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Abstract

An influential explanation for the persistence of global productivity differences is that frontier
technologies are adapted to the conditions of the high-income, research-intensive countries that
develop them and significantly less productive if used elsewhere. This paper studies how the
environmental specificity of agricultural biotechnology affects its global diffusion and productiv-
ity consequences using differences in the presence of unique crop pests and pathogens (CPPs) as
a shifter of the potential appropriateness of crop-specific biotechnology developed in one coun-
try and applied in another. We find that inappropriateness predicted by CPP mismatch reduces
cross-country transfer of novel plant varieties and that the predicted inappropriateness of frontier
technology reduces crop-specific output. Our estimates imply that this ecological mismatch re-
duces global agricultural productivity by 40-50% and increases productivity disparities by 10-15%.
We use our framework to investigate why the Green Revolution had heterogeneous effects across
environments, why adoption of frontier technology remains low in Africa, and how emergence of
new R&D markets and ecological changes from global warming might affect global productivity.
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1. Introduction

Research and development (R&D), which drives technological progress, is concentrated in a small set
of high-income countries. The United States alone accounts for 25% of global R&D investment, and
the European Union for a further 20%. By contrast, Africa and and South Asia combined account for
merely 3.6%, despite encompassing 42% of the world’s population (Boroush, 2020). To what extent
do these vast disparities in research intensity underlie global disparities in productivity?

One school of thought starts from the premise that the most transformative technological knowl-
edge is internationally transmittable and broadly applicable, and concludes that technology diffusion
from the innovative frontier reduces global disparities and can even induce productivity conver-
gence in the long run.1 A second, contrasting school of thought emphasizes that much technological
advancement is attuned to specific methods or factors of production (Atkinson and Stiglitz, 1969).
Variations of this inappropriate technology hypothesis state that frontier innovators’ focus on develop-
ing technology that matches local characteristics severely inhibits that technology’s usefulness in,
and diffusion to, other contexts (Stewart, 1978; Basu and Weil, 1998; Acemoglu and Zilibotti, 2001).
In this framework, technological progress in the frontier causes productivity to persistently differ
across places and cluster in those “similar” to research leaders. The quantitative relevance and global
incidence of these predictions, however, remain largely unknown.

This paper empirically investigates the inappropriate technology hypothesis in a context in which
all of its underlying forces loom especially large: global agriculture and plant biotechnology. Agri-
culture features immense and persistent cross-country productivity differences (Caselli, 2005), and
global R&D is dominated by a small set of biotechnology firms in rich countries (Fuglie, 2016).2
Despite historical recognition that this inequity may underlie productivity differences, most notably
expressed in the Green Revolution of the mid 20th century, the contemporary research gap is not
filled by public-sector research, just 3% of which takes place in low-income countries (Beintema et al.,
2012), or philanthropically supported research, which also concentrates in wealthy countries.3

The core of our strategy for testing and quantifying the inappropriate technology hypothesis is
a new measure of potential biotechnological inappropriateness based on the global distribution and
crop-specificity of crop pests and pathogens (henceforth, CPPs). CPPs are extensively documented as
pre-eminent threats to agricultural productivity and targets for biotechnological innovation (Savary
et al., 2019). Our analysis exploits the fact that a given crop-country’s CPP environment is a pre-
determined shifter of the potential effectiveness of a foreign technology originally developed for a
different CPP environment. We then investigate each pillar of the inappropriate technology hypothe-

1Eaton and Kortum (1996) and Barro and Sala-i Martin (1997) model how free diffusion of ideas can sustain international,
in growth rates and/or levels, in Neoclassical endogenous growth models. Parente and Prescott (1994, 2002) suggest that
barriers to technology adoption explain an observed lack of income and growth convergence.

2Over 50% of private R&D occurs in North America (Fuglie, 2016), and a majority of countries in sub-Saharan Africa
lack a single private sector breeding or research program (Access to Seeds Foundation, 2019).

3Vidal (2014), in an analysis of all grants from the Gates Foundation, find that 4% of funding for non-governmental
organizations is invested in Africa, while 75% is invested in US-based organizations.
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sis by studying the relationship between this determinant of appropriateness and global innovation,
technology diffusion, and production. We use these estimates, interpreted via a model, to quantify
the impact of disparities in research intensity and ecological mismatch on the global distribution of
agricultural productivity and to study the effects of counterfactual changes to global research and
ecology. In doing so, our study provides new evidence that the environment shapes comparative
development. However, “better” or “worse” geographic conditions are not fixed; instead, they are
determined as evolving equilibrium outcomes of endogenous technology development and diffusion.

Toward these goals, we first present a model of production and endogenous innovation in the
global agricultural system. Farmers freely choose which crops to grow and what international tech-
nologies to use. Profit-maximizing innovators in each country invest research effort into improving
both context-neutral attributes of technology and context-specific adaptation to country- and crop-
specific environmental features, like the pest and pathogen composition. Local economies of scale, in
the form of knowledge spillovers, guide innovators toward developing technology adapted to local
environmental conditions and hence endogenously “inappropriate” for dissimilar environments. In
the aggregate, the global production possibilities frontier is distorted toward crop-locations with en-
vironmental conditions resembling those in the most research-productive countries. We show how
the strength of these effects hinges on the extent of knowledge spillovers and the relative importance
of context-specific versus context-neutral components of technology. We then write the model’s equi-
librium conditions describing technology diffusion and production as estimable regression equations
and show how to map reduced-form estimates of these equations to causal effects.

In order to directly measure the potential inappropriateness of context-specific technology across
locations, we exploit the differential prevalence of crop pests and pathogens (CPPs).4 CPPs are a
dominant source of production losses, estimated to reduce annual global output by 50-80% (Oerke
and Dehne, 2004). CPP resistance, and tolerance to chemicals that kill harmful CPPs, has been a
key focus of traditional plant breeding (Collinge, 2016) and is central to modern transgenic crop
development (Dong and Ronald, 2019). The combination of technology’s CPP-specificity with large
differences in CPP environments around the world can, anecdotally, limit the productivity benefit
from adopting modern technology. As one example, the Maize Stalk Borer that decimates maize in
Kenya is not present in the US, while the Western Corn Rootworm, nicknamed the “Billion-Dollar Bug”
for its impact on US production, is not present in Kenya (Nordhaus, 2017). While the Western Corn
Rootworm has been a major target for the development of resistant genetically modified varieties, the
Maize Stalk Borer has received no such attention and as a result, genetically modified maize varieties
are often ineffective in sub-Saharan Africa (Campagne et al., 2017).

