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Abstract

I study a dynamic cash flow diversion model between a risk neutral lender and risk
averse entrepreneur that has persistent private information about the firm’s produc-
tivity. I show that firm size drifts downwards and the entrepreneur’s compensation
is smoothed but features immiseration. These results contrast equivalent models with
risk neutrality, where firm size tends to increase over time and dividends are paid once
the undistorted first best size is reached. Next, I use numerical simulations to study a
third best implementation. With persistent shocks, the lender gives the entrepreneur a
time-varying equity share, with i.i.d shocks a constant equity share suffices. Then, the
shares are pledged as collateral to smooth consumption. The implementation suggests
that the opposite firm size dynamics result from the equity share drifting upwards with
risk-neutrality but downwards with risk aversion and persistence. Finally, I discuss the
implications for the validity of the Modigliani-Miller theorem and the investment-cash
flow sensitivity.
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1 Introduction

Financing constraints slow down firms’ growth over their lifecycle. Theories of the origin
of financing frictions are needed to understand whether financing constraints are efficient
given some underlying agency frictions, or they could be corrected through policy. Dynamic
contracting models have proved to be useful in answering these questions. The canonical
setting in this literature is the cash flow diversion model: an entrepreneur needs funds from
a lender to operate a project, but only the entrepreneur observes the project cash flows and
can secretly divert them for consumption. A regular outcome of this class of models is that,
in the optimal contract, the firm size drifts upwards, and the entrepreneur is compensated
once the undistorted first best size is reached (Clementi and Hopenhayn (2006))1.

The literature has typically assumed that the entrepreneur is risk neutral and that the shocks
to the firm’s cash flows are i.i.d (Clementi and Hopenhayn (2006), DeMarzo and Sannikov
(2006), DeMarzo and Fishman (2007a), Biais et al. (2007)). However, by making these
two assumptions, these models may abstract from first-order concerns for designing finan-
cial contracts. First, with risk neutrality, there is no need to smooth the entrepreneur’s
consumption, so the compensation can be backloaded at little cost. Second, the i.i.d as-
sumption restricts the extent to which the entrepreneur may have more information about
firm’s future profitability.

In this paper, I study a dynamic contracting problem between a risk neutral lender and a risk
averse entrepreneur that has persistent private information about the firm’s productivity. I
solve for the optimal contract and analyze the implied firm size and compensation dynamics.
Together, risk aversion and persistence lead to remarkably different dynamics than models
previously studied. I find that firm size (i.e. working capital invested) drifts downwards.
Moreover, the entrepreneur’s compensation is smoothed, but the variance of consumption is
permanently increasing (i.e. it features immiseration Thomas and Worrall (1990), Atkeson
and Lucas (1992)). These dynamics are shown theoretically but also illustrated with nu-
merical simulations. Behind these different firm dynamics lies a fundamentally distinct role
of the state variables of the problem with risk aversion and risk neutrality. As I show with
the implementation, promised utility maps to the entrepreneur’s private wealth with risk
aversion, but it maps to his equity on the firm with risk neutrality. When productivity is
persistent and the entrepreneur is risk averse, the equity share is instead related to another

1Empirically, it is not obvious that the firms’ financing constraints are eventually relaxed as they age.
For instance, in developing economies, where financing constraints are more stringent, we observe that old
firms are relatively smaller than in developed economies (Hsieh and Klenow (2014)).
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state variable, the promised insurance.

The firm’s size depends only on the magnitude of the investment wedges. They capture the
fact that higher capital increases information rents, which is more costly when the lender
wants (or has promised) to provide more insurance to the entrepreneur. Therefore, higher
wedges lower the implicit marginal product of capital and firm size. These wedges are
tightly connected to labor wedges in dynamic Mirrlees models. Farhi and Werning (2013)
and Makris and Pavan (2020) have shown that insurance (and so wedges) tends to increase
over time. This is also the case in this model; with both persistence and risk aversion,
investment wedges increase over time, so the firm’s size will decrease. With i.i.d private
information, the investment wedges are stationary, and so is firm size.

The entrepreneur’s consumption process satisfies a Generalized Inverse Euler Equation (GIEE)
similar to Hellwig (2021). As expected, with risk aversion, the entrepreneur’s compensation
is smoothed. In the GIIE, the martingale properties of the entrepreneur’s marginal utility
depend only on the sign of a savings wedge. This wedge captures how much savings affect
information rents at periods t and t + 1. Except (possibly) for very high persistence2, the
optimal contract features immiseration. That is, marginal utility drifts upwards and the
variance of consumption increases over time without bound (Thomas and Worrall (1990),
Atkeson and Lucas (1992)).

To further understand the compensation dynamics, I use numerical simulations and analyze
(third best) implementations with simpler contracts. With i.i.d shocks, the following simple
contract gets very close to the optimal allocation. The lender gives the entrepreneur a
constant equity share on the firm’s reported cash flows. Then the entrepreneur can pledge his
shares as collateral and borrow to smooth consumption given his implied wealth. Pledging
shares is a common practice (Fabisik (2019)); this implementation shows how it can be
rationalized as part of the optimal contract3.

With persistent private information, the principal’s problem contains an extra state variable
that captures the insurance promised to the agent. This state variable naturally maps to the
equity share given to the entrepreneur. Thus, persistence can be accommodated by allowing

2With CARA utility and fixed capital, I show that there will be immiseration whenever there is some
mean-reversion in the productivity process, consistent with the findings of Bloedel et al. (2018) and Bloedel
et al. (2020). As I discuss, varying capital generates an extra force for immiseration.

3Pledging shares aligns the entrepreneur’s consumption with the firm’s value, but without having to sell
shares and independently of dividend payout policies. In this model selling shares may not be optimal,
as lowering the entrepreneur’s stake on the firms increases his incentives to divert funds. This rationale is
consistent with the primary motive for pledging shares estimated in Fabisik (2019): obtain liquidity while
maintaining ownership.
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for a time-varying equity share. Intuitively, because types θ′′ > θ′ know they are expected to
obtain higher cash flows at t+ 1 than θ′, it is less attractive for them to give up equity. So,
when the lender buys equity at t + 1 to some type θ′, it discourages the diversion of funds
for types θ′′ > θ′. That is, the lender optimal lowers the equity share at period t+ 1 (to an
inefficient level once at t+ 1) because it helps screen types at t.

The implementation clarifies the discrepancy of the firm size dynamics with risk neutrality
and risk aversion. With risk neutrality, it is optimal to reward the entrepreneur solely
through a higher stake on the project to minimize diversion incentives. Therefore, the
promised utility can be mapped to the entrepreneur’s equity (Clementi and Hopenhayn
(2006)). This is no longer the case with risk aversion. As I show, promised utility better
maps to the entrepreneur’s wealth, and promised marginal utility (or insurance) maps to the
entrepreneur’s equity share. Consequently, both models obtain a positive relation between
equity and firm size4. However, with risk neutrality, the equity share drifts upwards, but
with risk aversion and persistence, it drifts downwards. Therefore, breaking the tight relation
between equity and firm size may be necessary to simultaneously be consistent with the firm
size and compensation dynamics observed in the data. Otherwise, firm size converges to the
first best level only if the entrepreneur becomes the firm’s sole owner.

The distinction between promised utility and promised insurance in the implementation
has broader implications. To illustrate this, I revisit the implications of the model for two
classical questions in the corporate finance literature. The first one concerns the role of
capital structure on the firm’s value (the Modigliani-Miller theorem). With risk neutrality,
the firm’s value does depend on the promised utility given to the entrepreneur (Clementi
and Hopenhayn (2006)). Instead, with risk aversion, numerical simulations show that firm
value is approximately independent of promised utility, but it is decreasing on the amount
of insurance promised. This observation corroborates the idea that, with risk aversion,
promised utility maps to the entrepreneur’s private wealth and is unrelated to the firm’s
capital structure. The second asks whether a firm’s financing constraints can be inferred
from the sensitivity of investment to cash flows (Fazzari et al. (1988), Kaplan and Zingales
(1997)). Numerically, I find a slightly higher sensitivity for constrained firms, as found in
the risk neutral model (Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007a)),
but only if I consider promised insurance as a measure of financing constraints.

I use two tools from the dynamic public finance literature to characterize the optimal contract
4When the entrepreneur has a high equity share, he has less incentives to divert funds, so the lender is

willing to provide him with more capital.
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while imposing minimal assumptions. The first is the first-order approach (FOA) as in
Kapička (2013), Farhi and Werning (2013), Pavan, Segal and Toikka (2014) and Golosov
et al. (2016a). It consists of solving a relaxed problem with the local IC constraints. The
FOA is popular in dynamic public finance, but it is also used more broadly in dynamic
mechanism design. The FOA allows solving the model with persistent private information.
The second tool allows deriving analytical characterizations of the optimal allocation with
risk aversion. This is the change of measure used in Hellwig (2021) for a Mirrlees taxation
problem with non-separable preferences between consumption, leisure and type.

The challenge of introducing risk aversion in this model is that information rents depend on
the entrepreneur’s consumption. This is because marginal information rents in consumption
units must be transformed into utils by multiplying the type’s marginal utility. So if the
principal increased consumption of some type θ, his information rent would change. But
then the information rents of all types θ′ > θ need to be adjusted nonlinearly to preserve
incentive compatibility. A change of measure as in Hellwig (2021) reweights the density of
types appropriately to account for these changes in information rents.

The resulting incentive-adjusted type distribution puts higher weight on lower types. The
intuition is as follows. Lower types generate lower returns, so they obtain less information
rents in consumption units and have higher marginal utility. This implies that perturbations
in consumption change their information rents by more, which is costly for the principal.
This effect reduces the lender’s benefit of providing insurance to the entrepreneur, which in
turn lowers the investment wedges.

Finally, the approach used in this paper can be useful more broadly in problems where there
is no separation between insurance and information rents. Persistent private information can
be challenging to handle in some settings. But the incentive-adjusted probability measures
could allow using the FOA as in the dynamic public finance more often, where models with
a large class of Markov processes can be studied. In Appendix E, I solve the sovereign debt
model of Dovis (2019) with persistent private information by using the same type of change
of measure.

Related literature This paper contributes to the dynamic financial contracting literature.
Important early work on this class of models includes Clementi and Hopenhayn (2006), Al-
buquerque and Hopenhayn (2004), Biais et al. (2007), Biais et al. (2010), DeMarzo and
Sannikov (2006), DeMarzo and Fishman (2007a), DeMarzo and Fishman (2007b) and De-
Marzo et al. (2012). In particular, I contribute to the literature by studying a workhorse
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dynamic cash flow diversion model with risk aversion and persistent private information.

Models with risk aversion have been studied in He (2012) and Di Tella and Sannikov (2021).
Both papers study a hidden savings problem, so the entrepreneur has persistent private
information about his savings. I do not allow for hidden savings but allow for persistent
private information about the firm’s productivity. Models with persistence have been recently
analyzed in DeMarzo and Sannikov (2016), Fu and Krishna (2019) and Krasikov and Lamba
(2021), but all these papers assume a risk-neutral entrepreneur. To my knowledge, this is
the first paper in the dynamic financial contracting literature with both persistent private
information and risk aversion. As I will show, some key effects of persistence on the optimal
allocation, such as the downwards drifts in firm size, are only present with risk aversion. Fu
and Krishna (2019) and Krasikov and Lamba (2021) show some interesting role of persistence
on the dynamics of distortions. However, as in the i.i.d risk neutral models, they still find
that distortions eventually disappear.

Throughout the paper, I use tools and insights from the dynamic Mirrlees literature5. I use
the FOA and set up the principal’s problem recursively as in Kapička (2013), Farhi and
Werning (2013) or Golosov et al. (2016a). I also use incentive-adjusted probability measures
as in Hellwig (2021)6 to derive analytical characterizations of the optimal contract. The
finding that firm size drifts downwards follows from the insight of the Dynamic Mirrlees
literature that labor wedges tend to increase over time (Farhi and Werning (2013), Makris
and Pavan (2020)).

Finally, this paper is also related to the literature on dynamic mechanism design with in-
surance (Makris and Pavan (2020)) and on insurance with persistent private information
(Williams (2011), Bloedel et al. (2018) and Bloedel et al. (2020)).

