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Abstract

We formulate and solve a costly multi-unit search problem for the optimal
selling of a stock of goods. Our showcase application is an inventory liquidation
problem with fixed holding costs, such as warehousing, salaries or floor planning. A
seller faces a stream of buyers periodically arriving with random capped demands.
At each decision point, he decides how to price each unit and also whether to stop
searching or not. We set this as a dynamic programming problem and solve it
inductively by characterizing optimal search rules and reservation prices.

We show that combining multiple units with a fixed per period search cost
might translate into non-monotone selling costs and reservation prices. This lack
of monotonicity naturally leads to discontinuities of the pricing strategy. In par-
ticular, the seller optimally employs strategies such as bundling, and more sophis-
ticated ones that endogenously combine purchase premiums, when inventory is
large, with clearance sales and discounts, when inventory is low.

Our model extends search theory by explicitly accounting for the effects of
fixed costs on optimal multi-unit pricing strategies, pushing it into a richer class
of problems and offering solutions that extend beyond optimal stopping rules.
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1 Introduction

Strategies for the pricing and selling of goods are of central importance to firms and,

more generally, to economists. In presence of transaction frictions, search theory provides

rigorous decision theoretic tools to analyze these problems. Yet, in an attempt to offer

clear insights, most search models usually simplify environments by assuming that a

competitive and organized market exists, that agents trade single units or that they face

no search cost. In this paper, we relax all of these assumptions by formulating a costly

search model for the optimal selling of a large stock of goods. In doing so, we set up

and solve a dynamic programming exercise that combines the extensive margin of search

with the intensive margin of selling that commonly arise in most liquidation problems.

Our motivating example is an inventory liquidation problem with fixed holding costs

(e.g., warehousing, salaries and floor planning), but real world cases that combine search

frictions, costly search and multi-unit liquidation without an accesible centralized market

abound.1 For instance, in finance, the inter-dealers over-the-counter markets are better

modeled as fully or semi-decentralized (Weill, 2020). In this case, when dealers search

for counterparts they typically face the opportunity cost of giving up investments in

other markets (Rocheteau and Weill, 2011). These opportunity costs may very well be

interpreted as a fixed per-period participation cost, especially when investment decisions

are sequential. Do these fixed selling costs matter? In the canonical McCall (1970) single

unit search model, if search is costly, then sales surely accelerate as the seller reduces his

reservation price. But, how specifically would a seller act differently if he were to hold

a large stock of units it is not obvious. How would he try to accelerate sales? What

specific optimal pricing strategies would he employ? These are precisely the questions

this paper aims to answer. A large class of other applications relate to trade models. For

example, most of the monetary theory literature that allows for multi-unit trades only

accounts for agent intensive margin decisions (Lagos and Wright, 2005; Molico, 2006;

Lagos et al., 2017) without taking into account dynamic participation decisions. Other

examples include real assets where traders must incur costs to search for trading partners

(Gavazza, 2011). For instance, car dealerships that sell off inventory while facing high

floor planning costs, real estate brokers holding multiple properties and paying a fixed

mortgage, store liquidation with sales agents paid with a fixed daily wage, ticket sales

or even consultants that hire out their time piecemeal and face a flow fixed cost due to

1Every year, and for many diverse reasons (e.g., store closing, bankruptcy, etc.), retailers liquidate
billions of dollars of inventory. In 2013, Barnes and Noble planed to close a third of its retail stores
(20 stores a year) over the next decade (Wall Street Journal, January 28 ). Furthermore, in 1992-2011,
more than 15% of public retailers entered bankruptcy, and 3.4% were liquidated (Gaur et al., 2014).
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renting their space work.

We consider a seller liquidating multiple indivisible units of a good that lack an RH: Sut-

ton fixed

cost.
organized competitive market; instead, trade is fully decentralized. This means that if

the seller decides to search, he then randomly meets buyers who sequentially arrive with

capped demands wishing to buy only up to a cap or maximum number of units. Then,

in each trading opportunity, either the buyer’s cap limits the trade size, or the seller

declines the trade, or the seller partially exercises the buyer’s offer. But searching for

counterparts is costly for the seller. In particular, we assume that the seller faces a fixed

per-period search cost that can only be escaped once inventory is liquidated, or obviously

once he decides to stop searching. Without loss of generality, our analysis assumes that

once he stops, any remaining inventory is sold at a zero salvage price. We inductively

solve for the seller optimal search rule by simultaneously specifying a search strategy

(when to start the search and whether to stop or not) and a pricing strategy, which

is related to reservation prices (how to price each unit). Unlike McCall (1970), with

multiple units the search rule adjust as liquidation proceeds reflecting the endogenous

time-varying option value of inventory. By solving this dynamic programming exercise

we aim to understand how this liquidation sale optimally proceeds, extending search

theory to a richer class of problems with solutions beyond optimal stopping rules.

As in any search theoretical problem, how the seller balances each unit optionality

(option value) is critical. But crucially, as we combine multiple units with an escapable

fixed search cost, this optionality is twofold. Not only does each additional unit allow the

seller to sell more in each trade opportunity, providing a valuable selling optionality ; it

also allows him to split each period fixed search cost among more units, lowering average

selling costs and improving the search optionality. That is, more units of inventory allows

the seller to sell more and also, on average, to search more cheaply.

We find that, even though each additional unit only helps, the selling optionality falls

in the size of the inventory (due to capped demands) and the search optionality rises

simply because the seller might liquidate units facing a lower per unit search cost. These

optionalities give rise to new trade offs that in turn might translate into a non-monotone

endogenous marginal selling cost. We show that this lack of monotonicity of the marginal

selling cost naturally leads to discontinuities of the optimal pricing strategy, as the

conventional marginal analysis fails to solve the seller liquidation problem. In particular,

we show that the seller optimally employs a new set of selling strategies, such as bundling

(when discontinuities are the largest), and more sophisticated ones that endogenously

combine purchase premiums at the beginning of the liquidation, with clearance sales

and volume discounts at the end. These kinds of strategies are commonly used by firms
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to try to speed up sales during liquidations (Craig and Raman, 2016; Avittathur and

Biswas, 2017), and our model is able to make sense of them. Indeed, the use of discounts

to reduce retail inventory increased from 8% in 1970 to close to 30% at the turn of the

century (Fisher and Raman, 2010).

Summary of Results: The shape of the demand distribution plays a critical role in

determining the seller’s optimal search rule; in particular, whether buyers demand single

or multiple units, and whether capped demands are random or not. We find that when

buyers arrive willing to buy multiple units, the seller stops searching only if the inventory

falls below a shut-down threshold (Lemma 1). Instead, when sales are carried through

in single units, if the seller ever starts searching then he only stops once inventory has

been fully sold off. No seller abandons his inventory if sales exclusively happen in single

units. Furthermore, as in this case an additional unit of inventory obviously translates

into an extra search period, whose cost is never split among units, optionality gains are

exclusively driven by decreasingly better future expected sales. This diminishing selling

optionality in turn has one key economic implication: it translates into an increasing

marginal selling cost and so into a pricing strategy that sets higher reservation prices

to sell additional units. That is, the seller employs a pricing strategy that continuously

sells more units only for higher prices.

With multiple unit caps, we still obtain diminishing returns to optionality and in-

creasing reservation prices but only when the fixed cost is low enough (Proposition 1).

Furthermore, in this case reservation prices continuously rise through the liquidation pro-

cess as each unit optionality increases. In the more general case, when capped demands

and a more significant per-period search cost coexist, our model solution dictates the use

of more sophisticated discontinuous strategies, such as optimal bundling or strategies

that combine clearance sales, bundling, and volume discounts.

In the special case with non-random demands, the pricing strategy discontinuity is the

largest and optimal liquidation translates into optimal bundle pricing. More specifically,

the seller designs only two bundles, but unlike most bundling menus, sets a higher per-

unit reservation price for the larger one (Proposition 2). In fact, in the extreme case

of uncapped demands, when the seller never faces selling restrictions, the value rises at

an increasing rate purely due to the increasing search optionality (i.e., each additional

unit allows him split the per-period search cost). To wit, selling costs are decreasing

and so sales are all-or-nothing with reservation price equal to the average selling cost.

Otherwise, with random demands, the optimal strategy combines selling additional units

at a premium — when inventory is large — with sales in the form of bundling and volume

discounts, when inventory is low (Proposition 3). That is, reservation prices are lower at
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initial stages of a liquidation process, and they progressively rise as time transpires. At

some point, however, which we precisely identify in our paper, the seller tries to speed

up sales by lowering reservation prices and offering discounts (within each trade period)

to buyers with larger demands.

