
Abstract

This paper considers the disclosure problem of a sender who wants to use hard
evidence to persuade a receiver towards higher actions. When the receiver hopes to
make inferences based on the distribution of the data, the sender has an incentive to
drop observations to mimic the distributions observed under better states. Selecting
equilibria under a criterion that strategies remain optimal after allowing for announce-
ments about messaging strategies, we find that, in the limit when datasets are large, it
is optimal for senders to play an imitation strategy, under which they submit evidence
to prove they have enough data corresponding to a desirable state. The receiver makes
inferences by checking if senders meet a sufficient burden of proof to take a high action.
The outcome exhibits partial pooling: senders are honest when either they have little
data or the state is good, but they try to deceive the receiver when they have access
to a lot of data and the state is bad.
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1 Introduction

In order to take appropriate actions, decision-makers often rely on data and evidence supplied
by self-interested informants, such as companies or individuals. Their informants, however,
are often motivated by private concerns about the conclusions the decision-maker draws from
the data, and have strong preferences about what action the decision-maker should take. For
example, researchers carrying out experiments might aim to support a particular hypothesis,
either out of personal bias or because their research is sponsored by an interested party (e.g.
soda manufacturers and drug companies). Public companies that release accounting and
performance data aim to benefit their shareholders, and therefore generally prefer to disclose
data that increases the value of their stock. The amount and specificity of data available
to report in both of these cases is increasing as data becomes easier to generate and store –
both the models used to analyze experiments, and those used to predict financial outcomes,
often take as inputs many individual datapoints over a variety of possible outcomes.

We model this scenario as a communication game between an uncommitted sender with
known preferences and a sophisticated receiver. There is a finite number of states, each of
which is associated with a distribution over a finite set of outcomes. The sender and the
receiver share a common model about the state of the world and state-induced outcome
distributions, but the sender observes the true dataset of outcomes, while the receiver does
not, and has uncertainty about how many draws there are.

Because disclosure is voluntary, senders will selectively withhold information from receivers
if it “looks bad”. A sophisticated receiver anticipates this, and accounts for the sender’s
omission strategy when updating from the data they are shown. It is known in a single-datum
case that when senders act strategically and receivers are unsure if senders hold evidence,
then sophisticated receivers cannot fully separate their uncertainty about the whether the
sender is informed from their uncertainty about the implications of the data about the state
of the world – there is partial pooling Dye (1985). The same is true of a larger dataset of
uncertain size, when senders choose a way to disclose part of their dataset rather than either
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disclose or not. If datasets are large to begin with, the only value of additional data to a
sender is in benefiting their ability to game the receiver’s beliefs – they have more flexibility
over datasets to send, and are able to send the same datasets as senders in better states that
are endowed with less data. There is a large set of possible strategies, and generally many
equilibria, but it is intuitive that coalitions of senders will pool in ways that are optimal for
the entire coalition, and this selects a particular equilibrium outcome.

In this paper, we show that in the limit as N approaches infinity, partial pooling arises in
equilibrium because senders with “excess” data target the same strategies as senders under
more favorable states that they can mimic. The payoff to senders in the limit can be thought
of as the outcome of an equilibrium of a continuous-dataset approximation of big data, in
which datasets no longer consist of individual draws, but of a mass of data corresponding
to a particular state’s distribution. Within the continuum model, senders can implement an
optimal targeting strategy either by imitating the distribution of data under the target state
exactly, or by providing a great-enough mass of data of all the observations that maximize the
likelihood ratio under the target state and less-desirable states. Under either approach, the
receiver’s inference problem comes down to demanding that senders meet a burden of proof
in order to elicit a higher action, which is an amount of data that may differ depending on
which state of the world senders target. Senders choose which state to imitate by weighing a
combination of the inherent desirability of the state, and their relative advantage at targeting
it, which depends on the similarity of the state’s outcome distribution to the true distribution.
Relative to full revelation, the partial pooling equilibrium advantages senders with good
access to data under bad states at the expense of senders in good states with little data.

The paper is laid out as follows. Section 2 begins by outlining a model of communication
with a finite dataset. In Section 3, we solve an example game and introduce a notion of
robustness to an “inclusive” credible announcement, related to those in Matthews et al.
(1991), that is satisfied by reasonable equilibria. In Section 4, we show that robustness
to these coalitional deviations is equivalent to optimality under a lexicographic order over
equilibrium outcomes, and give an algorithm that constructs the unique equilibrium that
survives them. We then turn to the continuous-dataset approximation to the communication
model in Section 5, and in it we propose an imitation equilibrium outcome with the property
that types with large data endowments target the strategies of better-state, lower-data types
in order to deceive the receiver into taking higher-payoff actions. In Section 6, we show that
the imitation equilibrium outcome in the continuous-data approximation exactly describes
the large-data limit of lexicographically optimal equilibrium outcomes. Section 7 discusses
how to substitute the assumption of exogenous data generation for costly, endogenous data
acquisition, and concludes.
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1.1 Review of literature

A number of papers show how the unraveling results of Grossman (1981) and Milgrom (1981)
can fail when the sender is endowed with a random amount of evidence. Dye (1985) models
a single-datum case, under which a nonzero probability of senders failing to receive evidence
results in pooling between those senders and senders with unfavorable evidence. Subsequent
papers by Shin (’94, ’03) show that sender-optimality of the “sanitization strategy” that
reveals only sufficiently favorable evidence extends to games with multiple pieces of evidence,
so long as the payoff-relevant state is binary (success vs. failure).

Like us, Dzuida (1985) investigates the question of how senders pool with one another
when evidence is disposable by approximating large datasets with a continuous measure of
evidence. Her model assumes a binary state and binary signal realizations, as well as a
positive measure of honest types who must disclose their entire set of evidence. The results
resemble our findings in the binary-state case, and she focuses on an outcome with payoffs
continuous in data endowment that coincides with our outcome selected by lexicographic
optimality and immunity to coalitional announcements. Another observation common to
our analysis and Dzuida is that, relative to the case with a symmetrically informed receiver,
outcomes are worse for high-state, low-evidence senders, who cannot distinguish themselves
from low-state senders; and they are better for low-state, high-evidence senders, who can
pretend to be better types. Following Dzuida, Felgenhauer and Schulte (2014) model the
discretionary disclosure of binary evidence with an endogenous and sequential process of data
acquisition. We consider endogenous information acquisition preceding disclosure under our
model, with a focus on comparative outcomes rather than incentives to invest.

Our results speak to a discussion of persuasion using hard evidence in fields like scientific
research and corporate asset management. Shin (2003) applies the sanitation strategy to the
disclosure of independent successes in maximizing the market value of corporate stocks; in
comparison, we analyze incomplete disclosure strategies when the market uses large datasets
to inform more complex models in which inference of the state depends on signals’ joint
distributions. Relatedly, there is a large body of work examining the effects of publication
bias that arises due to the systematic omission of negative or inconclusive results. Simonsohn
et al. (2014) and Andrews and Kasy (2019) propose methods to identify and correct for the
bias induced by selective reporting of scientific findings, using observable distortions in the
distribution of reported data (e.g. the “p-curve”). Although these studies do not consider
strategic data omission, their inference problem is similar to that faced by our receiver against
the strategy of the sender.

2 Model

There is a sender (s), who wishes to communicate to a receiver (r) about an unknown state
of the world. The receiver is uninformed, and relies on the sender to provide them with
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evidence in order to make a choice that affects both themselves and the sender. However,
the sender’s and receiver’s incentives are misaligned: the sender’s preferred action for the
receiver does not depend on the true state, and instead, the sender always wants the receiver
to take a higher action (i.e. one that is more beneficial to the sender). Furthermore, the
sender is able to drop data as they please: the dataset they submit to the receiver may be
incomplete, and the receiver must make inferences assuming that the sender will omit data
when it is in their strategic interest.

States and payoffs. The sender and receiver share a common prior β0(·) on the state of
the world θ ∈ Θ ⊆ R. The support of the prior — the set of states they consider possible
— is finite, Θ = {θ1, . . . , θJ}, with θj increasing in j. I assume that the receiver takes the
action ar = E[θ] that matches the expectation of their belief over Θ.1 In short, the receiver’s
optimal action is increasing in their expectation of the state of the world.2

The sender is wishes the receiver to take as high an action as possible, and thus aims
to persuade the receiver that the expected state is high. Their payoff from persuading the
receiver to adopt a given belief β is

us(β) = ũs(ar) = ũs(Eβ[θ]).

We assume ũs(ar) is increasing in ar, and so us(β) is increasing in Eβ[θ].

Evidence. The private information of the sender is communicable: it comes in the form of
hard evidence about the state of the world. In particular, the sender has access to a dataset.
Each datapoint in the dataset is an observation within a space of outcomes D = {1, . . . , D},
and each state of the world induces a different distribution of observations – when the state
is θj, the distribution of outcomes of a single experiment is fj. I assume that, while all fj
share full support over D, they are distinct, so that any two states are distinguishable by
the distribution of outcomes they generate.

The entire dataset consists of a finite collection of i.i.d. draws of fj. Different senders
differ in how much data they can acquire, and ex-ante, the mass distribution of data, g(n),
is known to both parties, but the true number of observations n is not. Nevertheless, the
number of observations possible is assumed to be bounded, and when the support of g(n) is
in {1, . . . , N}, the sender’s dataset, or type, is given by

t =
1

N
(n1, . . . , nD),

where t(d) := nd
N

is the normalized total mass of experiments in which the outcome is d. The

total normalized mass of the dataset is n
N

= 1
N

∑D
d=1 nd, and alternately denoted as |t|.