Outline The rest of the paper is organized as follows. Section 2 describes the model, sets
up the relaxed planning problem and presents the first best allocation. Section 3 discusses
the incentive-adjusted measure and shows how it can be used to characterize the multipliers
of the problem. Section 4 presents the main results on the optimal allocation and section 5
illustrates them with numerical simulations. Section 6 studies the third best implementation.
Section 7 discusses the differences in models with risk neutrality and risk aversion and its
implications. Finally, section 8 concludes.

5For a review of the literature see Stantcheva (2020). In some aspects, the model also resembles the
setting of the dynamic taxation problems in Stantcheva (2017) and Brendon (2022).

6The incentive-adjusted measures have also been used in Hellwig and Werquin (2022).
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2 Model

Time is discrete and indexed by t = 0, 1, ...,∞. Every period an entrepreneur (the agent,
“he”) needs funds kt from a lender (the principal, “she”) to operate a project. At period t,
the project generates a cash flow f(kt, θt), where θt ∈ [θ,θ] is the entrepreneur’s productivity.
The agent’s type history is denoted by θt = {θ0, ..., θt} and is the agent’s private information.
θt follows a Markov process with conditional density ϕt(θt|θt−1).

The lender cannot observe the returns and instead relies on the entrepreneur’s report. The
entrepreneur can misreport and divert a fraction of the cash flow for his own consumption.
There is a deadweight loss (1− φ) ∈ [0, 1) on diverted funds. After the entrepreneur reports
returns f(kt, θ̃t), the lender asks for a repayment bt(θ̃t) and advances funds kt+1(θ̃t) for next
period. The entrepreneur cannot save by himself7, so the entrepreneur’s period t consumption
if the true cash flow is f(kt, θt) but he reports f(kt, θ̃t) is

ct = f(kt, θt)− (1− φ)
(
f(kt, θt)− f(kt, θ̃t)

)
− bt(θ̃t) (1)

In particular, if the entrepreneur does not misreport returns he consumes ct = f(kt, θt) −
bt(θt). The entrepreneur is risk averse, derives utility u(ct) from consumption, and discounts
the future at rate β. Throughout the paper, I will use the following notation for the deriva-
tives of the return function

fk(kt, θt) ≡
∂f(kt, θt)

∂kt
fθ(kt, θt) ≡

∂f(kt, θt)

∂θt
fθk(kt, θt) ≡

∂2f(kt, θt)

∂θt∂kt

Below I summarize all the assumptions on the productivity process and the functions f and
u.

Assumptions

A1: The conditional density ϕt(θt|θt−1) is differentiable with respect to the second argument
and persiststent, i.e

E(θt, θt−1) ≡
∂ϕt(θt|θt−1)

∂θt−1

ϕt(θt|θt−1)

7Note it straightforward to allow the agent to also save by himself. Let dt be divident payments, wt the
agent’s net worth and Bt the funds advanced by the principal. Then we would have ct = dt, a LOM for the
entrpreneur’s net worth wt+1 = f(kt, θt)− bt − dt + wt and investment equal to kt+1 = wt+1 +Bt+1. If the
agent net worth is observable, it is without loss to have the lender doing all the savings for the entrepreneur.
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is non-decreasing in θt

A2: The production function satisfies fkk < 0 < fk, fθ > 0, the inada conditions fk(0, θ) =

∞ and limk→∞ fk(k, θ) = 0, and fθk > 0

A3: The utility function satisfies u′′ < 0 < u′, and the inada conditions u′(0) = ∞ and
limc→∞ u

′(c) = 0

The first assumption (A1) requires that type process has either positive persistence or is
independent over time, in which case ∂ϕt(θt|θt−1)

∂θt−1
= 0. The process is allowed to be time-

dependent. Differentiability will be needed to use the envelope condition for the local incen-
tive constraint. For future use, it is useful to define:

ρt(θ
t) ≡ 1− Φt(θt|θt−1)

ϕt(θt|θt−1)
E
[
E(θ′, θt−1)|θ′ ≥ θt, θ

t−1
]

=
∂

∂θt−1 (1− Φ(θt|θt−1))

ϕt(θt|θt−1)
(2)

This is the impulse response of θt to θt−1 as defined in Pavan, Segal and Toikka (2014).
It is a measure of the persistence of the process. If the type process follows an AR(1)
with autoregresive parameter ρ, then E(θt, θt−1) = −ρ∂ϕt(θt|θ

t−1)
∂θt

/ϕt(θt|θt−1) and ρt(θt) = ρ.
Assumption A2 states that there is decreasing marginal product of investment, higher types
obtain higher returns and have a higher marginal product. This last assumption (fθk > 0)
is key as it will imply that higher capital increases information rents.

Discussion of the model

The model presented is the most simple version of a cash flow diversion model, but with
persistent private information and risk aversion. To focus on the role of persistence and risk
aversion, I have imposed some assumptions and abstracted from other interesting margins.
First, I do not allow the principal the option to terminate the project. I analyze the model
with endogenous termination in Appendix D.3. As is well known, if there are regions of the
state space where the Pareto frontier is not concave, the principal may optimally randomize
between shutting down the project and continuing. This may be the case in this model, but
as I show, allowing for stochastic termination does not affect any of the following results.

Second, I have also assumed full commitment of the lender and entrepreneur. A model where
the entrepreneur has limited commitment is studied in Appendix D.2. Althought there may

7



be interesting interactions between the limited commitment and private information frictions
(see Dovis (2019) in the context of sovereign debt), risk aversion and persistence do not alter
in any significant way the effects of the limited commitment friction. So in the paper, I focus
on the private information friction.

Finally, in Appendix D.1, I study a model where instead of diverting cash flows, the en-
trepreneur can choose the fraction of available funds invested in the firm and divert the rest.
Then the lender can observe the project returns but not invested funds. The main results
continue to hold in this setting. Moreover, the model is intuitive as the investment wedge
that shows up in the firm size dynamics and the GIEE corresponds to the wedge between
invested and diverted funds relative to the first best allocation.

2.1 Lender’s problem

The lender is risk neutral and discounts the future at rate q. By the revelation principle, it is
without loss to focus on direct mechanisms. At any history, the entrepreneur sends a report
r ∈ [θ,θ] about θt to the lender. Define a reporting strategy by σ = {σt(θt)}, it implies a
history of reports σt(θt) = {σ1(θ0), ..., σt(θt)}. The entrepeneur’s continuation utility with
truth-telling can be written recursively as

wt(θ
t) = u(c(θt)) + β

∫
wt+1(θt, θt+1)ϕt+1(θt+1|θt)dθt+1 (3)

where c(θt) = f(kt(θ
t−1), θt) − bt(θ

t). The continuation utility of type θt with reporting
strategy σ is

wσt (θt) = u(c(θt, σ
t(θt))) + β

∫
wσt+1(θt, θt+1)ϕt+1(θt+1|θt)dθt+1 (4)

where

c(θt, σ
t(θt)) = φ

(
f(kt(σ

t−1(θt−1)), θt) + (1− φ)f(kt(σ
t−1(θt−1)), σt(θt))

)
− bt(σt(θt))

Then, an allocation {kt+1(θt), bt(θ
t)} is incentive compatible if for all θt and σ

wt(θ
t) ≥ wσt (θt) (IC) (5)

The lender problem consists of choosing an allocation {kt+1(θt),bt(θt)} to minimize the cost
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of providing expected utility v subject to the incentive compatibility constraints:

K(v) = min
{kt+1(θt),bt(θt)}

E0

[
∞∑
t=1

qt
(
kt+1(θt)− bt(θt)

)]
(6)

s.t E0

[
w1(θ1)

]
≥ v

{kt+1(θt), bt(θ
t)} ∈ IC

2.2 Relaxed problem

The problem is solved recursively, write entrepreneur’s continuation utility under truth-
telling as

wt(θ
t) = u(c(θt)) + βvt(θ

t) (7)

vt(θ
t) =

∫
wt+1(θt+1)ϕt+1(θt+1|θt)dθt+1 (8)

Following Kapička (2013), Farhi and Werning (2013) and Pavan, Segal and Toikka (2014), I
use the first-order approach. That is, I solve a relaxed problem with the local IC constraint8:

∂

∂θt
wt(θ

t) = u′(c(θt))φfθ(kt(θ
t−1), θt) + β∆t(θ

t) (9)

∆t(θ
t) =

∫
wt+1(θt+1)

∂ϕt+1(θt+1|θt)
∂θt

dθt+1 (10)

The within period marginal information rent is u′(c(θt))φfθ(kt(θt−1), θt), and it depends on
consumption. Intuitively, if the entrepreneur’s productivity increases by dθt, he generates an
extra return of fθ(kt(θt−1), θt)dθt. The entrepreneur can then decide to mimick the returns of
the type right below him and divert the extra funds, he can then obtain φfθ(kt(θt−1), θt)dθt

extra consumption units. Because the entrepreneur is risk averse, this extra information rent
has to be transformed into utils by multiplying by u′(c(θt)).

The fact that information rents depend on the entrepreneur’s consumption poses a challenge
for characterizing the solution to this problem. If the principal increases consumption of
type θt, his information rent changes. But then the information rents of all types θ′ > θt

have to be adjusted in order to preserve incentive compatibility. In section 3, I will show
in more detail how the incentive-adjusted probability measures developed in Hellwig (2021)
can be used to characterize the solution to this problem.

8Global incentive compatibility can be verified numerically ex-post, as in Farhi and Werning (2013).
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The variable ∆t(θ
t) captures the dynamic incentive commitments promised by the lender.

Intuitively, it captures how much insurance the principal promises to provide in future pe-
riods. If types were independent over time, we would have ∆t(θ

t) = 0. The state variables
of the recursive problem are the promised utility, v, the dynamic incentive commitments (or
promised insurance), ∆, and the funds advanced at t−1, kt. The principal solves a dynamic
optimization problem where within every period, there is an optimal control problem. The
relaxed problem is

Kt(vt−1,∆t−1, θ
t−1, kt) = min

∫ (
kt+1(θt)− bt(θt) + qKt+1(vt(θ

t),∆t(θ
t), θt, kt+1(θt))

)
ϕt(θt|θt−1)dθt

s.t (PK) wt(θ
t) = u(c(θt)) + βvt(θ

t) [ϕt(θt|θt−1)ξt(θ
t)]

vt−1 =

∫
wt(θ

t)ϕ(θt|θt−1)dθt [ϕt(θt|θt−1)λt] (11)

(IC) ẇt(θ) = u′(c(θt))φfθ(kt, θt) + β∆t(θ
t) [µt(θ

t)]

∆t−1 =

∫
wt(θ

t)
∂ϕ(θt|θt−1)

∂θt−1
dθt [ϕt(θt|θt−1)γt]

(Feasibility) c(θt) = f(kt, θt)− bt(θt)

where µt(θt) is the co-state variable of the within period Hamiltonian. Note that I write
inside square brackets the multipliers associated with each constraint. The Hamiltonian of
this problem and the derivation of the optimality conditions can be found in Appendix B.
To economize notation I will often write directly u(θt) and f(θt) instead of u(c(θt)) and
f(kt(θ

t−1), θt). The sequential problem (6) can be recovered by treating ∆0 and k1 as free
variables, K(v0) = min∆0,k1 K(v0,∆0, θ0, k1).

2.3 First Best

To gain intuition on the model, it is useful to first look at the first best allocation, i.e. with
no private information. The results are summarized in the following proposition

Proposition 1. In the First Best, at any history θt, there is

1. No diversion of funds
f(kt, θ̃t) = f(kt, θt) (12)
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2. Full insurance and intertemporal consumption smoothing

u′(c(θt)) =
β

q
u′(c(θt+1)) (13)

3. No distortion of the project size

1

q
= E

[
fk(kt+1(θt), θt+1)|θt

]
(14)

Because diverting funds is inefficient and by the revelation principle, in the second best there
will also be no diversion of funds. However, as will be discussed in section 4, the points 2.
and 3. of the proposition do not hold in the second best allocation. Therefore, in section 4
we will be interested on how consumption and firm size dynamics differ from the first best.

