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Abstract

When estimating causal effects, controlling for confounding factors is crucial, but these

characteristics may not be observed. A widely adopted approach is to use proxy variables in place

of the unobserved ideal controls. However, this approach generally suffers from measurement

error bias. In this paper, I develop a new identification strategy that addresses this issue. I

use proxy variables to construct a random variable conditional on which treatment variables

become exogenous. The key idea is that, under appropriate conditions, there exists a one-to-one

mapping between the distribution of unobserved confounding factors and the distribution of

proxies. To satisfy overlap/support conditions, I use an additional variable, termed excluded

variable, which satisfies certain exclusion restrictions and relevance conditions. I also establish

asymptotic distributional results for flexible parametric and nonparametric estimators of the

average structural function. I demonstrate empirical relevance of my results by estimating

causal effects of Catholic schooling on college enrollment.
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1 Introduction

In observational studies, controlling for confounding factors is crucial to identify causal effects of

interest. The main challenge is that measuring these confounding elements are often difficult, if not

impossible. A widely used approach to address this issue is to use proxy variables in place of the

unobserved characteristics. For instance, to account for differences in unobserved worker’s ability,

researchers routinely include test scores in their regression controls. However, these measurements

are generally contaminated with noise. In simple linear regression settings, it is well-known that us-

ing proxies as regressors induces attenuation bias. In nonparametric settings, Battistin and Chesher

(2014) showed that average treatment effects are not identified under covariate measurement errors

and that the direction of the bias cannot be determined a priori. Therefore, simply controlling for

proxy variables does not lead to reliable inference on causal effects. In this paper, I provide a novel

identification strategy for causal effects when control variables are measured with errors. This new

approach has a wide range of applications since coarse measurements are prevalent in practice.

In its simplest form, the identification problem of interest is captured in the model

Y = β0 + β1D + β2X + β2(X
∗ −X) + ε, E[ε|D,X∗, X] = 0

where D is the treatment of interest and X is a proxy variable for the unobserved confounding

factor X∗. If X∗ were observed, one would estimate the equation Y = β0 + β1D + β2X
∗ + ε. In

practice, however, one regresses Y on D and X, using the error-ridden variable in place of X∗.

The regression estimate using X suffers from measurement error bias, and the treatment effect β1

is not consistently estimated. A textbook solution to this problem is to use an additional proxy

variable as an instrumental variable (IV) for X. Denoting the second measurement of X∗ by Z,

the two-stage least squares (2SLS) method is equivalent to estimating

Y = β0 + β1D + β2E[X|D,Z] + ε, E[ε|D,Z] = 0 (1)

where E[X|D,Z] is used as it is the fitted value in the first-stage equation.

To motivate my identification result, I make two observations on (1). The first observation is

that 2SLS is equivalent to the regression using the conditional mean of the proxy variable X as
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an additional control. In a simple linear model, controlling for the mean of X suffices to remove

the measurement error bias, but for more realistic models, one may want to include additional

controls such as conditional variance and higher moments of X. In fact, my main identification

result shows that flexibly controlling for the conditional distribution of X enables identification

of treatment effects under appropriate overlap/support conditions. The identification result holds

in a broad class of nonparametric models. For estimation and inference, I build on recent results

in the program evaluation and control function literature (e.g., Arkhangelsky and Imbens, 2019;

Chernozhukov et al., 2020) and impose structures on the proxy distribution and the outcome

equation. My proposed procedure is easy to implement, only involving regression estimations and

averaging over sample observations.

For the second observation, note that the role of Z in identification is to create sufficient

variation in E[X|D,Z] so that the standard rank condition holds. From this perspective, Z can be

independent of X∗ (or X), and instead Z can be correlated with D.1 This point indicates that Z

does not need to be a proxy for X∗, and the set of valid Z is larger than the set of proxy variables.

For example, an IV for the treatment variable can be used as Z. Other candidates for Z will

be discussed below. To emphasize that Z is not limited to a proxy variable, I call Z “excluded

variable”. Excluded variables are known as negative control exposure in the biostatistics literature

(see e.g., Miao et al., 2018). It is worth noting that the type of exclusion restriction Z needs to

satisfy is weaker than the standard IV exclusion restriction as Z is allowed to be correlated with

X∗. This feature is practically important as justification of IV exclusion restrictions often requires

considerable efforts. Below I describe formal requirements on excluded variables.

The main contribution of this paper is the novel identification result for treatment effects.

In particular, I develop a new construction of control functions based on proxy and excluded

variables.2 The majority of existing results use IV for the treatment to construct a control function

(for reviews, see Blundell and Powell, 2003; Matzkin, 2007; Wooldridge, 2015). My identification

strategy instead uses a proxy variable for unobserved confounders. As my approach is applicable

in observational settings, this paper provides a useful alternative to identification strategies that

1Even if Z ⊥⊥ X, the first-stage equation X = γ1 + γ2D + γ3Z + η may have γ3 6= 0 if Cov(Z,D) 6= 0 since D is
correlated with X∗ (and X).

2A control function is an estimable function of observed variables, conditional on which treatment variables become
exogenous (Matzkin, 2007, p.5356). This conditional independence property of a control function is also known as
balancing property in the causal inference literature.
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rely on natural/quasi-experimental variation in datasets.

To demonstrate empirical relevance of my results, I apply my method to estimating causal

effects of Catholic high school attendance on four-year college enrollment, building on the analysis of

Altonji et al. (2005). The previous studies found that identification strategies based on IV might not

be credible. By avoiding the use of IV, my identification result provides a useful alternative. I used

test scores as proxy measurements of unobserved academic ability to construct a control function.

Compared with standard methods, my approach corrects for selection bias and measurement error

bias.

Related literature This paper adds to the extensive literature on control function methods.

As already mentioned, many existing results construct a control variable from IV, whereas I use a

proxy and an excluded variable. Another important distinction is that my result handles discrete

and continuous treatment variables in a unified framework, whereas control function methods using

IV often focus on a specific type of treatment variable. In particular, I do not impose strict mono-

tonicity in the first-stage equation (e.g., Imbens and Newey, 2009). The distinction is practically

important as monotonicity may not hold in some applications e.g., unordered discrete choice as a

treatment variable. This difference arises as I do not explicitly model the first-stage equation and

instead focuses on the relationship between unobserved heterogeneity and its proxy variable.