1Note that elements of Θ and actions ar are assumed to already be appropriately normalized: if the
receiver’s optimal action is intead a′r = h(E[v(θ′)]) where v and h are increasing functions, the mappings
θ = v(θ′) and ar = h(a′r) renormalize the state and action space to the correct form.

2A canonical example of a payoff function that justifies this choice is ur = −(ar − θ)2.
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We denote the ex-ante probability that the sender will be of type t by q(t), and the posterior
over the state conditional on the sender receiving t as π(·|t).3

Messaging and inference. The receiver does not directly observe the sender’s type. In-
stead, after receiving a dataset, the sender voluntarily submits a message to the receiver,
consisting of observations from the dataset. I assume that the sender’s access to data deter-
mines whether it is feasible to submit a particular body of evidence to the receiver:

Assumption 2.1 The sender can send any message m = 1
N

(ñ1, . . . , ñD) that is a subset of
their dataset (m ⊆ t), where

m ⊆ t ⇔ m(d) ≤ t(d) ∀d ∈ D.

The disclosure game with these parameters is GN(Θ, {fj}Jj=1, g, us), with type space TN and
message space MN that are isomorphic to each other, containing all vectors 1

N
(n1, . . . , nD)

with the sum of nonnegative integers n1 + . . . + nD ≤ N . Irrespective of N , the spaces TN
andMN can be embedded into a global data space F = [0, 1]×∆D, consisting of all vectors
(w1, . . . , wD) of nonnegative real weights with

∑D
d=1 wd ≤ 1.

In this game, senders can choose which feasible message to send given their type according
to a possibly mixed messaging strategy, σ(·|t) : TN → ∆MN – their choice of a message is
the only means by which they can influence the receiver’s action and their own payoffs.

The receiver’s belief over states is β ∈ ∆Θ. After receiving message m, the receiver updates
their beliefs according to β(·|m) : MN → ∆Θ. More primitively, though only of indirect
consequence to the sender, the receiver holds beliefs, denoted β[·|m] with square brackets,
about the sender’s type, which imply their beliefs about the state:

β(θj|m) =

∑
t∈TN β[t|m]π(θj|t)∑

t∈TN β[t|m]
.

PBE and outcomes. Following the convention in signaling games, our base solution con-
cept is PBE (alternately referred to as PBE or “equilibrium”).

Importantly, we assume the sender is unable to commit ex-ante to a messaging policy, in
which they give up playing optimally when endowed with certain datasets in exchange for
more lenient inferences in other scenarios. While doing so successfully may indeed benefit
the sender in expectation, there is little incentive for the sender to keep the commitment
in the interim stage, both in a one-shot setting, and when the sender is anonymous in a

3The exact expressions are

q(t) =
n!

ΠD
d=1nd!

g(n)
∑
j′

β0(θj′)Π
D
d=1fj′(d)nd , and π(θj |t) =

β0(θj)Π
D
d=1fj(d)nd∑

j′ β0(θj′)ΠD
d=1fj′(d)nd

.
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large population. Thus, we expect the sender under each type to optimize σ(·|t) given their
anticipation of the receiver’s response.

Definition An equilibrium is (σ∗, β∗) where

1. σ∗ prescribes the highest-payoff feasible message to a sender of each type:

σ∗(·|t) ∈ arg max
m⊆t

us(β
∗(·|m)).

2. β∗ is consistent with Bayesian updating given knowledge that the sender plays to σ∗:

β∗[t|m] =
q(t)σ∗(m|t)∑
t∈TN q(t)σ

∗(m|t)
for all on-path m,

and β∗[t|m] = 0 if m 6⊆ t.

There is off-path indeterminacy in the receiver’s beliefs, so there may be multiple β∗, differing
on off-path messages, that jointly form an equilibrium along with a given σ∗. However, we
can define

βσ∗ [t|m] :=

{
q(t)σ∗(m|t)∑

t∈TN
q(t)σ∗(m|t) for all on-path m,

1(arg mint′⊆m Eπ(·|t′)[θ]) for all off-path m ∈ F

that, firstly, extends the receiver’s inference function to all messages in F , and therefore
all of MN ; and secondly, makes all off-path messages minimally attractive for the sender.
Given the following lemma, if (σ∗, βσ∗) is a PBE, we will often suppress β and call σ∗ an
equilibrium:

Lemma 2.2 A strategy σ∗ constitutes a PBE with along with some β if and only if (σ∗, βσ∗)
is a PBE.

In general, when N is large, the game has many PBE due to self-reinforcing expectations
about both off- and on-path play. Rather than using equilibrium as a final solution concept,
in the following two sections we will propose a refinement, lexicographic optimality, that
selects the equilibria we consider most reasonable, due to their robustness to deviations by a
coalition of types of senders. We postpone the discussion of details of equilibrium selection
until then.

Finally, an outcome of an equilibrium is the mapping from a dataset in F to the payoff4

that a sender endowed with the dataset receives by best-responding to βσ∗ ,

uσ∗(t) = max
m∈F :m⊆t

us(βσ∗(·|m)).

4Since payoffs are monotone in actions, this is equivalent to a mapping from types to the actions induced
by their messages in equilibrium.
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While it is straightforward to define outcomes for types in TN as they payoff they obtain
in equilibrium, and uσ∗(t) coincides with this definition for positive-probability types, the
extension to all of F allows comparison of outcomes across games with different type spaces,
under the thought experiment: “what payoff would a sender with dataset t obtain if they
know they are playing against a receiver who believes they are in equilibrium σ∗ of game
GN , even if t is not a possible type in GN”?

3 Example: 2 states

When the state of the world is binary, Θ = {θ1, θ2}, the receiver’s belief is a single number
β(θ2) ∈ [0, 1], and the sender’s problem boils down to convincing the receiver that the state
is θ2 with as high a probability as possible.

3.1 Binary outcomes, binary states

To further simplify the problem, suppose that the domain of fj is also binary, D = {1, 2}.
Let f2(2) = p2 and f1(2) = p1, with p2 > p1, so that outcome 2 is more likely under state
2 than state 1. For a given N , assuming g(n) has full support on {0, . . . , N}, the set of
possible types of the sender, TN , is illustrated below, with the notation t = (n1, n2).

n2

(0, N)
(0, N − 1) (1, N − 1)
(0, N − 2) (1, N − 2) (2, N − 2)
(0, 1N − 3) (1, N − 3) (2, N − 3) (3, N − 3)

...
...

...
...

. . .

(0, 0) (1, 0) (2, 0) (3, 0) . . . (N, 0)
n1

Table 1: TN when Θ = {1, 2} and D = {1, 2}.

The set of possible messages,MN , is identical to the type space. Table 1 above illustrates
the set of messages available to type t = (1, N − 2) in blue, and the set of types capable of
sending message m = (1, N − 2) in red.

Whenever N ≥ 2, there are multiple equilibria. For instance, when N = 2, the data
mass distribution is g(0) = g(1) = g(2) = 1

3
, the prior is β(2) = 1

2
, and the distribution of

outcomes is p2 = 0.9, p1 = 0.8, the game has the 3 equilibria in Table 2. The first equilibrium
separates senders into 3 pools, which all obtain different payoffs, while the outcomes of the
remaining 2 equilibria are identical, and involve 2 different payoffs, depending on the sender’s
type. While types (0, 1) and (1, 1) could obtain a higher payoff than they do in σ∗2 and σ∗3 by
separating from the other 3 types, they do not do so, because of adverse beliefs about the
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receiver’s response to message (0, 1). In σ∗2, because (0, 1) is off-path, the receiver may believe
that the sender’s type is (1, 1) with high probability if (0, 1) is observed, which makes the
message unattractive. In σ∗3, (0, 0) is on-path, but played by (1, 1) with greater probability
than it is played by (0, 1), despite the fact that both types are indifferent between playing it
and (0, 0): this worsens message (0, 1) and improves message (0, 0), which in turn supports
the indifference between the two messages that gives rise to these counterintuitive mixing
probabilities. If types (0, 1) and (1, 1) could together announce to the receiver that they plan
to play as in equilibrium σ∗1 and be believed, they would, and would then keep their word,
even without commitment.

(0,2) (0,1) (1,1) (0,0) (1,0) (2,0)

σ∗1
Messages (0,2) (0,1) (0,1) (0,0) (0,0) (0,0)
Payoffs 1.56 1.49 1.49 1.47 1.47 1.47

σ∗2
Messages (0,2) (0,0) (0,0) (0,0) (0,0) (0,0)
Payoffs 1.56 1.48 1.48 1.48 1.48 1.48

σ∗3
Messages (0,2) (0,1) and (0,0) (0,1) and (0,0) (0,0) (0,0) (0,0)
Payoffs 1.56 1.48 1.48 1.48 1.48 1.48

Table 2: 3 equilibria of G2 with p = 0.9, q = 0.8

The equilibrium σ∗1 is not vulnerable to such announcements, and has a simple form:
senders send as many observations of outcome 2 as they can, and none of outcome 1. Indeed,
for all N there exists an immune equilibrium, and in cases where |Θ| = |D| = 2, it entails
disclosing only observations of outcome 2.

Definition Given an outcome uσ∗ , a set of types T has a credible inclusive announcement
that they will play a partial strategy σ̂M over message set M for payoff v if

• σ̂M : M × T → R is such that
∑

t∈T σ̂M(m|t) = 1 for all m ∈ M ,
∑

m∈M σ̂M(m|t) = 1
for all t ∈ T , and us(βσ̂M (·|m)) = v for all m ∈M .