To systematically study examples like the previous, we compile data on the global distribution and
host plant species of all known CPPs—including viruses, bacteria, parasitic plants (weeds), insects,
and fungi—from the Centre for Agriculture and Bioscience International’s (CABI) Crop Protection

4Of course, the CPP environment is not the only characteristic that determines the direction of innovation and appropri-
ateness of technology. In Appendix B.2 we explore the role of non-CPP differences in agro-climatic conditions.
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Compendium (CPC), the “world’s most comprehensive site for information on crop pests.” These
distribution and host plant data are based on comprehensive expert review of published literature in
plant pathology, ecological science, and agronomy (Pasiecznik et al., 2005).5 The CABI data allow us
to enumerate all shared and unique CPP threats affecting any crop and country pair in the world.

We first verify the premise of the inappropriate technology hypothesis that global research is
directed toward combating CPP threats present in rich countries. Using the CABI data in combination
with comprehensive data on global patents that mention specific CPPs, we document that research
is highly skewed toward CPPs that are present in rich, research-intensive countries. Consistent with
the model’s premise of home bias in CPP research, countries disproportionately patent technologies
referencing locally present CPPs and this force generates the aggregate technological bias toward
pathogen threats in the high-income countries where innovation takes place.

We then develop a “CPP Mismatch” measure that summarizes differences in CPP species com-
position at the level of crops and country pairs using techniques from population ecology (Jost et al.,
2011). We use CPP Mismatch as our main measure of “potential inappropriateness” of a crop-specific
technology adapted for one CPP environment and applied in another. From an empirical design
perspective, this measure incorporates variation across both country pairs, which have different local
CPPs, and across crops, which are host plants to different CPPs. Thus, we can conduct all subsequent
analysis holding fixed differences, ecological or otherwise, purely across crops or country-pairs.

Our first main goal is to document how inappropriateness shapes global technology diffusion.
We compile a unique data set on all international instances of intellectual property (IP) protection
for agricultural biotechnology from the International Union for the Protection of New Varieties of
Plants (UPOV), the non-governmental body tasked with codifying and administering IP protection
for plant varieties. We exploit the UPOV’s unique variety identifiers to track individual seed varieties
from their first introduction to all other countries where they were ever transferred. We find that CPP
mismatch substantially lowers cross-border transfer of technology conditional on all two-way fixed
effects to absorb any average differences across country pairs or crop-specific conditions at the origin
and destination. In our most conservative model, CPP dissimilarities reduce international technology
transfer by 30% for the median crop and country-pair. These effects increase drastically, between six-
and thirty-fold, when sub-setting to origins with more active biotechnology sectors. This result is
consistent with the knowledge spillovers mechanism in the model, and it reveals the especially large
technological cost of being environmentally dissimilar from frontier innovators.

Having established that CPP differences inhibit technology diffusion, our second main goal is
to investigate implications for global production and specialization. Our framework predicts that
countries should specialize in crops for which ecological conditions most resemble those in frontier
innovating nations due to the availability of more appropriate international technology. We measure
“CPP mismatch with the frontier” by either (i) imposing the United States as the single hub for global

5These data are commonly used in population ecology and crop science. See, for example, studies by Bebber et al. (2013),
Bebber et al. (2014a), Paini et al. (2016), and Savary et al. (2019).
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agricultural innovation, a fact borne out in our own technology data and consistent with others’
analysis (e.g. Fuglie, 2016), or (ii) selecting the countries that develop the highest number of varieties
for each crop in the UPOV certificate data. We show that countries produce less of specific crops
if their local crop environment is more different from the frontier’s, holding fixed country and crop
effects and using a range of strategies to control directly for innate local suitability.6 We find similar
effects across regions within countries, using state-level production and CPP distribution data from
India and Brazil, and using crop-level exports instead of physical output as the dependent variable.
The estimated effects are large relative to observed variation in output—a one-standard deviation
increase in CPP dissimilarity to the frontier reduces production of a crop by 0.51 standard deviations.

Our results so far have investigated the inappropriate technology hypothesis in a modern cross-
section of all countries and crops. We next directly investigate the relationship between the appro-
priateness of technology and realized technology adoption, using two specific case studies in which
disparities in technology adoption are the subject of intense debate. We first analyze how inappropri-
ateness shaped the consequences of the Green Revolution of the 1960s and 1970s, perhaps the most
concerted effort to shift agricultural innovative focus in history. In the Green Revolution, philan-
thropic organizations funded the development of breeding programs in tropical environments. We
find that adoption of these new varieties and expansions of production from 1960-1980 were severely
inhibited in country-crop pairs with CPP environments dissimilar to the locations of the international
agricultural research centers that led research for specific crops. This supports scholars’ arguments
that even innovation tailored to more tropical ecosystems was not one-size-fits-all (Pingali, 2012), and
directly illustrates how “advantageous” ecology changes over time as international research evolves.

Next, we study whether inappropriateness contributes to the limited use of improved agricultural
inputs by smallholder farmers in Africa. Using data from the latest geo-coded round of each World
Bank Integrated Survey of Agriculture (ISA), we find that farmer-crop pairs that have greater CPP
mismatch with frontier countries are less likely to use improved seed varieties.7 This suggests that
features of frontier technology itself—its poor adaptation to the African environment—may explain a
significant portion of farmers’ low technological uptake and, by reducing potential market size, even
further dissuade the development of advanced agricultural technology in the region.

Having documented each component of the inappropriate technology hypothesis, we return to
our model to draw out the aggregate productivity consequences. Our calibration combines our
reduced-form estimates of the effect of ecological dissimilarity on production and specialization with
external estimates of the price and supply elasticities, which allow us to account for production
reallocation and price effects in response to changes in the underlying productivity distribution. We

6These strategies include: (i) directly controlling for estimates of crop-specific potential yield in the absence of modern
technology from the FAO GAEZ agronomic model, and (ii) a machine learning approach that controls flexibly for a large
set of ecological features interacted with crop fixed effects, as well as CPP fixed effects accounting for the direct effect of
each CPP. Our findings are consistent with historical evidence suggesting that there was nothing “special” about the innate,
agro-climatic characteristics of the US and other frontier countries (Kloppenburg, 2005; Olmstead and Rhode, 2008).

