans are a self-organizing

group. Here participation takes the form of attending a match, and the sports team charges

a price r for attending. We assume in addition that the sports stadium has a maximum

capacity and can accommodate only a fraction Q < 1 of fans. Subject to the capacity

constraint the costs of the team are entirely sunk so it wishes to choose r to maximize

revenue.

For clarity of exposure, we continue to assume π = 1/2. We also assume that pk(φk)

is constant, that is, that participation by the fans does not change the outcome of the

match. Without loss of generality we may then assume that and vk = 0, that is the only

bene�t to the group are the individual bene�ts which we now interpret as resulting from

attending a match. Since the sports team charges a fee r for attendance, the constant c0

in c(yi) = c0 + yi becomes c0 = ζ0 + r, with ζ0 < 0. In e�ect the sports team controls the

marginal cost

ξ ≡ 1

2
− hk − ζ0 − r

2
− λhk.

As in Theorem 2 demand will jump discontinuously from ϕ to Q when price is su�ciently

low that marginal cost becomes negative. Hence the �rm has a choice: set a price above the

tipping price and sell just to committed fans ϕ or set the tipping price and �ll the stadium.

In Appendix B we fully characterize the solution. The most interesting result is:

Theorem 4. Suppose that λ ≥ 1/(2hk). Then it is optimal to sell at full capacity Q and
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set price

r∗Q = hk − ζ0 + (2λhk − 1)
Q

1 +Q
.

There are several observations about this result. First, as we show in Appendix C, in

standard monopoly in the absence of tipping and with continuous demand it is also possible

that the monopoly solution is to �ll the stadium. However, increasing the stadium size

will always lower the price charged by the team. Here the opposite is the case: a bigger

stadium commands a higher price because it provides a greater bene�t to the fans from the

externality. Second, in neither case is there rationing per se. However, if there is a small

amount of uncertainty about demand the solution is quite di�erent in the continuous and

in the tipping case. In the continuous case it will be optimal to set an intermediate price,

sometimes �lling the stadium and sometimes nearly �lling the stadium. In the tipping case

the discrete loss from tipping means that when the stadium is not �lled attendance will drop

dramatically, and consequently the team will generally avoid tipping by pricing su�ciently

low that it will have to ration tickets.

6. Voting

We now suppose that there are two groups which are political parties k ∈ {L, S} who
participate in an election. The relative size of the two parties is ηL > ηS > 0 with ηL+ηS =

1 − ηc, where ηc is the size of the group of �civic voters� who split their votes equally to

both parties and thus do not a�ect the outcome of the election. Here ηk is the fraction of

people who would vote for k = L, S with certainty if they decided to vote. The party that

sends the most voters to the polls wins the election and receives a total prize of size V ; the

per capita value of the public good for each party k to win the election is thus vk = V/ηk.

We assume that the individual expressive payo� hk = hV is the same for both parties. We

continue with the simplifying assumption π = 1/2 and in addition assume 0 < hV − c0 < 1

so that 0 < ϕ = hV − c0 < 1 (cf. (2.3)). A bid bk by group k is the number of voters

mobilized to turnout by party k, that is bk = ηkϕk. For each party k = L, S, the set of

feasible bids is given by [ϕηk, ηk].

Let Πk(bk, b−k) denote the winning probability of party k as a function of bids bk and

b−k submitted by both parties. Following Levine and Mattozzi (2020) we assume that the

large party L wins the election in case of a tie.7 Therefore,

7This is to simplify equilibrium and guarantee that equilibria always exist. See footnote 8 of Levine and
Mattozzi (2020) for a more detailed discussion.
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ΠL(bL, bS) =

1 if bL ≥ bS
0 if bL < bS

ΠS(bS , bL) = 1− pL(bL, bS).

Finally we assume that h is small and λ is large; speci�cally we consider the limit in

which h→ 0 and λh→ κ for some κ > 0. Formally, we use

Assumption 1 (low expressive payo� and strong positive externality). h→ 0, hλ→ κ > 0

and −c0 ∈ (0, 1).

Let

V ≡ 1 + c0
2κ

.

Our main result is that tipping takes place at V : the details are in Appendix D.

Theorem 5. Suppose Assumption 1 holds and ηS > ηLϕ. For V > V the aggregate bid

by the two parties is b = ηS + ηL; for V < V close to V aggregate bid is approximately

b = ηS(1 + ϕ).

For V > V all voters in both parties turn out and the aggregate bid b = bL + bS by the

two parties is b = ηS + ηL, independently of the probability of winning. For V < V we have

to study the game between the two parties because the probability of winning depends on

bids. The analysis in Appendix D shows that for V close to V - which is the relevant case in

general elections, where stakes are high - in equilibrium to a good approximation the large

party bids ηS and the small party bids ϕηS , so the aggregate bid is b = ηS(1 + ϕ). The

main implication of this result is that the distribution of voter turnout is twin-peaked due

to tipping: even if V has a continuous single-peaked distribution, as V crosses V we should

observe a discontinuous upward jump in turnout.

To account for the fact that the actual voter turnout is certainly not Bernoulli, we have

assumed a third group of civic voters, of size ηc, who split equally between the two parties

(so that the strategic aspects of voting are unchanged) and who are not part of any social

network. Rather they face the participation cost cc + yi like other voters. The fraction of

voters from this group is determined by cc + yi ≤ 0 so it is −cc. For the civic voters we

assume that cc is normally distributed with mean µc and standard error σc. Essentially,

what civic voters do is to add additional terms in parties' bids: when parties bid bL and bS ,

the actual fraction of voters that cast votes for them are:

τS = bS −
ηc
2
cc τL = bL −

ηc
2
cc

where 1/2 shows up because civic voters are divided equally to parties. The aggregate
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turnout is then

τ := τL + τS = b− ηccc (6.1)

where cc ∼ N (µc, σc) is normal with mean µc and standard deviation σc, and b is Bernoulli

with probability Q1 of b (the probability that V < V ) and 1−Q1 of b (probability of V > V ).

Equivalently, τ is a mixture of two normal distributions both with standard deviation

σ = ηcσc, and one with mean µ1 = ηcµc + b and the other with mean µ1 + g = ηcµc + b so

that g = b− b is the change in turnout due to tipping, and where the �rst has probability

Q1 and the latter probability 1−Q1.
8 We call this a Bernoulli-Normal mixture. Our theory

predicts voter turnout to follow such a Bernoulli-Normal mixture distribution rather than

a single-peaked normal distribution (which would occur without tipping). In the remainder

of this section we investigate this prediction using turnout data from presidential elections

in the US and general elections in the UK.