• T = {t : uσ∗(t) ≤ v and ∃m ∈M s.t. m ⊆ t}, and there is some t ∈ T with uσ(t) < v.

Credible inclusive announcements are related to the concept of a credible announcement ?,
which does not impose that all types that weakly prefer to obtain v to their equilibrium
payoff participate in the announcement if possible, but rather only types that strictly prefer
v. In our context, robustness to credible announcements is too strong, and often rules out all
equilibria: types that are indifferent between a base equilibrium and an announcement may
no longer able to obtain their payoff from the base equilibrium once the announcement is
made and believed, and such announcements may not correspond to any equilibrium at all.
In contrast, a sequence of improvements from credible inclusive announcements can always
be used to construct an equilibrium, as I show in the following section.

Claim 3.1 When |Θ| = |D| = 2, the unique equilibrium with an outcome immune to credible
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inclusive announcements takes the following form:

• On-path messages are {(0, n2[k])}Kk=1, with n2[1] = N and

n2[k] = arg max
n<n2[k−1]

us

(∑n2[k−1]
n2=n

∑N−n2

n1=0 π(θ2|(n1, n2))q((n1, n2))∑n2[m−1]
n2=n

∑N−n2

n1=0 q((n1, n2))

)
for all k > 1.

• A sender plays the most demanding on-path message they can send:

σ∗(t) = (0,max(n2[k] : n2[k] ≤ t(2))).

4 Lexicographic optimality

When are outcomes not improvable by announcing that some messages will be used, and
ought to be interpreted, differently than in equilibrium? Intuitively, if senders are already
using all messages optimally – that is, conditional on the behavior of types they cannot
imitate, senders use messages to form pools that give them the highest potential payoffs –
then they can do no better.

It turns out that equilibria that are immune to credible inclusive announcements are the
same as those with outcomes that satisfy a lexicographic optimality condition: across all
equilibria, they give the senders who have the highest potential equilibrium payoffs their
best possible payoffs, and conditional on this, they also maximize the payoffs to the next-
highest-potential-payoff group of senders, and so on.

To state the definition, let t+σ (u) be the set of possible types that obtain a payoff of at
least u under outcome uσ.

Definition We say uσ(·) weakly lexicographically dominates uσ′(·) (i.e., uσ(·) �l uσ′(·))
if either there exists an element u of

U := {u : t+σ \ t+σ′(u) is nonempty}

that is greater than or equal to every element u′ of

U ′ := {u′ : t+σ′ \ t
+
σ (u) is nonempty},

or U ′ is empty.

Definition uσ(·) strictly lexicographically dominates uσ′(·) (i.e., uσ(·) �l uσ′(·)) if
uσ(·) 6= uσ′(·) and uσ(·) �l uσ′(·).

Lexicographic dominance defines a partial order on outcomes. When the poset of outcomes
has a maximal element, we call it lexicographically optimal:
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Definition uσ(·) is lexicographically optimal if it strictly lexicographically dominates
all other equilibrium outcomes.

In general, there is no equilibrium of GN that is Pareto optimal for the entire set of sender
types. Additionally, unlike the example of Section 3, when N is large there is generally no
Blackwell dominant equilibrium that is most informative for the receiver, and best maximizes
their payoff over arbitrary payoff functions. However, in cases where either exists, it must
coincide with the lexicographically optimal equilibrium.

4.1 Construction, existence, and uniqueness

In order to show that the lexicographically optimal equilibrium outcome exists and is unique,
we construct it.

We begin with some useful notation. First, fix abstractly a set of types T ⊂ TN . Given
T , define for every message m ∈MN and set of messages M ⊆MN

T+(m) = {t ∈ T : m ⊆ t} and T+(M) =
⋃
m∈M

T+(m),

the set of types in T capable of sending f̃ or any f̃ ∈M , respectively.

Denote the receiver’s belief over states after updating their prior based on knowledge that
the sender’s type is in set T by

β(θ|T ) =

∑
t∈T π(θ|t)q(t)∑

t∈T q(t)
.

We say a set of messages M = {m1, . . . , m̃I} implements a pool of sender types Tσ̂M if
there is an associated partial strategy σ̂M : M × T → R with σ̂(·|t) ∈ ∆M , satisfying:

A. t ∈ Tσ̂M (mi) > 0 only if mi ⊆ t.

B.
∑

i σ̂M(mi|t) = 1 for all t ∈ Tσ̂M .

C.
∑

t∈Tσ̂M
σ̂M(mi|t) = 1 for all mi ∈M .

D. us(βσ̂M (·|f̃i)) = us(βσ̂M (·|f̃j)) for all i, j.

The payoff to a pool is u(Tσ̂M ) := u(β(·|Tσ̂M )). Note that types in Tσ̂M do not pool in the
traditional sense of sending the exact same message (and thus being indistinguishable to the
receiver). Instead, they may indeed send different messages that induce different beliefs over
the mixture of types; however, these beliefs will result in the receiver taking the same action,
and are therefore outcome-equivalent.
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Finally, with reference to type set T , define the set of upper pools to be the collection of
message sets that implement the pooling of the set of all types in T capable of sending them.

PT = {M ⊆M : M implements the pooling of T+(M)}

Fixing the strategy of the receiver, if we let M be the set of messages such that the
receiver’s response yields payoff u∗ to the sender, and let T be the set of senders incapable of
sending any message that yields payoff greater than u∗, then the best response of all senders
in T+(M) to the receiver’s strategy is to play some message in M . If, in addition, M ∈ PT
and u(T+(M)) = u∗, then there exists a best response by senders in T+(M) that preserves
the payoff to M when the receiver best-responds in turn to the updated strategy.

Lemma 4.1 For every message set M , there is an upper pool M ′ consisting of types Tσ̂M′ ⊆
T+(M) such that u(Tσ̂M′ ) ≥ u(T+(M)); the inequality is strict if M is not itself an upper
pool.

Lemma 4.2 For any T ⊆ TN , the set of utility-maximizing upper pools in MN , i.e.
arg maxM∈PT

⋃
MN

u(Tσ̂M ), is an upper semilattice in the inclusion order on the set of par-
ticipating types.

Observe that it is possible to construct a strategy profile in the following way.

Algorithm.

1. Let T1 = TN , and define PT1 to be the set of upper pools over T1. Find the upper pool
in PT1

⋂
MN that yields the highest payoff to participating senders:

M1 ∈ arg max
M∈PT1

⋂
MN

u(T+
1 (M)).

If there are multiple such pools, then we take their union, which is also in PT1

⋃
MN

by Lemma 4.2.

2. For s = 2 onwards, restrict the set of types to Ts = Ts−1 \ T+
s−1(Ms−1), and find (the

union of)
Ms ∈ arg max

M∈PTs
⋂
MN

u(T+
s (M)).

3. Continue until Ts \ T+
s (Ms) = ∅, and define σ∗ by σ∗(m|t) = σ̂Ms(m) where Ms is the

pool containing m.

Theorem 4.3 σ∗ is an equilibrium.

The theorem is immediate from the following lemma, which states that payoffs to the
iteratively-constructed pools are strictly decreasing.

Lemma 4.4 u(T+
m(Mm)) > u(T+

m+1(Mm+1)) for all m.
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Indeed, a necessary and sufficient condition for σ∗ to be an equilibrium is that u(T+
m(Mm)) ≥

u(T+
m+1(Mm+1)) for all m; it is additionally true in this case that the inequality is strict, so

each successive pool obtains a different payoff.

By construction, uσ∗ is unique5 and lexicographically optimal among equilibrium outcomes.
Indeed, all equilibria can be constructed via a version of the algorithm in which the pool
chosen in each step need not be the maximal-payoff upper pool. By imposing that we take
the largest maximal-payoff pool, we ensure that if uσ∗alt coincides with uσ∗ for all payoffs
greater than v, then the set of types obtaining payoff v is at least as large under uσ∗ as it is
under uσ∗alt .

Theorem 4.5 uσ∗ is the unique outcome of equilibria immune to credible inclusive an-
nouncements.

Proof By construction, if uσ∗alt 6= uσ∗ , then there exists a v such that the set of pools
achieving a payoff greater than v is identical in uσ∗alt and uσ∗ , but the pool of types T
achieving payoff v under uσ∗ is a strict superset of that under uσ∗alt . Then types in T can
make a credible inclusive announcement that they will play as they do in σ∗.

If uσ∗alt is not lexicographically optimal, then a sequence of improvements by credible
inclusive announcements, starting with the senders that achieve the highest payoffs under
σ∗, will terminate in an equilibrium with the lexicographically optimal outcome.

5 Large-dataset approximations

We would like to characterize the actions taken by the receiver in the lexicographically op-
timal equilibrium outcome. However, it is challenging to exactly construct lexicographically
optimal outcomes for large datasets, as the runtime for the algorithm is exponential in N .
An infinite-data approximation to the limit delivers a key simplification: the sender’s dataset
becomes deterministic given the state and the mass of data they receive, and randomness in
individual draws ceases to matter.

5.1 Modeling infinite data

When data are finite, the amount of data a sender possesses determines two things: how
informative their dataset is about the state of the world, and how much leeway they have to
manipulate their message to the receiver by removing datapoints. Having more data improves
both of these things, but the first concern becomes less and less important as the amount
of data grows: as the number of datapoints increases to infinity, a dataset becomes close to

5A slight caveat here is that, while the equilibrium outcome that is lexicographically optimal and immune
to credible inclusive announcements is unique, in corner cases there can be multiple equilibria that implement
it, differing only in the mixing probabilities of different types in the same pool; so we refrain from saying the
equilibrium itself is unique.