7The ISA covers eight countries, including Burkina Faso, Ethiopia, Malawi, Mali, Niger, Nigeria, Tanzania, and Uganda.
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first study a counterfactual scenario of “removing inappropriateness” by eliminating the knowledge
gap between frontier and non-frontier CPP research. We estimate that inappropriateness reduces
average global agricultural productivity by 40-50% and that losses are concentrated in Asia and
Africa, underscoring the relevance of historical and current efforts to encourage biotechnological
development in these neglected agricultural ecosystems. These effects explain 10-15% of cross-
country disparities in productivity, driven by the fact that the countries that are most lacking in
appropriate biotechnology are also those that are least productive today.

We next use our model explore how changes in the geography of innovation and ecology would
affect patterns of productivity growth in three more realistic counterfactuals. In the first, we identify
the countries where research investment could have the largest potential effect on global productivity
after taking into account the global network of environmental mismatch. Our results convey poten-
tially large gains from focusing a “Second Green Revolution” in India, China, and sub-Saharan Africa.
In the second, we study a “BRIC realignment” that replaces the observed technological frontier with
Brazil, Russia, India, and China, countries that contribute a rapidly growing share of global R&D.
While far from an explicitly targeted “Second Green Revolution,” this scenario is on net favorable for
the world’s least productive countries while harmful toward parts of Europe and North America. In
the third, we study a potentially large poleward shift in the habitable range of CPPs due to climate
change (Bebber et al., 2013). This ecological disruption the mismatch between countries even while
holding the identity of the frontier fixed. Our results suggest that climate change could coordinate in-
ternational research on a more common set of threats, and therefore that the inappropriate technology
mechanism might ameliorate some of the direct productivity losses.

Related Literature. This paper builds on a largely theoretical body of work on the role of “appropri-
ate technology” in shaping productivity differences (Atkinson and Stiglitz, 1969; Stewart, 1978). Early
studies investigated the specificity of technical advances and barriers to their adoption within coun-
tries (Griliches, 1957; David, 1966; Salter, 1969). Stewart (1978) discusses how the inappropriateness
of rich-country technology for application in low-income countries could inhibit economic develop-
ment. More recent work has investigated the aggregate consequences of inappropriateness due to
differences in capital intensity or skill endowment across countries (Basu and Weil, 1998; Acemoglu
and Zilibotti, 2001; Caselli and Wilson, 2004; Caselli and Coleman II, 2006; Jerzmanowski, 2007).
Our focus is instead on ecological differences, which perhaps cause the most acute inappropriate
technology problem since the underlying differences in endowments are (essentially) immutable.

A large literature has studied the direct effects of adverse environmental conditions on economic
development (see, for instance, Kamarck, 1976; Sachs and Warner, 1997; Gallup et al., 1999). We
focus instead on how ecological mismatch affects the development and diffusion of technology.
This confluence of ecology and technology diffusion is one mechanism in the theory of Diamond
(1997), who discusses the easier diffusion of agricultural technology across “horizontal” landmasses.
Our findings extend a more recent body of work suggesting the relationship between geography and
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development is endogenous, shaped by historical events and institutions (e.g., Sokoloff and Engerman,
2000; Acemoglu et al., 2001; Engerman and Sokoloff, 2002; Nunn and Puga, 2012; Alesina et al., 2013).

By proposing and quantifying a new source of productivity differences in global agriculture, we
build on prior work investigating the sources of international disparities in agricultural production
(e.g. Caselli, 2005; Lagakos and Waugh, 2013; Gollin et al., 2014; Adamopoulos and Restuccia, 2014).
Especially related are analyses of the role of technology in shaping productivity gaps, many of which
are focused on the 20th century’s Green Revolution (e.g., Foster and Rosenzweig, 1996, 2004; Evenson
and Gollin, 2003a,b; Pingali, 2012).

At the center our hypothesis are the determinants of technology diffusion (Keller, 2004; Kerr, 2008;
Comin and Mestieri, 2014). Related work includes macro-level studies of technology diffusion in the
18th century (Comin and Hobĳn, 2004, 2010; Comin and Mestieri, 2018) and micro-level studies of
technology upgrading in modern times (Bandiera and Rasul, 2006; Conley and Udry, 2010; Hardy
and McCasland, 2021; Verhoogen, 2021, for a review).8 While most work in this area focuses on the
characteristics of producers, our study documents how the focus of innovators determines patterns of
technology adoption. Related to our hypothesis, Suri (2011) argues that differences in hybrid maize
adoption in Kenya reflect differences in returns to adoption—a feature of the technology itself—and
not adoption frictions.

Finally, there is a broad parallel between our analysis of ecological difference and its effects
on agricultural biotechnology development and studies of globally heterogeneous human disease
burdens. “Neglected Tropical Diseases” receive little attention from medical researchers in advanced
economies (Kremer, 2002; Kremer and Glennerster, 2004) and inflict heavy health damages in many
tropical and low-income countries (Hotez et al., 2007, 2009).

Outline. This paper is organized as follows. Section 2 describes a theoretical model that struc-
tures our empirical analysis and quantification. Section 3 provides background information on the
ecological specificity of biotechnology and describes our measure of inappropriateness. Section 4
reports our results on international technology transfer, Section 5 reports our results on production,
and Section 6 presents our findings on technology adoption. Section 7 quantifies the total effect of
inappropriateness and explores counterfactual scenarios. Section 8 concludes.

2. Model

We first present a model of innovation, technology diffusion, and production. Relative to existing
models of endogenous inappropriate technology (e.g., Acemoglu and Zilibotti, 2001), we particularly
emphasize two features which are central to the context of global agriculture: the possibility for
substitution across sectors and production technologies (e.g., crops and crop varieties) and the multi-
dimensional nature of environmental differences. We use the model to introduce the key economic

8Also related to this paper is work investigating the impacts of technology diffusion; for example, Giorcelli (2019) and
Giorcelli and Li (2021).
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mechanisms of the inappropriate technology hypothesis and generate estimable equations for the
effect of ecological differences on technology diffusion and production. We also return to the model
structure in Section 7 in order to study counterfactual scenarios.