Literature Review: Our theory relates to the literature on optimal trading be-

havior with frictions, when trade is fully or semi-decentralized (i.e., intermittent, and

sometimes costly, access to a centralized market). This infrequent access to trade op-

portunities is a key characteristic in over-the-counter markets. Abundant literature,

pioneered by Duffie et al. (2005, 2007), use search theory to model trading behavior in

the presence of frictions. However, since they usually impose tight restrictions on asset

holdings — that investors can hold either one or zero unit of the asset — they do not

account for how trading behavior might depend on the asset holdings size. Neither do

they address agents dynamic participation decisions, since they usually ignore search

costs. Unlike them, we account for both multi-units and costly search.

Costly access to trade opportunities in over-the-counter markets has been usually

modeled as a one-time entry decision problem, exclusively faced by buyers. Afonso

(2011) and Rocheteau and Weill (2011) consider buyers entry decision in a single and

indivisible unit trade protocol. Unlike them, we consider a fixed per-period search cost

for the seller that in turn translates into a dynamic participation decision. Atkeson et al.

(2015) accounts for entry-exit of banks in a specific derivatives market application.

Despite the ubiquity of multi-unit search and multi-unit trade, the search litera-

ture in over-the-counter markets has been largely concerned with single-unit search or

trades.2 Among the exceptions, Lagos and Rocheteau (2009) assume unrestricted asset

holdings in an equilibrium search model for semi-centralized over-the-counter markets.

Unlike them, our capped demands translate into trading restrictions, a key difference be-

tween infrequent access to a centralized market (semi-decentralized trade), and frictions

without a formal organized market (fully decentralized trade). More recent work that

account for unrestricted holdings, but fully decentralized search markets include Afonso

and Lagos (2015) and Üslü (2019). In contrast to this work, our model accounts for

selling restrictions (caps) and for a per-period search cost to access trade opportunities,

which in turn yields a dynamic asset optionality. These extra two ingredients are at

2Even the small branch of the search theoretical literature that investigates the optimal stopping
rule in multi-product search restricts trades to happen exclusively in single units (Burdett and Malueg,
1981; Carlson and McAfee, 1984; Zhou, 2014); (Gatti, 1999) assumes that consumers search for prices to
maximize a general indirect utility function. They all derive, in different environments, a “reservation
sum” property which is the multi-product equivalent of a reservation price rule. Unlike them, our
optimal search rule does not have a direct equivalence to the single unit search case.
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the core of our analysis. We venture that accounting for costly search in these models

might also yield a non-monotonicity of the marginal selling cost, and thus might push

agents optimal strategies towards non-linear pricing (e.g., bundling, volume discounts

and clearance sales.)

The seminal work by Stigler (1962) offers an optimal sample size application that

accounts for costly and simultaneous search. In a static environment, a consumer samples

prices by choosing a search intensity (i.e., how many searches to make). Upon observing

prices, he buys at the lowest sampled price. Instead, ours is a dynamic and a purely

sequential search problem where selling costs are obtained endogenously. This means,

due to our multiple unit ingredient, that the seller has to optimally specify a genuinely

dynamic search intensity (i.e., our pricing strategy) that evolves as time transpires.

Morgan (1983) and Morgan and Manning (1985) endogenize Stigler’s sample size in a

dynamic environment, thereby combining the intensive and extensive margins of search.

Analogous to them, we also combine these two margins, but in a multiunit and purely

sequential search environment. That is, each period our seller is confronted with a Stigler

multiple-unit optimization, albeit with a constraint that arise due to random caps. In

addition, he faces a fixed per-period search cost. In this way, we like to think our problem

as the cross product of Stigler (1962) and McCall (1970) wage search model.

In a recent work, Carrasco and Smith (2017) extend search theory to multiple units.

In their sequential model, due to rising endogenous holding costs (i.e., the opportunity

cost of delaying optionality of inframarginal units), the seller searches at the margin

and sets higher reservation prices to sell additional units. In fact, the seller’s trading

behavior is fully summarized by the opportunity cost of selling the marginal unit. Our

model builds on Carrasco and Smith (2017), but unlike them we assume that the seller

also faces a fixed search cost per unit of time, as arises when one has hired out the

liquidation task to another agent. We find that such a small change is economically

relevant, and that it might significantly change the seller’s optimal liquidation strategy

if the search cost is large enough. In particular, we show that a sufficiently large fixed

cost translates into a non-monotone endogenous marginal selling cost that precludes

us to just using first order conditions when solving the seller problem. Crucially then,

as reservation prices are guided by total revenue considerations, a fixed search cost

leads to a discontinuous pricing strategy giving rise to bundling, volume discounts and

sales. These predictions for sales behavior specifically emerge because of the fixed cost

assumption, and they radically differ from Carrasco and Smith (2017). In fact, their

main message is one of penalizing quantity (i.e., sell more only for higher prices), but

in our model we have the opposite message as volume discounts emerge. In addition,
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as we combine an extensive and an intensive margin throughout the selling process, the

inductive logic becomes far more challenging. For we have to simultaneously keep track

of the endogenous marginal and average selling costs, as the former it is no longer a

sufficient statistic to predict the seller’s actions.

We are also related to the literature on inventory management in markets with search

frictions. Although there are many theoretical contributions on this topic, most of them

focus on how intermediaries with larger and heterogeneous inventory holdings facilitate

trade (Johri and Leach, 2002; Shevchenko, 2004; Smith, 2004). As a result, the single-

unit trade restriction is commonly used. In contrast, we focus on the optimal liquidation

and pricing strategies that explicitly account for multiple-unit trade and fixed search

costs. These kind of liquidations naturally arise when inventory is endogenous and its

size evolve in time. Recently, Li et al. (2019) solve for the equilibrium pricing and

optimal inventory management decision problem for intermediaries in a directed search

environment. Buyers and sellers face a fixed search cost, but they hold and trade single

units. Intermediaries hold multiple units but face convex holding costs, which naturally

yields diminishing returns to inventory holdings for intermediaries. The characterization

of the inventory distribution if intermediaries were to face an escapable flow fixed cost

without the single unit trade restriction is still an open question. We believe that our

paper might shed light on what kind of optimal inventory-based pricing strategies might

arise in this case. In particular, that bundling and volume discounts should arise as

optimal policies.

2 The Model

Time is discrete and runs forever with discount factor β P r0, 1q. In any given period,

the seller holds an inventory of indivisible units of size n P N that wishes to sell off. The

inventory lacks a formal organized market, but the seller can search for counterparties

and sequentially sell part of it to buyers that he randomly meets. Crucially, since

inventory is costly to hold (e.g., warehousing, salaries and floor planning), search is also

costly. Specifically, we assume a fixed per-period search cost c ą 0. It can be avoided

only once the seller stops search or if the whole inventory is liquidated.

Each period, the seller meets a new buyer with a capped demand p`, pq with proba-

bility α` ě 0; this means, a buyer who wishes at most ` units at a price p each. In order

to ease the notation, prices and caps are assumed to be independent random variables.

While caps obey ` P t1, 2, . . . ,mu and αm ą 0, we assume prices have CDF Gppq with

densities gppq ą 0 on p0,8q.
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Conditional on the buyer’s offer p`, pq, the seller selects how many units of inventory

to sell from a constrained set i P t0, 1, . . . ,mint`, nuu, earns cash flow p¨i and keeps a post

trade inventory of n´ i units. He then decides whether to stop the search or to continue

in order to sell the remaining units of inventory. Without loss of generality, we assume

that once he stops searching any remaining inventory is sold at a price normalized to

zero. Since the seller faces the same constrained set in meetings with buyers with larger

demands ` ě n, the relevant meeting chances are summarized by the vector αn, where

αn
` “ α` for ` ď n´ 1 and αn

n ” 1´řn´1
j“1 αj.

3 When to Stop Searching?

To characterize the seller optimal search rule, we first solve for the optimal search strat-

egy (or stopping rule). More specifically, we characterize the cases when it is better to

stop searching and abandon any unsold inventory. As we will show, a search strategy

like this only arises due to our multiple unit sales assumption. For our analysis, the

inventory size n ě 1 is the only relevant state variable.

The seller maximizes the present value of cash inflows, which yields the option value

of holding inventory Vn. More formally, holding values obey the Bellman recursion:

Vn ” max t´c` βřn
`“1 α

n
` E rmax0ďiď` pP ¨ i` Vn´iqs , 0u . (1)

The max functions in (1) account for both of the seller decisions; when to stop searching

and how much to sell in each meeting. Of course, the value is zero when n “ 0 or when

the seller stops searching. Otherwise, values Vn are endogenous objects that we compute

inductively, for there is no last selling period to proceed by backward induction. Instead,

there is always a last unit to sell whose value solves the standard McCall (1970) Bellman

equation V1 “ maxt´c`βEpmaxpP, V1qq, 0u. Since there is a unique solution for V1 ě 0,

then (1) is well defined for all n and values can be computed by inductive logic.