As discussed below, what my identification strategy essentially does is to find values of treatment

and excluded variables (d1, z1), (d2, z2) for which the conditional proxy distribution is invariant i.e.,

Pr[X ∈ A|D = d1, Z = z1] = Pr[X ∈ A|D = d2, Z = z2] for all measurable sets A. This

feature is closely related to the exchangeablility condition used by Altonji and Matzkin (2005). In

settings with group structure, Arkhangelsky and Imbens (2019) provided a framework where the

exchangeability condition follows from model primitives. In this paper, I also provide a framework

where the exchangeability-type condition holds but my model differs in not having an explicit group

structure.

I motivated my identification strategy as a generalization of 2SLS estimation using repeated

measurements. While the existing literature on non-linear measurement error models is extensive

(for a review, see Schennach, 2020, and references therein), my approach is unique in the use of an

excluded variable. The set of excluded variables contains the set of proxy variables. Thus, when
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repeated measurements are available, my approach is applicable, but not vice versa. In addition,

my approach is distinct from deconvolution methods.

I use a completeness condition to formalize the relationship between proxies and unobserved

heterogeneity, which was inspired by Hu and Schennach (2008). Their operator diagonalization

technique has been successfully applied beyond measurement error contexts (e.g., Arellano et al.,

2017; Bonhomme et al., 2019; Sasaki, 2015). A main distinction of my approach is that I require

a rank condition on only one proxy variable, as opposed to two in the operator diagonalization

technique. A cost of this weaker requirement is that I do not recover the distribution of unobserved

confounding elements while the other approach does. In other words, I regard the distribution of

unobserved heterogeneity as a nuisance parameter and focus on treatment effects. Also, I allow

for measurement errors only in covariates whereas the operator diagonalization method handles

measurement errors in treatment variables as well. Since there is a trade-off between the strengths

of assumptions and results, I view the two approaches as complementary.

My results are also related to recent studies using proxy controls (e.g., Deaner, 2021; Miao

et al., 2018). The conditional independence assumptions they impose are similar to those I use

in this paper. The main distinction is that their approaches hinge on identifying reduced form

parameters using the outcome equation by solving integral equations. In contrast, my approach

addresses the endogeneity problem without using the outcome variable, and thus, it follows the

spirit of design-based approach in the causal inference literature.

Roadmap In the next section, I describe the econometric model and discuss the identification

results. Nonparametric and flexible parametric estimation methods are developed in Section 3,

and Section 4 applies the results of this paper to estimating causal effects of Catholic schooling on

college attendance using the National Longitudinal Study 1972 dataset. Section 5 concludes.

2 Econometric model and identification results

I employ the potential outcome notation. {Y (d) : d ∈ D} denotes the set of potential outcomes, D is

the set of possible treatment levels, D is the realized treatment level, and X∗ represents unobserved

confounding factors. The treatment variable may have a discrete, continuous, or mixed distribution.
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As a concrete example, let the outcome of interest be wage, D be educational attainment, and X∗

be worker’s ability. Interest lies in causal effects of educational attainment on wage level, and

if we were to observe worker’s ability X∗, causal effects may be identified by controlling for X∗.

However, we do not observe worker’s ability, creating the identification problem. In this context,

a widely adopted approach is to control for variables X that proxies X∗. For instance, test scores

are frequently used as a proxy for ability. Although controlling for proxy variables is a common

empirical practice, it is theoretically unsatisfactory as measurement errors induce bias. Specifically,

Battistin and Chesher (2014) showed that controlling for X instead of X∗ does not identify the

average treatment effects and that the sign of the bias cannot be determined a priori. They

provided a method for sensitivity analysis over different magnitudes of the measurement error

variance. In this paper, I develop a control function approach using a proxy variable X and what

I call excluded variables, denoted by Z. As already mentioned, additional proxies can be used as

excluded variables. In the wage example, researchers often observe multiple test scores (across time

periods, or of different subjects) and one set of test scores can be used as X and others as Z. I

discuss other candidates for Z after presenting identification results.

One parameter of interest is

β(d) = E[T (Y (d))], d ∈ D

where T denotes a known transformation and the expectation is taken with respect to the marginal

distribution of the potential outcome. Since the distribution of unobserved heterogeneity is held

constant as d varies, the change in β(d) represents the ceteris-paribus effect of the treatment on

the mean outcome. As an example, take T (y) = y and D = {0, 1}, and then, β(1) − β(0)

is the average treatment effect (ATE). When the treatment is continuous, β(d) represents the

dose-response function. Also, by taking T (y) = 1{y ≤ c} for some c ∈ R, β(d) becomes the

distribution structural function, from which the quantile structural function can be constructed.

For concreteness, I focus on the identity map T (y) = y and in this case, β(d) is referred to as the

average structural function (ASF).
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2.1 Conditional independence result

I impose the following model restrictions.

Assumption 1. X ⊥⊥ (D,Z)|X∗.

Assumption 2. Y (d) ⊥⊥ D|X∗.

Assumption 3. Y (d) ⊥⊥ Z|D,X∗.

Assumption 4. For each d ∈ D, E[|Y (d)|] < ∞. For some σ-finite measures λ, λx, λd, λz, the

distribution of {X∗, X,D,Z} is absolutely continuous with respect to the product measure λ× λx×

λd × λz. The conditional densities fX|X∗, fX∗|DZ are uniformly bounded. If the support of X

is uncountable, the conditional density fX|DZ is continuous in the X argument except at a finite

number of points with probability one.

Assumption 5. For a real-valued, bounded, and λ-integrable function g, define the operator

Π(g)(·) =

∫
g(x∗)fX|X∗(·|x∗)dλ(x∗).

On the set of bounded and λ-integrable functions, Π is injective.

Assumption 1 states that given the “correctly measured” variable, its noisy measurement is inde-

pendent of other variables. This type of restriction is common in the measurement error literature

(see e.g., Assumption 2 in Hu and Schennach, 2008).

If we were to observe X∗, Assumption 2 would be the selection-on-observables assumption. This

restriction would be intuitive if a researcher is willing to specify what X∗ consists of (e.g, ability,

motivation). Otherwise, X∗ would denote some “index” of various unobserved characteristics.

For instance, in the binary treatment case, a widely used framework is the threshold crossing

model D = 1{ϕ(Z) ≥ X∗}, where ϕ is some non-stochastic function and X∗ is confined to be a

scalar. In this model, a researcher can be agnostic about the identity of the underlying unobserved

heterogeneity, but they impose the scalar index restriction. Being explicit about what X∗ represents

is crucial in assessing the plausibility of the identifying assumptions in specific contexts. Thus, a

researcher should either specify elements of X∗ or consider some explicit econometric model.3

3An example for continuous treatment variables is a random coefficient model: D = Z′X∗ where the dimensionality
of X∗ is restricted by the dimension of Z.
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Assumption 3 is a version of exclusion restrictions for Z. It imposes that after conditioning

on the treatment and “ideal” controls, the excluded variable Z has no impact on the outcome of

interest. This restriction is weaker than the IV exclusion restriction because it allows for dependence

between Z and X∗. Assumptions 2 and 3 together imply Y (d) ⊥⊥ (Z,D)|X∗, which is what I use in

the end, but I state the two assumptions separately to clarify requirements on excluded variables

Z.