2.1 Set-up

2.1.1 Production

There is a set of countries indexed by ℓ ∈ {1, . . . , 𝐿} and a set of crops indexed by 𝑘 ∈ {1, . . . , 𝐾}. In
each country, there is a continuum of farms indexed by 𝑖 ∈ [ℓ −1, ℓ ). Each farm can produce any of the
𝐾 crops with one of 𝐿 production technologies (e.g., crop varieties) indexed by its country of origin.
Potential physical output of a farm producing crop 𝑘, with technology ℓ ′, in country ℓ , on farm 𝑖 is
denoted by the random variable 𝜓𝑖(𝑘, ℓ ′):

𝜓𝑖(𝑘, ℓ ′) = 𝜔(𝑘, ℓ ) · 𝜃(𝑘, ℓ ′ → ℓ ) · 𝜀𝑖(𝑘, ℓ ′) ∀𝑖 ∈ [ℓ − 1, ℓ ) (2.1)

The first term, 𝜔(𝑘, ℓ ) ∈ R+, captures average innate productivity for crop 𝑘 in country ℓ . The
second term, 𝜃(𝑘, ℓ ′ → ℓ ) ∈ R+, captures the productivity of technology from ℓ ′ used in ℓ . The third
term 𝜀𝑖(𝑘, ℓ ′ → ℓ ), is an idiosyncratic perturbation with a Fréchet distribution with mean one and
shape parameter 𝜂 > 0.9 The random component captures un-modeled plot-level heterogeneity and
disciplines the elasticity of average farmer choices to changes in innate or technological productivity.10

Farmers face an international price 𝑝(𝑘) for each crop 𝑘 and pay input costs equal to a fraction
𝜌 < 1 of revenue.11 Each farmer in country ℓ observes prices and potential productivities, and chooses
a crop-technology combination to maximize revenue. This discrete choice structure for production
and specialization is similar to that used by Eaton and Kortum (2002), Costinot et al. (2016), and Sotelo
(2020), and it will enable tractable analysis.

2.1.2 Ecological Characteristics and Ecologically-Specific Technology

We now introduce our notion of environmental differences and the adaptation of technology to
these differences. Each location-by-crop pair is associated with a set 𝒯 (𝑘, ℓ ) of local ecological
characteristics, which are normalized to have measure one.12 These characteristics, importantly, may
partially but not completely overlap between countries for a fixed crop. Consistent with our empirical
analysis, we will think of 𝒯 (𝑘, ℓ ) describing all locally present crop pests and pathogens (CPPs).

9The normalization to mean one implies that the scale parameter is (Γ(1 − 1
𝜂 ))−1 > 0. This normalization is convenient

for subsequent expressions; otherwise the scale factor would scale aggregate productivity.
10The specific Fréchet distributional assumption has two roles. First, it allows for simple analytical expressions for farm

choices. Second, it determines the relationship between average and marginal products of land conditional on a specific
use. Proposition 2 and the subsequent discussion highlight this latter property.

11We focus in this section on a world economy with fixed prices. It is straightforward to extend all analysis to a case
in which prices are determined along a world demand curve for each crop. We use such an extended model to study
counterfactual scenarios in Section 7.

12Note that any direct productivity effects of these characteristics can be modeled in innate productivity, 𝜔(𝑘, ℓ ).
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A given technology, which is designed in country ℓ ′ for use in ℓ on crop 𝑘, is described by
a context-neutral characteristic, 𝐴(𝑘, ℓ ′) ∈ R+, and a collection of context-specific characteristics,
(𝐵(𝑡 , 𝑘, ℓ ′ → ℓ ))𝑡∈𝒯 (𝑘,ℓ ) ∈ R|𝒯 (𝑘,ℓ )|

+ . These characteristics combine to determine the overall productivity
of the technology in the following Cobb-Douglas way:

𝜃(𝑘, ℓ ′ → ℓ ) = exp
(
𝛼 log𝐴(𝑘, ℓ ′) + (1 − 𝛼)

∫
𝒯 (𝑘,ℓ )

log 𝐵(𝑡 , 𝑘, ℓ ′ → ℓ )d𝑡
)

(2.2)

where 𝛼 ∈ (0, 1) parameterizes the relative importance of the context-neutral characteristic. High
𝐴, by definition, boosts the productivity of technology in all locations ℓ . Each characteristic 𝐵(𝑡), by
contrast, affects productivity only if the characteristic (i.e. pest or pathogen) 𝑡 is present. Finally, the
two components are complementary to one another: high general productivity increases the marginal
value of resistance, and vice-versa.13

2.1.3 Endogenous Innovation

We finally specify how technology is produced. In each country ℓ ′, there is a continuum of symmetric
innovators indexed by 𝑗 ∈ [ℓ ′− 1, ℓ ′), who develop technology for each of the crops 𝑘 and destinations
ℓ . Each innovator produces a potentially different product, with 𝑗-specific general and ecological
characteristics, that farmers cannot distinguish from one another ex ante. This structure of competition
is not crucial for our main conclusions but will allow for a simpler characterization of each innovator’s
maximization problem without sacrificing the key market forces of interest.14 We will focus on
equilibria in which all innovators make symmetric choices.

Innovators choose the characteristics of technology maximize profits, which equal a fraction
𝜌(ℓ , ℓ ′) ≤ 𝜌 of their customers’ revenue (e.g., net of trade and licensing costs), net of convex, additively
separable research costs. We denote the costs of developing CPP-resistance technology as 𝐶(𝑧; 𝑡 , 𝑘, ℓ ′),
for research level 𝑧, CPP 𝑡, crop 𝑘, and innovating country ℓ ′.15 For tractability, we assume these costs
have a power form, parameterized by 𝜙 > 0, with a knowledge spillover from the (geometric) mean
local research on the pest, 𝐵(𝑡 , 𝑘, ℓ ′ → ℓ ′) := exp

(∫ ℓ ′

ℓ ′−1 log 𝐵 𝑗(𝑡 , 𝑘, ℓ ′)d𝑗
)
. We write the costs as:16

𝐶(𝑧; 𝑡 , 𝑘, ℓ ′) = exp(−𝜏(𝐵(𝑡 , 𝑘, ℓ ′ → ℓ ′))) · (𝐵0𝑧)1+𝜙
1 + 𝜙

(2.3)

13One example of this “two-component” structure to agricultural research comes from the case study of wheat devel-
opment at the International Maize and Wheat Improvement Center (CIMMYT) in the 1960s. Reynolds and Borlaug (2006)
emphasize that the key challenge was to both improve yields by incorporating a specific semi-dwarfism trait (“𝐴”) and to
increase resilience to damaging fungal wheat rusts (“𝐵”), whose threat only increased as plants become more productive.