Exploiting (1), we see that a policy that combines no-selling and no-stopping only

yields the discounted costs ´c{p1´ βq. Since by stopping the seller earns zero value, an

optimizing strategy yields Vn ě 0. Of course, the seller might increase his optionality

by holding larger inventory and searching more, but he can also save himself the cost c

if he searches less or if, in an extreme case, he stops and abandons unsold units.

Value monotonicity is obvious since more units only help (left panel of Figure 1). We

now show that the optimal search strategy dictates to stop searching only if inventory

falls below a shut-down threshold n0 that uniquely solves Vn0`1 ą Vn0 “ 0. In other
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Figure 1: Optimal Search Strategy. Left: value rises in inventory and the seller
stops search if n ď n0, by Lemma 1. Right: the shutdown threshold n0 is an increasing
step function of the search cost; if c ě βEpP qř` α`` the seller never searches. We
use β “ 0.8, P „ Γp4, 2q and m “ 5 with α1 “ α2 “ 0.3, α3 “ α4 “ 0.1 and α5 “ 0.2.

words, whenever n ą n0 the seller is better off incurring the cost c to search for trade

opportunities which in turn yields Vn ą 0. However, if n ď n0, the seller stops searching,

saving himself the search cost but earning zero lifetime payoffs.

Lemma 1 (Optimal Search Strategy) Start searching only if c ă βEpP qř` α`` and

continue searching as long as n ą n0, where n0 uniquely solves:

βEpP q
8ÿ

`“1

minp`, n0 ` 1qα` ą c ě βEpP q
8ÿ

`“1

minp`, n0qα`. (2)

In our proof we show that n0 always exists. Furthermore, as depicted on the right

panel of Figure 1, the shutdown threshold n0 is an increasing step function of the search

cost and obeys 0 ď n0 ď m ´ 1, by (2). For if n0 ě m, then the seller should have

never started to search.3 More notably, Lemma (1) reflects the stationarity of the search

strategy resembling Stigler (1962) simultaneous search decision rule. Crucially, and

unlike Stigler’s model, here search is dynamic and purely sequential (without recall), so

exercising an option also requires to specify a dynamic selling intensity. Interestingly ‹
though, at this stage we do not require a full characterization of the pricing strategy.4

3To see this, note that if this were the case, Vn0
“ 0 yields Vn0`1 “ 0, by (1). Intuitively, an extra

unit of inventory provides no extra value neither through continuation values nor through better sales
opportunities. The same logic yields Vn0`2 “ Vn0`3 “ ¨ ¨ ¨ “ 0.

4As n0 solves Vn0`1 ą Vn0 “ 0 and inventory only falls as time transpires, to compute n0 we only
require the pricing strategy at n0`1. In this case, the seller is aware that after any trade all continuation
values are zero and so his pricing strategy is binary; he either fully exploits a buyer demand or he does
not sell at all. To wit, he sets reservation prices that only depend on the value of Vn0`1. Specifically,
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Intuitively, and analogous to Stigler’s fixed sample size search, in order to continue ‹
searching the marginal benefits of searching must exceed its marginal costs.5 Here,

the marginal cost is just the flow fixed cost c of search, analogous to the sample cost in

Stigler’s model. In Stigler (1962) job search application, since search is simultaneous, the

returns from search are given by the marginal wage rate increase from one additional

search. However, in our setting, given our purely sequential search technology, the

marginal benefit is well summarized by the discounted value of one-period ahead expected

maximum sales βEpP qř` minp`, nqα`. This precisely accounts for the magnitude of the

returns to search as a function of inventory. As the expected maximum sales rise in

the size of the inventory, the stopping decision also adjusts as inventory evolves. In

particular, the marginal benefit-marginal cost comparison dictates that it is optimal to

search and never stop searching if c ă βEpP q (i.e., when the expected maximum sales

exceeds the search cost even when n “ 1), and to never search if c ě βEpP qř` α`` (i.e.,

if the expected maximum sales never exceeds the cost of search), as deduced from (2).

Otherwise, if βEpP q ď c ă βEpP qř` α`` it is optimal to start searching, but eventually

stop if inventory is low enough.

Exploiting Lemma 1, we also deduce that for a given search cost value c ą 0, a ‹
strategy that combines searching with eventually stopping and abandoning part of the

inventory exclusively arises if we allow multiple unit sales. For if buyers arrive with

single unit demands, the decision to stop searching is independent of the size of the

inventory. The expected maximum sales in this case always equals βEpP q, and so the

seller either always or never searches, but never stops before having sold all units. To

obtain this difference between policies, our multiple unit sales assumption is critical.

How the value n0 and the expected numbers of search periods vary as the model

parameters adjust only depend on how the expected maximum sales change. Exploit-

ing (2), we deduce that the shutdown threshold falls in βEpP q, rises in c, and falls with

stochastic increases in ` or with mean-preserving spreads in `.6 Intuitively, stochastically ‹
better prices or demands improve inventory optionality, and so the seller searches more

by delaying the stopping decision; a higher search cost or impatience anticipates it. As

for an increased price risk, despite the fact it improves inventory optionality, it does

not affect the stopping decision as long as the expected price remains unchanged (mean

preserving spreads). This is unlike increments in demand risk that delays stopping.

he sells j ě 1 units only if p ě Vn0`1{j. Imposing Vn0`1 ą 0 yields (2).
5Morgan and Manning (1985) refers as regular to the search rules that allow a further single obser-

vation when it is expected to increase the searcher’s utility; these rules obey (2) in our model.
6As

ř8
`“1 minp`, n` 1qα` ą

ř8
`“1 minp`, nqα`, then n0 falls in βEpP q and rises in c. Our last claim

follows by standard stochastic ranking theorems, since Epminp`, nqq is increasing and concave.
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4 How to Price Units?

Now that we have characterized when it is optimal for the seller to stop searching, we

pursue a more ambitious goal. The task is to characterize the optimal pricing strategy

by deducing how to price each unit of inventory, and thus how much should the seller

sell in each trade opportunity. This ultimately completes the characterization of the

optimal search rule. As in any sequential search problem, the pricing strategy is related

to and well summarized by optimal reservation prices. Since these reservation prices will

adjust depending on how inventory size evolves, we let Ri,n be the per unit reservation

price to sell i units when inventory is n.

Furthermore, as in each period the seller chooses to search by incurring a fixed cost,

reservation prices are guided by total revenue considerations instead of pure marginalism.

This will naturally prevent us from just using first order conditions when solving the

seller optimization problem. For this reason, we have to simultaneously keep track of

both the marginal and average cost of selling each unit. Both of these functions are

endogenous objects that can be derived from the shape of the value function, exploiting

an inductive logic. More specifically, the marginal cost of selling is given by value

differences ∆Vn ” Vn´Vn´1, while the average selling cost is determined by average value

differences or average value loss of selling j units, defined here as φn,j ” pVn ´ Vn´jq{j.
For a clear analysis and exposition, we now divide our analysis in three cases. We

will show that in each of the following cases the seller employs a different optimal pricing

strategy. First, we explore the case when the search cost is low enough. In this case, the

marginal selling cost is increasing and thus selling happens at the margin, as in Carrasco

and Smith (2017). Second, when demands are non-random and all buyers arrive willing

to buy the same maximum amount of units. Finally, in the third case, we study the

case when demands are random; that is, when some buyers might be willing to buy

more units than others. Our main finding is that, except in the first case, a fixed

search cost translates into a non-monotone endogenous marginal selling cost that leads

to discontinuous selling strategies; specifically to bundling and volume discounts.

A. Low Search Cost: Here we show that a low enough search cost yields dimin-

ishing returns to optionality extending the findings in Carrasco and Smith (2017) to a

costly search environment.

Proposition 1 Value differences ∆Vn are positive and decreasing if the search cost is

low enough; specifically, whenever c ď c̄ where c̄ uniquely solves V2 ´ V1 “ V1.

The argument to find the value of c̄ is purely inductive. If c ď c̄, then V2 ´ V1 ď V1
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Figure 2: Only Low Search Cost leads to Diminishing Returns. Assume m “
3, β “ 0.8 and P „ Γp4, 2q. Left: diminishing returns only arise if c ď c̄ (dark gray
region), by Proposition 1. For α1 P p0, 1q, if c̄ ă c ă βEpP q then n0 “ 0 but as c rises,
search stops at n0 “ t1, 2u; if c ě βEpP qř` α`` search never happens, by Lemma 1.
Right: If α1 “ 0 then c̄ “ βEpP q so any c ą 0 invalidates the diminishing returns.

which in turn yields V3 ´ V2 ď V2 ´ V1, so on and so forth. This condition ultimately

yields a decreasing value increment ∆Vn.