Figure 1 collects the conditional independence restrictions using a directed acyclical graph

(DAG). Deaner (2021) and Miao et al. (2018) have similar DAG representations in their identifica-

tion arguments. As the DAG shows, the excluded variable Z may be correlated with the outcome

only through the treatment and the unobserved confounding factor. The proxy variable X may be

correlated with the outcome, but it has to be independent of Z and D conditional on X∗.

Assumption 4 is a set of mild regularity conditions. It accommodates various distributions of

D, and the identification argument goes through without modifications for discrete, continuous,

and mixed treatment variables. Also, it handles discrete and continuous X in a unified way.

Assumption 5 formalizes the idea that the noisy measurement X has a strong relationship with

X∗. This formulation follows Assumption 3 of Hu and Schennach (2008), and there have been a

growing number of subsequent studies that use the same injectivity condition for identification.

Hu and Schennach pointed out this assumption is analogous to the bounded completeness of the

conditional distributions of X∗ given X. Completeness conditions can be thought of as a gener-

alization of the IV rank condition in linear models to nonparametric settings (Newey and Powell,

2003). Since this is a rank condition, the dimension of X should be at least as large as that of

X∗. In the literature, there are several known sufficient conditions for completeness (e.g., Andrews,

2017; D’Haultfoeuille, 2011; Hu et al., 2017). For instance, if researchers are willing to impose

the measurement error structure such as X = φ(X∗ + η) where φ is invertible and X∗ ⊥⊥ η, then

primitive sufficient conditions for the bounded completeness exist. In a panel data setting, Wilhelm

(2015) discussed justifications for completeness assumptions using past observations as proxies.

Completeness assumptions often lead to ill-posed inverse estimation problems because most ex-

isting studies use such conditions to compute the left-inverse of integral operators. My identification

argument uses Assumption 5 to guarantee a unique solution to an integral equation but I do not

need to estimate the inverse of the integral operator when implementing my procedure. Therefore,
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I circumvent ill-posed inverse estimation problems associated with completeness conditions. This

feature is appealing as ill-posed inverse problems may lead to poor finite-sample performance of

estimation procedures.

With the above assumptions, I now state the first main result. Define

V = {fX|DZ(x|D,Z) : x ∈ X}

where the conditional density is with respect to the measure in Assumption 4 and X is the support

of X. Since (D,Z) is a random vector, V is a stochastic process indexed by the support of X. The

following lemma states that this stochastic process is a valid control function. A sketch of proof is

presented in Section 2.5, and a formal proof is found in the supplemental appendix.

Theorem 1. If Assumptions 1-5 hold, then

Y (d) ⊥⊥ D|V ∀d ∈ D.

Given this conditional independence result, I can identify objects such as the average and quantile

structural functions provided that a common support condition holds (see e.g., Blundell and Powell,

2003; Imbens and Newey, 2009).

If the proxy X has a finite support with L points, Theorem 1 states that the random vector

(Pr[X = x`|D,Z])L`=1 is a valid control function. A proxy variable with a finite support can satisfy

the identifying assumptions when the unobserved confounding factor X∗ also has a finite support.

In labor economics and industrial organization, unobserved heterogeneity as finite discrete types

is often used as a tractable modelling device (e.g., Keane et al., 2011). If researchers believe that

discrete confounding factor is a good approximation to the underlying data generating process,

then they can discretize proxy variables (if not already discrete) to construct a control function.

This approach has an advantage that given the estimated control function V̂ , one can directly apply

standard techniques for estimation and inference of treatment effects.

When the support of X is large, Theorem 1 may not be directly applicable as controlling for the

stochastic process may be infeasible. To overcome this issue, I follow the approach of Arkhangelsky

and Imbens (2019) who modelled the conditional distribution of covariates for dimension reduction.
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In particular, I impose that the conditional proxy distribution admits a finite-dimensional sufficient

statistic.

Assumption 6. There exists some fixed function θ such that

fX|DZ(x|d1, z1) = fX|DZ(x|d2, z2) ∀x ∈ X ⇐⇒ θ(d1, z1) = θ(d2, z2)

and the function θ is identifiable from the joint distribution of (X,D,Z).

With the additional structure of Assumption 6, the random vector θ(D,Z) possesses the balancing

property and we set V = θ(D,Z) to identify treatment effects. The following lemma states this

result.

Lemma 1. Under Assumptions 1-6,

Y (d) ⊥⊥ D|θ(D,Z).

To see what form θ may take, first consider some parametric family of distributions (e.g.,

normal, Poisson, etc.), represnted as f(x, ϑ) where ϑ denotes the parameter vector. Then, we can

take fX|DZ(x|d, z) = f(x, θ(d, z)) for some function θ. Since the conditional proxy distribution is

completely characterized by θ(d, z), the above restriction holds. Next, consider the case X ∈ R and

X = m(D,Z) + σ(D,Z)η, η ⊥⊥ (D,Z)

where η is some random variable whose distribution is left unspecified and m(D,Z), σ2(D,Z)

are the conditional mean and variance of X. Equivalently, the conditional density of X given

(D,Z) is f(x−m(d,z)
σ(d,z) ) where f is the density of η, which is left unspecified. Thus, θ(D,Z) =

(m(D,Z), σ2(D,Z)). This location-scale family modelling can be extended to multi-dimensional

X in a straightforward way.

For another example, we may consider

fX|DZ(x|D,Z) =

∞∑
k=1

ζk(D,Z)ek(x) (2)
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where {ζk, ek}k≥1 is a collection of non-stochastic functions. When the conditional density is

smooth, we can use a set of approximating functions (e.g., polynomials) to express the density

in an infinite sum. Alternatively, when X is a closed interval and fX|DZ(x|D,Z) is bounded and

continuous in x, the Karhunen–Loève theorem implies the above expansion. If (2) holds, then

θ(D,Z) = {ζk(D,Z)}k≥1 satisfies Assumption 6, although this does not reduce the dimensionality

of the problem. For dimension reduction, one may assume that there exists a finite number of

ζk(D,Z) terms conditional on which Assumption 6 holds. This restriction is true in the cases

of parametric and location-scale families. When it does not hold exactly, it may still be a good

approximation of the underlying data generating process.