Empirical estimation

We now examine the implication of our model that if V is either smaller than and

close to V or above it the distribution of voter turnout has two peaks due to tipping.

To examine whether this might be the case we gathered turnout data from US presidential

elections (1920-2020) and UK general elections (1918-2019) beginning with the �rst election

in women were permitted to vote.

Positive Serial Correlation and Stationarity

A crucial fact is that voter turnout has strong positive serial correlation. We model this

by assuming that cc follows an AR(1) process. If we assume that there is no tipping, that is

g = 0 or Q1 ∈ {0, 1} this means that turnout is also an AR(1) process which we may write

as

τt = ρ0 + ρ1τt−1 + εt

with εt ∼ N
(
0, σ2ε

)
i.i.d and independent of τt. We can then estimate ρ̂0, ρ̂1 and σ̂2ε using

standard OLS. The stationary distribution for τt is then a normal distribution with mean

µ̂stationary = ρ̂0
1−ρ̂1 and variance σ̂2stationary = σ̂2

ε

1−ρ̂21
. Estimation results are reported in Table

1. For both US and UK data, the estimated ρ̂1's are positive and statistically signi�cant.9

Moreover, augmented Dickey-Fuller tests reject unit root hypotheses (i.e., ρ1 = 1) for both

US and UK turnout data.10 These results indicate that the time series of voter turnout

8While the actual turnout is bounded between zero and one, a �nite normal mixture model may well
approximate it when the standard deviations are su�ciently small.

9p values of two-sided tests for ρ1 = 0 are 0.014 for US and 0.007 for UK.
10MacKinnon approximate p values are 0.0383 for US presidential elections and 0.0192 for UK general

elections. Both tests reject the null unit root hypotheses at 5% signi�cance level.
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Table 1: OLS estimation results for the AR(1) models

ρ̂0 ρ̂1 σ̂ε µ̂stationary σ̂stationary
US data 0.314 0.439 0.037 0.560 0.041

(0.091) (0.165)

UK data 0.349 0.526 0.046 0.737 0.054
(0.131) (0.172)

Note: Newey-West standard errors robust to heteroskedasticity and �rst-order autocorrelation are

reported in parentheses below the estimates ρ̂0 and ρ̂1.

exhibit strong positive serial correlation and are stationary.

Partial Maximum Likelihood

With serial correlation the likelihood function is not tractable as it requires us to com-

pute for each set of parameters a likelihood for each possible sequence of Bernoulli of which

there are many. Instead we implement a partial maximum likelihood approach as described

in Levine (1983). Here we obtain consistent estimates by maximizing the product of the

stationary density functions, that is, proceeding �as if� the observations were independently

drawn from its stationary distribution. The standard errors are then computed using both

contemporaneous and lagged information matrices.

In the model turnout τt in each period t is a mixture of two normal distributions

N (µ1, σ
2) and N (µ1 + g, σ2). The probability that τt is drawn from N (µ1, σ

2) equals

Q1 ∈ (0, 1). Without loss of generality, we assume g > 0 to ensure identi�cation. Let

ϑ = (Q1, µ1, g, σ) be the vector of parameters and h(·;ϑ) denote the probability density

function of τt. The stationary density function is then

f(τt|ϑ) = Q1φ(τt;µ1, σ
2) + (1−Q1)φ(τt;µ1 + g, σ2)

where φ(x;µ, σ2) = (1/
√

2πσ2) exp(−(τt−µ)2/2σ2) denotes the density function forN (µ, σ2).

Then, given the whole time series of turnout τ := {τt}Tt=1, the partial log-likelihood function

is

L (ϑ; τ ) =
∑T

t=1
log f(τt|ϑ)

=
∑T

t=1
log

(
Q1e

− (τt−µ1)
2

2σ2 + (1−Q1)e
− (τt−µ1−g)

2

2σ2

)
− T

2
log 2πσ2 (6.2)

We estimate ϑ = (Q1, µ1, g, σ) using the partial maximum likelihood approach. The

estimation results are presented in Table 2.
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Table 2: ML Estimation results for US and UK

U.S. presidential elections (1920-2020) U.K. general elections (1918-2019)

Parameters Single-peaked Bernoulli-Normal Single-peaked Bernoulli-Normal

Normal mixture Normal mixture

ĝ
-

0.066
-

0.127
(0.014) (0.034)

Q̂
-

0.626
-

0.177
(0.233) (0.159)

ĝ

√
Q̂(1− Q̂)

-
0.032

-
0.049

(0.006) (0.006)
µ̂1 0.554 0.529 0.727 0.622

(0.014) (0.009) (0.023) (0.031)
σ̂ 0.042 0.027 0.064 0.041

(0.002) (0.005) (0.007) (0.006)

Partial Log-likelihood 45.691 46.683 37.459 39.788

#.Observations 26 26 28 28

Note: Robust standard errors are reported in parentheses and they are computed following the method

in Levine (1983) with lag k = 4. The choice k = 4 is made based on a tradeo� between bias and

precision of estimates. As Table 1 shows, the serial correlation is around 0.5. It can be checked that

for an AR(1) with a coe�cient of 0.5 the contribution of lags after 4 to the stationary standard error

is less than 1/10th of a percent. The choice of k = 4 also leaves us with 21 to 23 observations to use

in the estimation.

Point Estimates

We estimate both the size of the gap ĝ and the standard error of the binomial component

ĝ

√
Q̂(1− Q̂). Both are large in economic terms: ĝ indicates a 6.6% increment to turnout

due to tipping in the US and 12.7% in the UK. Bearing in mind that at Q = 1/2 the

standard error is half the gap, we �nd similarly large standard errors of the binomial: 3.2%

in the US and 4.9% in the UK. These point estimates support the idea that tipping is real

and important.

Finally, we plot the estimated probability densities from the point estimates in Figure

6.1. As can be seen tipping in the UK is substantial and the estimates indicate that most

elections have high values in the sense that V > V while insofar as there is tipping in the

US typically V < V . This is consistent with the idea that elections have higher value in the

UK than in the US, which is indicated as well by the fact that turnout is generally higher

in the UK. In both cases the tipping point is similar - around 58-64%.