3 Incentive-adjusted probability measures

As discussed, the main challenge to characterize the optimal allocation in this problem is that
the static marginal information rents, u′(c(θt))φfθ(k(θt), θt), depend on consumption. This
is the same problem encountered in a Mirrlees taxation problem with general non-separable
preferences. Hellwig (2021) solves this by applying a change of measure to the distribution
of types. It consists of reweighting the density of types appropiately to preserve incentive
compatibility. The following proposition shows how this change of measure can be used to
characterize the shadow costs of insurance µt(θt) and the multiplier on the promise-keeping
constraint λt. This shadow cost captures the resource gain from redistributing consumption
around θt, while preserving incentive compatibility, promised expected utility (v) and prior
incentive commitments (∆). The multiplier λt will be used to derive the Generalized Inverse
Euler Equation (GIEE) later.

Proposition 2. (Hellwig (2021)) The shadow cost of insurance µt(θt) and the multiplier λt
can be characterized as

µt(θ
t)

ϕt(θt|θt−1)
= MB(θt) + ρ̂(θt)

β

q

µt−1(θt−1)

ϕt−1(θt−1|θt−2)
(15)
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With

MB(θt) =
1− Φ̂t(θt|θt−1)

ϕ̂t(θt|θt−1)

{
Ê
[

1

u′ (θ′, θt−1)
| θ′ ≥ θt, θ

t−1

]
− Ê

[
1

u′ (θt)
|θt−1

]}
(16)

ϕ̂t(θt|θt−1) ≡ ϕt(θt|θt−1)m(θt)

E[ϕt(θt|θt−1)m(θt)|θt−1]
where

m′(θt)

m(θt)
=
u′′(θt)φfθ(θ

t)

u′(θt)
< 0 (17)

ρ̂(θt) ≡ 1− Φ̂t(θt|θt−1)

ϕ̂t(θt|θt−1)

{
Ê
[
E(θ′, θt−1) | θ′ ≥ θt, θ

t−1
]
− Ê

[
E(θt, θ

t−1)|θt−1
]}

(18)

And
λt = Ê

[
1

u′ (θt)
| θt−1

]
− γtÊ

[
E(θt, θ

t−1) | θt−1
]

(19)

Note the operator Ê denotes expectations under the measure ϕ̂. The proposition shows that
it is enough to change the probability measure over types from ϕ to the incentive adjusted
measure ϕ̂. This is the only adjustment needed to account for the fact that information
rents depend on consumption. In the Mirrlees taxation problem with general non-separable
preferences U(θ, c, y), where y is the agent’s income, the change of measure is with m′(θt)

m(θt)
=

UθC(θt)
UC(θt)

9. Except for the different change of measure, the characterization of µt(θt) and λt

of proposition 2 are exactly the same. Because u′′(θt)fθ(θt)
u′(θt)

< 0 this corresponds to the case

where higher types have lower consumption needs, i.e UθC(θt)
UC(θt)

< 0. So the effects of private

information on the optimal allocation will compare to the case with UθC(θt)
UC(θt)

< 0 in the Mirrlees
taxation problem.

The literature on dynamic mechanism design with insurance often analyses models with
separable preferences of the form

U(θ, y, c) = u(c)− ψ(y, θ) (20)

where y can represent the agent’s income or effort. As discussed in Makris and Pavan (2020),
this includes dynamic public finance models with separable preferences but also models of
managerial compensation, among others. In these settings, the static marginal information
rents are ψθ(y, θ), which do not depend on consumption. Therefore, there is a complete
separation between insurance (or redistribution) and information rents. This setting also

9The problem admits an alternative representation in terms of redistribution throught leisure with
m̃′(θt)
m̃(θt) = UθY (θt)

UY (θt) .

12



admits the same characterization of µ(θt) as proposition 2 but under the original measure
ϕ (Makris and Pavan (2020), Hellwig (2021), Brendon (2013))10. For λt, there is an extra
term that emerges compared to the separable models that captures the interaction between
the incentive-adjusted measure and the persistence of the process11.

Because m′(θt)
m(θt)

= u′′(θt)φfθ(θt)
u′(θt)

< 0, the function m(θt) = e
−

∫ θ
θt

u′′(θ′,θt−1)φfθ(θ
′,θt−1)

u′(θ′,θt−1)
dθ′ is decreasing

in θt. So the principal puts more weight on lower types. That is, Φt(·|θt−1) first-order
stochastically dominates Φ̂t(·|θt−1). Intuitively, lower types have lower returns, so they
collect lower information rents in consumption units. Hence, their marginal utility is higher.
When the principal redistributes consumption, information rents change more for types with
high marginal utility. Therefore, the incentive-adjusted measure that guarantees incentive
compatibility has to put more weight on lower types.

This higher sensitivity of the information rents implies that the cost of adjusting informa-
tion rents to preserve incentive compatibility is higher for lower types. These higher costs
can partly offset the direct resource gain of redistributing consumption to types with high
marginal utility. Recall MB(θt) represents the resource gain of redistributing from types
θ′ > θt to the types θ′′ < θt, while preserving incentive compatibility and keeping expected
utility constant. Imagine the principal redistributes δu utils from some type θ′ to type θ′′

with θ′ > θ′′. Because lower types have higher marginal utility, the principal obtains a direct
resource gain proportional to ∆c(θ′)δu−∆c(θ′′)δu =

(
1

u′(θ′)
− 1

u′(θ′′)

)
δu > 0.

In a separable environment with utility function as in (20), it would be enough to adjust
δu to keep expected utility constant. However, in this model, this redistribution changes
information rents. The changes in consumption now need to be adjusted by the factors m(θ′)

and m(θ′′) to preserve incentive compatibility. Because m(θ) is decreasing, the adjustment
for type θ′′ is higher, i.e. m(θ′)δu > m(θ′′)δu. So after accounting for incentive compatibility,
the resource gain is reduced(

1

u′(θ′)
m(θ′)− 1

u′(θ′′)
m(θ′′)

)
δu <

(
1

u′(θ′)
− 1

u′(θ′′)

)
δu

Therefore, the shadow costs cost of insurance µt(θt) will be small, especially if types are i.i.d
as the second term in equation (15) zero. This will be verified in the numerical simulations
in section (5). Small µt(θt) implies that the entrepreneur is provided with little insurance

10Although these models also admit a representation of µt(θt) and λt with the incentive adjusted measure.
11Note that under the original type measure, we have E

[
E(θt, θ

t−1) | θt−1
]

= 0.
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against bad cash flow realizations but that the distortions to optimal firm size are also small
(see section (4.1)).

The static version of this model is illustrative. In a dynamic model, the principal can provide
information rents through higher current consumption or higher future promised utility. In
a static model, the provision of information rents cannot be smoothed over time, so we must
have c′(θ) = φfθ(θ). This in turn implies that m(θ) = u′(θ)

u′(θ)
. Therefore, the higher cost of

adjusting information rents fully offsets the direct resource gain of redistributing to types
with high marginal utility. The only effects that survive this redistribution are from the
changes in expected utility12.

The same characterizations as in the static model can also be obtained by applying a new
change of measure. This new measure accounts for the fact that the principal can provide
part of the information rents by promising higher continuation utility. Rearranging the
local IC we can obtain φfθ(θt) − c′(θt) = β v

′(θt)
u′(θt)

, where v′(θt) ≡ E
[
∂w(θt−1,θt,θt+1)

∂θt
|θt
]
. This

incentive-adjusted measure is defined as ϕ̃t(θt|θt−1) = ϕ(θt|θt−1)n(θt)
E[n(θt)|θt−1]

, where

n′(θt)

n(θt)
=
u′′(θt)

u′(θt)
β
v′(θt)

u′(θt)

Incentive compatibility requires that, for any θt, v′(θt) ≥ 0, so n′(θt)
n(θt)

= u′′(θ′)
u′(θ′)

β v
′(θ′)
u′(θ′)

< 0.
Therefore, we also have that Φ(·|θt−1) first-order stochastically dominates Φ̃(·|θt−1). By the
local IC, the incentive-adjustment terms m(θt) and n(θt) are related by m(θt) = u′(θt)

u′(θ)
n(θt).

So the incentive-adjusted measures are related by

ϕ̂(θt|θt−1) =
ϕ̃t(θt|θt−1)u′(θt)

Ẽ [u′(θt)|θt−1]

The following proposition shows how under the measure ϕ̃, one can obtain the same repre-
sentation of MB(θt) as in a static model.

Proposition 3. Under the incentive-adjusted measure ϕ̃, the terms MB(θt) and λt admit
12There is a more straightforward reason why the effects cancel out. In a static model, it is not possible

to provide insurance in an incentive compatible manner. However, this is also true in the screening model
studied in section D.1. The reason is that the incentive constraints depend on the ordinal properties of the
utility. So, if there is no participation constraint, any cardinalization with a particular utility function does
not affect the optimal allocation (see Brendon (2013) for more discussion on this).
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the following representations

MB(θt) =
1− Φ̃t(θt|θt−1)

ϕ̃t(θt|θt−1)

1

u′(θt)

[
1− Ẽ [u′(θ′, θt−1)|θ′ > θt, θ

t−1]

Ẽ [u′(θt)|θt−1]

]

λt =
1

Ẽ [u′(θt)|θt−1]
− γt

Ẽ [E(θt, θ
t−1)u′(θt)|θt−1]

Ẽ [u′(θt)|θt−1]

Therefore, by applying a change of measure that accounts for how the principal spreads
continuation utilities. We can obtain a representation of the benefits of redistributing across
types that only captures the effect on the changes in expected utility, as in the static model.

4 Optimal allocation

In this section, I present the two main results on the dynamics of the optimal allocation. The
first subsection is on the firm size dynamics, the second on the dynamics of the entrepreneur’s
consumption (or compensation). Before presenting the results, it is useful to define the
investment wedge, as it will show up in both the GIIE and the equation for the firm size size
dynamics. Let

τ k(θt) ≡ µt(θ
t)

ϕt(θt|θt−1)
u′(θt)φ

fθk(θ
t)

fk(θt)
≥ 0 (21)

In a model where the entrepreneur can choose to divert funds before investing in the project,
this wedge captures the distortion in invested and diverted funds relative to the first best. I
discuss this model in more detail in appendix D.1.

4.1 Firm size dynamics

In this section, I look at the dynamics of the optimal size of the firm, i.e. kt. In the
data, we consistently observe a strong lifecycle component in firm dynamics (Evans (1987)).
Young firms are usually small and face strong financing constraints. Over time, the firm
size tends to increase and financing constraints are relaxed. The literature has tried to use
dynamic contracting models to explain these patterns. Models of cash flow diversion with a
risk-neutral agent and limited liability (Clementi and Hopenhayn (2006)) can qualitatively
replicate the dynamics observed in data.
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However, once risk aversion and persistent private information are introduced, this is no
longer the case. The opposite dynamics emerge, the firm size tends to decrease over time,
and the first best size is never reached. In the following proposition, I show the first-order
condition for the optimal firm size.

Proposition 4. At any history θt, the optimal advancement of funds kt+1(θt) satisfies

1

q
= E

[
fk(kt+1(θt), θt+1)(1− τ k(θt+1))|θt

]
(22)

The proposition shows that the FOC for kt+1(θt) is the same as in the FB but with an extra
investment wedge that lowers the implicit marginal product of capital. Because τ k(θt+1) ≥ 0,
we have kSBt+1(θt) ≤ kFBt+1(θt). Besides the direct effect of the productivity process {θt}, the
dynamics of the firm’s size (kt+1(θt)) depend only on the dynamics of the investment wedge
(τ k(θt+1)). Intuitively, because fθk > 0, higher funds increases information rents. That is, it
makes diversion of funds relatively more attractive for higher types. Increasing information
rents is more costly when the expected shadow costs µt are high, i.e. when the planner has
promised to provide more insurance.