13



5.2 A binary-state example 5 LARGE-DATASET APPROXIMATIONS

perfectly informative about the state, so the additional informational value of any additional
number of datapoints vanishes. Because the impact of additional data on a sender’s feasible
message set is nonvanishing, having additional data relative to an already-large dataset
impacts the sender’s outcome almost entirely through the manipulability channel, rather
than through its informativeness.

To approximate the big-data scenario, we suppose that a sender is endowed with a con-
tinuous mass of datapoints. Although any continuum of data is perfectly informative about
the state, the mass of data received by senders of different types may differ, and affect their
ability to imitate each other. For instance, if the state is θj and they receive a total mass µ
of data, then they receive a measure µfj(1) of observations of outcome 1, µfj(2) of observa-
tions of outcome 2, and so on. We assume that the density g(µ) describing the probability
of obtaining a measure µ of data is continuous on its support [0, 1], and vanishing to 0 at 1.
A sender’s type is t = µfj when they receive a mass µ of data and the state is θj.

The set of possible types is T∞ = [0, 1]×Θ ⊂ F , and we let the set of potential messages
be M∞ = F – that is, we place no restrictions on what distributions of data the sender
may show to the receiver, except that a type t can only send a message m if m ⊆ t.
Call this infinite-data game G∞. Observe that the lexicographic dominance ordering over
equilibrium outcomes applies as well to outcomes of equilibria of G∞. So, as a first guess
to approximating lexicographically optimal outcomes in big-data settings, we may look to
equilibria with lexicographically optimal outcomes in G∞.

5.2 A binary-state example

To examine outcomes in the infinite-data approximation, let us return to the example with
|Θ| = |D| = 2. Because f1 = (1−p1, p1) and f2 = (1−p2, p2), types take the form µ(1−p1, p1)
or µ(1− p2, p2). Since outcome 2 is better proof that the state is 2 than outcome 1 is, let us
focus on equilibria in which, like in the finite-N case, senders disclose only observations of
outcome 2.

Figure 1a shows that when g(p2

p1
µ)/g(µ) is monotone in µ, disclosing more observations of

2 is always better: conditional on observing a mass µp2 of observations of 2, the receiver
believes the sender either has a mass µ of data and the state is 2, or the sender has a mass

p2

p1
µ of data and the state is 1, so the sender’s payoff is 1 +

g(µ)
p2

p1
g(p2

p1
µ) + g(µ)

.

Equilibrium outcomes must always be monotone: when t ⊆ t′, then uσ∗(t) ≤ uσ∗t
′, since

all messages available to t are also available to t′. However, it is possible for g(p2

p1
µ)/g(µ)

to be nonmonotone in µ. In this case the strategy “disclose as many observations of 2
as possible” does not respect payoff monotonicity. Instead, the lexicographically optimal

outcome involves ironing the putative payoff function 1 +
g(µ)

p2

p1
g(p2

p1
µ) + g(µ)

. Figure 1b gives

14



5.2 A binary-state example 5 LARGE-DATASET APPROXIMATIONS

(a) Payoffs as a function of µ and fj when
g(p2

p1
µ)/g(µ) is monotone.

(b) Payoffs when g(p2

p1
µ)/g(µ) is non-

monotone.

an illustration.

Note how the construction coincides with the equilibrium of Claim 3.1: when g(p2

p1
µ)/g(µ)

is monotone, payoffs to disclosing increasing amounts of outcome 2 are increasing as well. On

the other hand, when
g(
p2
p1
µ)

g(µ)
is not, they are not, and in the finite-data equilibrium, the set

of on-path messages {(0, n2[k])}Kk=1 is a strict subset of {(0, n)}Nn=0, with some types pooling
with types that have fewer observations of 2.

Finally, note that there is indeterminacy in the equilibrium strategies that would imple-
ment uσ∗ . Unlike in the finite-data setting, senders could just as well have imitated the entire
distribution f2 by sending µf2 instead of sending only (0, µp2), since they prove the same
thing: the same set of types under both state 1 and state 2 are capable of sending either.
We call equilibria in which all on-path messages take the form µfj imitation equilibria.

It is straightforward to extend the construction of the imitation equilibrium outcome with
|Θ| = |D| = 2 to construct the imitation equilibrium outcome when the state is binary, but
the space of experimental outcomes is an arbitrary finite set. Where p2

p1
gives ratio of the

maximum measure of data distributed f2 that a sender has under state 2 to the measure
that a sender endowed with the same total amount of data under state 1 has, the same ratio
can be constructed for arbitrary outcome spaces: we define for any particular observation
the relative likelihood under distributions f and f ′ to be

LR(f, f ′|d) =
f(d)

f ′(d)

and the maximum of LR(fj, fj′ |d) over all d to be

rj′(j) = max
d

(
fj(d)

fj′(d)

)
.
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Then the equilibrium outcome constructed, replacing p2

p1
by r1(2), for the general case is

the analogous imitation equilibrium, and is also lexicographically optimal.

5.3 Imitation with J > 2 states

We now extend a characterization of an imitation equilibrium outcome to the case with J > 2
states. In particular, we look for an equilibrium in which payoffs under every state are a
continuous function of µ. While imitation equilibria are not unique, the construction of the
continuous-payoff equilibrium follows the intuition that we prioritize awarding high payoffs
to senders that have high potential payoffs in equilibrium. Here, we focus on characterizing
the equilibrium and its outcome, but we will show in Section 6 that when a sequence of
finite models converges to an infinite-data game, the limit of the corresponding lexicograph-
ically optimal equilibrium outcomes must converge to exactly the outcome of this imitation
equilibrium.

The central object defining the imitation equilibrium is a “burden of proof” associated with
each payoff and state, which gives the volume of data imitating the given state distribution
that is necessary to obtain the desired payoff. Senders endowed with different datasets will
best meet the burden of proof in different ways. Indeed, the equilibrium can be summarized
by a vector-valued burden-of-proof function, µ̂(u) = (µ̂1(u), . . . , µ̂J(u)), such that each sender
need only consider the maximal level of utility u such that they can meet the burden of proof
for some component j of the associated vector. Their optimal strategy is then to imitate
state j using a measure µ̂j(u) of data. Correspondingly, the payoff obtained by disclosing
(µfj) is uj(µ), which is the (continuous) inverse of µ̂ in that

µ̂j(uj(µ)) = min{µ′ : uj(µ′) = uj(µ)} and uj(µ̂j(u)) = u.

where µ̂j(u) may also be empty if there is no µ ∈ [µ, µ̄] such that uk(µ) = u. Indeed, the
domain of µ̂j will turn out to be [us(11), us(1j)] – imitating the state-j distribution never
yields a greater payoff than having the state thought to be j for sure.

As in the case of a binary state, the set set {rj′(j)}j′,j∈1,...,J fully characterizes the pairwise
comparisons between f1, . . . , fJ , which are the only relevant features for masquerading across
states, as they encode how advantaged the data distribution under each state is in imitating
another based on their relative similarity.

Theorem 5.1 There exists a unique6 vector-valued function µ̂(u) : [0, θJ ]→ RJ such that

1. uj(µ) is continuous and (weakly) increasing in µ for all j.

2. There is a strategy σ∗ with σ∗(µfj) supported on

S̃j(µ) = {(µ̂k(u)fk) : k ∈ arg max
k
uk(

µ

rj(k)
)}

6Unique up to (outcome-irrelevant) indeterminacy when no amount of data distributed fj would convince
the sender to award a payoff of u.
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Figure 2: An illustration of sender’s disclosure policy in the equilibrium σ∗ with 3 states:
high (H), medium, (M), and low (L). A blue line represents types who masquerade under the
high-state distribution; a red line represents types that masquerade under the medium-state
distribution; and the coexistence of both denotes mixing.

with σ(µ̂k(u)fk|µ̂k(u)fk) = 1 for all k such that θk ≥ u and such that for each u and k,

us (βσ∗(·|µ̂k(u)fk)) = u.

Then σ∗ is an equilibrium sender strategy profile, and µ̂(·) is the corresponding burden-of-
proof function.

The equilibrium can be constructed step-by-step – see the Appendix. Intuitively, the
construction notes that for a target utility level u ∈ (θj, θj+1), strategies must consist of
senders imitating a state in j + 1, . . . , J , so the burden of proof can be projected down to
J − j dimensions. Then, using a system of differential equations, we may set the rate of
change of each component of µ̂(u) and {σ∗(µ̂k(u)fk|·)}Jk=j+1 such that du(β∗(·|µ̂k(u)fk))

du
= 1,

except in the case of nonmonotonicities, which, as in the binary case, we handle with ironing.

Figure 3 shows the result of this process in a setting with 3 states. For any number of
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6 CONVERGENCE OF LEXICOGRAPHICALLY OPTIMAL EQUILIBRIA

states, the resulting sender strategy profile is always part of an equilibrium of the disclosure
game. To see why, observe that when the receiver believes off-path messages are negative
signals (i.e. are sent by the worst type they could be sent by), then it is necessary to match
some dimension of burden-of-proof µ̂(u) in order to obtain a payoff u. Therefore, the best
that any sender in S̃j(u) can do is indeed to send a measure µ̂j(u) of fj.