Sampling Error

It is important to understand whether these economically signi�cant point estimates

are simply due to sampling error in what is a relatively small sample. In particular, how

likely is it that such large estimates could be generated from an underlying structure where
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Figure 6.1: Estimated densities of turnout distribution for US (left panel) and UK (right panel)

Note: The red lines plot the densities implied the estimated Bernoulli-Normal mixture model. The

green lines plot the densities implied by the stationary normal distribution under AR(1) estimated by

OLS. The black dashed curves are the estimated kernel densities (the optimal bandwidth are 0.0254

for US and 0.0323 for UK). Blue bars are the empirical density of data.

there is no tipping, that is g = 0 or Q ∈ {0, 1}? We cannot simply apply asymptotic theory

here because the hypothesis of no tipping is on the boundary of the parameter space and

the distribution of the coe�cient estimate ĝ is a positive random variable, hence biased

way from 0 even when the true value is 0, and does not converge in a large sample to an

approximate normal. To understand better the role of sampling error we use a Monte Carlo

experiment: we simulate M = 10000 samples drawn from the serially correlated model

without tipping from above

τt = ρ0 + ρ1τt−1 + εt.

For each simulated sample m we estimate the parameter vector ϑ̂m. This yields a col-

lection of estimates
{
ϑ̂m

}10000

m=1
. The empirical cumulative distributions of {ĝm}10000m=1 and{

ĝm

√
Q̂m(1− Q̂m)

}10000

m=1

from Monte Carlo simulations for both UK and US data are

presented in Figure 6.2.

Table 3 reports the probability that ĝm or ĝm

√
Q̂m(1− Q̂m) obtained from the empirical

distributions of these estimates would generate values as large as those observed in the actual

data.

Table 3: Probabilities of data or higher from Monte Carlo experiments

ĝ

√
Q̂(1− Q̂)ĝ2

UK data 0.068 0.088

US data 0.469 0.215

The bottom line here is that is it relatively unlikely that the point estimates seen in the

12



Figure 6.2: Empirical distribution of estimates ĝ and ĝ
√
Q̂(1− Q̂) from Monte Carlo experiments
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Note: In all these �gures, the red dashed lines denote the estimates obtained from the real data, and the

black dashed lines denote probability of observing estimates that are equal or lower than the estimates

obtained from real data.

UK arise without tipping: the probabilities are 6.8% for the gap and 8.8% for the standard

error of the Bernoulli. On the other hand it may well be that the relatively large point

estimates seen in the US arise without tipping as a statistical �uke: indeed there is nearly

a 50% chance that a model without tipping would generate values of g as large as those

estimated from the data.

We should note that the procedure here is conceptually the same as a randomization

or permutation test (Young , 2019) in the sense that we ask how likely it is under the null

hypothesis that we would see coe�cient estimates as high as those we estimated: we do

not ask the t-test question of how likely it is under the null hypothesis that we would see

the ratio of coe�cient estimates to standard errors that we see in the data. The reason

for this is simple, the latter question is without economic interest: we are not concerned

with whether the null hypothesis is exactly true, we know a priori it is not. In particular

if we observe a low value of the gap, say 2% we would conclude that tipping was not an

important phenomenon and would reject it as a useful model no matter the precision with

which the coe�cient of 2% was estimated. By contrast a t-test would not reject the null
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hypothesis if the standard error was su�ciently small. In other words we do not use a t-test

approach because it is without useful economic meaning.

Bayes Factors

In the US the tipping we observe may be a statistical �uke. This is not the case in the

UK, which leads us to examine more closely the ability of our estimation to discriminate

between alternative values of g. We do so by reporting approximate Bayes factors for

di�erent values g1 against a base value g0. Note that these are not nested hypotheses.

To do so we must address two issues. First, we cannot compute the posterior condi-

tional on the entire sample because we cannot compute the likelihood function, and second

although it is natural to take g0 = 0 we do not do so because at g0 = 0 our estimator is not

asymptotically normal.

As we cannot compute the posterior conditional on the entire sample, we instead com-

pute it conditional on the partial maximum likelihood estimate ϑ̂. If we were doing full

maximum likelihood asymptotically this would be a su�cient statistic for the entire sam-

ple, but as we are doing partial maximum likelihood it is not: hence we are looking at the

posterior conditional on a subset of the information available. In short, we use Bayes rule

to compute not f(ϑ|Y ) where Y is the entire sample, but rather f(ϑ|ϑ̂) = f(ϑ̂|ϑ)f(ϑ)/f(ϑ̂).

Provided both g1 and g0 are in the interior f(ϑ̂|ϑ) is asymptotically normal. We can then

compute approximate Bayes factors using the procedure of Laplace, as outlined, for ex-

ample, in Kass and Raftery (1995). For our partial maximum likelihood our estimates

are consistent and asymptotically normal so that indeed the posterior will be concentrated

near the partial maximum likelihood estimate. Hence when we integrate out the nuisance

parameters we may treat the prior as approximately constant. If we additionally assume

that in our prior g is independent of the nuisance parameters when we compute the ratio of

marginal probabilities between g1 and g0 we �nd that the prior cancels out in the numerator

and denominator and the Bayes factor is equal to the ratio of two normal densities. Letting

ŝ = 0.034 be the asymptotic standard error of the partial maximum likelihood estimate ĝ

(cf. Table 2 for UK). The approximate Bayes factor is then given by

B10 =
(1/(ŝ

√
2π) exp

(
−(g1 − ĝ)2/(2ŝ2)

)
(1/(ŝ

√
2π) exp (−(g0 − ĝ)2/(2ŝ2))

.

Second, as indicated we cannot take g0 = 0 because our estimator is not asymptotically

normal there. Instead we use a value of g0 su�ciently far in the interior that asymptotic

theory makes sense. In particular for g0 close to zero the asymptotic standard errors give

a high probability of a negative draw of ĝ and a much lower probability of the estimated

value of ĝ (or higher) than seen in the Monte Carlo. For this reason we chose g0 so that the
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probability of observing ĝ (or higher) based on the asymptotic distribution is exactly that

from the Monte Carlo, that is, 6.8%. This is g0 = 7.6% which is comfortably lower than the

point estimate of 12.7% and well more than two standard deviations (coincidentally also

6.8%) above zero.

In Figure 6.3 as suggested by Kass and Raftery (1995) we report twice the natural

logarithm of our approximate Bayes factor, with the understanding that greater than 2

represents substantial evidence in favor of g1: in particular it means that the prior odds

ratio relative to g0 is raised by a factor of three or more.