It has been shown that with persistent private information, the shadow costs of insurance µt
(and so wedges) tend to increase over time (Farhi and Werning (2013), Makris and Pavan
(2020)13). Not surprisingly, this is also true in this model, which implies that if types are
persistent firm size will tend to decrease over time. To see this, iterate backward on equation
(15) to get

τ k(θt)

u′(θt)

fk(θ
t)

fθk(θt)
=

t−1∑
τ=0

(
β

q

)τ τ−1∏
s=0

ρ̂t−s(θ
t−s)MBt−τ (θ

t−τ ) (23)

The right-hand side of this equation is the same as in Hellwig (2021), but with ρ̂ computed
under the incentive adjusted measure (17) instead of with m′(θt)

m(θt)
= UθC(θt)

UC(θt)
. In a separable

model with utility as in (20), one also obtains the same formula but with ρ, i.e. with impulse
responses under the original type measure.

The formula shows that the incentive cost of increasing a type’s consumption grows with the
distance from the starting period. Intuitively, imagine the principal increases consumption

13The early papers attributed these wedge dynamics to the variance of the types increasing over time,
which is the case if the type process follows a random walk. However, Makris and Pavan (2020) have
clarified why this intuition is incomplete, as wedges can increase even the variance of the types decreases
over time. As it will be shown in the numerical simulations, the wedges are initially increasing even with an
AR(1) process.
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of all types (θt−1, θ̃t) with θ̃t > θt . To preserve incentive compatibility, the principal needs
to adjust the information rent of all types (θt−2, θ

′
t−1) with θ′t−1 > θt−1. Because if types are

persistent (i.e ρt(θt) > 0), types θ′t−1 > θt−1 have a higher probability of being type θ̃t at
period t. This adjustment has to be done for all types (θτ−1, θ

′
τ−1) with θ′τ−1 > θτ−1 at all

periods τ < t. Therefore, these costs will tend to increase over time if types are persistent.
For a clearer and more detailed intuition on this, see Makris and Pavan (2020). However,
as it will be shown in the numerical simulations, the wedges may converge to a stationary
distribution. It is important to stress that, for every type θt, firm size (kt+1(θt)) is never
larger than in the initial period. The reason is that the principal initializes the contract by
setting ∆0 freely. So ∆0 is set to not have any “extra” promised insurance. So for every θt,
the wedges will not be smaller than in the initial period.

The change of measure can amplify or dampen the persistence of the wedges. We have
ρ̂t(θ

t) R ρt(θ
t) if ρt(θ, θt−1)u

′′(θ,θt−1)fθ(θ,θt−1)
u′(θ,θt−1)

is increasing/constant/decreasing in θ (see propo-
sition 3 in Hellwig (2021)). If we assume that the type process is AR(1) with autoregressive
paramater ρ (i.e ∂ϕt(θt|θt−1)

∂θt−1 = −ρ∂ϕt(θt|θ
t−1)

∂θt
and ρt(θt) = ρ) and that the production function

is linear in the type (i.e fθθ = 0). Then we have ρ̂t(θt) = ρ (resp. ρ̂t(θt) > ρ ) if the agent
has CARA (resp. CRRA) utility.

It is also important to remark that both risk aversion and persistence are necessary to have
investment wedges increasing over time. If the agent is risk-neutral we haveMBt−τ (θ

t−τ ) = 0.
If the type process is not persistent we have ρ̂t(θt) = ρt(θ

t) = 0 and

τ k(θt)

u′(θt)

fk(θ
t)

fθk(θt)
= MBt(θ

t) (24)

so the wedges and firm size are stationary. As discussed in section 3, the higher incentive cost
of redistributing to lower types makes µt smaller than in comparable models with separable
preferences. Therefore, as will be verified in the numerical simulations, the wedges and
distortions are small, especially when types are i.i.d.

The firm size dynamics generated by this model appear to be contradictory with what is
regularly observed in the data. Firms usually start small and gradually grow over time.
In Appendix D.2, I study a model where the entrepreneur has limited commitment. The
firm dynamics induced by this type of model do not change in any meaningful way once
risk aversion and persistent private information are introduced. So this type of friction can
still generate dynamics where firm size increases over time (as found in Albuquerque and
Hopenhayn (2004)). In section 7, I discuss in more detail why models with risk neutrality
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generate different firm dynamics and it’s implications.

More generally, the firm lifecycle dynamics are driven by many different frictions. This model
could generate more consistent firm dynamics in a straighfforward manner by allowing for a
drift in the productivity process {θt}. Then, this type of friction may act as a constraint on
the size that firms can eventually reach rather than on the growth of young firms. This may
then help explain other empirical facts. For instance, in developing economies, where financ-
ing frictions are more stringent, we observe fewer large firms (Hsieh and Klenow (2014)).

4.2 Compensation dynamics

The dynamics of the entrepreneur’s marginal utility and consumption can be characterized
by a Generalized Inverse Euler Equation (GIEE), as in Hellwig (2021). The only differ-
ences are the change of measure and the static wedges. As in the standard Inverse Euler
Equation, the principal arbitrages between period t inverse marginal utility and period t+ 1

discounted expected inverse marginal utility. However, expectations are taken with respect
to the incentive-adjusted probability measure because consumption at t+ 1 has to be redis-
tributed non-linearly to preserve incentive compatibility. Moreover, an extra wedge emerges
that captures how savings decisions affect marginal information rents at periods t and t+ 1.
Changes in marginal information rents at t + 1 are passed as a cost at period t at rate
ρt+1(θt+1). So the size and sign of the savings wedge depends on the persistence of the
process. This wedge is then scaled by the cost of insurance provision at period t.

Proposition 5. In the optimal allocation, at any history θt the following Generalized Inverse
Euler Equation holds

q

β
Ê
[

1

u′(θt+1)
|θt
]

=
1

u′(θt)
(1 + s(θt)) (25)

where

s(θt) =

(
φfθ(θ

t)u′′(θt)

u′(θt)
− Ê

[
ρt+1(θt+1)

φfθ(θ
t+1)u′′(θt+1)

u′(θt+1)
|θt
])

fk(θ
t)

fθk(θt)
τ k(θt) (26)

The entrepreneur’s marginal utility process can follow a sub- or super- martingale. But as I
now show, this only depens on the sign of the savings wedge s(θt). For exposition, set q

β
= 1,

then if peristence (i.e. ρt+1(θt+1)) is not too high, we have s(θt) < 0. So

1

u′(θt)
> Ê

[
1

u′(θt+1)
|θt
]
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this then implies that marginal utility follows a sub-martingale14

u′(θt) < E
[
u′(θt+1)|θt

]
Thus, we have the well-known immiseration dynamics recurrent in private information mod-
els with risk aversion. If persistence is high enough, we may have s(θt) ≥ 0 for some types.
So inverse marginal utility follows a sub-martingale under the incentive-adjusted measure,
i.e.

1

u′(θt)
≤ Ê

[
1

u′(θt+1)
|θt
]

The implications for the dynamics under the original type measure are now less direct.
Multiplying m(θt+1) by u′(θt+1)

u′(θt+1)
this inequality can be rewritten as

u′(θt) ≥ E
[
u′(θt+1)|θt

]
+

1

E
[
m(θt+1)
u′(θt+1)

|θt
]cov(u′(θt+1),

m(θt+1)

u′(θt+1)
|θt
)

Therefore, the dynamics are preserved under the original type measure if the covariance term
is non-negative. Because u′(θt+1) is decreasing, the covariance is non-negative if m(θt+1)

u′(θt+1)
is

weakly decreasing θt+1. Differentiating it is easy to see that this is the case if fθ(θt+1) −
c′(θt+1) ≥ 0, or equivalently if v′(θt+1) ≥ 0, which is the case by the IC constraint.

The savings wedge takes a particularly simple form with CARA utility u(c) = −e−σc with
σ > 0. Assume also an autoregressive process ρt(θt) = ρ and f(k, θ) = θkα, then

s(θt) = −σφθt × τ k(θt)× (kαt − ρkt+1(θt)α)

hence s(θt) < 0 if ρ <
(

kt
kt+1(θt)

)α
. With fixed capital (kt = k) and φ = 1 this models nests

a hidden endowment model. Moreover, with CARA utility, it is also equivalent to a taste
shocks model as in Atkeson and Lucas (1992). In this case, s(θt) = 0 and marginal utility
follows a supermartingale if and only if the type process has a unit root (ρ = 1). This result
has been shown for more general utility functions in Bloedel et al. (2018) and Bloedel et al.
(2020), which have corrected the findings in Williams (2011) and shown there is immiseration
whenever there is some mean-reversion in the type process. Thus, for CARA utility, the GIEE
provides a very direct characterization of the effect of persistence on consumption dynamics.

14To see this, first Ê
[

1
u′(θt+1) |θ

t
]
≥ E

[
1

u′(θt+1) |θ
t
]
because Φ first-order stochastically dominates Φ̂ and

1
u′(θt) is increasing in θt. And then E

[
1

u′(θt+1) |θ
t
]
≥ 1

E[u′(θt+1)|θt] by Jensen’s inequality.
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Note also that time-varying capital should generate an extra force towards immiseration.
As we should have

(
kt

kt+1(θt)

)α
decreasing in θt15, given some high enough ρ there can exist

a θ̃t such that s(θt) < 0 if θt ≤ θ̃t and s(θt) ≥ 0 otherwise. Intuitively, because fθk > 0,
higher capital increases information rents. If lower types will have less capital at t+ 1, their
incentive constraints will be less tight. Hence, the benefit of increasing consumption at t+ 1

to lower information rents is smaller for lower types.

In sum, unless we consider a unit root process and assume that capital is fixed, we should
expect the marginal utility process to follow a sub-martingale. As I will next show, this is
the case in all the numerical simulations performed. In practice, the sub-martingale process
implies that, on average, the marginal utility will tend to increase over time and that the
variance of consumption and marginal utility will increase over time without bound.

5 Numerical simulations

In this section, I numerically solve and simulate the model. This will help us better un-
derstand the results in the previous section and allow us to quantify the effect of persistent
private information on firm size and compensation dynamics. The numerical simulations
will also be used to guide the implementation in the next section. I assume the agent has
log-utility

u(c) = log(c)

and the production function is given by

f(k, θ) = zθkα

where α ∈ (0, 1) and z is a positive constant used to scale up the problem. The agent’s
productivity follows a geometric AR(1) process

θt = θρt−1εt

where log(εt) ∼ N(µ, σ2
ε) . I set α = 3/4 and assume the lender and the entrepreneur

have the same discount rate β = q = 0.95. For the productivity process, I set µ = 1 and
15This would not be the case, if for some types θ′t > θ′′t , the effect of higher wedges at t + 1 for type θ′t

is stronger than from the higher expected productivity. The numerical simulations verify that kt+1(θt) is
indeed increasing in θt, see figure 6 in Appendix A.
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σ2
ε = 0.01. The comparative statics of this section focus on the effect of the persistence ρ,

the model is solved with ρ = 0 (i.i.d types) and ρ = 0.7. For the i.id case, I also solve the
model with different parametrizations of the utility function (CRRA with higher risk aversion
and CARA), the results can be found in Appendix A. Details on the solution method and
algortihm can be found in Appendix C. After solving for the value functions (K, v and
∆), the policy functions (ct, λt+1, γt+1 and kt+1) and the costate (µt), I run a montecarlo
simulation with 106 draws over 25 periods each.

Figure 1 illustrates the evolution of the mean and standard deviation of consumption along
the cross section over time with ρ = 0 and ρ = 0.7. As expected, the variance of consumption
is permanently increasing in both cases. With log utility and i.i.d types average consump-
tion is extacly constant. If the relative risk aversion is higher, average consumption slowly
decreases over time (see figure 10 in Appendix A). We can observe that with persitence,
there is also a small increase in average consumption in the initial periods. Since the savings
wedge s(θt) is proportional to the investment wedge τ k(θt), this should be driven by the
initial increase in the investment wedge (see figure 2).

To visualize the immiseration dynamics, in figure 5 in Appendix A I plot the mean and
variance of the marginal utility of consumption over a long time horizon. Even if average
consumption is constant, average marginal utility increases over time because the agent is
risk averse. Moreover, average marginal utility increases very slowly, such that it may be
irrelevant for the usual lifespan of a firm.