As in the case of binary states, there are many equilibria and not all are likely. The one
proposed here, however, has the appealing feature that all senders are either truthful, or
achieve a higher payoff than they would if their identity was known; this contrasts with
equilibria in which senders refrain from sending even positive off-path information, for fear
of it being interpreted unfavorably.

I conclude the discussion of the equilibrium by summarizing some descriptive features.

Theorem 5.2 Under the equilibrium σ∗, there are thresholds z∗j > z∗∗j ≥ 0 for each state
such that:

• Whenever the sender’s type is µfj with µ > z∗j , the sender masquerades as a higher
type, and receives a payoff uσ∗(µfj) > θj.

• Whenever µ ∈ (z∗∗j , z
∗
j ], the sender is honest and the receiver knows it upon receiving

the data: uσ∗(µfj) = θj.

• Whenever µ ≤ z∗∗j , the sender is honest, but the receiver believes they are a worse type
with positive probability, and uσ∗(µfj) < θj.

6 Convergence of lexicographically optimal equilibria

A sequence of games of finite data, (GN(Θ, {fj}Jj=1, gN , us))
∞
N=1, converges to G∞(Θ, {fj}Jj=1, g∞, us)

if NgN(bNµc) converges uniformly to g(µ).

Definition A sequence of equilibria (σ1, σ2, . . .) of games GN(Θ, {fj}Jj=1, gN , us))
∞
N=1 has

outcomes that converge to the outcome of an equilibrium σ∞ of the limit infinite-data game
G∞(Θ, {fj}Jj=1, g∞, us) if the payoffs uσN (t) converge uniformly to uσ(t) over T∞.

Note payoffs are only required to converge for types that are possible in the limit, which
is consistent with the fact that lexicographic optimality does not constrain payoffs for types
that occur with probability (density) 0.

Nevertheless, here they do, and they converge to the imitation equilibrium σ∗ of the limit
infinite-data game, as our 2nd main theorem shows.

Theorem 6.1 If σ∗∞ is the imitation equilibrium in G∞(Θ, {fj}Jj=1, g∞, us) and uσ∗∞ is strictly
increasing in µ for each θ, then along any sequence GN(Θ, {fj}Jj=1, gN , us))

∞
N=1 that converges

to G∞(Θ, {fj}Jj=1, g∞, us), the LD equilibrium outcomes converge to uσ∗∞.
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7 EXTENSION: ENDOGENOUS DATA ACQUISITION

The qualifier that uσ∗∞ be strictly increasing in µ entails a restriction on g∞ and {fj}Jj=1

that, while made for the sake of tractability, is nevertheless satisfied by some broad classes
of functions: for example, it is always satisfied when g∞ is concave on [0, 1]. We conjecture
that it is not, in fact, necessary, and though we lack a proof in general, we confirm the
conjecture in the case of a binary state:

Theorem 6.2 If σ∗∞ is the imitation equilibrium in G∞(Θ, {fj}Jj=1, g∞, us) where |Θ| = 2,
then the LD equilibrium outcomes along any sequence GN(Θ, {fj}Jj=1, gN , us))

∞
N=1 converging

to G∞(Θ, {fj}Jj=1, g∞, us) converge to uσ∗∞.

The full proof is in the Appendix, and a sketch is as follows. When N is very large, there
is a type in TN close to any type t ∈ T∞. Under the algorithm that generates σ∗N , that
type must obtain the payoff of the maximal upper pool at the step m in which its payoff is
assigned. For any ε, define

T (m) = {t′ ∈ TN : t′ remains at step m and uσ∗(t
′) ≥ uσ∗(t)− ε}.

The payoff to the maximal upper pool is lower-bounded by the receiver’s belief about the
state conditional on the sender being in T (m), since there remains a set of messages M
such that all types in T (m) can send at least one message in M , but no types outside
T (m) can do so. When the receiver forms their belief about the state conditional on the
sender being in T (m), the sender’s payoff is bounded below, with the bound approaching
uσ∗(t) − ε as N → ∞; intuitively, this comes from the fact that whenever a set of types in
the neighborhood of µfj ∈ T∞ is in the possible set, a corresponding measure of types in
the neighborhood of the type that µfj imitates under the imitation equilibrium must also be
in the set. Since the imitated types correspond to better states, the belief given the set of
types must be at least as favorable. In the limit as N →∞, no equilibrium outcome of GN
can be unilaterally better for all senders in T∞, due to Bayes plausibility, and they cannot
be worse for any sender, so the two outcomes must coincide.

7 Extension: Endogenous data acquisition

We have assumed so far that the distribution of µ is exogenous and identical for all senders.
This captures some sources of variation in the data volume, such as invalid trials due to
human error or dropouts. But the volume of data generated may also vary because of
sender-specific differences in data-gathering ability – either different capacities (e.g. time
constraints) or costs of obtaining more evidence.

The case of exogenous capacities is simple, and there is a one-to-one mapping between
capacity constraints and distributions of attained data. The outcome of the game is un-
changed if, instead of assuming that senders are randomly endowed with a measure µ of
data following the outcome of trials, we suppose that each sender knows their capacity K
for data collection prior to experiments, which is uncorrelated with the state. Then the
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sender’s optimal strategy in the data-collection stage is to meet their capacity exactly (set
µ = K), the distribution of µ over the population is the same as the distribution of K, and
the receiver draws identical conclusions.

It is more challenging to map costs of data acquisition to disclosure game outcomes. Nev-
ertheless, it is trivially true that every distribution of data endowments can be founded on
some cost structure, as cost functions

c(µ) =

{
0, µ ≤ K

us(1θ1) + 1, µ > K

mimic capacities in that the (possibly weakly) optimal choice is µ = K, and so any g can
be imitated by a corresponding distribution over K among such cost functions. Conversely,
for most reasonable distributions of cost functions over the population, there must exist
g such that the equilibrium outcome of the augmented game with data acquisition is the
lexicographically optimal outcome of the disclosure game in which g is the distribution of
endowments.
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A APPENDIX A: CONSTRUCTION OF IMITATION EQUILIBRIUM

A Appendix A: Construction of imitation equilibrium

A.1 Proof of Theorem 5.1

Analogously to the finite case, given any (finite) collection of messages M , letting T ⊂ T
denote any arbitrary type set, let T +(M) be the subset of types in T capable of sending a
message in M .

For a given equilibrium σ, denote τσ(m) to be the set of types who find it (weakly) optimal
to send message m under σ, and let τ++

σ (m) to be the set of types that send m with positive
probability under σ.

Proof of Theorem 5.1 To create the burden-of-proof vector, we hypothesize, to begin
with, that it is associated with a strategy σ in which the support of play by µfj is

supp σ(·|µfj) ⊆ B(µfj) = { µ

rj(k)
fk : k ∈ arg max

k′
uk′(

µ

rj(k′)
)}, (1)

that is, each type plays the strategy “send a message corresponding to as great a mass as
possible of some fk, where k is chosen to maximize the payoff from doing so”.7

The broad approach to constructing σ over all types is iterative and comes at the end of
the proof. It requires details of constructing σ near a fixed payoff v, which I will discuss
here. Consider fixing a payoff v, and suppose that v ∈ [θl, θl+1). Suppose we are given µ̂+(u)
and σ+ that are are a burden-of-proof vector and associated strategy for the game with type
space T+({µ̂+

k (v)fk}Jk=l+1) and the type distribution given by the same relative probabilities
between types in T+({µ̂+

k (v)fk}Jk=l+1) as in the original game.

Define the set M(v) = {(µ̂k(v)fk)}Jk=l+1 of all messages that yield payoff v under σ+.
Observe that the payoff to sending a message in M(v) must be the payoff to the receiver
knowing that the sender is one of the types that sends a message in M(v) under strategy
σ+. This payoff is

U(M(v)) =

∑J
k=l+1

∑
j θjg( µ̂k(v)

rj(k)
)rj(k)σ+(µ̂k(v)fk| µ̂k(v)

rj(k)
θj)∑J

k=l+1

∑
j g( µ̂k(v)

rj(k)
)rj(k)σ+(µ̂k(v)fk| µ̂k(v)

rj(k)
θj)

= v.

Analogously, the payoff under σ+ to a subset C of M(v) is U(C) = v. Alternatively, define
the payoff to knowing only that the sender is one of the types in M(v) who can send a
message in C (even if they don’t do so with probability 1) by

W (C) =

∑
k:µ̂k(v)fk∈C

∑
j:µk(v)fk∈B(rj(k)µk(v)fj)

θjg( µ̂k(v)
rj(k)

)rj(k)∑J
k=l+1

∑
j g( µ̂k(v)

rj(k)
)rj(k)

.

7This is analogous to the first step in the binary-state construction of revealing as much as possible of
f2, prior to ironing.
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A.1 Proof of Theorem 5.1A APPENDIX A: CONSTRUCTION OF IMITATION EQUILIBRIUM

We may define a directed graph with nodes in M(v) and a link m → m′ if and only if
τσ(m′)

⋂
τ++
σ (m) is nonempty. If there is a type that mixes between m and m′ with strictly

interior probability, then m → m′ and m′ → m. If, on the other hand, there is a type that
is able to send both m and m′, and obtains their best possible payoff from either, but no
such types send m′ with positive probability (though some send m with positive probability),
then m→ m′, but not vice-versa.