Figure 6.3: Bayes Factors for the UK

As can be seen our estimation procedure is adequate to narrow down the range of values

of g which are substantially more likely than 7.6% to about the range from 11% to 14%.

7. Conclusion

We have developed a model that combines peer pressure with expression and shown how

this can lead to �tipping.� This occurs when the expressive externality is strong enough that

in the group the marginal cost of participation becomes negative so that it is optimal for

everyone to participate. We argued that this potentially explains why sporting teams ration

tickets: they do not wish to take the chance of triggering �tipping in reverse� by setting

the price so high that it does not pay the fans to self-organize. Notice that teams are quite

aware of fan self-organization and work hard to encourage it. The same can be said of

musical bands.

Our more substantive application was to voting where we showed how voter turnout

can change discontinuously even though the underlying stakes are drawn from a continuous

distribution. We examined the prediction that turnout should be twin-peaked and found

that there is substantial evidence that in the UK voter turnout does indeed have two peaks.
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Appendix A: Optimal Participation with Individual Bene�ts Only

We now consider the optimal choice of ϕk in the special case in which vk = 0, that is,

the only bene�t to the group from participation are the individual bene�ts. As indictated,

we shall focus on the case π = 1/2. Observe that φk = ϕk must hold to be in compliance

with any social norm ϕk ≥ ϕ. Using (2.1), (2.2) and the simplifying assumption vk = 0, we

get group utility per capita:11

Uk(ϕk) ≡ (1− ϕk)λϕkhk + ϕk (1 + λϕk)− C (ϕk)

= (1 + λ)ϕkhk − C (ϕk) (7.1)

11If vk > 0 the utility Uk(ϕk) can be obtained by simply adding pk(φk)vk to the expression below.
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for all ϕk ∈ [ϕ, 1]. The following lemma characterizes Uk(ϕk) when π = 1/2.

Lemma 1. Assume π = 1/2, vk = 0 and let

ξ ≡ 1

2
− hk − c0

2
− λhk. (7.2)

Then the per capita group utility is equal to

Uk(ϕk) = −ξϕk +
hk − c0

2
· 1 {ϕk > 0} for ϕk ∈

[
ϕ, 1

]
(7.3)

Here 1 {·} is the indicator function. Note that ξ is the constant marginal cost of induc-

ing participation rate ϕk. Without the externality, that is with λ = 0, the marginal cost is

positive and the optimal participation is unambiguously equal to ϕ. Thus without the ex-

ternality we have a pretty standard model - self-organization never creates a discontinuity:

only the committed members participate and participation is a continuous function of pa-

rameters (Levine and Modica (2016) and Levine and Mattozzi (2020)). When hk− c0 < 0 -

so that ϕ = 0 and participation incurs strictly positive costs for all member types - it follows

from (7.3) that Uk(0) = pkvk and limϕk↓0 Uk(ϕk) = (hk − c0) /2 < 0. That is, Uk(ϕk) has a
downward jump at zero. Recall that πPk = (c0 − hk + ϕk) /2→ (c0 − hk) /2 as ϕk → 0, so

the downward jump is exactly the monitoring cost of inducing the lowest type to participate.

Proof of Lemma 1. By (3.4), (7.1) and (7.2), for ϕk > ϕ we have

Uk(ϕk) = (1 + λ)hkϕk − C(ϕk)

= (1 + λ)hkϕk −
1 + hk + c0

2
ϕk +

hk − c0
2

=

[
λhk −

1− (hk − c0)
2

]
ϕk +

hk − c0
2

= −ξϕk +
hk − c0

2

For ϕk = ϕ, we shall establish that

Uk(ϕ) =

0 if hk − c0 < 0

−ξϕ+ hk−c0
2 if hk − c0 ≥ 0

(7.4)

These two expressions together imply (7.3). By (7.1), Uk(ϕ) = (1 + λ)hkϕ − C(ϕ). If

hk − c0 < 0, then ϕ = 0 and C(ϕ) = 0 so that Uk(ϕ) = 0. If hk − c0 ∈ [0, 1], then

ϕ = hk − c0 ≥ 0 and C(ϕ) =
(
h2k − c20

)
/2. Therefore
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Uk(ϕ) = (1 + λ)hk (hk − c0)−
1

2

(
h2k − c20

)
=

[
λhk +

hk − c0
2

]
(hk − c0) = −ξϕ+

hk − c0
2

Finally, if hk − c0 > 1, then ϕ = 1 and C(ϕ) = c0 + 1/2 so that Uk(ϕ) = (1 + λ)hk −
c0 − 1/2 = −ξ + (hk − c0) /2. These together establish (7.4).

Recall that

λ∗ ≡


1−(hk−c0)

2hk
if hk − c0 ≥ 0

1
hk

(
1
2 − (hk − c0)

)
if hk − c0 < 0

and ϕ∗k = arg maxϕk∈[ϕ,1] {Uk(ϕk)}. We now prove Theorem 2, that tipping takes place at

λ∗.

Proof. First observe that if hk− c0 > 1 then ϕ = 1 (cf. (2.3)) so that ϕ∗k = 1 holds trivially.

Assume then hk − c0 ≤ 1. It follows from Lemma 1 that Uk(ϕk) is linear in ϕk for ϕk > ϕ

so that ϕ∗k must be either ϕ or 1 whenever ξ 6= 0. Therefore, ϕ∗k = 1 if Uk(1) > Uk(ϕ) and

ϕ∗k = ϕ if Uk(1) < Uk(ϕ). By (7.3) and (7.2), we have

Uk(1)− Uk(ϕ) =

−ξ
(
1− ϕ

)
if hk − c0 ≥ 0

(1 + λ)hk − c0 − 1/2 if hk − c0 < 0

Therefore when hk − c0 ≥ 0 we have ϕ∗k = ϕ if ξ > 0 and ϕ∗k = 1 if ξ < 0. By (7.2) ξ is

strictly decreasing in λ and it is straightforward to verify that ξ = 0 if and only if

λ =
1− (hk − c0)

2hk
.

This proves the result for the case hk − c0 ≥ 0. Now consider hk − c0 < 0 (where Uk has a
downward jump at zero). In this case we have Uk(1)−Uk(0) = (1 + λ)hk − c0− 1/2, which

is increasing in λ and it equals 0 for

λ =
1

hk

(
1

2
− (hk − c0)

)
This proves (4.1) for the case hk − c0 < 0. That λ∗ is increasing in c0 and decreasing in hk

follows immediately from its de�nition.