A direct consequence of Proposition 1 is that the reservation price for selling i units

when inventory is n equals Ri,n “ ∆Vn´i`1, as in Carrasco and Smith (2017). There is,

of course, an inverse relationship between returns to optionality and reservation prices.

Intuitively, since the diminishing returns to optionality means that an additional unit of

inventory is progressively less valuable, they unambiguously translate into an increasing

marginal and average selling cost. To wit, the seller sells more units only for higher

prices and those prices rise through the entire liquidation process.

For more insights, in the proof of Proposition 1 we precisely identify that the value c̄

that uniquely solves V2 ´ V1 “ V1 obeys:

c̄ “ βα1

ż 8
c̄p1´α1q
α1p1´βq

r1´Gppqsdp. (3)

As shown in Figure (2), the value of c̄ rises in α1 and there are diminishing returns to

optionality only if c ď c̄.7 This extends the results in Carrasco and Smith (2017) to a

costly search environment, as long as the search cost is low enough. Exploiting (3) we

deduce that our multiple unit sales assumption is critical to offer new insights about

the optimal search rule when the search cost is higher. For, when sales are carried

7Furthermore, since c̄ “ α1βE pmax pP ´ c̄p1´ α1q{α1p1´ βq, 0qq, as shown in the proof of Propo-
sition 1, c̄ rises with stochastic improvements in P and mean preserving price dispersion.
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in multiple units (α1 “ 0), since c̄ “ 0 then any search cost invalidates their results.

“Search at the margin” is not longer optimal. Instead, with single units sales (α1 “ 1)

we have c̄ “ βEpP q, which exactly coincides with cost value that precludes search at all,

by Lemma 1. That is, whenever the seller decides to search, he does it at the margin

and sells each additional unit only at a premium, as in Carrasco and Smith (2017).

Intuitively, in this case the search cost is analogous to paying a storage cost exclusively

on the marginal unit (whereas all the other units are free to store) meaning the seller

treats each unit as if it were the last one, which further diminish its optionality.

B. Non-Random Demands: We now assume that buyers arrive with deterministic

demands; that is, they always demand up to m ě 2 units, and so αm “ 1. Obviously, as

in this case α1 “ 0 any search cost precludes the diminishing returns property since c̄ “ 0,

by (3). Hence, the marginal selling cost is no longer increasing and so the seller will

employ a different optimal pricing strategy. He will not sell at the margin anymore. We

restrict to c ă βEpP qm as otherwise the seller never search, by Lemma 1.

In this case, the seller needs to carefully balance the two kinds of optionalities pro-

vided by each unit of inventory. Obviously, as each extra unit improves the seller’s ability

to sell more in each trade opportunity, it provides him a valuable “selling optionality”.

However, with a fixed search cost, as it also allows him to split it among more sold units,

it lowers the average selling costs and improves the “search optionality”. Crucially, these

optionalities adjust as the size of the inventory evolves. Due to caps, the selling option-

ality falls in the size of the inventory as shown in Carrasco and Smith (2017). We argue

that the search optionality rises in the size of the inventory whenever it allows the seller

to split the search cost among more units, lowering the per unit search cost. The fact

that these two optionalities vary differently in the inventory size yields a non-monotone

selling cost, which naturally translates into a discontinuous pricing strategy.

For clear insights, let us first partition the inventory state space into smaller search

domains Ωmpkq ” tj P N : mpk ´ 1q ` 1 ď j ď mku for k P N. As we now formally

show, compared to our previous low search cost case, the shape of the value function is

radically different; it rises at increasing rate, but only in each search domain.

Proposition 2 (Non-random demands) Value differences are increasing in each

search domain, but they otherwise fall and so ∆Vmk ą ∆Vmk`1 for all k P N. Addi-

tionally, average value differences φmk,m fall in k.

Our results in Proposition 2 are illustrated in Figure 3. We provide an intuition of

our result here. For this, let n0 “ 0 and suppose for now that n P Ωmpkq, but n ď mk´1.

That is, inventory lies inside a search domain but is not a multiple of the demand size m.

12



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5
Ω5p1q Ω5p2q Ω5p3q

n

∆Vn

1 2 3 4 5

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

supply
MC
AC

n “ 7

`

p

Figure 3: Non-Random Demands yield Optimal Bundling. Let m “ 5, c “
3.2, β “ 0.8 and P „ Γp4, 2q. Left: value differences rise only on each search domain,
by Proposition 2. Right: the seller optimally employs a bundling strategy, as neither
the marginal cost (MC) nor the average cost (AC) are monotone. If n “ 7, he bundles
2 and 5 units and sells them if p ě R2,7 “ φ7,2 and p ě R5,7 “ φ5,3, respectively.

In this case, the seller necessarily requires at least k search periods to fully liquidate his

inventory. For, in a best case scenario, he is only going to be able to sell m units in each

encounter (and he might even find optimal not to sell in a search period). Then, given

this fixed number of required search periods, the demand caps do not harm the selling

optionality of an additional unit, for the search surplus of none of the units of inventory

is delayed. Even more, the seller realizes that having one extra unit of inventory does

not add search periods since pn ` 1q P Ωmpkq; that is, he also requires at least k search

periods to sell n ` 1 units. Altogether, one extra unit improves both the selling and

the search optionalitites. To wit, additional units in a search domain are always more

valuable and thus the marginal cost of selling is decreasing, as depicted in Figure 3.

Instead, suppose now that the size of the inventory is a product of the demand size;

that is, n “ mk and n P Ωmpkq. In this case, if the seller were to hold an additional

unit, then the exact opposite happens as both optionalities fall. First, notice that

since n ` 1 P Ωmpk ` 1q, an extra unit of inventory necessarily requires an additional

search period for the seller to fully liquidate inventory. Then, as the additional unit

has to fully bear the search cost, its search optionality is severely harmed. In addition,

since the surplus of the additional unit is delayed due to caps, the selling optionality is

also reduced. This unambiguously yields a lower value increment ∆Vmk ą ∆Vmk`1, as

depicted on the left panel of Figure 3.

Our next corollary shows how the shape of the value function described in Propo-

sition 2 — with a non-monotone marginal benefit of inventory — determines a discon-
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tinuous optimal pricing strategy. As shown in Figure 3, the shape of the value function

yields non-monotone selling costs, which in turn gives rise to a pricing strategy where

the discontinuity is the largest: optimal bundle pricing.

Corollary 1 (Bundling) For low inventory, optimal selling is all-or-nothing. Specifi-

cally, if nďm, then the seller bundles the inventory and fully sells it for a per unit price

that equals the average cost Rn,n “ φn,n. For larger inventory, it is optimal to design

and offer at most two bundles. Specifically, if n P Ωmpkq and k ě 2, the offered bundle

sizes are j “ n ´ mpk ´ 1q and m ě j, with reservation prices equal to the average

cost Rj,n “ φn,j, and to the incremental average cost Rm,n “ φmpk´1q,m´j, respectively.

This follows immediately from Proposition (2). Unlike Carrasco and Smith (2017), the

seller now prices each unit of inventory at its average, rather than marginal, cost. For

low inventory n ď m the seller faces increasing search optionality gains of inventory

(because the search cost is split among more units), and caps are not binding. He then

faces a decreasing marginal selling cost, and thus bundles all of his inventory, willing

to completely unload it if the price exceeds it average cost Rn,n “ φn,n. Otherwise, for

larger inventory, the seller faces a non monotone marginal selling cost, as shown on the

right panel of Figure 3. To wit, bundle pricing arise as an optimal pricing strategy.

Ultimately, the seller designs only two bundles, but unlike most bundling menus, sets

a higher per-unit price for the larger one.8 By doing so, he designs a (more expensive)

bundle for high valuation buyers, and an additional one (cheaper) for low valuation

ones. The per-unit price of the small bundle with j units is equal to the average selling

cost φn,j, while the per-unit price of the larger one equals the average selling cost of

the additional m ´ j units; which is φmpk´1q,m´j. This is a direct consequence of the

fact that the seller faces diseconomies of scale (an increasing average selling cost, as

depicted on the right panel of Figure 3). In the particular case of n P tm, 2m, 3m, . . . u
the seller always bundles and sells m units only for prices higher than the reservation

price Rm,n “ φn,m. Furthermore, in this case the price of the bundle rises through the

liquidation process, which follows immediately from the fact that φmpk`1q,m ă φmk,m, by

Proposition 2. In the special case of uncapped demands (mÑ 8) the seller employs an

all-or-nothing pricing strategy with reservation price Rn,n “ φn,n, by Corollary 1.9

Observe also that the seller adjusts reservation prices depending on the size of his

8By our first result in Proposition 2 we obtain Rj,n ă φmk,m and Rm,n ą φmpk´1q,m, while by the
second we have φmk,m ă φmpk´1q,m.