In the sequel, I focus on the location-scale family model of proxy variables for concreteness.

With this modelling choice, my identification strategy first estimates

V = {E[X|D,Z],E[X2|D,Z]}

and using this first-step estimate as an additional control, treatment effects can be estimated

with standard approaches. If researchers find it necessary to include additional control variables,

then they can choose a more flexible model of the proxy distribution, which may include other

distributional features such as higher moments. Since the choice of V is essentially the problem of

selecting appropriate controls in the main regression, one can leverage existing results on treatment

effect estimation in high-dimensional settings (e.g., Belloni et al., 2017).

2.2 Identification of causal effects: overlap/support condition

The conditional independence result Y (d) ⊥⊥ D|V is not sufficient for identification of causal effects

such as the ASF. The remaining important condition is the overlap/support condition. Specifically,

to nonparametrically identify treatment effects, the conditional support of V given D = d needs to

equal the marginal support of V for relevant treatment level d (see e.g., Assumption 2 of Imbens

and Newey, 2009). As a necessary condition of this requirement, Z has to be correlated with either

(i) X∗ (X) or (ii) D: otherwise E[X|D,Z] would be independent of Z and the common support

condition would fail. Yet, non-zero correlation between Z and (X∗, D) is not sufficient, and the

support invariance property often requires a large support of Z. This large support condition can
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be stringent in empirical applications, and there have been various proposals to address this issue

(e.g., Florens et al., 2008; Newey and Stouli, 2019). In this paper, I build on these existing results

to propose feasible estimation procedures. In particular, I follow the approach of Chernozhukov

et al. (2020) (CFNSV henceforth) who considered flexible parametric estimation of various causal

effects.

A version of CFNSV’s approach postulates that

E[Y |D,V ] = ψ
(
p(D,V )′γ0

)
(3)

where ψ is a known, strictly monotonic link function, p is a vector of user-chosen transformations,

γ0 is the parameter to be estimated, and ′ denotes the matrix transpose. For a continuously

distributed outcome, CFNSV motivated this specification by the random coefficient model

Y = X∗1 +X∗2D, E[X∗1 |D,V ] = p1(V )′γ1, E[X∗2 |D,V ] = p2(V )′γ2

where the conditional independence X∗l ⊥⊥ D|V , l = 1, 2 follows under the hypothesis of Theorem

1. CFNSV pointed out the above model allows for heterogeneous responses to treatment, which is

an important feature of many empirical settings, while keeping the model parsimonious. With this

setup, (3) holds with the identity link function, p(D,V ) = (p1(V )′, Dp2(V )′)′, and γ0 = (γ′1, γ
′
2)
′.

For the case of a binary outcome, one may consider the outcome equation

Y = 1{γ1D −X∗ ≥ 0}

and using Theorem 1, E[Y |D,V ] = F (γ1D|V ) where F is the conditional distribution of X∗ given

V . This is a semiparametric model studied by Blundell and Powell (2004). To further simplify, we

may assume that the conditional distribution of X∗ given V is a location family i.e., F (·|V ) = ψ(·−

p2(V )′γ2), which gives rise to the specification (3) with p(D,V ) = (D, p2(V )′)′ and γ0 = (γ1, γ
′
2)
′.

Under (3), identification of the ASF holds if the parameter γ0 is identified. In turn, the co-

efficients γ0 is identified if the matrix E[p(D,V )p(D,V )′] is non-singular. This full-column rank

condition is weaker than the support invariance condition, and CFNSV and Newey and Stouli

(2019) provided sufficient conditions for the non-singularity of E[p(D,V )p(D,V )′]. In Section 3.1,
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I develop a flexible parametric estimation method based on the modelling approach discussed here.

2.3 Examples of excluded variables

Assumption 3 and the rank condition discussed in the previous section constitute the requirements

for excluded variables. Intuitively, excluded variables need to satisfy (i) Z has no impact on the

outcome conditional on (X∗, D) and (ii) Z is correlated with either X∗ or D. An additional proxy

variable satisfies these requirements since a noisy measurement is often assumed to be independent

of other variables conditional on the unobserved, true measurement X∗ and by definition, it should

be correlated with X∗.

Another example of excluded variables is an IV for the treatment variable. Suppose D =

ϕ(Z, η) where ϕ is a non-stochastic function and η is some unobserved heterogeneity. By the

exclusion restriction, (Y (d), X∗, η) ⊥⊥ Z, and for Assumption 2, we may impose Y (d) ⊥⊥ η|X∗.

Then, Y (d) ⊥⊥ (D,Z)|X∗ follows, which implies the required conditional independence. The other

requirement on excluded variables is implied by the IV relevance condition, and thus, IV is a valid

excluded variable.

Repeated measurements and IVs are familiar objects, and they provide easy-to-understand ex-

amples of excluded variables. But, there are other candidates for excluded variables. Consider the

wage example discussed in the beginning of Section 2. There, one may take educational attain-

ment of worker’s parents and/or household characteristics during worker’s childhood as excluded

variables. The exclusion restriction (i.e., Y (d) ⊥⊥ Z|D,X∗) is plausible as potential wage levels are

unlikely to be affected by parents’ education or early-stage family environments once you control for

ability and own education as well as other observed characteristics. For the relevance condition (i.e.,

Z correlated with X∗ and/or D), parents’ education and household characteristics during child-

hood are likely to influence the probability of college attendance. Note that educational attainment

of worker’s parents and household characteristics during worker’s childhood may not satisfy the

IV exclusion restriction as they are potentially correlated with worker’s unobserved ability through

human capital formation. This example demonstrates that there exist empirically relevant excluded

variables other than proxies and IVs.
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2.4 Connection with existing results

Group-level correlated random effect models Theorem 1 has a close connection with the

identification results of Altonji and Matzkin (2005) (AM henceforth). To explain, it is helpful to

use the notation

Y (d) = Y (d, ε), D ⊥⊥ ε|X∗

where Y is an unknown non-stochastic function and ε is an unobserved heterogeneity. AM based

their identification results on finding pairs (d1, z1), (d2, z2) such that

fε|DZ(·|d1, z1) = fε|DZ(·|d2, z2) (4)

where fε|DZ is the conditional density of ε given (D,Z) (see Equation (1.4) in AM). In proving

Theorem 1, I show that (4) is implied by

fX|DZ(·|d1, z1) = fX|DZ(·|d2, z2).

Thus, my identification strategy uses the proxy distribution to find pairs (d1, z1), (d2, z2) such that

AM’s exchangeability condition holds. In this sense, my paper provides a framework in which the

exchangeability condition (4) follows from model primitives.