18



Appendix B: Proof of Theorem 3

Let ϕ∗k = arg maxϕk∈[ϕ,1] {Uk(ϕk)} and observe that ϕ∗k = 1 must hold when hk− c0 ≥ 1

because ϕ = 1 (cf. (2.3)), so we focus on hk − c0 < 1 (whence ϕ < 1) from now on. Using

the formulas of C(ϕk) and Uk(ϕk) (cf. (3.3) and (7.1)), for ϕk > ϕ we have

C ′(ϕk) = (1− 2π)ϕk + π (1 + hk) + (1− π) c0 (7.5)

U ′k(ϕk) = (1 + λ)hk − C ′(ϕk) = (1 + λ)hk − (1− 2π)ϕk − π (1 + hk)− (1− π) c0 (7.6)

Suppose ϕ∗k is interior so that ϕ∗k ∈ (ϕ, 1); then U ′k(ϕ∗k) = 0 and U ′′k (ϕ∗k) ≤ 0 must hold.

For π > 1/2, however, U ′′k (ϕk) = 2π − 1 > 0 and thus ϕ∗k ∈ (ϕ, 1) cannot hold. Therefore,

ϕ∗k must be a corner solution and it equals 1 or ϕ if Uk(1) is respectively larger or smaller

than Uk(ϕ). From equations (3.3) and (7.1) simple algebra shows that Uk(1) − Uk(ϕ) > 0

if and only if λ > λ∗, the same threshold as in Theorem 2. So for π > 1/2 the result is the

same as in the case of π = 1/2.

Now consider π < 1/2. We start by assuming hk − c0 ≥ 0 to prove the statement in

the text. In this case Uk is continuous on
[
ϕ, 1

]
and strictly concave so the optimum ϕ∗k is

equal to ϕ if U ′k(ϕ) ≤ 0, interior if U ′k(ϕ) > 0 > U ′k(1), and equal to 1 if U ′k(1) ≥ 0.

It is easy to to verify that

U ′k(ϕ) ≤ 0⇐⇒ λ ≤ π1− (hk − c0)
hk

= 2πλ∗

U ′k(1) ≥ 0⇐⇒ λ ≥ (1− π)
1− (hk − c0)

hk
= 2 (1− π)λ∗.

Observe that π < 1/2 implies 2πλ∗ ≤ λ∗ ≤ 2(1 − π)λ∗, and both boundaries converge

to λ∗ as π → 1/2 from below. The stationary point U ′k(ϕok) = 0 being

ϕok(λ) =
λhk + (1− π) (hk − c0)− π

1− 2π
, (7.7)

the optimal solution is as follows:

ϕ∗k =


ϕ if λ ≤ 2πλ∗

λhk+(1−π)ϕ−π
1−2π if λ ∈ (2πλ∗, 2(1− π)λ∗)

1 if λ ≥ 2(1− π)λ∗

(7.8)

Plugging π = 1/2 − ε for ε ∈ (0, 1/2) in to (7.8) yields (4.2). This ends the proof of the

statements in Theorem 3 in the text.

We turn now to the case hk − c0 < 0 and π < 1/2 which we mentioned just after the
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Theorem. In this case we have ϕ = 0, Uk(0) = 0 and Uk(ϕk) has a downward jump at zero

(because C(ϕk) has an upward jump of the same size there). Before formally stating the

results, it is helpful to visualize the situation �rst:

Figure 7.1: Uk(ϕk;λ)

Uk(ϕk;λ) ↑ as λ ↑

ϕk1

case π > 1/2
1−(hk−c0)

≡ π̃

Uk(ϕk; λ̃)
Uk(0)

0

Uk(ϕk;λ) ↑ as λ ↑
ϕk1

case π < 1/2
1−(hk−c0)

≡ π̃

Uk(ϕk; λ̂)

Uk(ϕk; λ̃)

ϕok(λ̂)0

Uk(0)

In what follows, we write Uk(ϕk) as Uk(ϕk;λ) for all ϕk > 0 to make explicit its depen-

dence on λ. Figure 7.1 depicts the family of functions Uk(ϕk;λ) depending on whether π

lies above or below a threshold

π̃ ≡ 1/2

1− (hk − c0)
.

Two observations are critical to the analysis. First, Uk(ϕk;λ) strictly increases in λ for all

ϕk > 0 because ∂Uk(ϕk;λ)/∂λ = hkϕk > 0. Second, as is clear from (7.7), the stationary

point ϕok(λ) is continuously increasing in λ and there exists a unique threshold

λ̃ ≡ (1− π) (1 + c0 − hk)
hk

such that ϕok(λ̃) = 1. As the left panel of Figure 7.1 shows, for π > π̃ it holds that

Uk(1; λ̃) < Uk(0) so that ϕ∗k = 0 for λ close to λ̂; as λ grows further Uk(1;λ) crosses Uk(0)

at some threshold and ϕ∗k jumps to 1. We will show that this threshold coincides with

λ∗ = 1
hk

(
1
2 − (hk − c0)

)
de�ned in the main text so that the tipping result in Theorem 2

still applies. The right panel suggests that for π < π̃ we have Uk(1; λ̃) > Uk(0) so that

for λ slightly below λ̃ the optimal solution ϕ∗k is given by ϕok(λ) ∈ (0, 1) and the value

equals Uk(ϕok(λ);λ); as λ decreases further Uk(ϕok(λ);λ) strictly decreases and there exists

a threshold λ̂ (derived below) such that Uk(ϕok(λ̂); λ̂) = 0. Hence, ϕ∗k drops discontinuously

from ϕok(λ̂) to 0 as λ crosses λ̂ from above; whence the tipping result holds.

In the remainder of this appendix we formally derive ϕ∗k for the two cases: π ≥ π̃ and

π < π̃. To begin with, it is useful to observe that λ̃ < λ∗ if and only if π > π̃ and that

Uk(1;λ) < Uk(0) if and only if λ < λ∗.