14The missing forces, relative to a model in which the innovative varieties are distinguishable imperfect substitutes, are
innovators’ internalizing the effects of their technology improvement on a given country’s aggregate production mix and
productivity. We argue that the present model, in which innovators act as if they have “small” impacts, is a more realistic
description of incentives.

15The costs of general technology need not be specified to derive our main results.
16We will further require the technical condition 𝜙 > 𝜂−1 to ensure that the fixed-point equation determining technology

quality has well-behaved, monotone comparative statics for any value of 𝛼.
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where 𝐵0 > 0 is a constant and the function 𝜏 : R+ → R+, which we assume to be non-decreasing and
to satisfy 𝜏(0) = 0, controls the knowledge spillover in units of “percentage cost reduction.”

The knowledge spillover creates a local economy of scale. Abstractly, this could embody local
sharing of ideas and scientific knowledge. More literally, it may embody the role of physical inputs
with a public-good property like local test fields and local germplasm (genetic material). We will
discuss examples of this phenomenon at length in Section 3.1.

Finally, note that only the knowledge spillover and the heterogeneity in the appropriation fraction
𝜌(ℓ , ℓ ′) create “primitive” incentives to focus innovation on certain environmental characteristics or in
certain locations. Otherwise, an agricultural innovator is free to direct its research toward whatever
application (e.g., producing market, crop, and pest threat) is most economically profitable.

2.2 Main Predictions

In Appendix A, we include detailed derivations of the model’s equilibrium conditions. Here, we
highlight the main predictions which motivate our empirical analysis.

2.2.1 Technology Diffusion

Let 𝛿(𝑘, ℓ ′, ℓ ) be the measure of 𝑘-CPPs that are not shared between locations ℓ and ℓ ′. Our first
result describes how technology depends negatively on the ecological mismatch between locations,
as summarized by 𝛿(𝑘, ℓ ′, ℓ ):

Proposition 1. Technology diffusion from country ℓ ′ to ℓ for crop 𝑘 can be expressed as

log𝜃(𝑘, ℓ ′ → ℓ ) = 𝛽(𝑘, ℓ ′) · 𝛿(𝑘, ℓ ′, ℓ ) + 𝜒(𝑘, ℓ ) + 𝜒(𝑘, ℓ ′) + 𝜒(ℓ , ℓ ′) (2.4)

where the 𝜒(·) are additive effects varying at the indicated level and

𝛽(𝑘, ℓ ′) = −(1 − 𝛼)𝜏(𝐵(𝑘, ℓ ′))
1 + 𝜙 − (1 − 𝛼)𝜂 ≤ 0 (2.5)

where 𝐵(𝑘, ℓ ′) is the extent of (𝑘, ℓ ′) CPP research on CPPs present in ℓ ′.

The proof in Appendix A.2 contains exactly expressions for each of the “fixed effects” as functions
of economic primitives. In brief, 𝜒(𝑘, ℓ ) (“crop-by-destination”) depends on the destination’s market
size and productivity; 𝜒(𝑘, ℓ ′) (“crop-by-origin”) depends on the scale of research in the innovating
country; and 𝜒(ℓ , ℓ ′) (“origin-destination”) depends on the bilateral appropriability 𝜌(ℓ , ℓ ′).

Ecological differences depress technology transfer, or 𝛽(𝑘, ℓ ′) < 0, only if both of the following two
conditions hold: there is some context-specificity of technology (𝛼 < 1) and some knowledge spillover
(𝜏 > 0). Absent context-specific technology, innovation is biased toward the crops over-represented
in large markets, but not the large-market ecological conditions for growing those crops. Absent the
knowledge spillover, innovation would concentrate on large-market ecological conditions, but this
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would have no external effects on the rest of the world.17 With both ingredients (𝛼 < 1 and 𝜏 > 0),
by contrast, innovators in country ℓ ′ have a “knowledge gap” about local ecological characteristics
relative to others and therefore produce more technology for ecologically similar destinations. A
lower elasticity of supply (𝜙) and higher elasticity of demand (𝜂) amplify this effect.

If local knowledge spillovers scale with local research, or 𝜏(𝐵) is strictly increasing, then |𝛽(𝑘, ℓ ′)|
increases in the sending country’s CPP research intensity 𝐵(𝑘, ℓ ′). Under this case of the model,
geographic differences relative to the most active innovating countries are most costly for technology
transfer and productivity. If instead knowledge spillovers were purely on the extensive margin, or
𝜏(𝐵) ≡ 𝜏 for all 𝐵 > 0, we would observe an equal marginal effect of environmental differences on
technology transfer from “high-tech” and “low-tech” sending countries.

In our empirical analysis, we will estimate Equation 2.4 treating counts of uniquely identified
seed varieties transferred across borders as a proxy for 𝜃(𝑘, ℓ ′ → ℓ ) and using our measurement
of CPP mismatch as a proxy for 𝛿(𝑘, ℓ ′, ℓ ).18 We will also directly investigate whether the effect of
environmental differences on technology transfer is exaggerated when the origin country is on the
“research frontier,” measured via various empirical proxies.

2.2.2 Specialization and Productivity

We next translate the consequences of inappropriate technology for production. A key issue that our
model handles precisely is selection along unobserved dimensions of land quality. While secularly
boosting the productivity of a given crop (e.g., by improving available foreign technology) moves
out the production possibilities frontier in any location, it also encourages more production of that
crop on relatively less-suitable land. Due to this selection effect, in a model with unobserved plot-
level heterogeneity, the appropriateness of technology has ambiguous effects on measured average
productivity. We will exploit our parametric assumption of Fréchet-distributed plot-level shocks to
derive exact and economically interpretable predictions for observed production, planted areas, and
yields, which will allow us to infer the productivity consequences of inappropriate technology.