Arkhangelsky and Imbens (2019) also provided a framework that implies a version of exhcnage-

ability condition, and they presented additional identification results. They focused on settings

where observational units belong to groups and there exists a group-level unobserved heterogene-

ity. My model does not have an explicit group structure, and what my identification strategy does

is to form groups based on the value of V = {fX|DZ(x|D,Z) : x ∈ X}. That is, two observations

belong to the same group if they have the same value of V . Similar to the setup in Arkhangelsky

and Imbens, the treatment assignment becomes exogenous within groups, and treatment effects

can be identified using the group structure.

Non-classical measurement error models An alternative to my identification strategy is the

operator diagonalization technique developed by Hu and Schennach (2008). Their method first

identifies the joint distribution of (Y,D,X∗) using two proxies for X∗ and then use the identified
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distribution to compute the ASF (under Assumption 2). On one hand, the operator diagonalization

technique identifies a larger class of parameters than my method does, including distributional

features of unobserved heterogeneity. On the other hand, my method is less stringent on data

requirements as I do not require a second measurement of X∗, although when available, I can

take advantage of it as an excluded variable. On a related point, the operator diagonalization

technique imposes the rank condition on both proxies while my method only needs one proxy to

satisfy the rank condition. Another distinction is that my method handles measurement errors

in covariates only, whereas the operator diagonalization technique applies to general measurement

error problems. Since there is a trade-off between the strength of results and identifying restrictions,

the two approaches are complementary.

2.5 Proof sketch of the conditional independence result

I sketch the identification argument using a simple setting. I focus on the case where D,X,X∗ are

all discrete. Specifically, the supports of X and X∗ are X = {x1, . . . , xL} and X ∗ = {x∗1, . . . , x∗L}

for some L. Note that in this special case, Assumption 5 reduces to the full-column rank of the

matrix

Π =


Pr[X = x1|X∗ = x∗1] . . . Pr[X = x1|X∗ = x∗L]

...
. . .

Pr[X = xL|X∗ = x∗1] . . . Pr[X = xL|X∗ = x∗L]

 .
Define

V =
[
Pr[X = x1|D,Z] . . . Pr[X = xL|D,Z]

]′
which is the conditional distribution of the proxy variable X. Now I show that V is a valid control

function in the sense that Y (d) ⊥⊥ D|V . To verify this claim, it suffices to show X∗ ⊥⊥ D|V since

Assumptions 2 and 3 imply Pr[Y (d) ≤ y|D,V ] = E[Pr[Y (d) ≤ y|X∗]|D,V ] and X∗ ⊥⊥ D|V implies

the desired result.
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The law of total probabilities and Assumption 1 imply

Pr[X = x|D,Z] =
L∑
l=1

Pr[X = x|X∗ = x∗l , D, Z]Pr[X∗ = x∗l |D,Z]

=

L∑
l=1

Pr[X = x|X∗ = x∗l ]Pr[X∗ = x∗l |D,Z],

and stacking this equation for different values of x ∈ {x1, . . . , xL},

V = ΠU, U =
[
Pr[X∗ = x∗1|D,Z] . . . Pr[X∗ = x∗L|D,Z]

]′
By the full-rank condition,

U =
(
Π′Π

)−1
Π′V. (5)

This equality indicates that if two groups of workers have the same conditional distribution of test

scores, then they also have the same conditional distribution of unobserved ability since Π is non-

stochastic. This in turn implies that the conditional proxy distribution has the balancing property.

To substantiate this last claim, for any l ∈ {1, . . . , L},

Pr[X∗ = xl|D,V ] = E
[
Pr[X∗ = xl|D,Z]

∣∣D,V ]
= E[e′lU |D,V ]

= E[e′l
(
Π′Π

)−1
Π′V |D,V ]

= E[e′l
(
Π′Π

)−1
Π′V |V ]

= E[Pr[X∗ = xl|D,Z]|V ]

= Pr[X∗ = xl|V ]

where el ∈ RL is the unit vector whose lth element is unity, the first equality holds as V is a function

of (D,Z), the third equality follows from (5), the fourth equality is by Π being non-random, and

the fifth equality applies (5) again. The conclusion Pr[X∗ = xl|D,V ] = Pr[X∗ = xl|V ] establishes

the desired result X∗ ⊥⊥ D|V .
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3 Estimation

In applications, it is important to include other covariates that are free of measurement errors.

Denote such variables by W . For convenience, I redefine Z := (Z ′,W ′)′, X := (X ′, vech(XX ′)′)′,

and V := (E[X|D,Z]′,W ′)′. Also, for a generic random vector A, write ka for the dimension of A.

In the estimation procedure, I assume X ⊥⊥ (W,D,Z)|X∗ and Theorem 1 holds conditional on W

with appropriate modifications in the proof. If researchers are only willing to impose the weaker

condition X ⊥⊥ (D,Z)|W,X∗, then the estimation procedure should treat W as part of X.

3.1 Flexible parametric approach

In this section, I consider a flexible parametric estimation procedure based on the discussion in

Section 2.2. I assume that the outcome equation is specified by (3). For the control function V , let

E[X|D,Z] = Q(D,Z)δ0,

where Q : ZD → Rkx×kq is a matrix-valued transformation of (D,Z) and δ0 ∈ Rkq is the parameter

to be estimated. As a baseline, one may use Q(D,Z) = I ⊗ q(D,Z) with I being the identity

matrix, q(D,Z) = (1, D′, Z ′), and ⊗ denoting the Kronecker product. Researchers can include

higher-order polynomial terms to enhance flexibility. Note that this is a reduced form equation,

and as long as the model has good predictive power, the procedure is expected to work reasonably

well.

For implementation, first estimate δ0 by least squares and form V̂i = (Q(Di, Zi)δ̂n,W
′
i )
′. Then,

estimate γ0 in E[Y |D,V ] = ψ(p(D,V )′γ0) by (non-linear) regression of Y on p(D, V̂ ). Finally, the

estimator for the average structural function is formed by

β̂n(d) =
1

n

n∑
i=1

ψ
(
p(d, V̂i)

′γ̂n
)
.