Figure 1: Consumption dynamics

(a) i.i.d (ρ = 0) (b) Persistence (ρ = 0.7)
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Figure 2 shows the firm size and investment wedge dynamics. In both cases, the firm size
closely follows the dynamics of the investment wedge. With i.i.d shocks, the wedges are
stationary and so firm size is constant. Moreover, as discussed, the wedges are small, so firm
size is also very close to the first best level. If the process is persistent, at the first best, firm
size is stationary and all variation is driven only by differences in expected returns. At the
second best, we can observe that on average, the wedges tend to increase over time and firm
size tends to decrease. However, the wedges do not increase indefinitely, over time they also
converge to a stationary distribution. Overall the decrease in firm size does not appear to
be large, as the wedges remain small. The decrease would be larger with higher risk aversion
or persistence.

Figure 2: Firm size and investment wedge dynamics

(a) Size (k) i.i.d (ρ = 0) (b) Size (k) with persistence (ρ = 0.7)

(c) Investment wedge (τk) i.i.d (ρ = 0) (d) Investment wedge (τk) with persistence (ρ = 0.7)
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6 Third best implementation

This section aims to look for simpler (third best) contracts that can get very close to the
second best optimal contract studied. First, I use regressions with the model simulated data
to better understand the compensation dynamics. Then, I propose a contract and use the
simulated data and regression estimates to calibrate key parameters of the contract. Finally,
I solve the entrepreneur’s problem under the third best contract and compare consumption
dynamics with the second best.

I start by studying the model with an i.i.d type process. I show how giving a constant equity
share and allowing him to pledge his shares as collateral and borrow to smooth consumption
gives a very close approximation to the optimal contract. Then I discuss how, with persistent
types, the contract has to allow for a time-varying equity share.

6.1 i.i.d types

Because lending is approximately constant with an i.i.d type process, I fix capital to the
second best level kSB from figure 2 and focus on implementing the compensation dynam-
ics. I use the simulated data from section 5 to run regressions of consumption on returns
and promised utility. The results can be found in table 1. The regressions give three key
observations :

1. Variation in returns at any period t − k has the same effect as returns at t on con-
sumption at t (column 2). Relatedly, consumption follows a random walk (column 5).
Suggests that compensation is perfectly smoothed across periods.

2. The effect of returns on compensation does not depend on current promised utility.
Note the interaction returnst × vt−1 is close to 0 in column 3.

3. The effect of returns on compensation is close to linear. Note in column returns2
t is

close to 0 in column 4.

Points 2. and 3. suggest that a constant equity share can be a good approximation. Point
1. indicates that in the implementation, the entrepreneur’s implicit wealth can be used to
perfectly smooth consumption intertemporally. As is known the promised utility can be
naturally mapped to the agent’s wealth (Atkeson and Lucas (1992), Brendon (2022)). Let
Wt denote the agent’s wealth and χ the equity share, i.e. the portion of cash flows accruing

23



Table 1: Regressions with i.i.d type process

(1) (2) (3) (4) (5)
ct ct ct ct ct

returnst 0.0481∗∗∗ 0.0484∗∗∗ 0.0482∗∗∗ 0.0553∗∗∗
(15830.95) (415.74) (139.87) (1050.38)

vt−1 0.199∗∗∗ 0.199∗∗∗ 0.199∗∗∗
(29257.84) (2770.02) (29265.77)

returnst 0.0475∗∗∗
(408.20)

returnst ∗ vt−1 -0.00000361
(-0.29)

returns2
t -0.000616∗∗∗

(-136.28)

ct−1 1.000∗∗∗
(10906.36)

N 4900000 4400000 4900000 4900000 4800000
R2 0.999 0.072 0.999 0.999 0.961
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

to the entrepreneur . Let f(kSB) = E [f(kSB, θt)] denote the expected returns if capital is kt.
The entrepreneur also receives initial cash W0

16. Therefore, at period 1 the entrepreneur’s
wealth is

W1 = W0 +
χf(kSB)

1− q

At every period, after returns realized, if the entrepreneur does not misreport, his wealth
changes by χ

(
f(kSB, θt)− f(kSB)

)
. So the LOM of the entrepreneur’s wealth follows

ct +Wt+1 =
1

q
Wt + χ

(
f(kSB, θt)− f(kSB)

)
≡ C(Wt, θt) (27)

Therefore, this contract is equivalent to allowing the entrepreneur to pledge his shares as
collateral and borrow to consume. This practice is prevalent; Fabisik (2019) reports that be-
tween 2007 and 2016, 7.6% of CEOs of US public companies had pledged shares. Moreover,
she estimates that 90.5% of CEOs use it to obtain liquidity while maintaining ownership.
This motive is consistent with this implementation. Pledging shares aligns the entrepreneur’s

16This is just a free variable used to match the chosen initial promised utility in the second best, so we
may have also have W0 < 0 if the entrepreneur initial transfers funds to the lender.
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consumption with the firm’s value but without having to sell shares, which is costly as it
reduces the entrepreneur’s incentives. Moreover, the implementation is independent of divi-
dend payout policies. Notice that it is equivalent if the extra returns

(
f(kSB, θt)− f(kSB)

)
are paid as dividends or are kept as savings inside the firm, and the entrepreneur and the
firm face the same interest rate q.

The next step for the numerical implementation is to obtain a value for χ. I back out this
value from the regressions on model simulated data. For an entrepreneur that does not
misreport and is allowed to save by himself, to a first order approximation, we have

dct
df(kt, θt)

≈ (1− q)χ

So χ can be identified from the regressions as χ̂ = βreturns
(1−q) = 0.0481

0.05
= 0.962 ≈ φ, where

βreturns is the regression coefficient on returns in column (1) of table 1. So I set directly
χ̂ = φ. Then, given χ̂, the entrepreneur recursive problem with wealth Wt and productivity
θt is

W(Wt, θt) = max
θ̃
u(c̃t) + βV(Wt+1)

s.t Wt+1 = qC(Wt, θ̃t) (28)

ct = (1− q)C(Wt, θ̃t)

c̃t =ct + φ(f(kSB, θ)− f(kSB, θ̃))

Where V(Wt+1) = E [W(Wt+1, θt+1)], C(Wt, θt) = 1
q
Wt + χ̂

(
f(kSB, θ̃t)− f(kSB)

)
and W0

is chosen such that V(W0) = v1, i.e. the promised utility under the direct mechanism.
Notice that, throughout the paper, I have assumed that the entrepreneur cannot secretly
save. So in the implementation, there is a double deviation problem if the entrepreneur is
allowed to save freely. That is, the entrepreneur deviates by misreporting funds and saving
more. For this reason, I assume that the lender directly assigns a consumption/savings level
given the entrepreneur’s report and wealth (Wt, θ̃t). Equivalently, we can imagine that the
entrepreneur is penalized if the lender observes that his savings choices are not optimal given
the reported type and wealth.

I solve numerically for the policy functions θ̃(Wt, θt) in the entrepreneur’s problem (28).
Then, I run the same montecarlo simulation as for the optimal allocation and compare the
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results17. Table (8) in Appendix A shows that the consumption and repayment are very close
to that of the optimal allocation and that this contract induces very little diversion of funds.
The assumption of log utility also simplifies the implementation as in the optimal allocation
average consumption is constant. With CRRA utility and higher risk aversion average con-
sumption slowly decreases over time. So in this case, for a more accurate implementation
would require an extra wedge between the market interest rate q and the rate given to the
entrepreneur. However, the same contract still delivers a good approximation, see figure 9
in Appendix A.

6.2 Persistent types

With persistent private information, there is an extra state variable in the recursive planning
problem (11), ∆t−1. This state variable captures how much insurance is provided to the
agent, as equation (10) can be written as

∆t−1 = E
[
ρ(θt)ẇ(θt)|θt−1

]
(29)

Therefore, given a level of persistence, a lower ∆t−1 implies more insurance is provided to the
agent. In this implementation, the level of insurance provided to the entrepreneur naturally
maps to the equity share. Thus, the implementation with i.i.d types of section (6.1) may
also be a good approximation of the optimal contract with persistence if augmented with a
time-varying equity share. Intuitively, lowering the entrepreneur’s equity is beneficial as it
increases insurance, but it also comes at the cost of increasing the entrepreneur’s incentives
to misreport funds. If types are persistent, there is an extra gain of lowering the equity share
at period t+ 1 because it helps screen types.

This can also be verified in the regressions with model simulated data. In the regression
table 2 in column (1), we can observe that the coefficient on interaction term ∆t−1 × θt is
positive. So when the lender has promised high insurance (i.e low ∆t−1), the entrepreneur’s
compensation is less sensitive to the type realization. However, as discussed below, with
persistence, it is less straightforward to infer the equity share from these regressions.

17To have accurate comparisons, in the montecarlo simulations, for each realization of the shock process
{εt}25t=1 I compute consumption and repayment for both the optimal allocation and the implementation.
Then for each realization and period, I compute the distance and average across all draws. That is, I

compute for cdistt =
∑
i

√(
cSBt ({εi.τ}tτ=1)− cTBt ({εi.τ}tτ=1)

)2, where cSB is the consumption under the
optimal allocation and cTB under the implementation, and similarly for repayment b.
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Table 2: Regressions with persistent type process

(1) (2) (3)
ct ∆t γt

θt -0.179∗∗∗ (-115.01)
∆t -1.139∗∗∗ (-262.03)
θt ×∆t 0.437∗∗∗ (571.15)
∆t−1 0.470∗∗∗ (856.18)
θt−1 0.856∗∗∗ (125.27) 1.736∗∗∗ (3727.13) 0.0112∗∗∗ (244.54)
vt 0.141∗∗∗ (384.54)
vt−1 -0.0504∗∗∗ (-943.57)
θ2
t−1 -0.113∗∗∗ (-497.06) -0.0178∗∗∗ (-801.45)
θt−2 -0.652∗∗∗ (-653.63) 0.00517∗∗∗ (666.30)
γt−1 0.689∗∗∗ (5130.61)
N 2300000 2200000 2200000
R2 0.997 0.998 0.985
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

To gain intuition, imagine that, at period t, the lender offers to buy some equity to type
(θt−1, θ′). Assume also that the lender offers to pay him the certainty equivalent price
P∆χ((θt−1, θ′)) such that he is indifferent between accepting the offer or rejecting it. If
returns are persistent, types (θt−1, θ′′) with θ′′ > θ′ have higher expected returns at period
t + 1. So it is not attractive for them to sell equity at price P∆χ((θt−1, θ′)). Therefore, the
lender can use equity purchases, which inefficiently lower the equity share, to better screen
types.

More formally, this intuition is related to the Atkinson and Stiglitz (1976) result for com-
modity taxation. With i.i.d shocks, less productive entrepreneurs are also more willing to
sell equity as they have higher marginal utility. But in this case, the willingness to sell eq-
uity does not reveal any information to the lender that is not already contained in reported
returns. With persistence, lower types would be more willing to sell equity even if they had
the same marginal utility as higher types. So the lender optimally distorts the equity share
as it directly reveals information about the entrepreneur’s productivity.

(Note: The implementation with persistence is still work in progress, but I write some initial
steps here)

The first step toward the implementation is understanding the stochastic process of the
equity share. For this, it is easier to focus on the multiplier of the constraint (29), denoted
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by γt, instead of ∆t−1 directly. Combining the FOC for ∆t(θ
t) and equation (15), we obtain

γt+1(θt) =
q

β
ρ̂(θt)γt(θ

t−1)− q

β
MB(θt)

which resembles an autoregressive process with innovations given by MB(θt), see figure 2.
The implementation is also complicated by the inverse u-shape of γt+1(θt) over θt. To see
this, note the first order condition for ∆t(θ

t) is

γt+1(θt) = −β
q

µt(θ
t)

ϕt(θt|θt−1)

and the co-state µt goes to zero as θt → θ, θ, see figure 7 in Appendix A. So, unless the
shocks are Pareto distributed, there should be no distortion at the top and bottom in the
equity share at t + 1. The second step is understanding the LOM of the entrepreneur’s
wealth with persistence and share purchases and sales. The issue is that the equity share
cannot be identified from the regressions as for the i.i.d case, as the equity purchases and
sales also affect the entrepreneur’s wealth and consumption. To start, consider first the case
with persistence but fixed equity share. Denote

f t+1(θt) = E

[
∞∑
τ=1

qτ−1f(k(θt+τ−1), θt+τ )|θt

]

then the entrepreneurs cash on hand at period t if he reports type θ̃t and his past type report
was θ̃t−1 is

C(Wt, θ̃t, θ̃t−1) =
1

q
Wt + χ

(
ft(kt(θ̃

t−1), θ̃t) + qf t+1(θ̃t)− ft(θ̃t−1)
)

Note that with persistence, after a high report, the entrepreneur also obtains a capital gain
because the net present value of the firm’s cash flows increases. Now consider that the lender
can buy (sell) equity ∆χt+1 = χt+1 − χt < 0 (> 0) at per-unit price P∆χt+1(θ̃t) > 0. Then
we have

C(Wt, χt, θ̃t, θ̃t−1) =
1

q
Wt + χt

(
ft(kt(θ̃

t−1), θ̃t) + qf t+1(θ̃t)− ft(θ̃t−1)
)

−∆χt+1(θ̃t)
(
P∆χt+1(θ̃t)− qf t+1(θ̃t)

)
There are now four terms that depend on the current period type, compared to only one in
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the i.i.d case. ∆χt+1(θ̃t) could potentially be backed out from the the difference γt+1(θt)−γt.
f t+1(θ̃t) can be computed numerically. The equity prices P∆χt+1(θ̃t) may be more challenging,
one approach could be to restrict it to be the price such that the entrepreneur is indifferent,
and then try to approximate the risk premium.