Toward this end, we first define the crop technology index Θ(𝑘, ℓ ) and revenue productivity index Ξ(ℓ )
as a function of local technology and productivity shifters:

Θ(𝑘, ℓ ) =
(
𝐿∑

ℓ ′=1
𝜃(𝑘, ℓ ′ → ℓ )𝜂

) 1
𝜂

Ξ(ℓ ) =
(
𝐿∑

ℓ ′=1
Θ(𝑘, ℓ )𝜂𝜔(𝑘, ℓ )𝜂𝑝(𝑘)𝜂

) 1
𝜂

(2.6)

The following result summarizes the model predictions:

17In Acemoglu and Zilibotti (2001), there are no knowledge spillovers but instead “copycat producers” who replicate
technologies in other countries and compete away all potential profits to the original innovator. This creates a similar
uninternalized effect of home-country research on foreign production while implying, sharply, that the original inventor
produces nothing in other countries and responds not at all to market-size incentives in those countries. These latter predic-
tions are counterfactual in the context of plant biotechnology, which as we will document features extensive international
research and technology transfer.

18We describe the measurement of each of these variables in Sections 4.1 and 3.4, respectively.
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Proposition 2. Production of crop 𝑘 in country ℓ , 𝑌(𝑘, ℓ ) > 0, is given by

log𝑌(𝑘, ℓ ) = 𝜂 logΘ(𝑘, ℓ ) + 𝜂 log 𝜔(𝑘, ℓ ) + (𝜂 − 1) log 𝑝(𝑘) + (1 − 𝜂) logΞ(ℓ ) (2.7)

Production is monotone increasing in the index of technology from each source country, and hence
positive shifters of this index. In Equation 2.7, crop and country fixed effects respectively absorb
(international) prices and average local revenue productivity. In the proof of this result in Appendix
A.3, we derive also the model’s predictions for physical yield and planted area. Because of the
Fréchet model’s implication that selection effects directly net out direct productivity effects, log crop-
specific yields are predicted to have no relationship with measured technological inappropriateness
conditional on country fixed effects.

In our empirical analysis of Section 5, we will estimate Equation 2.7 using CPP mismatch with
an empirically identified technological frontier to span logΘ(𝑘, ℓ ), crop and country fixed effects
to span prices and aggregate revenue productivity, and a variety of empirical strategies to span
innate productivity 𝜔(𝑘, ℓ ). This will allow us to directly measure the effect of inappropriateness on
production choice and specialization. We will also directly test the model’s predictions for area and
yields to assess the validity of the specific Fréchet model for unobserved heterogeneity.

In Section 7, we will use the estimates from this analysis plus the model structure to estimate causal
effects on revenue productivity. In short, this process amounts to a “two-step strategy” of inferring
the productivity effect of inappropriateness by first estimating the effect of potential inapropriateness
on production and specialization and second using the model structure to translate these effects into
country-level revenue productivity, Ξ(ℓ ).

3. Background and Measurement: Agricultural Pests and Pathogens

To set-up our empirical analysis, we next provide background information about pest targeting in
biotechnology. We then provide a detailed description of our main data source and measure of
inappropriateness based on the dissimilarity of pest and pathogen environments for growing specific
crops across different locations.

3.1 Pathogen Threats and Plant Breeding

Crop pests and pathogens (CPPs), which include viruses, bacteria, fungi, insects, and parasitic plants,
are a dominant threat to agricultural productivity. Experts estimate that between 50-80% of global
output is lost each year to CPP damage (Oerke and Dehne, 2004), which represents “possibly the
greatest threat to productivity” across all environments (Reynolds and Borlaug, 2006, p. 3). In
Brazil, a major agricultural producer, it is estimated that 38% of annual production is lost due only
to insects (Gallo et al., 1988), amounting to $2.2 billion in lost output per year (Bento, 1999). Prior to
the development of transgenic corn, the Western Corn Rootworm alone caused $1 billion in annual
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losses in the US and substantially more around the world (Gray et al., 2009). A critical focus of crop
breeding, as a result, is developing resistance to damaging CPPs.

The most fundamental technique for breeding favorable plant traits, including those that confer
CPP resistance, is mass selection: saving the seeds of the “best” plants from a given crop cycle, re-
planting them the next year, and repeating the process (McMullen, 1987, p. 41). This process naturally
selects crop lineages with sufficient resistance to the local CPP environment. But it creates no selective
pressure for resistance to non-present CPP threats, and such resistance is extremely unlikely to arise
by chance mutation.

Historians have written extensively about how the environmental-specificity of traditional breed-
ing severely limited the diffusion of agricultural technology in the 20th century. Moseman (1970, p.
71) argues that US programs during the 1960s to increase agricultural productivity in other countries
via technological diffusion largely failed because of the “unsuitability of U.S. temperate zone materials
[...] to tropical agricultural conditions.” In a review of agricultural technology diffusion, Ruttan and
Hayami (1973, p. 122) state that “ecological variations [...] among countries inhibit the direct transfer
of agricultural technology.” Reynolds and Borlaug’s (2006) detailed account of one uncommonly
successful program of international crop diffusion, the CIMMYT wheat program, makes clear the
time and resources required to overcome these obstacles with coordinated international breeding.19

More recently, genetic modification (GM) has been added to the crop development toolkit. The
vast majority of modern GM technology has directly related to conferring resistance to specific pests
and pathogens (Vanderplank, 2012; Van Esse et al., 2020). In principle, direct access to a plant’s genetic
code side-steps the slow process of natural selection in the field and consequent obstacles to breeding
for non-local environments. But, in practice, GM technology has been used almost exclusively for
solving the pathogen threats facing high-income countries, due to these countries’ higher demand
(Herrera-Estrella and Alvarez-Morales, 2001).