Case 1 : π > π̃ so that λ̃ < λ∗. For λ > λ∗, it follows from previous arguments that
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Uk(ϕk;λ) is increasing in ϕ∗k on (0, 1] and Uk(1;λ) > Uk(0). Therefore, ϕ∗k = 1. For λ < λ∗,

we argue that Uk(0) > Uk(ϕk;λ) for all ϕk ∈ (0, 1] and therefore ϕ∗k = 0. To see this, notice

that Uk(ϕk;λ) is strictly increasing in λ for all ϕk > 0 and it is strictly increasing in ϕk for

λ = λ∗ > λ̃. Hence, for all ϕk ∈ (0, 1] and λ < λ∗ we have

Uk(ϕk;λ) < Uk(ϕk;λ∗) ≤ Uk(1;λ∗) = 0 = Uk(0) .

Taken together, when π > π̃ it holds that ϕ∗k = 1 for λ > λ∗ and ϕ∗k = 0 for λ < λ∗, which

coincides with 4.1 in Theorem 2.

Case 2 : π < π̃ so that λ̃ > λ∗. For this case, we shall establish that

ϕ∗k =


0 if λ < λ̂

λhk−(1−π)(c0−hk)−π
1−2π if λ ∈

[
λ̂, λ̃

]
1 if λ > λ̃

(7.9)

where

λ̂ ≡ 1

hk

[
π + (1− π) (c0 − hk) + 2

√(
1

2
− π

)
π (c0 − hk)

]
.

It can be veri�ed λ̂ < λ∗ < λ̃ when π < π̃. Moreover, for λ = λ̂, we have

ϕ∗k =
λ̂hk − (1− π) (c0 − hk)− π

1− 2π
=

√
π (c0 − hk)

1/2− π
∈ (0, 1)

for π ∈ (0, π̃). Therefore, in the same spirit of Theorem 2 for the case of π = 1/2, ϕ∗k
increases discontinuously as λ crosses a threshold λ̂. To show (7.9), �rst consider λ ≥ λ̃. In
this case, Uk(ϕk;λ) is strictly increasing on (0, 1] and Uk(1;λ) > Uk(0) because λ ≥ λ̃ > λ∗.

Hence ϕ∗k = 1. Below we assume λ < λ̃ such that ϕ∗k can only be ϕok(λ) (if positive) or 0.

Notice that ϕok(λ) ∈ (0, 1) if and only if U ′k(1;λ) < 0 < limϕk↓0 U ′k(ϕk;λ). U ′k(1;λ) < 0 is

equivalent to λ < λ̃. 0 < limϕk↓0 U ′k(ϕk;λ) holds if (1 + λ)hk−π (1 + hk)−(1− π) c0 > 0,or

equivalently,

λ >
π + (1− π) (c0 − hk)

hk
≡ λ .

Hence, ϕok(λ) ∈ (0, 1) if and only if λ < λ < λ̃, and it holds that ϕok(λ) = 1 for λ = λ̃ and

ϕok(λ) ↓ 0 for λ ↓ λ. Assume λ < λ < λ̃. For ϕok(λ) to be globally optimal, it must hold

that Uk(ϕok(λ);λ) ≥ Uk(0). Because Uk(ϕok(λ);λ) is continuous and strictly increasing in λ

and it satis�es Uk(ϕok(λ̃); λ̃) = Uk(1; λ̃) > Uk(0) and limλ↓λ Uk(ϕok(λ);λ) = (hk − c0) /2 < 0,

there exists a unique threshold λ ∈
(
λ, λ̃

)
such that Uk(ϕok(λ);λ) = 0. It can be veri�ed

that this threshold is precisely λ̂ de�ned above and it indeed satis�es λ < λ̂ < λ̃. Therefore,
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Uk(ϕok(λ);λ) < 0 and thus ϕ∗k = 0 for λ ∈
(
λ, λ̂

)
, while Uk(ϕok(λ);λ) > 0 and ϕ∗k = ϕok(λ)

for λ <
(
λ̂, λ̃

)
. Finally, for λ ≤ λ, it holds that Uk(ϕk;λ) is strictly decreasing in ϕk and

hence ϕ∗k = 0. Combining these together, we obtain (7.9).

Appendix C: Proof of Theorem 4

We �rst derive the optimal solution without tipping; that is, the sports team only sells

to committed fans whose fraction equals ϕ. By (2.3) and the fact that c0 = ζ0 + r, we have

ϕ =


0 if hk − ζ0 − r < 0

hk − ζ0 − ρ if 0 ≤ hk − ζ0 − r ≤ 1

1 if hk − ζ0 − r > 1 .

(7.10)

Then we have a standard monopoly pricing problem:

max
r
{r ·min {hk − ζ0 − r,Q}}

where r is the ticket price the sports team charges and hk − ζ0 − r ≥ 0 has to hold. The

maximum of r(hk− ζ0− r) is r = (hk− ζ0)/2 giving ϕ = (hk− ζ0)/2 > 0. If this is less than

the stadium capacity Q then this is the solution and pro�t is (hk − ζ0)2/4. If it is greater
than Q then r should be chosen so that hk − ζ0 − r = Q, that is r = hk − ζ0 − Q . In

other words the solution is sell to the fraction (hk − ζ0)/2 if the constraint does not bind,

otherwise sell at full capacity Q at price

r∗ =

(hk − ζ0)/2 if (hk − ζ0)/2 ≤ Q

hk − ζ0 −Q if (hk − ζ0)/2 > Q

with pro�t

Π∗ =

(hk − ζ0)2 /4 if (hk − ζ0)/2 ≤ Q

(hk − ζ0 −Q)Q if (hk − ζ0)/2 > Q
.

Notice that the optimal solution r∗ without tipping is non-increasing in capacity Q. More-

over, when (hk − ζ0)/2 > Q, the sports team can optimally sell at full capacity Q by

charging a su�ciently low price such that the fraction of committed fans just meets the

stadium capacity Q.

The following theorem, which contains Theorem 4 in the main text as a special case,

fully characterizes the optimal pricing strategy of the sports team.

Theorem 6. If 2hkλ ≤ 1−Q the monopoly solution r∗ is always optimal. If 2hkλ > 1−Q
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then for λ ≥ λ̂Q it is optimal for the sports team to exploit self-organization of fans, sell at

capacity Q and charge price r∗Q; otherwise the optimum is given by the monopoly solution

r∗ in the text. The externality threshold is

λ̂Q =


1−Q
2hk

if hk − ζ0 ≥ 2Q

1
2hk

[(
hk−ζ0

2 − 1
)2

+
(

1
Q − 1

)(
hk−ζ0

2

)2]
if hk − ζ0 < 2Q

and

r∗Q =

(1 + 2λ)hk − ζ0 − 1 if λ̂Q ≤ λ < 1/(2hk)

hk − ζ0 + (2λhk − 1) Q
1+Q if λ ≥ 1/(2hk)

r∗Qis weakly increasing in Q for λ ≥ λ̂Q.