7 Comparison with risk-neutral and equity dynamics

The implementation helps understand the different firm size dynamics with risk neutrality
and risk aversion. With risk neutrality, as long as the limited liability constraint is satisfied,
increasing the agent’s exposure to risk bears no cost. After high returns, it is optimal to
compensate the entrepreneur with a higher stake on the project, i.e. by increasing his equity
share. Therefore, with risk neutrality, the entrepreneur’s promised utility maps to the value
of equity, as shown in Clementi and Hopenhayn (2006).

If the entrepreneur is risk averse, increasing his exposure to risk through a higher equity
share is costly. In the numerical simulations with CRRA utility, I find that the entrepreneur’s
exposure to returns is independent of his promised utility. So with i.i.d types, a constant
equity share and mapping the entrepreneur’s promised utility to his private wealth gives a
good approximation to the optimall allocation. With persistent types, the equity share is
also time-varying as for the risk neutral model, but the driving forces are different. With
persistence, the lender has an incentive to lower equity below the efficient level at t+ 1 as it
helps screen types at period t. Hence, over time, the equity share of the entrepreneur tends
to decrease. When the equity share is low, the entrepreneur has more incentives to divert
funds, so the lender is less willing to lend high capital.

Consequently, both models obtain a positive relation between equity and firm size. However,
equity drifts in opposite directions. With risk neutrality, equity drifts upwards, but with risk
aversion and persistence, equity drifts downwards. The model with risk neutrality obtains
that firm size converges to the first best level only because the entrepreneur’s equity share
goes to one. That is, he becomes the sole owner of the firm and the value of debt and outside
equity go to zero. These equity dynamics are inconsistent with what is observed in the data.
Accordingly, to simultaneously explain firm size and equity dynamics, it may be necessary
to break the tight link between equity and firm size that these models generate.

In the numerical simulations, it turned out that a linear compensation with a constant equity
share gave a very close approximation. More generally, this may not always be the case, and
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if compensation is more nonlinear extra instruments such as stock options would be needed
(see Fu and Krishna (2019)). However, the main point should still stand. The relevant state
variable for an implementation with these instruments would be promised insurance (∆t−1),
not promised utility (vt−1).

In what follows, I analyze the implications of the model for the role of the capital structure
on the firm’s value (the Modigliani-Miller theorem) and the link between the financing con-
straints and the investment-cash flow sensitivity. In both cases, I find similar results to the
risk neutral model only if promised insurance is considered to be the relevant variable for
the firm’s capital structure and financing constraints. This would not be the case if we took
promised utility as the relevant state variable.

Modigliani-Miller and promised utility With risk-neutrality, the firm’s value depends
on the value of equity (or promised utility), so the Modigliani-Miller theorem does not hold
(Clementi and Hopenhayn (2006)). Interestingly, I find in the numerical simulations that,
with risk aversion, the value of the firm does not vary with the initial promised utility
given to the lender. So in this sense, Modigliani-Miller does hold “over promised” utility.
This observation corroborates the idea of the implementation with risk aversion presented in
the previous section. Promised utility does not map properly to the entrepreneur’s equity,
instead, it maps to the entrepreneur’s private wealth.

I illustrate these differences in panels (a) and (b) of figure 3. Panel (a) shows the net present
value of the firm cash flows for different initial levels of promised utility. As we can observe,
the line is approximately flat. Panel (b) shows a plot of the firm’s value also as a function
of promised utility with risk neutrality from Clementi and Hopenhayn (2006). By contrast,
the firm’s value is now increasing in promised utility until the region where the firm reaches
it’s first best value . Panel (c) and (d) also show the net present value of the firm but with
persistent types. In (c), I fix the promised insurance ∆t−1 and vary promised utility vt−1.
Similar to the i.i.d case, the firm’s value does not vary much with promised utility. In (d),
I instead fix vt−1 but vary ∆t−1, now similar to (b) the firm’s value decreases more as ∆t−1

decreases. This supports the idea that with risk aversion, it is promised insurance what
maps to the entrepreneur’s equity share and so what affects the firm’s capital structure.
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Figure 3: Value of the firm over initial promised utility or insurance: Risk averse vs Risk
neutral

(a) NPV cash flow with risk aversion and i.i.d (b) Value of the firm with risk neutrality (from Clementi
and Hopenhayn (2006))

(c) NPV cash flow with risk aversion and persistence
(over v0)

(d) NPV cash flow with risk aversion and persistence
(over ∆0)

Investment-cash flow sensititivty Starting with Fazzari et al. (1988), an extensive em-
pirical literature used the sensitivity of the firm’s investment to its cash flow as a measure of
financing constraints. Later on, Kaplan and Zingales (1997) provided convincing evidence
that there is no relation between the investment-cash flow sensitivity and financing con-
straints. Setting the empirical debate aside, we may ask whether, in an environment where
financing constraints are an endogenous outcome of the optimal contract, do we observe
higher investment-cash flow sensitivity for financially constrained firms? The answer is posi-
tive with risk neutrality (Clementi and Hopenhayn (2006), DeMarzo and Fishman (2007a)).
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Panel (b) of figure 4 (from Clementi and Hopenhayn (2006)) shows that investment responds
more to the cash flow realization when the value or equity (or promised utility) is low.

The answer to this question with risk aversion and persistence will depend again on what state
variable of the optimal contract best relates to financing constraints. In panel (a), I plot the
average growth rate of capital kt+1(θt)

kt
at the different quartiles of the distribution of the shock

εt over different values of promised utility. Mechanically, we will observe some investment-
cash flow sensitivity when shocks are persistent even without financing constraints. For
this reason, the figure also contains the growth rates in the first best (dashed lines). As
we can observe, the sensitivity of investment now does not depend on the promised utility.
This observation is again consistent with the idea that with risk aversion, promised utility is
related to the entrepreneur’s private wealth but not to the financing constraints that the firm
faces. Panel (c) contains the same type of plot but now varies the promised insurance (∆t).
Although the effects are minimal, as ∆t decreases, the growth rate kt+1(θt)

kt
is relatively higher

for the high cash flow realization. So if ∆t is the relevant measure of financing constraints,
then there is some positive relation between investment-cash flow sensitivity and financing
constraints, but the effect appears to be very small.
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Figure 4: Growth rate capital (firm size) by type realization

(a) With risk aversion and persistent types (over
promised utility λt)

(b) With risk neutrality and i.i.d types (from
Clementi and Hopenhayn (2006))

(c) With risk aversion and persistent types (over
promised insurance γt)

8 Conclusion

In this paper, I have studied a dynamic cash flow diversion model with a risk averse agent
that has persistent private information about the firm’s productivity. I have used the first
order approach and a change of measure to solve and derive analytical characterizations of
the optimal contract. The firm size and compensation dynamics differ significantly from
models with risk neutrality. Most notably, firm size tends to decrease over time, as opposed
to models with risk neutrality. The implementation helps understand the opposite size
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dynamics. Equity drifts upwards with risk aversion and (in the implementation) downwards
with risk aversion and persistence. These findings suggest that it may be challenging for this
type of models to generate realistic firm size and equity dynamics. As in the risk neutral
case, firm size converges to the first best only because the entrepreneur’s equity share goes
to one.

The implementation section is still work in progress. The next steps include solving the
third best implementation with persistence numerically, and trying to derive a full second
best implementation with a specific parametrization such as CARA utility and a unit root
process.
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A Additional tables and figures

Figure 5: Immiseration in the long run

(a) Marginal utility i.i.d (ρ = 0) (b) Marginal utility with persistence (ρ = 0.7)

37



Figure 6: Relation kt+1(θt) and θt

Figure 7: Shadow cost insurance µ at different γ

Figure 8: Simulations implementation i.i.d
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Figure 9: Simulations implementation i.i.d and CRRA with σ = 2

Figure 10: CRRA utility with σ = 2

(a) Consumption i.i.d (ρ = 0) (b) Firm size i.i.d (ρ = 0)
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Figure 11: CARA utility

(a) Consumption i.i.d (ρ = 0) (b) Firm size i.i.d (ρ = 0)

B Derivations and proofs

The Hamiltonian of the recursive principal’s problem is

H =
[
kt+1(θt)− bt(θt) + qKt+1(vt(θ

t),∆t(θ
t), θt, kt+1(θt))

]
ϕt(θt|θt−1)

−λtϕt(θt|θt−1)
[
wt(θ

t)− vt−1

]
− γtϕt(θt|θt−1)

[
wt(θ

t)E(θt, θ
t−1)−∆t−1

]
+µt(θ

t)
[
u′(f(kt, θt)− bt(θt))φfθ(kt, θt) + β∆t(θ

t)
]

+ξt(θ
t)ϕt(θt|θt−1)

[
wt(θ

t)− u(f(kt, θt)− bt(θt))− βvt(θt)
]

The first order conditions are

bt(θ
t) :

ξt(θ
t) =

1

u′(θt)

[
1 +

µt(θ
t)

ϕt(θt|θt−1)
φfθ(θ

t)u′′(θt)

]
(30)

The envelope conditions are
∂Kt+1

∂vt(θt)
= λt+1(θt) (31)

∂Kt+1

∂∆t(θt)
= γt(θ

t) (32)
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∂Kt+1

∂kt+1(θt)
= (33)

E
[
−ξt+1(θt+1)u′(θt+1)fk(θ

t+1) +
µt+1(θt+1)

ϕt+1(θt+1|θt)
(
u′′(θt+1)φfθ(θ

t+1)fk(θ
t+1) + u′(θt+1)φfθk(θ

t+1)
)
|θt
]

Using the envelope conditions (31) and (32) we get

vt(θ
t) :

λt+1(θt) =
β

q
ξt(θ

t) (34)

∆t(θ
t) :

γt+1(θt) = −β
q

µt(θ
t)

ϕt(θt|θt−1)
(35)

Substituting (30) and (33) into the FOC for kt+1(θt) we get

1

q
= E

[
fk(θ

t+1)− µt+1(θt+1)

ϕt+1(θt+1|θt)
u′(θt+1)φfθk(θ

t+1)|θt
]

(36)

using τ k(θt) = µt(θt)
ϕt(θt|θt−1)

u′(c(θt))φfθk(k(θt),θt)
fk(k(θt),θt)

we have

1

q
= E

[
fk(θ

t+1)(1− τ k(θt+1))|θt
]

which proves Proposition 5. Finally the LOM for the co-state is

µ̇t(θ
t) = −

[
ξt(θ

t)− λt − γtE(θt, θ
t−1)
]
ϕt(θt|θt−1)

Proof Proposition 1 Set µt(θt) = 0, then from equation (36) we obtain point 3. For
point 2, note that with µt(θt) = 0 the LOM of the co-state becomes

ξt(θ
t) = λt

From equation (30),
1

u′(θt)
= ξt(θ

t)

and using (34) gives point 2. Point 1 holds in the first best and second best allocations.
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Proof Proposition 2 These are the same steps as proposition 1 in Hellwig (2021). Sub-
stitue ξJt (θt) in the LOM of the co-state:

µ̇t(θ
t) + µt(θ

t)
u′′(θt)φfθ(θ

t)

u′(θt)
= −

[
1

u′(θt)
− λt − γtE(θt, θ

t−1)

]
ϕt(θt|θt−1)

substitute m′(θt)
m(θt)

= u′′(θt)φfθ(θt)
u′(θt)

, using the boundary conditions µt(θ) = 0 and µt(θ) = 0 and
integrating upwards

µt(θ
t)m(θt) =

∫ θ

θt

[
λt + γtE(θ′, θt−1)− 1

u′(θ′, θt−1)

]
ϕt(θ

′|θt−1)m(θt)dθ′

Using the definition of the incentive-adjusted measure

µt(θ
t)

ϕt(θt|θt−1)
=

1− Φ̂t(θt|θt−1)

ϕ̂t(θt|θt−1)

{
Ê
[

1

u′ (θ′, θt−1)
| θ′ ≥ θt, θ

t−1

]
− γtÊ

[
E(θ′, θt−1) | θ′ ≥ θt, θ

t−1
]
− λt

}
(37)

To get λt, note that using the boundary conditions we have

0 =

∫ θ

θ

[
λt + γtE(θ′, θt−1)− 1

u′(θ′, θt−1)

]
ϕt(θt|θt−1)m(θt)dθ′

Or
λt = Ê

[
1

u′ (θt)
| θt−1

]
− γtÊ

[
E(θt, θ

t−1) | θt−1
]

Substiuting back λt into equation (37) and using the definition of ρ̂(θt) (equation (18)) we
get the solution.