An illustrative case study of how modern plant varieties are “locally” targeted comes from Bt
varieties, a large and celebrated class of genetically modified plants. Bt varieties are engineered to
express crystalline proteins, cry-toxins, that are naturally produced Bacillus thuringiensis bacteria (“Bt”)
and destructive toward specific insect species. Cry toxins are insecticidal because they bind receptors
on the epithelial lining of the intestine and prevent ion channel regulation. Due to the specificity of
intestinal binding activity, cry toxins are highly insect-specific. This feature, while crucial for limiting
the Bt varieties’ broader ecological impact, makes their development highly targeted to specific pest
threats. The main targets for early Bt corn varieties were the European maize borer and maize
rootworm (Munkvold and Hellmich, 1999), major threats in the US and Western Europe.20 In other

19The authors describe, as one example, how cooperation between CIMMYT laboratories and the Brazilian Institute of
Agricultural Research (EMPRAPA) enabled the production of semi-dwarf wheat varieties adapted to Brazil’s acidic soil
and distinct CPP environment. This process involved more than a decade of intense coordination and the development of
a novel “shuttle breeding” program to breed alternate generations of plants in different locations.

20𝛿-endotoxins produced by Bt were originally identified as candidate toxins specifically because of their effectiveness
against these particular pests (Bessin, 2019). Monsanto’s Bt corn varieties, MON863 and MON810 were developed with
𝛿-endotoxins selected for their effectiveness against maize rootworm, uncommon among Cry proteins (Galitsky et al., 2001).
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parts of the world with different CPP threats, however, frontier Bt maize is neither commonly used
nor effective. For example, in South Africa there is widespread resistance to Bt maize and production
damaged caused by the maize stalk borer, which does not exist in the US but is widespread in
sub-Saharan Africa (Campagne et al., 2017). Disparities in the international appropriateness of GM
technologies therefore emerge as a result of focus on “rich-world pests.”21

3.2 Plant Pest and Pathogen Data: The Crop Protection Compendium (CPC)

While the aforementioned examples highlight specific and extreme instances of pest-specificity, it is
unclear whether they are representative of general biases agricultural technology. Our analysis, unlike
existing field tests of specific varieties, has the advantage of being able to estimate the average effect
of CPP mismatch across all crops and countries and connect it with an economic model to determine
its aggregate consequences. We now introduce the key data that allow us to directly measure CPP
dissimilarities across all global crop-specific ecosystems.

We source information on the global distribution of crop pests and pathogens from the Centre
for Agriculture and Bioscience International’s (CABI) Crop Protection Compendium (CPC). This
database is the “world’s most comprehensive site for information on crop pests,” and provides
detailed information on the geographic distribution and host species set for essentially all relevant
plant pests and pathogens. Construction of the database began in the 1990s as a joint collaboration
between CABI,the UN Food and Agriculture Organization, and the Technical Centre for Agricultural
and Rural Cooperation (CTA). The goal of the project is to develop comprehensive and global coverage
of crop diseases in order to better manage food production. The CPC was compiled through extensive
searches of existing crop research, including the 460,000 research abstracts in the CABI database, as
well as contributions from a range of governmental and international organizations, including the
World Bank, the FAO, the United States Department of Agriculture (USDA), and the Consultative
Group on International Agricultural Research (CGIAR) (Pasiecznik et al., 2005).22

In total, we compile information on 4,951 plant pests and pathogens, including viruses, bacteria,
insects, fungi, and weeds. For each species, the CABI-CPC provides several key pieces of information.
First, it provides information on the global geographic distribution. Figure 1 displays the distribu-
tion map for six pests, including the Maize Stalk Borer and Western Corn Rootworm, which were
referenced in previous examples. For most countries, CABI reports whether the pest is present or
not present in the country as a whole. For a handful of large countries—including Brazil and India,

21This pattern in GM development is not restricted to corn. The first varieties of Bt Cotton introduced in the early 1990s
were focused on limiting the damage caused jointly by the tobacco budworm, cotton bollworm, and pink bollworm. In
India, outbreaks of the pink bollworm in particular pose a major threat to cotton production (Fand et al., 2019). But frontier
biotechnology has not adapted to patterns of Bt-resistance in India due to the lower relevance of the pink bollworm threat in
the United States. Tabashnik and Carrière (2019) provide a review of pink bollworm resistance in global cotton populations.

22See here: https://www.cabi.org/publishing-products/crop-protection-compendium/. These data are the gold-
standard for CPP measurement in population ecology and crop science; see, for example, studies by Bebber et al. (2013),
Bebber et al. (2014a), Paini et al. (2016), and Savary et al. (2019).
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Figure 1: Data on Example CPPs

Notes: Each map indicates CPP presence according to the CABI Crop Pest Compendium (CPC).

which we return to later—CABI reports state-level data on the presence of each CPP.23
Second, CABI reports all the host species that each pest or pathogen affects. For example, CABI

reports that the African Maize Stalk Borer harms maize, sorghum, rice, and sugarcane, while the West-
ern Corn Rootworm consumes maize, millet, pumpkins, sunflower, and soybeans, but not sorghum
or sugarcane (Figure 1, top panel).24 Our data contain information on 132 host species that are
major crops, cross-referenced against the crops used in our subsequent analyses of biotechnology
intellectual property and production.

3.3 CPPs and the Direction of Global Innovation

With the CABI CPC data, it is possible to investigate empirically several features of global agricultural
innovation discussed in Section 3.1 and built into our model. We identify all global biological or

23CABI also reports whether or not the pest or pathogen has been eradicated in a country, as well as whether each pest or
pathogen is invasive or has high invasive potential. We use this information in our sensitivity analysis. The determinants
of the cross-sectional global distribution of each pest and pathogen are not well understood by ecologists, and depend
on “numerous [and] sometimes idiosyncratic” factors (Bebber et al., 2014b). Waage and Mumford (2008) and Shaw and
Osborne (2011) come to a similar conclusion; while features of the environment, most prominently temperature and host
prevalence, affect CPP presence, they often have limited predictive power and CPPs are often absent in ecologically habitable
areas for reasons unrelated to human activity. Importantly also, Bebber et al. (2014b) find that CPP distributions measured
from the CABI CPC appear unrelated to patterns of trade, travel, or tourism, suggesting that human activity plays a limited
role in shaping the cross-sectional distribution of CPPs on average.