Proof. The key observation is that to trigger self-organization so that all fans participate

the following two conditions must be satis�ed:

(i) Incentive compatibility : the marginal cost must be non-positive, that is ξ ≤ 0.

(ii) Group rationality : the group payo� from participation at maximum capacity Q must

be higher than without self-organization, that is Uk(Q)− Uk(ϕ) ≥ 0.

By (7.2) and c0 = ζ0 + r we have

ξ =
1

2
− hk − c0

2
− λhk =

1

2
− hk − ζ0 − r

2
− λhk . (7.11)

Therefore ξ ≤ 0 if and only if

r ≤ rI ≡ (1 + 2λ)hk − ζ0 − 1

There would be no point in using prices higher than this: only the committed fans would

buy the ticket, and r > rI is equivalent to hk − ζ0− r < 1− 2λhk so if 2λhk ≥ 1 this means

selling no tickets at all (not optimal), while if 2λhk < 1 then pro�t would be r(hk − ζ0 − r)
which is the same as the monopoly problem.

At price rI we have c0 = ζ0 + rI = (1 + 2λ)hk − 1, and hk − c0 = 1 − 2λhk ≥ 0 if and

only if 2λhk ≤ 1. Therefore, by (7.10), the fraction of committed voters under price rI is

given by

ϕ =

1− 2λhk if 2λhk ≤ 1

0 if 2λhk > 1

Noe that if 1−2λhk ≥ Q (or equivalently 2hkλ ≤ 1−Q), then ϕ ≥ Q and rI ≤ hk−ζ0−Q
so that the pro�t must be bounded above by rIQ ≤ (hk − ζ0 −Q)Q ≤ Π∗. Therefore, for

2hkλ ≤ 1−Q the monopoly solution is optimal. In what follows we then assume 2hkλ > 1−Q
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so that ϕ < Q. From here on we distinguish two cases: 2λhk ≤ 1 and 2λhk > 1.

Case 1 : 2λhk ≤ 1.In this case it follows from Lemma 1 that Uk(ϕk) is linear in ϕk on

(ϕ, 1] and is continuous at ϕ. By Theorem 2 participation at maximal capacity Q occurs

only if ξ ≤ 0, or equivalently r ≤ rI . rI is thus the highest price the seller can charge

that induce participation rate Q under self-organization, in which case the pro�t is rIQ.

It remains to compare this pro�t with the monopoly pro�t Π∗. If hk − ζ0 ≥ 2Q, we have

Π∗ = (hk − ζ0 −Q)Q < rIQ because rI = hk − ζ0 + 2λhk − 1 > hk − ζ0 −Q. The optimal

solution is then to sell at capacity Q with price rI for all λ > 1−Q
2hk

. If hk − ζ0 < 2Q, then

Π∗ = (hk − ζ0)2 /4. Simple algebra shows that rIQ ≥ (hk − ζ0)2 /4 if and only if

λ >
1

2hk

[(
hk − ζ0

2
− 1

)2

+

(
1

Q
− 1

)(
hk − ζ0

2

)2
]

= λ̂Q

Moreover, for all 0 < hk − ζ0 ≤ 2Q it can be veri�ed that

1−Q
2hk

<
1

2hk

[(
hk − ζ0

2
− 1

)2

+

(
1

Q
− 1

)(
hk − ζ0

2

)2
]
≤ 1

2hk

Hence, when (hk − ζ0)/2 ≤ Q, it is optimal to sell to capacity if λ ∈
[
λ̂Q, 1/(2hk)

]
.Below

we will show that the same is also true for all λ > 1/(2hk). The conclusion will be that

when (hk − ζ0)/2 ≤ Q it is optimal to sell at full capacity for all λ ≥ λ̂Q.
Case 2 : 2λhk > 1. In this case we have hk − c0 < 0, ϕ = 0 and there is a discontinuous

drop of Uk(ϕk) at 0. For selling at maximum capacity Q to be optimal, the price r must

satisfy the group rationality constraint that Uk(0) ≤ Uk(Q). Simple algebra shows that this

condition is equivalent to

r ≤ hk − ζ0 + (2λhk − 1)
Q

1 +Q
≡ rII

Notice that rII is increasing in Q so that the capacity limit Q does restrict the price the �rm

can charge. Again, for rII to be optimal, it must hold that rIIQ > Π∗. If (hk − ζ0)/2 > Q,

then rIIQ > Π∗ if and only if rII = hk − ζ0 + (2λhk − 1) Q
1+Q > hk − ζ0 −Q, which always

holds because 2λhk − 1 > 0 > −Q. If (hk − ζ0)/2 ≤ Q, then Π∗ = (hk − ζ0)2 /4 and

rIIQ > Π∗ holds if and only if

λ >
1

2hk

{
(1 +Q)

[(
hk − ζ0

2Q
− 1

)2

− 1

]
+ 1

}
≡ λ̃Q

Notice that λ̃Q < 1/(2hk) always holds for (hk − ζ0) /2 < Q, because
(
hk−ζ0
2Q − 1

)2
− 1 < 0.
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Therefore, selling at the maximum capacity at price rII is optimal for all λ > 1/2hk.Taken

together, if λ > 1/(2hk) then it is optimal to sell at the maximum capacity Q at price rII .

Combining these together: it is optimal to exploit the self-organization of fans and sell

at capacity Q if λ > λ̂Q.

Appendix D: Proof of Theorem 5

The following lemma characterizes the per capita utility Uk(bk, b−k, V ) for party k = L, S

as a function of both parties' bids and the total prize V .

Lemma 2. Suppose π = 1/2 and ϕ = hV − c0 ∈ (0, 1). Then

Uk(bk, b−k, V ) = Πk(bk, b−k)
V

ηk
− ξ(V )

bk
ηk

+
hV − c0

2

where

ξ(V ) ≡ 1

2
− hV − c0

2
− λhV

is the marginal cost of increasing turnout rate ϕk = bk/ηk for party k and it is decreasing

in total prize V .