Proof Proposition 3 Using ϕ̂(θt|θt−1) = ϕ̃t(θt|θt−1)u′(θt)

Ẽ[u′(θt)|θt−1]
, we have the following equiva-

lences

Φ̂t(θt|θt−1) = Φ̃(θt|θt−1)
Ẽ [u′(θ′)|θ′ ≤ θt, θ

t−1]

Ẽ [u′(θt)|θt−1]
(38)

Ê
[

1

u′ (θt)
| θt−1

]
=

1

Ẽ [u′(θt)|θt−1]
(39)

Ê
[

1

u′ (θ′)
| θ′ ≥ θt, θt−1

]
=

1− Φ̃(θt|θt−1)

Ẽ [u′(θt)|θt−1]− Φ̃(θt|θt−1)Ẽ [u′(θ′)|θ′ ≤ θt, θt−1]
(40)
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Subsituting these into equation (16) and rearranging we get

MB(θt) =
1

ϕ̃t(θt|θt−1)

1

u′(θt)

{
1− Φ̃(θt|θt−1)− 1− Φ̃(θt|θt−1)

Ẽ [u′(θ′)|θ′ ≤ θt, θ
t−1]

Ẽ [u′(θt)|θt−1]

}

=
1− Φ̃t(θt|θt−1)

ϕ̃t(θt|θt−1)

1

u′(θt)

[
1− Ẽ [u′(θ′, θt−1)|θ′ > θt, θ

t−1]

Ẽ [u′(θt)|θt−1]

]

Finally, we also have

Ê
[
E(θt, θ

t−1) | θt−1
]

=
Ẽ [E(θt, θ

t−1)u′(θt)|θt−1]

Ẽ [u′(θt)|θt−1]

subistituting this and equation (39) into (19) shows the second equation of the proposition.

Proof Proposition 4 This proof also follows similar steps to Theorem 1 in Hellwig (2021).
Using the characterization of λt in Proposition 2 and substitute the multipliers λt+1(θt) and
γt+1(θt) from the optimality conditions (34) and (35), and using equation (30) to substitute
for ξt:

1

u′(θt)
+

µt(θ
t)

ϕt(θt|θt−1)

φfθ(θ
t)u′′(θt)

u′(θt)
=
q

β
Ê
[

1

u′(θt+1)
|θt
]

+
µ(θt)

ϕt(θt|θt−1)
Ê
(
E(θt+1, θ

t)|θt
)

(41)

where we can rewrite

Ê
[
E(θt+1|θt)|θt

]
= Ê

[
ρ(θt+1)

φfθ(θ
t+1)u′′(θt+1)

u′(θt+1)
|θt
]

To show this, note we can write

Ê
[
E(θt+1, θ

t)|θt
]

=

∫ θ

θ

E(θt+1, θ
t)
ϕ(θt+1|θt)m(θt+1)

E [m(θt+1)|θt]
dθt+1

=
1

E [m(θt+1)|θt]

∫ θ

θ

(
−
∫ θ

θt+1

E(θ′, θt)ϕ(θ′|θt)dθ′
)′
m(θt+1)dθt+1

Integrate by parts and use E [E(θt+1, θ
t)|θt] =

∫ θ
θ
∂ϕ(θt+1|θt)

∂θt
dθt+1 = 0. Then using the defini-
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tion of ρ(θt+1) and m′(θt)
m(θt)

= u′′(θt)φfθ(θt)
u′(θt)

Ê
[
E(θt+1, θ

t)|θt
]

=

∫ θ

θ

∫ θ

θt+1

E(θt+1, θ
t)ϕt+1(θ′|θt)dθ′ m′(θt+1)

E [m(θt+1)|θt]
dθt+1

=

∫ θ

θ

1

ϕt+1(θt+1|θt)

∫ θ

θt+1

E(θ′, θt)ϕt+1(θ′|θt)dθ′m
′(θt+1)

m(θt+1)

m(θt+1)

E [m(θt+1)|θt]
ϕt+1(θt+1|θt)dθt+1

=

∫ θ

θ

ρ(θt+1)
u′′(θt)fθ(θ

t)

u′(θt)
ϕ̂t+1(θt+1|θt)dθt+1

Substitute back and use the definition of the investment wedge to substitute µt(θt)
ϕ(θt|θt−1)

1

u′(θt)
+
fk(θ

t)

fθk(θt)

τ k(θt)

u′(θt)

fθ(θ
t)u′′(θt)

u′(θt)
=
q

β
Ê
[

1

u′(θt+1)
|θt
]
+
fk(θ

t)

fθk(θt)

τ k(θt)

u′(θt)
Ê
[
ρ(θt+1)

fθ(θ
t+1)u′′(θt+1)

u′(θt+1)
|θt
]

Rearranging we get

q

β
Ê
[

1

u′(θt+1)
|θt
]

=

1 +

[
fθ(θ

t)u′′(θt)

u′(θt)
− Ê

[
ρ(θt+1)

fθ(θ
t+1)u′′(θt+1)

u′(θt+1)
|θt
]]

fk(θ
t)

fθk(θt)
τ k(θt)︸ ︷︷ ︸

≡s(θt)


1

u′(θt)

C Details numerical simulations

I follow a similar procedure as Farhi and Werning (2013), Stantcheva (2017) and Ndiaye
(2020). In these papers (and in Kapička (2013) and Golosov et al. (2016a)), the model
is solved with a geometric random walk process. This allows to normalize the principal’s
optimization problem and drop θt−1 as a state variable. Here, the problem can also be
normalized if the production function is assumed to be of the form f(k, θ) = zθ1−αkα.
However, I am interested in performing comparative statics with respect to the persistence
of the process (ρ). Therefore, I solve the full problem without renormalizing.

Denote the density function of the shock by gε(εt), then it follows that

ϕ (θt | θt−1) =
gε(εt)

θρt−1
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moreover, we also have that

∂ϕ (θt | θt−1)

∂θt−1

= − ρ

εtθ
1+ρ
t−1

1

σε
√

2π

(log θt − ρ log θt−1 − µ)

σ2
ε

exp

{
−(log θt − ρ log θt−1 − µ)2

2σ2
ε

}

and

∂gε(εt)

∂εt
= − 1

ε2
tσε
√

2π

(log εt − µ)

σ2
ε

exp

{
−(log εt − µ)2

2σ2
ε

}

therefore,

g̃ε(εt) ≡ gε(εt) + ε
∂gε(εt)

∂εt
=
θ1+ρ
t−1

ρ

∂ϕ (θt | θt−1)

∂θt−1

Then note that dθt = θρt−1dεt implies

ϕ (θt | θt−1) dθt = gε(εt)dεt

and
∂ϕ (θt | θt−1)

∂θt−1

dθt = ρ
g̃ε(εt)

θt−1

dεt

The planning problem over the shock εt is

K(vt−1,∆t−1, kt, θt−1) = min

∫ (
Bt+1(εt)− bt(εt) + qK(vt(εt),∆t(εt), kt+1(εt), θ

ρ
t−1εt)

)
gε(εt)dεt

s.t (PK) wt(εt) = u(ct(εt)) + βvt(εt) [gε(εt)ξt(εt)]

vt−1 =

∫
wt(εt)gε(εt)dεt [gε(εt)λt−1]

(IC) ẇt(εt) = θρt−1

(
u′(c(εt))φfθ(Bt, θ

ρ
t−1εt) + β∆t(εt)

)
[µt(εt)]

∆t−1 =

∫
wt(εt)

ρ

θt−1

g̃ε(εt)dεt [gε(εt)γt−1]

(Feasibility) ct(εt) = f(kt, θ
ρ
t−1εt)− bt(εt)

The optimality conditions are

q

β
λt(εt) =

1

u′(ct(εt))

[
1 +

µ(εt)

gε(εt)
θρt−1φfθ(kt, θ

ρ
t−1εt)u

′′(c(θ))

]
(42)
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γt(εt) = −β
q
θρt−1

µ(εt)

gε(εt)
(43)

And the two LOM

µ̇(εt) = −
[
q

β
λt(εt)− λt−1 + γt−1

ρ

θt−1

g̃ε(εt)

gε(εt)

]
gε(εt) (44)

ẇt(εt) = θρt−1

(
u′(c(εt))φfθ(kt, θ

ρ
t−1εt) + β∆t(εt)

)
(45)

I truncate the distribution of εt at the 0.01 and 0.99 percentiles, the boundary conditions
then need to be adjusted to µ(ε) = −γt−1

ρ
θt−1

εgε(ε) and µ(ε) = −γt−1
ρ

θt−1
εgε(ε).

To solve the model, the state space is modificed to (λ−, γ−, k, θ−) , so the multipliers λ− and
γ− are used instead of v− and ∆−, respectively. I use 14 grid points for λ−, 8 for γ−, 20 for
k and 10 for θ−. I interpolate on K, v and ∆ with cubic splines and allow to extrapolate.
To solve the model with an i.i.d type process, the algorithm is the same but with ∆ = 0 and
without the state variables γ− and θ−.

Algortihm

Step 0: Guess the value function K ′, promised utility v′ and promised marginal utility ∆′

on the grid (λ−, γ−, k, θ−)

Step 1: Compute the policy functions for k+ on a grid (λpol, γpol, θ) by minimizing

k+ + qK ′(λpol(i), γpol(i), k+, θpol(i))

(Note: k+ needs to be computed multiple times at every step while solving the ODE. But to
improve speed, can solve before the policies on a dense grid and then interpolate when solve
the ode).

Step 2: For each point in (λ−, γ−, k, θ−) solve the optimal control problem with a shooting
method.

• a) Guess continuation utility of lowest type w(ε) = w

• b) For each ε, solve λ(ε) in equation (42) and γ(ε) in equation (43). To compute c(ε),
first compute k+(ε) by interpolationg the array of policies on (λ(ε), γ(ε), θρ−ε). Then
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obtain v(ε) by interpolation of v′ on (λ(ε), γ(ε), k+(ε), θρ−ε) and solve

c(ε) = u−1 (w(ε)− βv(ε))

With these solutions solve the differential equations (44) and (45). Note when solving
(44) also need to interpolate ∆′ on (λ(ε), γ(ε), k+(ε), θρ−ε).

• c) Check the boundary condition µ(ε) = −γ− ρ
θ−
εgε(ε). If it does not satisfy the

tolerance, go back to step a).

Step 3: Given the solution (µ(ε), w(ε)), repeat step b) to obtain all policy functions on a
grid (λ−, γ−, k, θ−, ε), also compute b(ε) = f(k, θρ−ε)− c(ε).