For inference, it is useful to have a closed-form variance estimator. Let ψ̇, ψ̈ be the first and
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derivative of ψ, respectively,

ψ̂ni = ψ̇(p(Di, V̂i)
′γ̂n), Γ̂2 =

1

n

n∑
i=1

∣∣ψ̂ni∣∣2p(Di, V̂i)p(Di, V̂i)
′,

ε̂i = Yi − ψ(p(Di, V̂i)
′γ̂n), Qi = Q(Di, Zi), ζ̂i = Xi −Qiδ̂n, Γ̂1 =

1

n

n∑
i=1

Q′iQi,

Γ̂3 =
1

n

n∑
i=1

[
∂p(Di, V̂i)Qiψ̂niε̂i +

{
ε̂iψ̈(p(Di, V̂i)

′γ̂n)− |ψ̂ni|2
}
p(Di, V̂i)γ̂

′
n∂p(Di, V̂i)Qi

]
,

ĉ1(d) =
1

n

n∑
i=1

ψ̇(p(d, V̂i)
′γ̂n)p(d, V̂i)

′, ĉ2(d) =
1

n

n∑
i=1

ψ̇(p(d, V̂i)
′γ̂n)γ̂′n∂p(d, V̂i)Qi,

and ∂p be the derivative of p with respect to the estimated elements of V . Then,

1

n

n∑
i=1

[
ψ(p(d, V̂i)

′γ̂n)− β̂n(d) + ĉ1(d)Γ̂−12 p(Di, V̂i)ψ̂niε̂i + {ĉ1(d)Γ̂−12 Γ̂3 + ĉ2(d)}Γ̂−11 Q′iζ̂i
]2

is an estimator for the asymptotic variance of
√
n(β̂(d)− β(d)). Note that the variance estimator

does not require additional nuisance parameter estimation.

Since the asymptotic distributional theory for β̂n(d) is well-established (e.g., Newey and Mc-

Fadden, 1994), I relegate the discussion of the asymptotic theory to the supplemental appendix.

Under the assumptions stated there, the ASF estimator β̂n(d) is asymptotically normal and the

variance estimator is consistent.

3.2 Nonparametric estimation

In this section, I consider a kernel-based nonparametric estimator for the ASF. Unlike the flex-

ible parametric procedure, I do not use the specification in (3) and maintain the nonparametric

specification of E[Y |D,V ]. I maintain Assumption 6 and use the location-scale family model of the

conditional proxy distribution. The nonparametric estimator is useful when excluded variables have

a large support so that the common support condition is plausible. Here, I focus on the discrete

treatment variable.

In nonparametric estimation, small denominators may be problematic. To handle this issue,

I introduce a trimming variable T ≥ 0 and redefine the parameter of interest in relation to the
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trimming:

β(d) = E[Y (d)T ]/E[T ].

For the first stage, let L : Rkz → R be a kernel function and q1 ∈ Z≥0 be the order of local

polynomial regression. Then, for estimation of the control function,

δ̂ln(d, z) = arg min
δ

n∑
i=1

(
Xli − rq1

(Zi − z
bn

)′
δ
)2
1{Di = d}L

(Zi − z
bn

)
, l ∈ {1, . . . , kx}

where bn is a sequence of vanishing bandwidths and rq1 is an appropriately defined
∑q1

l=0

(
l+kz−1
kz−1

)
-

dimensional vector. Specifically, for any t ∈ Z≥0 and z ∈ Rkz ,

rt(z) =
[

1 [z]1
′
. . . [z]t

′
]′
, [z]` =

[
z`1 z`−11 z2 . . . z`kz

]′
.

Then, we take V̂ = (e′1δ̂1n(D,Z), . . . , e′1δ̂kxn(D,Z),W ′)′ where e1 is the vector whose first element

is unity and remaining elements are zero. For the second-stage estimation, let K : Rkv → R be

another kernel, q2 ∈ Z≥0 be the order of local polynomial regression, and hn be a sequence of

bandwidths. Then, define

γ̂n(d, v) = arg min
γ

n∑
i=1

(
Yi − rq2

( V̂i − v
hn

)′
γ
)2
1{Di = d}K

( V̂i − v
hn

)

and m̂n(d, v) = e′1γ̂n(d, v) to be an estimate of E[Y |D = d, V = v]. Finally, the estimator of the

ASF is formed by

β̂n(d0) =
1

n

n∑
i=1

m̂n(d0, V̂i)Ti

/ 1

n

n∑
i=1

Ti

where d0 ∈ D is the treatment level of interest.

To analyze the asymptotic properties of this estimator, I impose the following assumptions.

The first set of conditions concerns properties of the kernel functions.

Assumption 7.

(i) The kernel function K is even and supported on [−1, 1]kv . Also, it is differentiable and the

derivatives are Lipschitz continuous.

(ii) The kernel function L is even, bounded, and supported on [−1, 1]kz .
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These restrictions on kernel functions are standard. Smoothness on K is required in order to

handle generated regressors. The next set of assumptions imposes regularity conditions on the

data generating process. To describe them, define

m0(D,V ) = E[Y |D,V ], ε = Y −m0(D,V ), ζ = X − E[X|D,Z], ρ(D,Z) = E[ε|D,Z],

τ(V ) = E[T |V ], τ(D,Z) = E[T |D,Z], πd = P[D = d], πd(V ) =
fV |D(V |d)πd

fV (V )
.

Assumption 8. Let V0 be a compact subset of the support of V such that τ(v) vanishes outside

V0. Also define Vη0 = {v : inf ṽ∈V0 ‖v − ṽ‖ ≤ η} for some fixed η > 0 where ‖ · ‖ denotes the usual

Euclidean norm. The following conditions hold for each d ∈ D.

(i) The observation {(Yi, Di, Zi, Xi, Ti) : i = 1, . . . , n} is a random sample.

(ii) The conditional distribution of V given D = d has a bounded, continuous Lebesgue density,

which is continuously differentiable in its first kx arguments and bounded away from zero on

Vη0 . The conditional distribution of Z given D = d has a Lebesgue density. The support is a

bounded rectangle, and the density is continuous and bounded away from zero on its support.

(iii) The function m0(d, v) is (q2+1)-times differentiable in v on Vη0 with bounded derivatives. Each

element of E[X|D = d, Z = z] is (q1 + 1)-times differentiable in z with bounded derivatives

on the support of Z. ρ(d, z) and τ(d, z) are continuous in z, fV (v) and τ(v) are continuously

differentiable, and πd(v) is bounded away from zero on Vη0 . Also, E[T ] > 0 and P[0 ≤ T ≤

C] = 1 for some C > 0.

(iv) The regression errors ε, ζ satisfy E[|ε|s] + supv E[|ε|s|D = d, V = v]fV |D(v|d) <∞, E[‖ζ‖s] +

supz E[‖ζ‖s|D = d, Z = z]fZ|D(z|d) <∞ for some s ≥ 4.