A connected component of this graph is C ⊆ M(v) such that for all m,m′ ∈ C, either
there is a path m → . . . → m′, or a path m′ → . . . → m, and there is no m′′ ∈ M(v) \ C
with either an ingoing or outgoing link to any m ∈ C. A strongly connected component is
a component C ′ such that there are (directed) paths m→ . . .→ m′ and m′ → . . .→ m for
all m,m′ ∈ C ′, and not for any m ∈ C ′ and m′ 6∈ C ′. If C is any subset of nodes of M not
connected to any other nodes, and there is no subset C ′ ⊂ C with U(C) ≥ v, then C must be
a strongly connected component of M , since if it is disconnected, then its sub-components
contain at least one group of messages for which all types achieving a payoff of v that can
send one of the messages do, but this would yield a lower payoff than v.

If there is a connected component C ⊂ M(v) that is also strongly connected, then there
exists small enough ε such that for all v′ ∈ [v − ε, v], the burden-of-proof vector satisfies

µ̂k(v
′)

µ̂k(v)
=
µ̂k′(v

′)

µ̂k′(v)
∀ k : µ̂k(v)fk ∈ C, k′ : µ̂k′(v)fk′ ∈ C (2)

because if not, then indifference for mixing types is not preserved, which in turn means that
the payoffs to messages in putative frontier (µ̂k(v

′)fk)
J
k=l+1 fails to hold.

If C is a connected component consisting of multiple, disjoint strongly connected compo-
nents, then it must be that there is a directed acyclic graph of such components in C, in
which, for two strongly connected components C ′ and C ′′, C → C ′′ if there are types that
send a message in C ′ that could send a message in C ′′, but not vice-versa. Then, we compare
the rate of change of payoffs from playing a message C ′ relative to a message in C ′′ for a
type that can send either, and consider C ′ and C ′′ as if they were a single component if the
rate is weakly greater for C ′ than C ′′, and not if vice versa.

Using these insights, the construction of uk(µ) proceeds iteratively:

1. Start with l = J and µ̂J(θJ) = 1.

2. Construct us(·) as follows:

(a) Initialize vl1 = θl.

(b) For each vli, partition M(vli) = {(µ̂k(vli)fk)}Jk=l+1 into components as described
above, calculate payoffs for each component, and calculate M(v − ε) given con-
straint 2. Given these messages, set

vli+1 = max
{
u ≤ vli : M(u) not partitionable into strongly connected connected components

}
,
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A.2 Proofs of convergence (Theorems 6.1 and 6.2)A APPENDIX A: CONSTRUCTION OF IMITATION EQUILIBRIUM

and repeat starting from vli+1 until vli+1 does not exist. Observe that {uk}Jk=1 thus
constructed must be consistent with an equilibrium strategy as long as they are
monotone in µ.

Let µ̂k(u) = min{µ̃′ : uk(µ̃′) = u} for k ∈ {l, . . . , J}, and let uj(µ) = maxk≥l uk(µ/rj(k))
for j′ < l.

3. If at any point uk(µ) is nonmonotone in µ, then iron, and repeat step (2) from the
lower bound of the ironing interval.

4. If l > 1, decrease l by 1, and let µ̂j(θj) = maxj′<j{ 1
rj′ (j)

µ̂j′(θj)}. Then return to (2).

A.2 Proofs of convergence (Theorems 6.1 and 6.2)

Proof The proof of theorems 6.1 and 6.2 has 3 steps. First, we give a lemma establishing
that under the conditions of the theorems, for any set of messages M , when the set of all
types in T∞ \ T +

∞ (M) that attain a payoff of at least v in σ∗∞ is nonempty, heir payoff when
they form a pool is at least v. Using this, we show that uσ∗ is a lower bound on payoffs for
types in T∞ in the limit. Finally, Bayes plausibility implies that

lim
N→∞

j∑
j=1

β0(θj)

∫ 1

µ=0

uσN (µfj)g(µ)dµ = Eq∞ [Eβ(·|σ(t))[θ]|t] = Eβ0 [θ],

which in conjunction with the lower bound implies that in the limit outcomes must coincide
exactly with uσ∗ for types in T∞.

Lemma A.1 Suppose that either |Θ| = 2 or payoffs under uσ∗∞ are strictly increasing in µ
for each θ. If M is a collection of messages and (µ

1
f1, . . . , µifi;µi+1

fi+1, . . . , µJfJ) is the
frontier of types achieving a payoff of at least v under σ∗∞, where θi < v ≤ θi+1, then

E[θ|t ∈ T +
∞ ({µ

j
fj}Jj=1) \ T +

∞ (M)] ≥ v

whenever T +
∞ ({µ

j
fj}Jj=1) \ T +

∞ (M) is nonempty.

Proof of Lemma Denote T (v,M) = T +
∞ ({µ

j
fj}Jj=1)\T +

∞ (M). Let (µ̄1, . . . , µ̄i; µ̄i+1, . . . , µ̄J)

be the minimum masses of data distributed like f1, . . . , fi; fi+1, . . . , fJ , respectively, necessary
to send some message in M . Then

E[θ|t ∈ T (v,M)] =

∑J
j=1 β0(θj)θj(G(µ̄j)−G(µ

j
))∑J

j=1 β0(θj)(G(µ̄j)−G(µ
j
))
.

If (µ̄i+1, . . . , µ̄J) ≤ (µ
i+1
, . . . , µ

J
) pointwise, then T (v,M) is empty. Otherwise, let the

states j1, . . . , jA be the maximal set such that (µ̄j1 , . . . , µ̄jA) > (µ
j1
, . . . , µ

jA
) pointwise. Call
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the set of types in T (v,M) that send µ′fja with positive probability under σ∗ by tσ∗(µ
′fja),

and let θ(t) refer to the state corresponding to the distribution of dataset t.

Eσ̂v [v(θ)|µ′fja ] =

∑
t∈tσ∗ (µ′fja )

⋂
T (v,M) θ(t)g( µ

rθ(t)(ja)
)σ∗(µ′fja|t)

β0(θ)
rθ(t)(ja)∑

t∈tσ∗ (µ′fja )
⋂
T (v,M) g( µ

rθ(t)(ja)
)σ∗(µ′fja|t)

β0(θ)
rθ(t)(ja)

≥

∑
t∈tσ∗ (µ′fja ) θ(t)g( µ

rθ(t)(ja)
)σ∗(µ′fja |t)

β0(θ)
rθ(t)(ja)∑

t∈tσ∗ (µ′fja )) g( µ
rθ(t)(ja)

)σ∗(µ′fja|t)
β0(θ)

rθ(t)(ja)

≥ v.

(3)

In the case when payoffs under uσ∗∞ are strictly increasing, the first inequality comes from
the fact that θja ≥ v > θ(t) whenever θ(t) 6= θja , and µ′fja ∈ T (v,M) only if all types that
play it under σ∗ are also in T (v,M).

When |Θ| = 2, the inequality also holds when ironing occurs in the equilibrium construc-
tion. If µ′fH is a message that supports the pooling of types in an ironing interval, then we
may further break the set of types in tσ∗(µ′fH) by the message they would send under σ̄, the
unironed, “send as much of fH as possible” strategy. If the ironing interval is from µ′fH to
µ′′fH , then

Eσ̂v [v(θ)|µ′fH ] =

β0(θH)
∫ min(µ′′,µ̄H)

µ′
g(µ)θHdµ+ β0(L)

∫ min(µ′′,µ̄L)

rL(H))

µ′
rL(H)

g(µ)v(L)dµ

β0(θH)[G(min(µ′′, µ̄H))−G(µ′)] + β0(θL)[G(min(µ′′,µ̄L)
rL(H))

)−G( µ′

rL(H)
)]

≥
β0(θH)

∫ min(µ′′,µ̄H)

µ′
g(µ)θHdµ+ β0(L)

∫ min(µ′′,µ̄H )

rL(H))

µ′
rL(H)

g(µ)v(L)dµ

β0(θH)[G(min(µ′′, µ̄H))−G(µ′)] + β0(θL)[G(min(µ′′,µ̄H)
rL(H))

)−G( µ′

rL(H)
)]
.

(4)

The latter half of the inequality is the expectation of the state’s value when the set of possible
types includes [µ′fH ,min(µ′′, µ̄H)fH ] and [ µ′

rL(H)
fL,

min(µ′′,µ̄H)fH
rL(H)

fL]. Since µ′ < min(µ′′, µ̄H) ≤
µ′, by the construction of the ironing interval, this value exceeds the expectation of the
state’s value over a set of types including [µ′fH , µ

′′fH ] and [ µ′

rL(H)
fL,

µ′′fH
rL(H)

fL], which is the

original expectation of the state’s value under message µ′fH , and is no less than v.

In either case, the expectation of θ given that the sender’s type is in T (v,M) is a weighted
average of Eσ̂v [θ|µ′fja ] over on-path messages µ′fja in T (v,M). We have shown that each
component is no less than v, and so the weighted average is also at least v.

Before proceeding to construct bounds on payoffs in the finite games, it is helpful to define
a neighborhood of T∞ as the set of types in each finite game with datasets distributed
similarly to the underlying distribution in some state. For η ∈ (0, 1] and k ∈ [0, 1], define

SN(η, k) = {t ∈ TN : |t| ≥ k and ∃θ s.t. sup
d
|t(d)− |t|fθ(d)| ≤ η}.
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Fix an integer n. Conditional on |t| = n and the true state being θj, the Glivenko-Cantelli

theorem states that there is a bound on the probability that supd |
∑d

x=1 t(d)− n
N
Fj(d)| > η

that decreases to 0 for large n, irrespective of N . Because data have a discrete distribution,
this implies a similar bound on the empirical probability mass function: if |t| = n and
θj is the true state, the probability that supd |t(d) − n

N
fj(d)| > η is at most b=(n, η), with

limn→∞ b=(n, η) = 0 for all η > 0. If the true state is θj′ 6= θj and |t| = n, then the probability
that supd |t(d)− n

N
fj(d)| > η is at least b 6=(n, η), with limη→0 limn→∞ b 6=(n, η) = 1.