Step 4: Compute the lender’s value function, promised utility and expected marginal utility
at every grid point

v(λ−, γ−, k, θ−) =

∫
w(λ−, γ−, k, θ−, ε)gε(εt)dεt

∆(λ−, γ−, k, θ−) =

∫
w(λ−, γ−, k, θ−, ε)

ρ

θ−
g̃ε(εt)dεt

K(λ−, γ−, k, θ−) =

∫
(k+(λ−, γ−, k, θ−, ε)− b(λ−, γ−, k, θ−, ε) + qK ′(λ(ε), γ(ε), k(ε), θρ−ε)) gε(εt)dεt

Calculate the distance with previouss guess of K ′, v′ and ∆′ , and repeat from Step 1 until
the convergence criteria is satisfied.

C.1 Solution implementation

D Extensions

D.1 Screening model: divert funds before investing

In this section, I study a screening version of the model where the entrepreneur can choose
what fraction of the funds available he invests in the project. The remaining funds are
secretly diverted for consumption. Now the lender can observe the entrepreneur’s returns
but not the entrepreneur’s productivity nor invested and diverted funds. In this sense, the
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investment decision is similar to the labor/leisure choice in the Mirrlees taxation problem.
This model yields the same characterization of the shadow costs µt, the GIIE and the firm
size dynamics. Moreover, the investment wedge τ k(θt) is also the wedge between invested
and diverted funds relative to the first best.

Denote by Bt the funds advanced by the lender. The entrepreneur can use these funds to
invest in the project kt, but he can also divert a part at of the funds for his consumption.
Therefore, invested and diverted funds are subject to the flow of funds constraint

kt + at ≤ Bt (46)

The lender now observes returns f(kt, θt) but not productivity θt and how funds are used,
i.e. kt and at. Diverted funds are converted into consumption units according to the function
g(at), with g′′ < 0 < g′, so the entrepreneur’s consumption is

ct = f(kt, θt)− bt + g(at) (47)

The principal within period objective now is Bt − bt. The envelope condition is

∂

∂θt
wt(θ

t) = u′(ct(θ
t))fθ(kt(θ

t), θt) + β∆t(θ
t)

The rest of the planning problem is the same but with the extra flow of funds constraint
(46). The optimality condition for diverted funds is

ζt(θ
t) = g′(at(θ

t))

where λt(θt) is the multiplier on the flow of funds constraint. The FOC for investment is

ζt(θ
t) = fk(kt(θ

t), θt)−
µt(θ

t)

ϕt(θt|θt−1)
u′(θt)fθk(kt(θ

t), θt)

Now the investment wedge can be defined explicitely as the distortion in invested and diverted
funds relative to the first best (where we would have fk(kt(θt), θt) = g′(at(θ

t)). Define

τ k(θt) ≡ 1− g′(a(θt))

fk(k(θt), θt)
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Then combining the two optimality conditions we get

τ k(θt) =
µt(θ

t)

ϕt(θt|θt−1)

fθk(θ
t)

fk(θt)
u′(θt) > 0

Because τ k(θt) > 0, there is more cash diversion than in the first best. This is the standard
screening result, the principal distorts effort (here investment kt) downwards to screen types
at a lower cost. When shadow costs (µt(θ

t)) are high, the principal increases distortions to
reduce the costs of screening types. Then, it is easy to verify that this model yields the same
characterization for the shadow costs µt(θt), the GIIE and the project size dynamics as the
cash flow diversion model studied in the main text.

D.2 Limited commitment

In this section, I relax the assumption of full commitment of the entrepreneur. Limited
commitment leads to very different firm size and compensation dynamics than the private
information friction. The limited commitment works as follows. At every period, before
knowing the realization of his productivity, the entrepreneur can divert and consume all the
funds and terminate the project. In this case, I assume the entrepreneur would obtain utility
h(kt+1(θt)), where h is increasing and concave. Therefore, the agent will not terminate the
project at period t + 1 if h(kt+1(θt)) ≤ v(θt). This limited commitment constraint can be
added directly to the planning problem (11). Because the limited commitment constraint
does not affect the within period insurance and incentives trade-off, the characterization
of the shadow cost of insurance (Proposition 2) is not affected by the limited commitment
assumption.

However, the limited commitment constraint does modify the consumption dynamics (Propo-
sition 5) and the project size dynamics (Proposition 4). Let ηt(θt) be the multiplier on the
limited commitment constraint, then the GIEE is given by

q

β
Ê
[

1

u′(θt+1)
|θt
]

=
1

u′(θt)
(1 + s(θt)) +

ηt(θ
t)

β

Because ηt(θt) ≥ 0, the limited commitment gives a force to have a downwards drift in
marginal utilities. As is well know, in models with only limited commitment, the agent’s
consumption is backloaded and consumption follows a sub-martingale. Therefore, the pri-
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vate information and limited commitment frictions will in general, have opposite effects on
consumption dynamics.

The project size dynamics are now given by

1 + ηt(θ
t)h′(kt+1(θt))

q
= E

[
fk(kt(θ

t), θt)(1− τ k(θt))|θt
]

Because ηt(θt)h′(kt+1(θt)) ≥ 0, the limited commitment friction also lowers firm size rela-
tive to the first. However, if promised utility increases over time, the limited commitment
constraint will eventually not bind (ηt(θt) = 0). Therefore, this friction still gives a force
towards having firm size increasing over time.

D.3 Endogenous termination

In this section, I show how the model can be extended to allow for endogenous termination
of the contract. As is well known, in regions of the state space where the Pareto frontier
is not concave, the principal may optimally randomize between terminating the project or
continuing. I assume that after termination, the lender receives a scrap value S. At period
t, based on θt, the lender can choose a probability αt+1(θt) of termination at t + 1. In that
event, the principal can also give the entrepreneur a compensation Qt+1(θt). In case of no
termination at period t the objective of the principal is∫

(−b(θt) + αt+1(θt)q
(
S −Qt+1(θt)

)
+

+
(
1− αt+1(θt)

) (
kt+1(θt) + qKt+1(vt(θ

t),∆t(θ
t), θt, kt+1(θt))

)
)× ϕt(θt|θt−1)dθt

I assume that after terminating the contract, the entrepreneur can freely save Qt+1(θt) and
obtains a per period gross return 2 − q. So in this scenario, his continuation utility is
u((1−q)Qt+1(θt))

(1−q) . The continuation utility now becomes

wt(θ
t) = u(c(θt)) + β

[
αt+1(θt)

u ((1− q)Qt+1(θt))

(1− q)
+ (1− αt+1(θt))vt(θ

t)

]

And the local IC

ẇt(θ) = u′(c(θt))φfθ(kt, θt) + β(1− αt+1(θt))∆t(θ
t)
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It is then easy to see that the optimality condtions for b(θt), kt+1(θt),vt(θt), ∆t(θ
t) and

wt(θ
t) are the same as in the main model. Therefore, althought it may be optimal to exit

the project, the characterizations of the optimal contract presented in the paper do not rely
on the assumption of no termination.

D.4 Costly effort

E Application Sovereign Debt: Dovis (2019)

In this section, I will show how these techniques can be used to solve the sovereign debt
model in Dovis (2019). To use the FOA I assume there is a continuum of types, instead of
two as in the paper. I also allow for persistent private information. The rest of the model is
the same as in the paper.

The foreign lenders (the principal) lend m units of the intermediate good to the domestic
government (the agent) and recieve x exports in return. A benevolent domestic government
can use the intermediates to produce domestic good c or exports x. The agent’s type θt is
now the relative productivity of the domestic good. With constant returns to scale, we can
write the country’s aggregate resource constraint as

ct
θt

+ xt ≤ f(mt) (RC) (48)

The principal can observe exports x and how inputs are used but not ct
θt
. The domestic

government maximizes

w(θ0) = E
[ ∞∑
t=0

βtu(ct)|θ0

]
s.t RC

There are also two limited commitment constraints

u(c(θt)) + βvt(θ
t) ≥ u(θtf(mt−1)) + βva

vt(θ
t) ≥ va
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where va is the value of autarky. The local IC constraint is

∂

∂θt
w(θt) = u′(c(θt))

[
f(m(θt−1)− x(θt)

]
+ β

∫
w(θt)

∂ϕt+1(θt+1|θt)
∂θt

dθt+1

= u′(c(θt))
c(θt)

θt
+ β

∫
w(θt)

∂ϕt+1(θt+1|θt)
∂θt

dθt+1

As in the corporate finance model, static marginal information rents, here u′(c(θt)) c(θ
t)

θt
,

depend on consumption. So the incentive-adjusted probability measure can be used to
characterize the optimal allocation. The relaxed planning problem then is

Kt(v,∆, θ
t−1,mt−1) = min

∫ [
mt(θ

t)− xt(θt) + qKt+1(vt(θ
t),∆t(θ

t), θt,mt(θ
t))
]
ϕt(θt|θt−1)dθt

s.t (PK) wt(θ
t) = u(c(θt)) + βvt(θ

t) [ξJt (θt)]

v =

∫
wt(θ

t)ϕt(θt|θt−1)dθt [ξPKt ]

(IC) ẇ(θ) = u′(c(θt))
[
f(m(θt−1)− x(θt)

]
+ β∆t(θ

t) [µt(θ
t)]

∆ =

∫
wt(θ

t)
∂ϕt(θt|θt−1)

∂θt−1
dθt [ξICt ]

(Feasibility) x(θt) = f(mt−1)− c(θt)

θt
[λt(θ

t)ϕt(θt|θt−1)]

(LC) u(c(θt)) + βvt(θ
t) ≥ u(θtf(mt−1)) + βva [ηt(θ

t)ϕt(θt|θt−1)]

vt(θ
t) ≥ va [ηPKt (θt)ϕt(θt|θt−1)]

The optimality conditions are:

Combining the FOCs of xt(θt) and ct(θt):

ξJ(θt) =
1

u′(c(θt))

[
λt(θ

t)

θt
+

µt(θ
t)

ϕt(θt|θt−1)
u′′(c(θt))

[
f(m(θt−1)− x(θt)

]]
− ηt(θt)

vt(θ
t):

q

β
ξPKt+1 (θt) = ξJt (θt) + ηt(θ

t) +
ηPKt (θt)

β

∆t(θ
t):

q

β
ξICt+1(θt) =

β

q

µ(θt)

ϕt(θt|θt−1)
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Using the FOC for mt(θ
t) and subsituting λt(θt) from the FOC for xt(θt):

1

q
= f ′(mt(θ

t))
[
1− E

[
ηt+1(θt+1)u′(θt+1f(mt(θ

t))|θt
]]

Substituting ξJt (θt) in the LOM of the co-state

µ̇t(θ
t) + µt(θ

t)
1

θt

(
1 +

u′′(θt)

u′(θt)
c(θt)

)
=

[
ξPK + ξICE(θt, θ

t−1)− 1

u′(θt)θt

]
ϕt(θt|θt−1)

Now the change of measure is with m′(θt)
m(θt)

= 1
θt

(
1 + c(θt)u′′(θt)

u′(θt)

)
, so the sign depends on the

relative risk aversion (RRA). With log utility, marginal information rents do not depend
on consumption u′(c(θt)) c(θ

t)
θt

= 1
c(θt)

c(θt)
θt

= 1
θt
. Therefore, m′(θt)

m(θt)
= 1

θt
(1− 1) = 0 and the

solution can be characterized under the original type measure as in a Mirrlees model with
separable preferences. If the RRA is bigger than one, m′(θt)

m(θt)
< 0 the incentive-adjusted

measure puts higher weight on lower types. And conversely if the RRA is smaller than one.
Dovis (2019) discusses the role of the RRA in the model. The intuition is that the strength of
the income and substitution effects determine weather the high or low types want to export
more.

Using µt(θt)
ϕ(θt|θt−1)

= λ(θt)−1
u′(θt)

from the FOC of xt(θt) we get the following GIEE

q

β
Ê
[

1

u′(θt+1)θt+1

|θt
]

=
1

u′(θt)θt

[
1 + s(θt)

]
+
ηPK(θt)

β

s(θt) =
(
λ(θt)− 1

) [m′(θt)
m(θt)

− Ê
[
ρt+1(θt+1)

m′(θt+1)

m(θt+1)
|θt
]]
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