The conditions are mostly standard in the multi-step semiparametric estimation literature. Con-

dition (ii) imposes that the control function V has the Lebesgue density bounded away from zero

on the region where the trimming variable is positive. Via this restriction, the trimming addresses

the small denominator issue. Also, the assumption imposes that the support of Z is a rectangle

and the density is bounded away from zero on the support. The following is the formal result on

the asymptotic properties of the ASF estimator β̂n.
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Theorem 2. Assumptions 7 and 8 hold, n2/s logn

nb
kz/2
n hkvn

+ nh
2(q2+1)
n + nb

2(q1+1)
n + (logn)2

nh3∨2kvn
= o(1), and

(logn)2

nb2kzn
+ nb

4(q1+1)
n = o(h4n). Then,

√
n
(
β̂n(d0)− β(d0)

)
E[T ] =

1√
n

n∑
i=1

{
m0(d0, Vi)Ti − β(d0)E[T ] +

Ji(d0)τ(Vi)

πd0(Vi)
εi + δi(d0)ζi

}
+ oP(1)

where Ji(d) = 1{Di = d},

δi(d) =
ρ(d, Zi)Ji(d)

πd(Vi)2
[
πd(Vi)∂τ(Vi)− τ(Vi)∂πd(Vi)

]
+
[
τ(Di, Zi)−

Ji(d)τ(Vi)

πd(Vi)

]
∂m0(d, Vi),

and ∂ denotes the differentiation operator with respect to the first kx arguments in V .

The theorem characterizes the form of the influence function for β̂n(d). To understand the result,

split the influence function into two parts: m0(d, V )T − β(d)E[T ] + J(d)τ(V )
πd(V ) ε and δ(d)ζ. The first

part coincides with the influence function of the infeasible estimator that uses the true E[X|D,Z]

instead of its estimated counterpart. Thus, the second part of the influence function captures the

contribution of the first-stage estimation error to the asymptotic distribution. This “correction

term” coincides with the formula derived by Hahn and Ridder (2013) who used Newey (1994)’s

path-derivative method.4 As Hahn and Ridder only provided high-level assumptions, Theorem 2 is

a new result in the literature by providing one set of primitive sufficient conditions to characterize

the asymptotic distribution of the three-step estimator.

The hypothesis of Theorem 2 includes conditions on the two bandwidth sequences. The second

set of the assumptions (i.e., (log n)2/nb2kzn +nb
4(q1+1)
n = o(h4n)) ensures that max1≤i≤n ‖V̂i−Vi‖2 =

oP(h2n
√
n). Up to h2n, this is the standard “faster-than-n1/4” rate restriction on preliminary non-

parametric estimators. The presence of h2n comes from Taylor expansion of the kernel function.

In order to illustrate how the restrictions on the bandwidths affect the choice of local polynomial

orders q1 and q2, suppose kx = 2, kv = 2, kz = 2, and s = 4: one proxy, two excluded variables,

no additional covariate W , and finite fourth moments of Y and X. Letting hn = O(n−c1) and

bn = O(n−c2) for some c1, c2 > 0, the assumptions require c1 ∈ ( 1
2q2+2 ,

1
4) and c2 ∈ ( 1

2q1+2 ,
1−4c1

4 ).

From this, we see that the second-stage estimation (i.e., estimation of E[Y |D,V ]) requires quadratic

4See their Theorem 7. To be precise, one needs to modify their formula because D is also included in the first-stage
estimation in my setting. With this change, the correction term δ(d) coincides with the one in Hahn and Ridder.
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or higher-order local polynomial regression. This type of bias-reduction requirement is typical in

multi-step semiparametric estimation problems: for instance, Powell et al. (1989) required the use of

a higher-order kernel as soon as the dimension of covariate is greater than one. Also, the first-stage

estimation requires local polynomial regression of order greater than 1.

Assumption 8 does not impose exponentially thin tails of the outcome variable, which would be

necessary if I were to apply exponential bounds on tail probabilities from empirical process theory.

Instead, I exploited the U-statistics structure directly, and consequently, I did not need to invoke

asymptotic equicontinuity type arguments.

4 Empirical application

With the results developed in this paper, I estimate treatment effects of Catholic high school

attendance on college enrollment using the National Longitudinal Study of 1972 dataset. Altonji

et al. (2005) (AET henceforth) studied this question, and they concluded that, consistent with

the analysis of the preceding studies, instruments used in the literature may fail to satisfy the

identification conditions. I use an alternative set of identifying assumptions and provide a point

estimate of the causal effect in a setting where methods based on IV may not be appropriate.

Specifically, the key identifying assumption of my approach is (i) conditional on one-dimensional

unobserved student’s academic ability, attending a Catholic high school is exogenous with respect

to the decision to attend college and (ii) math test score in the 12th grade is a good proxy for the

unobserved academic ability.

I use the specification discussed in Section 3.1. Specifically,

E[Y |D,W, V ] = Λ(β0 + β1D + β′2W + β3V )

where Y is the indicator for enrollment in four-year college, D is the indicator of Catholic high school

attendance, W is a vector of additional controls without measurement errors, V = E[X|D,Z], and

Λ is the logistic CDF.5 In this setting, X∗ denotes unobserved academic ability, X denotes math

test score, and Z is reading test score and categorical variables for distance to the closest Catholic

5For the multi-collinearity issue, I use only the conditional mean of X as the control function. My approach is
still distinct from the classical 2SLS approach since the model is non-linear.
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high school. AET and other studies examined whether distance to the closest Catholic high school

could be used as an IV, but they concluded that the IV identification strategy may not be credible.

In my approach, the distance variable does not need to satisfy the IV exclusion restriction as I only

need the conditional independence condition to hold given the unobserved ability. For selecting

covariates, I followed AET. Table 1 lists the variables used in analysis. For the proxy variable, I

use math test score conducted in the 12th grade. I assume that conditional on other covariates,

attending a Catholic high school affects the math test score only through the unobserved ability

(see Figure 1).

Table 1 presents means and standard deviations for the entire sample, the control group, and the

treated group. In the sample, about 7% of the students attended Catholic high schools, and we see

that there exist some notable differences across the two groups in terms of observed characteristics.

For instance, the treated group has lower fractions of racial minorities, more educated parents,

and a lower probability of being in the low socio-economic status category. To assess the covariate

distributions across the treated and control, I plotted histograms of the estimated propensity scores

in Figures 2 and 3. From Figure 2, we see that there is a spike around zero for the propensity score

in the control group. Figure 3 shows the histograms of the treated and control where I zoom in for

the control group histogram. We see that the treated group does not have many observations near

zero. Examining the propensity score distribution indicates that the overlap condition for ATE

(0 < Pr[D = 1|V ] < 1) may be violated, and thus I focus on the average treatment effect on the

treated (ATT).