9Exploiting (1), in this case the reservation prices solve p1´βqRn,n “ ´c{n`βEpmaxpP ´Rn,n, 0q.
Since caps never bind, the search cost is analogous to a storage cost that is divided in equal parts among
units.
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Figure 4: Random Demands yield Clearance Sales and Volume Discounts.
Let m “ 2, α2 “ 0.75, c “ 3.2, P „ Γp4, 2q and β “ 0.8. At left, value differences fall
only if n ě n1, by Proposition 3. We plot optimal reservation prices for n ď n1 in the
other panels. The seller optimally combines premiums when inventory is odd (right)
with volume discounts offered to buyers with large demands (` “ 2) when it is even
(middle), by Corollary 2.

post trade-inventory. This in turn relates to a dynamic search intensity, which is in

stark contrast to the findings in the optimal search literature Morgan and Manning

(1985); Morgan (1983).10 In particular, for infinite horizon problems without recall like

ours, Morgan (1983) show that it is optimal to search with constant intensity until

stopping (Proposition 1). Crucially, and unlike their time invariant “psychic cost” of

sampling, our selling costs are endogenous and fully determined by previous period

sales. It is then genuinely dynamic reflecting the endogenous time-varying optionality

of each unit of inventory. Then, after each trade, the seller adjusts his selling intensity

by revising the reservation prices of each bundle and thus his selling intensity, simply

because optionality has changed.

C. Random Demands αm ă 1: We now explore the case when buyers arrive with

different capped demands. In order to illustrate our results and offer clear insights, we

restrict to the m “ 2 case. That is, buyers demanding a maximum of one unit arrive

with probability α1 ě 0, and a maximum of two units with complementary chance α2 “
1 ´ α1 ě 0. For the m ą 2 case we rely on numerical simulations to offer more general

insights. Obviously, we assume c̄ ă c ă βEpP qř` α`` as otherwise the seller never

searches or n0 “ 0 and with decreasing value differences, as in our first case.

We first show that in this case the shape of the value function, and thus the pricing

10In this literature, search intensity relates to the number of simultaneous observations drawn from
a known distribution. There are, of course, alternative ways to model search intensity in sequential
environments like ours. In particular, our pricing strategy is directly related to this intensive margin
since a drop in the reservation price is analogous (yet, not exactly the same) to an increase in the search
intensity.
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strategy, radically adjust depending on the size of the inventory. In particular, we show

that there exists a unique inventory threshold for diminishing returns n1 ě 0, after which

value differences are decreasing. That is, ∆Vn ą ∆Vn`1 for n ě n1, but ∆Vn1 ą ∆Vn1´1.

Then, the optimal pricing strategy for large enough inventory naturally follows, since

marginal selling costs rise. For low inventory values, we show that value differences are

highly non monotone, and that it zigzags as inventory increases.

Proposition 3 (Random demands) For c ą c̄, there exist a unique inventory thresh-

old n1 ě 2 such that value differences are decreasing when n ě n1. Instead, when n ď n1

value differences zigzag; that is, ∆Vn ą maxt∆Vn´1,∆Vn`1u for all even numbers n ě 2.

We now show how this specific shape of the value function determines the opti-

mal pricing strategy, which is radically different than the ones in our previous cases.

As shown in Figure 4 and formalized in Corollary 2, the optimal pricing strategy is

again discontinuous. In particular, it combines the diminishing returns insights — and

thus purchase premiums when inventory is large — with clearance sales in the form of

bundling with volume discounts when inventory is low. We omit the proof as it is an

immediate implication of Proposition 3.

Corollary 2 (Discounts and Premiums) For low inventory n ď n1: if n is even then

it is optimal to offer volume discounts and set R1,n ą R2,n, where Ri,n “ φn,i. If n is odd,

it is optimal to charge purchase premiums and set R2,n ą R1,n where Ri,n “ ∆Vn´i`1.

For larger inventory n ě n1 ` 1, it is also optimal to charge purchase premiums and set

reservation prices equal to marginal costs; i.e., Ri,n “ ∆Vn´i`1.

The fact that value differences fall when inventory is large enough induces the seller

to sell each additional unit at a premium if n ě n1`1, as in Carrasco and Smith (2017).

Otherwise, if the seller holds low enough inventory, then the pricing strategy adjusts

and reflects the possibility of increasing value differences, as shown in the left panel of

Figure 4. In particular, when n ´ 1 is odd, one additional unit of inventory not only

provides a better selling optionality to the seller — improving his ability to sell more

— but also allows him to split the search cost among more units. Due to the increasing

optionality, when inventory is n (and thus, is even) the seller faces a decreasing marginal

and average selling cost. Obviously then, in this case the seller will try to sell as many

units as possible. This in turn translates into volume discounts offered to buyers that

arrive with larger demands. Instead, when n is odd, since the seller faces an increasing

selling cost (decreasing optionality) purchase premiums are optimal.

16



1 2 3 4 5 6 7 8 9 101112131415

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

n1m “ 7
c “ 15

n

∆Vn

1 2 3 4 5 6 7

1.15

1.30

1.45

1.60

1.75

1.90

2.05
` “ 5 ` “ 6 ` “ 7Supply

n “ 14

MC
AC

units
sold

R

1 2 3 4 5 6 7

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50
` “ 4 ` “ 7

Supply
n “ 11

MC
AC

units
sold

R

Figure 5: Optimal Discounts and Premiums in a More General Case. We
posit m “ 7, α` “ 1{7, β “ 0.8 and P „ Γp4, 2q. At left, value differences fall only if
n ě 1. The other two panels show the supply (reservation prices) for different capped
demand values (solid lines) for n “ 14 (middle) and n “ 11 (right). Volume discounts
arise whenever the marginal cost falls, but stop as soon as it rises.

Altogether, reservation prices are lower at initial stages of a liquidation process and

they progressively rise as time transpires. However, as soon as inventory falls below the

inventory threshold for diminishing returns n1, the seller speeds up sales by lowering

reservation prices and offering volume discounts, as depicted in Figure 4.

A More General Case: With random demands and m ą 2 it is hard to analyti-

cally characterize the value function and the pricing strategy, but we rely on numerical

exercises to offer key economic insights. To illustrate our findings, we explore the exam-

ple of equally likely capped demands with m “ 7 (Figure 5). First, we still observe that

when inventory is large enough and n ě n1, value differences are decreasing and so the di-

minishing property of inventory optionality is obtained. We deduce that if n ě n1`m´1

the seller faces an increasing marginal selling cost and thus sets increasing reservation

prices Rn,i “ ∆Vn´i`1 to sell i units. Otherwise, for low enough inventory n ď n1 there

might be multiple regions where value differences are increasing, as shown in the left

panel of Figure 5. This means the marginal selling cost is again non-monotone. However,

given the lack of regularities, its shape translates into a more sophisticated combination

of volume discounts and purchase premiums.

In this more general case, and unlike in our previous m “ 2 case, the seller optimally

offers volume discounts but not only to buyers arriving with large demands. For instance,

when n “ 11 (right panel of Figure 5), it is optimal to offer volume discounts to buyers

arriving with smaller demands that wish to buy no more than four units. The reservation

prices in this case are equal to the average selling costs. In addition, we see that there

might be limits to volume discounts. For instance, in the same case when n “ 11 the

seller is willing to sell the first four units at progressively lower prices if ` ď 4, but
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charges a purchase premium again for more units. In fact, all these additional units

are sold at their marginal cost. Finally, we also see that in some cases the seller offers

volume discounts exclusively to buyers with large demands. For instance, when n “ 14

(middle panel of Figure 5) he sells the first four units at progressively higher unitary

prices if ` ď 4, but volume discounts star for ` ě 5, when the marginal cost of selling

the next unit is smaller than the cost of the previous one.

5 Concluding Remarks

Despite the ubiquity of multi-unit search and multi-unit trade, most sequential search

problems in economics simplify the trade environment by assuming a single indivisible

unit. Furthermore, models that account for multiple units have been usually combined

with semi-decentralized trading, assuming that a competitive and organized market

exist, and thus focusing exclusively in the intensive margin of trade; i.e., how much to

sell given a competitive equilibrium price. In this paper, we relax all of these assumptions

by formulating a costly search model for the optimal selling of a stock of goods. In doing

so, we explore and solve a dynamic programming exercise that combines the extensive

margin of search with the intensive margin of selling that commonly arise in most selling

problems when inventory is endogenous and its size evolve in time.