When N and k are large, the proportion of types that lie in SN(η, k) is close to 1, for all
η. In particular, limk→0 limη→0 limN→∞ qN(SN(η, k)) = 1, since:

• With probability decreasing to 0 as k → 0, |t| < k.

• For fixed k and η, the probability that there does not exist θ such that supd |t(d) −
|t|fθ(d)| ≤ η given that |t| ≥ k decreases to 0 as Nk →∞.

We may further subdivide SN(η, k) into a set of types associated with each state,

SjN(η, k) = {t ∈ SN(η, k) : sup
d
|t(d)− |t|fj(d)| ≤ η}.

A further consequence of the convergence of empirical distributions is that, when Nk →∞
and η → 0, the sets (SjN(η, k))Jj=1 are disjoint. Additionally, for all t ∈ SjN(η, k), there is a
uniform lower bound on the probability that the state is θj given that the sender is of type
t, which we call w(k, η,N), with limk→0 limη→0 limN→∞w(k, η,N) = 1.

In addition, we can lower-bound qN({t ∈ SjN(η, k) : µfj ⊆ t ⊆ µ̄fj}) for all k < µ < µ̄. Let

∆(N) be a bound on supd |(
∑d

x=1 gN(x))−G(d)| that goes to 0 as N →∞. Observe that if
µ+ η < |t| < µ̄− η and t ∈ SjN(η, k), then µfj ⊆ t ⊆ µ̄fj, so a lower bound is

qN({t ∈ SjN(η, k) : µfj ⊆ t ⊆ µ̄fj}) ≥ β0(θj)(1−b=(Nk, η))(G(µ̄−Dη)−G(µ+Dη)−∆(N)).
(5)

Similarly, there is an upper bound on qN({t ∈ SjN(η, k) : t 6⊆ µfj and µ̄fj 6⊆ t}):

qN({t ∈ SjN(η, k) : t 6⊆ µfj and µ̄fj 6⊆ t}) ≤ β0(θj)(G(µ̄+Dη)−G(µ−Dη)+∆(N))+(1−β0(θj))b 6=(kN, η).
(6)

Now we proceed to construct a lower bound for uσN (µ̂fĵ). First, recall that uσN (µfj) ≥
max{f∈TN :t⊆µfj} uσN (t). Observe that there exists a dataset t̂ = 1

N
(bNµ̂fθ̂(1)c, . . . , bNµ̂fθ̂(k)c)

in TN and that uσN (µ̂fĵ) ≥ uσN (t̂).

For a givenN , suppose t̂ belongs to themth upper pool under the algorithm that constructs
σN . Denote by M̂N(m − 1) the set of messages that implement the upper pools in step
1, . . . ,m − 1, and fix TN,m = T +

N (M̂N(m − 1)) to be the set of remaining types at the start
of the mth step of the algorithm that constructs σN ; therefore, t̂ belongs to TN,m.
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Let M∞(ε,N) be the set of on-path messages that result in a payoff of uσ((µ̂− ε)fĵ) under

infinite data. We see that the set of types in T +
N,m(M∞(ε,N)) includes f̂ when N is large

enough. From Lemma A.1, there is an upper pool in TN̂,m that achieves a payoff of at least

u(T +

N̂,m
(M∞(ε,N))), so uσN (µ̂fĵ) is lower-bounded by u(T +

N̂,m
(M∞(ε,N))).

Let (µ
1
(ε,N), . . . , µ

J
(ε,N)) be a vector that gives the minimum mass of data under distri-

butions f1, . . . , fJ , respectively, such that the dataset contains some message in M∞(ε,N),
and let (µ̄1(N), . . . , µ̄J(N)) be the maximum mass of data under each distribution such
that there does not exist t ∈ TN̂,m such that t ⊆ µ̄jfj. All t ∈ T +

N̂,m
(M∞(ε)) satisfy

t 6⊆ µ
j
(ε,N)fj and µ̄j(N)fj 6⊆ t, and all t satisfying µ

j
(ε,N)fj ⊆ t ⊆ µ̄j(N)fj for some

j are in T +

N̂,m
(M∞(ε)).

We may rewrite

u(T +

N̂,m
(M∞(ε))) =

∑J
j=1

∑
t∈T +

N̂,m
(M∞(ε)) qN(t)θjπN(θj|t)∑

t∈T +

N̂,m
(M∞(ε)) qN(t)

. (7)

Let the numerator be Q(N, µ̂fĵ, ε) and the denominator be R(N, µ̂fĵ, ε). Analogously to
eq. 5, a lower bound for Q(N, µ̂fĵ, ε) is

Q(N, µ̂fĵ, ε) =
∑
j

β0(θj)θj[G(µ̄j(N)−ηD)−G(max(µ
j
(ε,N)+ηD, k))−∆(N)]w(k, η,N)(1−b=(k, η)),

(8)
and it follows from eq. 6 that an upper bound for R is

R̄(N, µ̂fĵ, ε) =

(∑
j

β0(θj)[G(µ̄j(N) + ηD)−G(µ
j
(ε,N)− ηD) + ∆(N)]

)
+ J(1− b 6=(k, η)) + (1− qN(SN(η, k))).

(9)

We have

lim
k→0

lim
η→0

lim inf
N→∞

Q ≥ lim inf
N→∞

J∑
j=1

β0(θj)θj(G(µ̄j(N))−G(µ
j
(ε,N)))

and

lim
k→0

lim
η→0

lim inf
N→∞

R̄ ≤ lim inf
N→∞

J∑
j=1

β0(θj)(G(µ̄j(N))−G(µ
j
(ε,N))).
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Both of the RHS are finite and strictly positive for all N and ε > 0; therefore,

lim
k→0

lim
η→0

lim inf
N→∞

Q

R̄
≥ lim inf

N

∑J
j=1 β0(θj)θj(G(µ̄j(N))−G(µ

j
(ε,N)))∑J

j=1 β0(θj)(G(µ̄j(N))−G(µ
j
(ε,N)))

= lim inf
N

E[θ|t ∈ T (uσ∞((µ̂− ε)fĵ), M̂N(m− 1))]

≥ uσ∞((µ̂− ε)fĵ),

(10)

where the last inequality follows from Lemma A.1.

Because k and η are arbitrary variables used to obtain the bound, it follows from this that
limN→∞ u(T +

N̂,m
(M∞(ε))) ≥ uσ∞((µ̂−ε)fĵ). Finally, because payoffs are continuous, taking a

sequence of bounds as ε→ 0 implies that lim infN→∞ uσN (µ̂fĵ) ≥ limε→0 lim infN→∞ u(T +

N̂,m
(M∞(ε))) ≥

uσ∞(µ̂fĵ).

The last step is to show that

lim
N→∞

J∑
j=1

β0(θj)

∫ 1

µ=0

uσN (µfj)g(µ)dµ = Eβ0 [θ].

Since we know already that

lim
N→∞

J∑
j=1

β0(θj)

∫ 1

µ=0

uσ∞(µfj)g(µ)dµ = Eβ0 [θ]

and lim infN→∞ uσN (µfj) ≥ uσ∞(µfj) for all µfj ∈ T∞, this additional fact suffices to ensure
that uσN (·) = uσ∞(·) over T∞.

The proof comes from dividing µ ∈ (k, 1) into X chunks, with the xth chunk given by
(µx−1, µx] where µx = x1−k

X
+ k.

Consider types t ∈ SjN(η, k) such that µx−1fj ⊆ t ⊆ µxfj: their payoff under σN has to be
in [uσN (µx−1fj), uσN (µxfj)]. This implies that

V N(k, η,X) =
J∑
j=1

β0(θj)
X∑
x=1

uσN (µxfj)[G(µx+1 − ηD)−G(µx + ηD)−∆(N)](1− b=(k, η))

≤ Eβ0 [θ],

(11)

since V N(k, η,X) is a lower bound for the total probability-weighted sum of payoffs under
σN over t ∈ TN

⋃
SN(η, k), while Eβ0 [θ] is equal to the total probability-weighted sum of

payoffs under σN of all types in TN .
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Finally, the difference between
∑J

j=1 β0(θj)
∫ 1

µ=0
uσN (µfj)g(µ)dµ and V N(k, η,X) vanishes

as X →∞, k → 0, η → 0, and N →∞. To see this, observe that if c is an upper bound on
g (which exists because g is continuous on compact interval [0, 1]),

VN(k, η,X) ≥
J∑
j=1

β0(θj)
( X∑
x=1

uσN (µxfj)[G(µx+1)−G(µx)]

− (θJb=(k, η)[G(µx+1)−G(µx)] + 2cηD + ∆(N))
)

≥
J∑
j=1

β0(θj)
X∑
x=1

uσN (µxfj)[G(µx+1)−G(µx)]

−JXθJ(b=(k, η) + 2cηD + ∆(N)).