For comparison, I estimate the treatment effect by two other specifications. The first specifica-

tion is the standard logit where the identifying assumption is the exogeneity of Catholic high school

attendance and regressors do not include test scores. AET and other studies showed that ignoring

selection into Catholic schooling induces upward bias on the treatment effect estimate. The second

approach uses math and reading test scores as additional controls. This specification may partially

correct for selection bias, but it suffers from the measurement error problem.

In Table 2, I present the ATT estimates. Using my control function method, the “näıve” logit,

and the logit with test scores, the estimated treatment effects are 7.9, 13.8, and 8.8 percentage point

increase in the probability of four-year college enrollment, respectively. For the “näıve” estimate,

the effect of 13.8 percentage points may be too large to be reasonable given that in the sample, 28%
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of students were enrolled in four-year college. This may be due to positive selection into Catholic

high schools. Consistent with this hypothesis, the estimation methods that control for unobserved

ability provide lower estimates of ATT. Now, consider the estimate based on logit with test scores,

which suffers from measurement error bias. The logit estimate is larger than the control function

estimate by 10%, and testing the null hypothesis of the same probability limit of the two estimators,

the p-value is 0.047 (one-sided test). Therefore, this empirical application provides a suggestive

evidence that the proposed control function method corrects for bias arising from both selection

and measurement errors.

5 Conclusion

I developed a new identification strategy for causal effects such as the average structural functions

by exploiting proxy variables for unobserved confounding factors and excluded variables. This new

approach does not require an IV for treatment variables and it is applicable with one proxy. As

illustrated through an empirical application, my approach provides an useful alternative to exist-

ing methods. For implementation, I proposed nonparametric and flexible parametric estimation

methods and established asymptotic distribution results for these estimators.
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Figure 1: Independence Assumptions via DAG
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Notes. Arrows represent (potential) causal effects and dotted lines mean that two variables have a causal
relationship with unspecified direction of effects.
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Figure 2: Histograms of the Propensity Score for Control Group

Notes. The top plot is the histogram of the estimated propensity score for the control group and the bottom plot is
the same graph with different vertical and horizontal ranges. The propensity score is estimated by logistic
regression using variables in the covariates section on Table 1 and the estimated V variable.
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Figure 3: Histograms of the Propensity Scores for Control and Treated Groups

Notes. The top plot is the histogram of the estimated propensity score for the control group and the bottom plot is
the histogram for the treated group. The plot for the control group is zoomed in so that comparison is easier. The
propensity score is estimated by logistic regression using variables in the covariates section on Table 1 and the
estimated V variable.
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Table 1: Summary statistics

All: N=9142 Control: N=8498 Treated: N=644

Mean Std. dev. Mean Std. dev. Mean Std. dev.

Treatment

Catholic high school 0.07 (0.26)

Outcome

College enrollment 0.28 (0.45) 0.27 (0.44) 0.42 (0.49)

Covariates

Female 0.50 (0.50) 0.50 (0.50) 0.47 (0.50)

Black 0.11 (0.31) 0.12 (0.32) 0.02 (0.14)

Hispanic 0.04 (0.19) 0.04 (0.20) 0.02 (0.12)

Father college degree 0.17 (0.38) 0.17 (0.38) 0.22 (0.41)

Mother college degree 0.11 (0.31) 0.10 (0.30) 0.14 (0.35)

Log family income 9.18 (0.74) 9.17 (0.74) 9.38 (0.58)

Father blue-collar work 0.30 (0.46) 0.30 (0.46) 0.27 (0.45)

SES low indicator 0.19 (0.39) 0.20 (0.40) 0.07 (0.26)

English at home 0.92 (0.28) 0.92 (0.28) 0.92 (0.27)

Newspaper at home 0.88 (0.33) 0.87 (0.33) 0.96 (0.19)

Mother works 0.58 (0.49) 0.58 (0.49) 0.55 (0.50)

Catholic 0.31 (0.46) 0.26 (0.44) 0.98 (0.15)

Urban 0.28 (0.45) 0.26 (0.44) 0.52 (0.50)

Suburban 0.23 (0.42) 0.23 (0.42) 0.26 (0.44)

Rural 0.19 (0.39) 0.21 (0.40) 0.02 (0.14)

Test scores

Math 51.11 (9.86) 50.86 (9.90) 54.53 (8.54)

Reading 51.13 (9.81) 50.84 (9.85) 54.91 (8.44)

Dist. from Catholic HS

Less than 1 mile 0.19 (0.39) 0.17 (0.38) 0.35 (0.48)

1-3 miles 0.19 (0.39) 0.18 (0.38) 0.32 (0.47)

3-6 miles 0.17 (0.37) 0.17 (0.37) 0.18 (0.38)

6-12 miles 0.11 (0.31) 0.11 (0.31) 0.06 (0.23)

12-20 miles 0.08 (0.27) 0.08 (0.27) 0.02 (0.14)

Notes. The table shows means and standard deviations for the entire sample, the control group, and the treated
group. The sample size is 9142 for the entire sample, 8498 for the control, and 644 for the treated. The treatment
variable is a binary variable that equals one if a student attended a Catholic high school. The outcome is a binary
variable that equals one if a student was enrolled in a four-year college in 1973. For selecting covariates, I followed
Altonji et al. (2005). Test scores were measured during the 12th grade. “Dist. from Catholic HS” denotes the
distance to the closest Catholic high school based on the zip code information in the first follow-up survey. The
information on Catholic high school locations was taken from Private School Universe Survey 1989-1990.
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Table 2: ATT Estimates of Catholic Schooling on College Attendance

Control function logit (1) logit (2)

ATT estimate 0.079 0.138 0.088

95% CI [0.041 0.120] [0.098 0.180] [0.051 0.128]

Sample size 9142

Mean outcome 0.280

Notes. The table shows the average treatment effect on the treated (ATT) estimates of attending a Catholic high
school on four-year college enrollment. The column “Control function” is based on the control function method
developed in this paper. The column “logit (1)” is based on the logit regression using the treatment and
“Covariates” variables in Table 1. The column “logit (2)” is based on the logistic regression using test scores as well
as the regressors in “logit (1)”. The row “95% CI” displays the 95% confidence interval, where quantiles were
computed using the nonparametric bootstrap with 2000 iterations. The rows “Sample size” and “Mean outcome”
are common across the three columns, and they show the sample size and the sample average of the outcome
variable, respectively.
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