We inductively solve for the seller’s optimal search rule by simultaneously specifying

a search strategy — i.e., when to start searching and whether to stop or not — and a

pricing strategy that specifies how to price each unit of inventory, and thus how much to

sell in each trade opportunity. Our theory explicitly accounts for the effect of escapable

fixed costs on optimal liquidation strategies, pushing search theory into a richer class of

problems that are not just optimal stopping exercises. Indeed, and to the best of our

knowledge, our is the first search theoretical model that simultaneously makes sense of

bundling, purchase premiums and volume discounts as part of the optimal search policy.

As in any search problem, understanding each unit optionality is critical. This is

especially important in our case, for by combining multiple units with an escapable

search cost, the optionality is twofold. First, and more obvious, each additional unit

allows the seller to sell more in each trade opportunity, providing a valuable selling

optionality. Second, it also allows him to split each period search cost among more

units, thus lowering average selling costs and improving search optionality. We find that

the selling optionality falls with the size of the inventory (due to capped demands), and

that the search optionality rises because the seller might liquidate units facing a lower

per unit search cost. These optionalities give rise to new trade offs that yield a non-
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monotone endogenous marginal selling cost. Ultimately this translates into new selling

strategies, such as bundling, and more sophisticated ones that endogenously combine

purchase premiums with sales and volume discounts.

Among the most relevant model extensions, one might think that the form of the

cost matters. That is, if the seller were to face a per unit cost, rather than a fixed search

cost. It is hard to offer general insights here, as the results and the model tractability

obviously depend on the specific shape of the cost function that is assumed. However,

with a linear holding cost it is easy to verify that the inventory unambiguously have

diminishing returns to optionality, due to capped demands (a convex holding cost would

of course further reinforce the diminishing returns). Hence, the seller then always faces

an increasing marginal cost and only sells more units for higher prices. However, unlike

the fixed cost case, the value function is no longer monotone, which in turn this yields

an optimal inventory size. This means that if the seller ever abandons inventory he does

it at the beginning of the liquidation, and not at the end as it happens in our fixed cost

case. In fact, the seller should even be willing to pay in order to get rid of part of his

inventory when this exceeds the optimal size.

Our model can also easily be further extended to account for price-quantity Nash

bargaining and continuous time. Hence, our results all naturally extend to this more

general trade protocol usually employed, for instance, in over-the-counter markets.11 A

more general demand schedule that allows buyers to trade off price and quantity is also

an interesting extension, but it significantly reduces the model tractability.

We are currently extending the analysis to account for multiple units with costly

but ordered search (e.g., submarkets), as in Weitzman (1979). In this case, the seller’s

optimal policy not only would need to specify how intensively to act upon each trade

opportunity, but it would also need to specify a search order. In this case, a seller would

be able to direct his search based on his knowledge about each submarket. Naturally, a

seller’s strategy, both about how many buyers to search for and which buyers to search

for, will change as its inventory level changes.

11When bargaining powers are δ for the seller and 1´δ buyers, as the bargained price is the weighted
average of reservation values, we just have to account that inventory readjusting happens with chance δ.
Ultimately, this means that the effective fixed cost and discount are c{p1´p1´δqβq and βδ{p1´p1´δqβq,
respectively. The continuous time version is similar, except that β “ EpetT q and c “ kp1 ´ EpetT q{r,
where r is the discount rate, T the random time for the first meeting, and k is the continuous time
flow cost. In the tractable Poisson arrival version with meeting rate ρ ą 0, we have β “ ρ{pr ` ρq and
c “ k{pr` ρq. Furthermore, for the price-quantity Nash bargaining version, we just adjust the meeting
rate to ρδ where δ is the seller bargaining power.
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6 Appendix

Proof of Lemma 1: If n0 ě 1 then Vn0´1 “ Vn0´2 “ ¨ ¨ ¨ “ V1 “ 0, due to

value monotonicity. Then, substituting zero continuation values in (1) yields Vn0 “
maxt´c ` βEpP qřn0

`“1 α
n0
` `, 0u. By the same logic, imposing Vn0 “ 0 we have Vn0`1 “

maxt´c ` β
řn0`1

`“1 αn0`1
` EpmaxpVn0`1, P `qq, 0u. Then, the shutdown threshold obeys

n0 ě 1 if Vn0`1 ą 0 “ Vn0 , which yields (2) by fixed point reasoning. When m “ α1 “ 1

then (2) yields n0 “ 0. For m ě 2, as both sides of (2) are increasing in n0, a

unique solution m ´ 1 ě n0 ě 1 exists if βEpP qř` α`` ą c ě βEpP q. Shutdown

never happens (n0 “ 0) when V1 ą 0 which is iff c ă βEpP q. Finally, since Vn ď
´c{p1 ´ βq ` βEpP qř8

`“1 `α`{p1 ´ βq, the seller shuts down regardless of his holdings

if c ě βEpP qř` α``.2

Proof of Proposition 1: We aim to prove when ∆Vn`1 ă ∆Vn for all n ě 1. We

assume that Vn ą 0 for all n P N and check this at the end. Let us first stochastically

increase the demand schedule αn to ᾱn, by incrementing every demand for n ´ 1 units

by one. In this case, ᾱn
` “ αn

` for ` “ 1, 2, . . . , n ´ 2 but ᾱn
n´1 “ 0 and ᾱn

n “ 1 ´
pα1`¨ ¨ ¨`αn´2q. We consider the higher value Vn`1 ă V̄n`1 when all probability weight

shifts from demand for n units to n ` 1 units. To show ∆Vn`1 ă ∆Vn, it suffices that

V̄n`1 ´ Vn ď ∆Vn. We now show this second inequality. Let 1n ” p1, 1, . . . , 1q P Rn, the

vector V n “ pV1, . . . , Vnq and define:

Fnp¨, v|αnq ” ´c` βřn
`“1 α

n
` E pmaxpv,max1ďiď` pPi` Vn´i ´ Vn´1qqq (4)

By (1), v “ ∆Vn solves

v “ FnpV n´1 ´ Vn´11n´1, v|αnq ´ p1´ βqVn´1 (5)

Likewise, v “ V̄n`1 ´ Vn solves

v “ Fn`1pV n ´ Vn1n, v|ᾱn`1q ´ p1´ βqVn (6)

Then V̄n`1 ´ Vn ď ∆Vn if the (unique) fixed point of (6) is at most the (unique) fixed

point of (5). Next, let the grap Gnpvq be the right side of (6) less the right side of (5):

Gnpvq “ Fn`1pV n ´ Vn1n, v|ᾱn`1q ´ FnpV n´1 ´ Vn´11n´1, v|αnq ´ p1´ βq∆Vn (7)
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Next, consider the upper envelope of `` 1 linear functions (` “ 1, 2, . . . , n):

Unpv, p, `q ” maxpv, max
1ďiď`

ppi` Vn´i ´ Vn´1qq (8)

Since ᾱn`1
n`1 “ αn

n, the gap Gnpvq in (7) is a weighted sum, with identical probability

weights, on the differences of analogous terms:

Gnpvq“β
n´1ÿ

`“1

α`Er∆Un`1pv, P, `qs ` βαn
nErUn`1pv, P, n` 1q ´ Unpv, P, nqs ´ p1´ βq∆Vn

Each difference ∆Un`1pv, p, `q has the form maxpv,mn`1q ´ maxpv,mnq where mn “
max1ďiď`ppi ´

ři´1
j“1 ∆Vn´jq. Now, suppose ∆Vn ď ∆Vn´1 ď . . . ď ∆V1. Then we

have maxpv,mn`1q´maxpv,mnq ą 0. Since such a function falls in v, so does ∆Un`1pv, p, `q.
By similar logic, the middle term in Gnpvq can be written as a sum of such terms falling

in v. So Gnpvq ď Gnp0q. We now find a surplus representation for the gap Gnp0q.
Selling i units is optimal if the price exceeds the average cost of selling any m1 less

units, and is at most the average cost of selling any m more units:

pVn´i`m1 ´ Vn´iq{m1 ď p ď pVn´i ´ Vn´i´mq{m for 1 ď m1 ď i, 1 ď m ď `´ i

By recursive assumption, optimality reduces to the discrete first order condition with

m “ m1 “ 1. So selling i ě 2 units is optimal iff ∆Vn`1´i ď p ď ∆Vn´i. So as a function

of p, and for 0 ď v ď ∆Vn´1, the upper envelope in (8), kinks upward at p“ v as the

seller chooses i “ 1, and then at every ∆Vn`1´i for i “ 2, . . . , `, as the seller chooses to

sell i` 1. Let Φn,j ” EpmaxpP ´ φn,j, 0q so that Φn,1 “ EpmaxpP ´∆Vn, 0q, and so:

Er Unpv, P, `qs “ Epmaxpv, P qq `řn´1
j“n`1´` Φj,1 (9)

Rewrite Vn using (8) and (9):

p1´ βqVn “ ´f ` β
nÿ

`“1

αn
` pErUnp∆Vn, P, `qs ´∆Vnq “ ´f ` β

nÿ

`“1

αn
`

nÿ

j“n`1´`

Φj,1 (10)

Then:

p1´ βq∆Vn “ β
n´1ÿ

`“1

α`

n´1ÿ

j“n´`

rΦj`1,1 ´ φj,1s ` βαn
nΦn,1 (11)
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Next, by (9):

Er∆Un`1p0, P, `qs “
řn

j“n`2´` Φj,1 ´
řn´1

j“n`1´` Φj,1 “
řn´1

j“n`1´`rΦj`1,1 ´ Φj,1s (12)

ErUn`1p0, P, n` 1q ´ Unp0, P, nqs “
řn

j“1 Φj,1 ´
řn´1

j“1 Φj,1 “ Φn,1 (13)

Using (11)-(13), yields:

Gnp0q“β
n´1ÿ

`“1

α`rΦn´`,1 ´ Φn`1´`,1s “ β
n´1ÿ

j“1

αn´j pΦj,1 ´ Φj`1,1q ď 0

Altogether, we have shown that if ∆Vn ď ∆Vn´1 ď . . . ď ∆V1, then Gnpvq ď Gnp0q and

so V̄n`1 ´ Vn ď ∆Vn and since Vn`1 ă V̄n`1 we have ∆Vn`1 ă ∆Vn.

Finally, value increments to be decreasing it suffices that ∆V2 ď ∆V1 “ V1. First,

observe that if c ě βEpP qp2´α1q then V2 “ V1 “ 0, by (2), in which case value increments

are obviously not decreasing. By the same logic, if βEpP q ď c ă βEpP qp2 ´ α1q, then

n0 “ 1 and ∆V2 ą ∆V1 “ 0. To wit, V1 ą 0 and so Vn ą 0. We now restrict to

c ă βEpP q, in which case n0 “ 0 by Lemma (1). The value functions for n “ 1, 2:

V1 “ ´c` βEpmaxpV1, P qq (14)

V2 “ ´c` βα1EpmaxpV2, P ` V1qq ` βp1´ α1qEpmaxpV2, P ` V1, 2P qq (15)

Subtract V1 from (15), so that ∆V2 “ V2 ´ V1 obeys ∆V2 “ Qp∆V2q, where:

Qpvq “ ´c` βα1Epmaxpv, P qq ` βp1´ α1qEpmaxpv, P, 2P ´ V1qq ´ p1´ βqV1

As Qpvq is increasing with Q1pvq P p0, 1q and at v “ V1 we obtain QpV1q “ V1`cp1´α1q´
V1α1p1´βq, we have that V2´V1 ď V1 iff QpV1q ď V1, which is iff V1 ě cp1´α1q{α1p1´βq.
Exploiting (14) we deduce that this is iff:

c ě α1βE

ˆ
max

ˆ
P ´ fp1´ α1q

α1p1´ βq , 0
˙˙

(16)

Call c̄ ą 0 to the c value that solves (16) with equality. As the left side rises linearly c

but the right side falls in c, there a unique value of c̄. To wit, V2 ´ V1 ď V1 iff c ď c̄.

Integrating by parts (16) yields (3).2

Proof of Proposition 2: Let αm “ 1 and c ă mβEpP q. We argue inductively

throughout the proof. We first show that for k ě 1, if p♣q ∆Vmk ě ∆Vmk´1 ě ∆Vmk´2 ě
¨ ¨ ¨ ě ∆Vmpk´1q`1 then p♠q ∆Vmk ě ∆Vmk`1 but ∆Vmk`2 ě ∆Vmk`1. In this case,
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we deduce that when n “ mk an all-or-nothing pricing strategy is optimal. Then,

substracting Vmk´1 from (1) we obtain that ∆Vmk solves v “ Jmkpvq, where

Jmkpvq “ ´c` βEpmaxpv, P,mP ´ rVmk´1 ´ Vmpk´1qsq ´ p1´ βqVmk´1

By the same logic, as when n “ mk ` 1 it is optimal to sell nothing, one or m units,

we obtain that ∆Vmk`1 solves v “ Hmk`1pvq. As ♣ dictates ∆Vmk ě ∆Vmpk´1q`1,

then Hmk`1pvq ď Hmkpvq and so ∆Vmk ě ∆Vmk`1. To show that ∆Vmk`2 ě ∆Vmk`1 we

compute the value of the feasible pricing strategy when n “ mk`2 that uses reservation

prices as if holdings were mk`1 selling one extra unit when the strategy dictates to sell

just one unit; let Ṽmk`2 be the value of that strategy. Next, let Φn,j“EpmaxpP ´φn,j, 0q
and guess φmk`1,1 ď φmk,m´1. We obtain

p1´ βqṼmk`2 “ p1´ βqVmk`1 ` βpΦmk`1,1 ´ Φmk,m´1q (17)

As p1´βqVmk“´c`mβΦmk,m and p1´βqVmk`1 “ ´c`βΦmk`1,1`pm´1qβΦmk,m´1 we

obtain p1´βq∆Vmk`1 “ βpΦmk`1,1´Φmk,m´1q`mβpΦmk,m´1´Φmk,mq. Since ♣ implies

φmk,m´1 ě φmk,m we obtain Φmk,m´1 ď Φmk,m and so p1 ´ βq∆Vmk`1 ď βpΦmk`1,1 ´
Φmk,m´1q, which in turn yields Vmk`2 ´ Vmk`1 ě Ṽmk`2 ´ Vmk`1 ě ∆Vmk`1, by (17);

then, it follows that ∆Vmk`2 ě ∆Vmk`1

We now show that if p♥q ∆Vmk`i ě ∆Vmk`i´1 ě ∆Vmk`i´2 ě ¨ ¨ ¨ ě ∆Vmk`1 then

∆Vmk`i`1 ě ∆Vmk`i, for 2 ď i ď m ´ 1. We use our previous logic and argue that

Vmk`i`1 ě Ṽmk`i`1, where the latter is the value of employing the reservations prices as

if holdings were mk ` i and sell one extra unit when the strategy dictates to sell just i

units. More generally, we assume φmk`i,i ď φmk,m´i. Then,

p1´ βqṼmk`i`1 “ p1´ βqVmk`i ` βpΦmk`i,i ´ Φmk,m´iq (18)

As p1 ´ βqVmk`i “ ´c ` iβΦmk`i,i ` pm ´ iqβΦmk,m´i, we obtain p1 ´ βq∆Vmk`i “
βpΦmk`i,i´Φmk,m´iq`pi´1qβpΦmk`i,i´Φmk`i´1,i´1q`pm´i`1qβpΦmk,m´i´Φmk,m´i`1q.
Since ♥ implies φmk`i,i ě φmk`i´1,i´1 we obtain Φmk`i,i ď Φmk`i´1,i´1 and as ♣ implies

Φmk,m´i ě Φmk,m´i`1 we obtain Φmk,m´i ď Φmk,m´i`1. Altogether, p1 ´ βq∆Vmk`i ď
βpΦmk`i,i´Φmk,m´iq, which in turn yields Vmk`i`1´Vmk`i ě Ṽmk`i`1´Vmk`i ě ∆Vmk`i

and so ∆Vmk`i`1 ě ∆Vmk`i, by (18).

We now show that φmpk`1q,m ď φmk,m. As for n “ mk and n “ mk ` 1 it is optimal

to employ an all-or-nothing pricing strategy, we deduce that φmk,mk solves v “ Tkpvq
where Tkpvq “ βEpmaxpP ´ v, 0qq ´ rc ` p1 ´ βqVmpk´1qs{m. Since Tk`1pvq ď Tkpvq
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we obtain φmpk`1q,m ď φmk,m, by fixed point reasoning. We use this to verify that

φmk`i,i ď φmk,m´i for 1 ď i ď m ´ 1. As φmk`i,i ď φmpk`1q,m and φmpk`1q,m ď φmk,m we

obtain φmk`i,i ď φmk,m; as φmk,m ď φmk,m´i we get φmk`i,i ď φmk,m´i.

Finally, we show 2 ď n ď m ´ 1 that (♦) ∆Vn ě ∆Vn´1 ě ¨ ¨ ¨ ě ∆V2 ě V1 then

∆Vn`1 ě ∆Vn. In this case, since it is optimal to employ an all-or-nothing pricing

strategy, we get p1´ βqVn “ ´c` βnΦn,n and so p1´ βq∆Vn “ βΦn,n` βpn´ 1qrΦn,n´
Φn´1,n´1s ď βΦn,n. Given that at n ` 1 it is feasible to sell one extra unit using the

reservation prices as if holdings were n, we obtain p1 ´ βqṼn`1 “ p1 ´ βqVn ` βΦn,n.