(12)

Then, for any ε and j, define ξjN(ε,X) to be the set of values of x such that uσN (µx+1fj)−
uσN (µxfj) > ε. The size of ξjN(ε,X) is at most θJ

ε
. For all x 6∈ ξjN(ε,X), we have the bound∫ µx+1

µx
uσN (µfj)g(µ)dµ− uσN (µxfj)[G(µx+1)−G(µx)] < ε[G(µx+1)−G(µx)]. So,

J∑
j=1

β0(θj)

∫ 2

µ=0

uσN (µfj)g(µ)dµ− V N(k, η,X)

≤

(
J∑
j=1

β0(θj)
X∑
x=1

(∫ µx+1

µx

uσN (µfj)g(µ)dµ− uσN (µxfj)[G(µx+1)−G(µx)]

))
+ JXθJ(b=(k, η) + 2cηD + ∆(N) + (1− qN(SN(η, k))))

≤
J∑
j=1

β0(θj)

 ∑
x 6∈ξjN (ε,X)

ε[G(µx+1)−G(µx)]

+

 ∑
x∈ξjN (ε,X)

θJ [G(µx+1)−G(µx)]


+ JXθJ(b=(k, η) + 2cηD + ∆(N) + (1− qN(SN(η, k))))

≤ε+ J
c(1− k)

X

θ2
J

ε
+ JXθJ

(
b=(k, η) + 2cηD + ∆(N) + (1− qN(SN(η, k)))

)
(13)

since
∑

x∈ξjN (ε,X)[G(µx+1)−G(µx)] ≤ c(1−k)
X

θJ
ε

. Then

lim
ε→0

lim
X→∞

lim
k→0

lim
η→0

lim
N→∞

J∑
j=1

β0(θj)

∫ 2

µ=0

uσN (µfj)g(µ)dµ−V N(k, η,X) = lim
ε→0

lim
X→∞

ε+J
c(1− k)

X

θ2
J

ε
= 0.

Again, since ε, X, k, and η were all constructed variables, this implies that

lim
N→∞

J∑
j=1

β0(θj)

∫ 2

µ=0

uσN (µfj)g(µ)dµ = lim
ε→0

lim
X→∞

lim
k→0

lim
η→0

lim
N→∞

V N(k, η,X) ≤ Eβ0 [θ].
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As it is already clear from the lower bound on uσN (µfj) that limN→∞
∑J

j=1 β0(θj)
∫ 2

µ=0
uσN (µfj)g(µ)dµ ≥

Eβ0 [θ], equality obtains.

A.3 Proof of Lemmas A.1, 4.2 and 4.4

Proof of Lemma A.1 Consider a game in which the type set is T +(M), each type’s action
set is the set of messages in M that they are able to send, and the payoff to playing σ̂(·|t)
against the receiver’s putative strategy profile σ̂′ is

∑
f̃ u(βσ̂′(·|f̃))σ̂(f̃ |t), the utility to the

sender of the receiver’s updated belief conditional on seeing them play f̃ when the population
is expected to play according to σ̂′.

Payoffs are continuous in σ̂ and σ̂′. Let the best response correspondence be given by

rt(σ̂
′) = arg max

σ̂(·|t)

∑
f̃∈M

u(βσ̂′(·|f̃))σ̂(f̃ |t).

A fixed point σ̂∗ of r corresponds to a PBE of the constructed game, and a standard Nash
existence argument shows that there must be at least one. Then let M ′ be the set of messages
that achieve the highest payoff under σ̂∗; along with the restriction of σ̂∗ to T+(M ′), it forms
an upper pool.

If M is not itself an upper pool, then T +(M) \ T +(M ′) is nonempty and contains types
that do worse than those in T +(M ′). Then,

u(T +(M ′)) > u(T +(M)) > u(T +(M) \ T +(M)).

Proof of Lemma 4.2 Consider 2 such pools, M = {f̃1, . . . , f̃I} and M ′ = {f̃ ′1, . . . , f̃ ′J},
with type sets T +(M) and T +(M ′). We aim to show their union is also a utility-maximizing
upper pool. Let A = T +(M)\T +(M ′), B = T +(M ′)\T +(M), and C = T +(M)

⋂
T +(M ′).

Observe that if we let M ′′ be the message set that includes f̃i ∨ f̃ ′j for every i ≤ I, j ≤ J
(where ∨ is the pointwise max operator on datasets), then C = T +(M′′).

We have u(T +(M)) = u(αA + (1 − α)C) = u(T +(M ′)) = u(α′B + (1 − α′)C) = u∗. So
u(T +(M)

⋃
T +(M ′)) ≥ u∗ unless u(A) < u∗, u(B) < u∗, and u(C) > u∗; but by the previous

lemma, the last of these would imply that C contains a higher-utility upper pool than M
and M ′. Since this is not true, u(T +(M)) = u∗ and it is an upper pool itself (otherwise it
would contain a strictly better upper pool, a contradiction).

Proof of Lemma 4.4 Suppose to the contrary that u(T +
m (Mm)) ≤ u(T +

m+1(Mm+1)). Then,

u(T +
m (Mm

⋃
Mm+1)) = u(α′β(·|T +

m (Mm)) + (1− α′)β(·|T +
m+1(Mm+1))) ≥ u(T +

m (Mm)),

which implies (by Lemma A.1) that either Mm

⋃
Mm+1 must itself be an upper pool with

respect to Tm, or that there exists M ′ ⊂ Mm

⋃
Mm+1 such that u(T +

m (M ′)) > u(T +
m (Mm)).

Either of these would contradict that Mm is a maximal upper pool in Tm.
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A.4 Proof of Claim 3.2

Proof We proceed inductively. Since π(0, N) > π(n1, n2) for all (n1, n2), and (0, N) cannot
be imitated by any other type, M1 = (0, N) and Tσ̂M1

= {(0, N)}.

Now suppose Mm = (0, ñ2[m]) for m = 1, . . . , j. Then Tj+1 = {(n1, n2)}n2≤ñ2[j]−1,n1≤N−n2 .
Consider any (ñ1, ñ2). Then by combinatorial identity,

β(H|F+(ñ1, ñ2)) = πH(ñ1, ñ2).

There may be a set of types who are able to send (ñ1, ñ2) but are already included in Tσ̂Mm
for some m ≤ j. This set, F+(ñ1, ñ2) \ Tj+1, satisfies

β(H|F+(ñ1, ñ2) \ Tj+1) = β(H|F+(ñ1, ñ2[j])) = πH(ñ1, ñ2[j]) > πH(ñ1, ñ2).

Therefore,
β(H|T +

j+1(ñ1, ñ2)) < πH(ñ1, ñ2).

This implies that a single message (ñ1, ñ2) with ñ1 > 0 cannot be a highest-payoff pool,
since the type set of the upper pool consisting of message (0, ñ2) yields strictly higher payoff.
To see this, observe that

β(H|T +
j+1(0, ñ2)) = αβ(H|T +

j+1(ñ1, ñ2)) + (1− α)β(H|T +
j+1(0, ñ2) \ T +

j+1(ñ1, ñ2)),

and β(H|T +
j+1(0, ñ2) \ T +

j+1(ñ1, ñ2)) > πH(ñ1, ñ2): that is, the receiver’s belief conditional on
the sender being in Tj+1 and being able to send ñ2 high signals but not ñ1 low signals, is
better than their belief when the sender is able to send at least ñ1 low signals, therefore their
belief is better when the burden of proof does not require any low signals be sent.

In addition, the highest-payoff pool cannot correspond to a set of distinct messages M =
{(ñ1

1, ñ
1
2), . . . , (ñL1 , ñ

L
2 )}, such that nl2 < nl−1

2 and nl1 > nl−1
1 for all l.8 To see this, first focus

on
TL := {(n1, n2) : ñL2 ≤ n2 < ñL−1

2 , ñL1 ≤ n1 ≤ N − n2},

the set of types in Tj+1 that can send (ñL1 , ñ
L
2 ) but no other messages in M . Observe as

before that β(H|TL) ≤ πH(ñL1 , ñ
L
2 ). Consider 2 cases:

• If β(H|TL) ≥ β(H|Tj+1(M)), then let M ′ = {(ñ1
1, ñ

1
2), . . . , (ñL−2

1 , ñL−2
2 ), (ñL−1

1 , ñL2 )},
i.e. replace messages (ñL−1

1 , ñL−1
2 ) and (ñL1 , ñ

L
2 ) with a single message that is their

(pointwise) minimum.

• If β(H|TL) < β(H|Tj+1(M)), then letting M ′ = {(ñ1
1, ñ

1
2), . . . , (ñL−1

1 , ñL−1
2 )}, i.e. drop

(ñL1 , ñ
L
2 ) from the message set.

8A set of messages that does not satisfy these properties can either be reordered to do so, or is redundant
in that there are some l, l′ such that (nl1, n

l
2) ⊂ (nl

′

1 , n
l′

2 ); so sets of messages satisfying these criteria are
exhaustive of possible upper pools.
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A.4 Proof of Claim 3.2A APPENDIX A: CONSTRUCTION OF IMITATION EQUILIBRIUM

In either case, we have β(H|Tj+1(M ′)) ≥ β(H|Tj+1(M)), and M ′ is a strictly smaller set of
messages than M . Repeat on M ′ and iterate until the message set is a singleton; then it is
a commuting upper pool that yields strictly better belief than M .

The above argument shows that message set Mj+1 of the unique upper pool chosen in the
j + 1st step of the algorithm is of the form {(0, ñ2[j + 1])} where ñ2[j + 1] < ñ2[j]. It is
immediate the value of ñ2[j + 1] that maximizes payoff to the pool is as given in the claim.
Given the choice of ñ2[j + 1], the payoff to Mm is decreasing in m; therefore, the strategy
profile constructed is an equilibrium.
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