Proof. Consider any implementable turnout rate ϕk ∈ [ϕ, 1] for party k. By (2.1), (2.2) and

(3.4), the per capita utility of party k is given by12

Uk(ϕk) = (1− ϕk) [pk(ϕk)vk + λϕkhk] + ϕk [pkvk + (1 + λϕk)hk]− C (ϕk)

= pk(ϕk)vk + (1 + λ)ϕkhk −
1 + hk + c0

2
ϕk +

hk − c0
2

= pk(ϕk)vk −
(

1

2
− hk − c0

2
− λhk

)
ϕk +

hk − c0
2

In this voting context we have vk = V/ηk, hk = hV , ϕk = bk/ηk and pk(ϕk) = Πk(ηkϕk, η−kϕ−k)

for k = L, S. Plugging these into Uk(ϕk) yields the statements in this lemma.

In what follows we prove Theorem 5. Under Assumption 1 we have

ϕ→ −c0 and ξ(V )→ 1 + c0
2
− κV = κ

(
V − V

)
(7.12)

where recall that

V ≡ 1 + c0
2κ

12Under assumptions π = 1/2 and ϕ = hV − c0 ∈ (0, 1), the cost function C (ϕk) is continuous at ϕ.
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In the following analysis we work in the limit so we take ϕ = −c0 and ξ(V ) = κ
(
V − V

)
.

Therefore, the marginal cost ξ(V ) is decreasing in V and it becomes negative for V larger

than V .

We �rst establish that, under Assumption 1, for V > V there exists a unique equilibrium

in dominant strategy in which both parties bid their maxima (i.e., bk = ηk for k = L, S) so

that b = bL + bS = ηL + ηS . By Lemma 2 and Assumption 1, we have

Uk(bk, b−k, V ) = Πk(bk, b−k)
V

ηk
− ξ(V )

bk
ηk

+
ϕ

2
(7.13)

→ Πk(bk, b−k)
V

ηk
− κ

(
V − V

) bk
ηk
− c0

2

The second step follows from the fact that ϕ = hV −c0 → −c0 and ξ(V )→ κ
(
V − V

)
under

Assumption 1 (cf.(7.12)). Observe for V > V that Uk(bk, b−k, V ) is strictly increasing in bk

because Πk(bk, b−k) is non-decreasing in bk and κ
(
V − V

)
is strictly negative. Hence, it is

a strictly dominant strategy for each party to bid is maximum and this yields the unique

equilibrium.13 This proves the statement in Theorem 5 for V > V .

In what follows we assume ηS > ηLϕ and V < V so that the marginal cost κ
(
V − V

)
is strictly positive. We will exploit results from Levine and Mattozzi (2020) to establish

that for V smaller than but close to V there exists a unique equilibrium in mixed strategy.

Moreover, in this equilibrium party L bids almost surely ηS while party S bids almost surely

ηSϕ so that the total bid is almost surely ηS
(
1 + ϕ

)
. This then completes the proof for

Theorem 5.

We introduce a few de�nitions and notations. For each party k ∈ {L, S}, we de�ne its
desire to bid Bk(V ) as the highest for which party k prefers to get the prize V for sure to

bidding ηkϕ and get no prize. By (7.13), Bk(V ) is given by the solution bk to

V

ηk
− ξ(V )

bk
ηk

+
ϕ

2
= −ξ(V )ϕ+

ϕ

2
.

This yields

Bk(V ) =
V

ξ(V )
+ ηkϕ .

We further de�ne party k's willingness-to-bid as Wk(V ) = min {Bk(V ), ηk}; this equals the
the maximum bid party k is willing or a�ord to pay. Since ϕ > 0 and ηL > ηS , we have

WS(V ) < WL(V ); that is, party S is the disadvantage group who has the lower willingness-

to-bid. Finally, we let V denote the lowest level of prize V such that the disadvantage party

13If V = V , then ξ(V ) = 0 and Uk(bk, b−k, V ) is weakly increasing in bk. Hence, bidding the maximum is
still the unique equilibrium in pure and weakly dominant strategies.
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S is just indi�erent between winning prize V for sure with bid ηLϕ (i.e., the smallest bid of

the advantaged party L) and bidding ηLϕ and get no prize. Therefore, by (7.12), V is the

solution V to
V

ηS
− ξ(V )

ηL
ηS
ϕ+

ϕ

2
= −ξ(V )ϕ+

ϕ

2
.

Using the fact that ξ(V ) = κ
(
V − V

)
, we obtain

V = V
κϕ(ηL − ηS)

1 + κϕ(ηL − ηS)1
< V .

We denote each party k's (mixed) bidding strategy by Fk, a cdf on
[
ηkϕ, ηk

]
. The following

lemma follows from Levine and Mattozzi (2020).

Lemma 3. (Levine and Mattozzi, 2020) Suppose V < V < V and ηS > ηLϕ. Then there

is a unique equilibrium in which both parties play the mixed strategies given by

FL(x) =


1 if x ≥WS(V )

ξ(V )
V

(
x− ϕηS

)
if x ∈

[
ηLϕ,WS(V )

)
0 if x < ηLϕ

(7.14)

FS(x) =



1 if x ≥WS(V )

1− ξ(V )
V (WS(V )− x) if x ∈

[
ϕηL,WS(V )

)
1− ξ(V )

V

(
WS(V )− ϕηL

)
if x ∈

[
ϕηS , ϕηL

)
0 if x < ϕηS

(7.15)

The aggregate bid b is the sum of two independent random variables with bk ∼ Fk for

k ∈ {L, S}.

Proof. This lemma is a direct application of Theorem 1 in the Online Appendix of Levine

and Mattozzi (2020) to our model.

Since limV↗V ξ(V ) = limV↗V κ
(
V − V

)
= 0, so limV↗V V/ξ(V ) = ∞. Therefore for

V su�ciently close to V we have WS(V ) = min
{
V/ξ(V ) + ηSϕ, ηS

}
= ηS . Using (7.15),

(7.15) and letting F−k (x) = limy↗x Fk(y), we obtain

FS(ϕηS) = 1− ξ(V )

V

(
ηS − ϕηL

)
→ 1 and F−S (ϕηS) = 0 ,

FL(ηS) = 1 and F−L (ηS) =
ξ(V )

V

(
1− ϕ

)
ηS → 0 .

These together imply that the probabilities of bS = ϕηS and bL = ηS tend to 1. Con-

sequently, the probability bS + bL = ηS
(
1 + ϕ

)
tends to 1 as V → V from below. This
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establishes the statement for V being smaller but su�ciently close to V for Theorem 5.
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