Hence, ∆Vn`1 ě βΦn,n{p1´ βq ě ∆Vn.

Altogether, ∆V2 ě V1 implies ♦ for n “ 3. As ♦ for n implies ♦ for n ` 1,

inductively we obtain ♣. The latter implies ♠, which in turn implies p♥q for i “ 2.

As ♥ for i implies ♥ for i ` 1 we obtain ∆Vmpk`1q ě ∆Vmpk`1q´1 ě ¨ ¨ ¨ ě ∆Vmk`1. As

when c ą 0 we obtain ∆V2 ě V1, by Proposition (1), this completes the proof. For the

uncapped demand case (mÑ 8), as p1´ βqV1 “ ´c` βΦ1,1, and given that ∆V2 solves

v “ ´c` βEpmaxpv, P, 2P ´ V1qq ´ p1´ βqV1, whose right hand side equals V1 ` c ą V1

when v “ V1 we obtain ∆V2 ą V1. That is, ∆Vn`1 ą ∆Vn for all n P N.2

Proof of Corollary 1: For low inventory n ď m, as ∆Vn´i`1 falls in i P t1, . . . , nu,
by Proposition 2, the marginal cost of selling is decreasing. To wit, the seller optimally

sells all of his inventory as long as the price exceeds the average selling cost; henceRn,n “
φn,n. Next, suppose n P Ωmpkq and k ě 2. If m ď mk ´ 1 then ∆Vn´i`1 falls in

i P t1, . . . , n ´ mpk ´ 1qu and ∆Vmpk´1q ą ∆Vmpk´1q`1, but ∆Vn´i`1 falls again in

i P tn´mpk´ 1q` 1, . . . ,mu, by Proposition 2. To wit, the marginal cost of selling falls

for the first n´mpk ´ 1q units sold, rises for the n´mpk ´ 1q ` 1 unit, and falls again

if more units are sold. Then, the offered bundles size are j “ n´mpk´ 1q and m, with

reservation prices equal to the average cost Rj,n “ φn,j and to the incremental average

cost Rm,n “ φmpk´1q,m´j ě Rj,n, respectively. Finally, if n “ mk then as ∆Vn´i`1 falls

in i P t1, . . . ,mu by Propositon 2, the seller optimally sells all of his inventory as long

as the price exceeds the average selling cost; hence Rm,n “ φn,m.2

Proof of Proposition 3: If c̄ ă c ă βEpP qp1 ` α2q then n0 “ 0 or n0 “ 1, by

Lemma 1. Let n ě 2. We first show that p♥q if ∆Vn ą ∆Vn´1 then ∆Vn`1 ă ∆Vn.

Subtracting Vn´1 from (1), ∆Vn solves v “ Hnpvq:

Hnpvq “ ´c` βα1Epmaxpv, P qq ` βα2Epmaxpv, P, 2P ´∆Vn´1qq ´ p1´ βqVn´1 (19)

If ∆Vn ą ∆Vn´1, as Vn ě Vn´1 then Hn`1pvq ă Hnpvq and so ∆Vn`1 ă ∆Vn. Further-

more, as Hnpvq is increasing, then ∆Vn`2 ą ∆Vn`1 iff Hn`2p∆Vn`1q ą ∆Vn`1. We now
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find the conditions that guarantees that ∆Vn`2 ą ∆Vn`1. Exploiting (1), we deduce

p1´βqVn`1 “ ´c`βα1Epmaxp∆Vn`1, P qq`βα2Epmaxp∆Vn`1, P, 2P ´∆Vnqq´β∆Vn`1

which in turn yields that Hn`2p∆Vn`1q ą ∆Vn`1 iff:

p1´βq∆Vn`1ăβα2rEpmaxp∆Vn`1, P, 2P´∆Vn`1qq´Epmaxp∆Vn`1, P, 2P´∆Vnqqs (20)

Write Epmaxp∆Vn`1, P, 2P ´∆Vn`1qq“∆Vn`1 ` 2Φn`1,1. Since ∆Vn`1ă∆Vn, we have

that Epmaxp∆Vn`1, P, 2P ´∆Vnqq “ ∆Vn`1 ` Φn,1 ` Φn`1,1. By (20), Hn`2p∆Vn`1q ą
∆Vn`1 iff p1´βq∆Vn`1ăβα2rΦn`1,1´Φn,1s. Next, let Jnpvq ” rEpmaxpP ´v, 0qq´Φn,1s;
as Jnpvq is decreasing there is a unique solution ψp∆Vnq for p1 ´ βqv “ βα2Jnpvq. To

wit, Hn`2p∆Vn`1q ą ∆Vn`1 iff ∆Vn`1 ă ψp∆Vnq. On the other hand, as ∆Vn`1 ă ∆Vn

we have that ∆Vn`1 solves p1´ βqv “ Knpvq “ ´c´ p1´ βqVn ` βpEpmaxpP ´ v, 0qq `
α2Φn,1q, by (19). Furthermore, since p1´βqVn “ ´c`βα1Φn,1`2βα2Φn,2 then Knpvq “
βrEpmaxpP´v, 0qq´Φn,1´2α2pΦn,2´Φn,1qs. As Jnpvq and Knpvq are decreasing, by fixed

point logic we deduce that ∆Vn`1 ă ψp∆Vnq iff Knpψp∆Vnqq ă βα2Jnpψp∆Vnqq, which

is iff α1Jnpψp∆Vnqq ă 2α2pΦn,2´Φn,1q. Altogether, p♦q if ∆Vn ą ∆Vn´1 then ∆Vn`1 ă
∆Vn and also ∆Vn`2 ą ∆Vn`1 iff α1Jnpψp∆Vnqq ă 2α2pΦn,2 ´ Φn,1q.

We now show that if the value difference falls twice if falls a third time and thus con-

tinuously fall; that is p‹q if ∆Vn ă ∆Vn´1 ă ∆Vn´2 then ∆Vn`1 ă ∆Vn. By (19), ∆Vn

and ∆Vn`1 solve v “ Hnpvq and v “ Hn`1pvq, respectively. We now compute the dif-

ference ∆Hn`1 “ Hn`1pvq ´Hnpvq “ βα2rEpmaxpv, P, 2P ´∆Vnqq ´ Epmaxpv, P, 2P ´
∆Vn´1qqs ´ p1 ´ βq∆Vn. As ∆Vn ă ∆Vn´1, the difference Epmaxpv, P, 2P ´ ∆Vnqq ´
Epmaxpv, P, 2P ´ ∆Vn´1qq falls in v and so ∆Hn`1 ď βα2rEpmaxpP, 2P ´ ∆Vnqq ´
EpmaxpP, 2P ´ ∆Vn´1qqs ´ p1 ´ βq∆Vn “ βα2rΦn,1 ´ Φn´1,1s ´ p1 ´ βq∆Vn. Now,

as ∆Vn ă ∆Vn´1 ă ∆Vn´2 we write p1´βq∆Vn “ βα1rΦn,1´Φn´1,1s`βα2rΦn,1´Φn´2,1s,
by (19) and since p1 ´ βqVn´1 “ ´c ` βΦn´1,1 ` βα2Φn´2,1, by (1). That is, ∆Hn`1 ă
βα1rΦn´1,1 ´ Φn,1s ` βα1rΦn´2,1 ´ Φn´1,1s ă 0, which yields ∆Vn`1 ă ∆Vn.

Now, assume ∆Vn ą ∆Vn´1. Suppose α1Jnpψp∆Vnqq ě 2α2pΦn,2´Φn,1q. Then, by ♦
we have ∆Vn`1 ă ∆Vn and ∆Vn`2 ď ∆Vn`1 and so ∆Vn`1`j ă ∆Vn`j for all j ě 0, by ‹.

To wit, n1 “ n. Otherwise, if α1Jnpψp∆Vnqq ă 2α2pΦn,2 ´ Φn,1q, then ∆Vn`1 ă ∆Vn

and ∆Vn`2 ą ∆Vn`1 and ∆Vn`3 ď ∆Vn`2, by ‹. That is, n1 “ n ` 2. Finally, since

c̄ ă c ă βEpP qp1 ` α2q, then ∆V2 ą ∆V1 and so ∆Vn ą ∆Vn´1 and ∆Vn`1 ă ∆Vn for

all even numbers 2 ď n ď n1. The existence of n1 is guaranteed by the boundedness of

Vn, while uniqueness, by ‹.2
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