24We restrict attention to the host-pest relationships that are verified in the CABI database as opposed to those labeled
as “data-mined” from articles and abstracts but not verified. This procedure retains 88% of all possible host-pest matches.
Finally, note that the associations are global and not location-specific.
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Figure 2: Global Patenting on CPPs
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Notes: Graph (a) reports the average number of patented technologies developed in countries ℓ related to CPP
threats 𝑡 if the CPP is present not present. Graph (b) reports the average number of patented technologies
developed about CPPs that are not present in the US and CPPs that are present in the US. Graph (c) reports the
number of patented technologies developed about CPPs that are present only in (i.e., endemic to) the countries
specified on the 𝑥-axis.

chemical agricultural patents in the PatSnap database by searching for the scientific name of each CPP
in all patent titles, abstracts, and descriptions.25 We also identify the country of origin of each patent
using PatSnap’s determination of the assignee’s location. We document three facts about patenting at
the country-by-CPP level, all consistent with the premise of the inappropriate technology hypothesis.

First, a large share of global innovation is focused on crop pests and pathogens (CPPs); 33% of all
global biological and chemical agricultural patents are related at least one CPP in our sample.

Second, innovators focus substantially more on locally present CPPs. This pattern is apparent in
the raw patent data: on average, over 17 times more patented technologies are developed for locally
present CPPs compared to CPPs that are not present in the country of interest (panel (a) of Figure 2).
We investigate this pattern more precisely by estimating the following regression:

𝑦ℓ ,𝑡 = 𝜉 · Local CPP(ℓ , 𝑡) + 𝜒ℓ + 𝜒𝑡 + 𝜀ℓ ,𝑡 (3.1)

where the unit of observation is a CPP-year and Local CPP(ℓ , 𝑡) is an indicator that equals one if CPP
𝑡 is present in country ℓ . 𝑦ℓ ,𝑡 is the number of patented technologies developed in country ℓ related
to CPP threat 𝑡, transformed by the inverse hyperbolic sine, and 𝜒ℓ and 𝜒𝑡 absorb country and CPP
fixed effects. 𝜉 captures the extent to which innovation is disproportionately targeted toward local
CPP threats. Table A1 reports our estimates. We estimate that 𝜉 > 0 in Equation 3.1, and it remains

25The full set of biological or chemical agricultural patents are all those that comprise Cooperative Patent Classes (CPC)
A01H and A01N. Individual patents can link to multiple CPPs if the patent references multiple species.
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large and significant focusing on either the intensive or extensive margin separately (columns 2-3).
Third, substantially more technology is developed to combat CPPs that exist in high-income

countries like the US. Panel (b) of Figure 2 demonstrates that CPPs present in the US have a more
than five-fold higher quantity of patents on average than those not present in the US. Table A2 reports
estimates from an augmented version of (3.1) in which Local CPP(ℓ , 𝑡) is interacted either with an
indicator that equals one if ℓ is the US (columns 1-3) or (log of) per-capita GDP of ℓ (columns 4-6).
The impact of a locally present CPP on innovation is substantially larger in high-income countries,
consistent with greater overall R&D intensity. Finally, panel (c) of Figure 2 shows one particularly
striking cut of the data: the number of patents about CPPs that are present only in, or endemic to,
the US dwarfs the number for CPPs present only in two of the world’s largest, but significantly less
research intensive, agricultural economies, Brazil and India.

This analysis, taken together, documents that (i) a large share of global agricultural innovation is
focused on CPPs and (ii) much of this research is highly localized. The end result is a far greater focus
on CPP threats present in high-income, research-intensive countries. These findings are consistent
with the set-up of our model of endogenous technology.

3.4 Measuring Inappropriateness: CPP Mismatch

The remainder of our empirical analysis starts from the premise of unequal research intensity and
studies how ecological differences affect technology diffusion and production. In the model, the
scalar summary of ecological difference was the measure of non-common ecological features or CPP
threats, 𝛿(𝑘, ℓ , ℓ ′). In the data, using our lists of locally present CPPs affecting crop 𝑘 in each location ℓ
or ℓ ′, we compute the following measure of “CPP Mismatch” at the location-pair-by-crop level which
is the same up to a necessary normalization:

CPP Mismatch𝑘,ℓ ,ℓ ′ = 1 − Number of Common CPPs𝑘,ℓ ,ℓ ′(
Number of CPPs𝑘,ℓ × Number of CPPs𝑘,ℓ ′

)1/2
(3.2)

The measure, which has the form of one minus a correlation or cosine similarity, equals zero when
ℓ and ℓ ′ have all the same CPPs for crop 𝑘 and equals one when ℓ and ℓ ′ have no CPPs in common
for crop 𝑘. In the language of ecology, as discussed in a review chapter on biological similarity by
Jost et al. (2011), our CPP mismatch formulation in (3.2) is one of several standard divergence (one-
minus-similarity) measures that satisfy basic properties of density invariance, replication invariance, and
monotonicity. Heuristically, this means that the divergence or similarity measures provide consistent
results regardless of the total number of species or population of any individual species in ℓ or ℓ ′.26

26We will also, as a robustness check throughout our analysis, supplement our main measure with the simplest and most
historical measure of divergence due to Jaccard (1900, 1901) which counts the fraction of non-shared species:

CPP Mismatch𝐽
𝑘,ℓ ,ℓ ′ = 1 −

Number of Common CPPs𝑘,ℓ ,ℓ ′
Number of Unique CPPs𝑘,ℓ∪ℓ ′

(3.3)
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CPP Mismatch varies at both the country-pair level, fixing crops, and the crop level, fixing country
pairs. The country-level variation is illustrated by Figure 1: different countries are endowed with
different CPPs. The crop-level variation is due to the fact that each CPP only affects a particular set
of crops: for each example in Figure 1, the set of affected crops varies substantially. Depending on
the identities of each country’s locally present CPPs, a single pair of countries will have different
CPP distances across crops. To give one example of this variation, Appendix Figure A1 shows the
histogram of all countries’ CPP mismatch with the US for wheat and sugarcane and identifies the
observations for Brazil and India. For wheat, India is very slightly more similar to the US than Brazil
is. For sugarcane, Brazil is substantially more similar to the US than India is. Having these two
sources of variation allows us to fully control for any differences across countries or crops in our
empirical analysis.

Our baseline measure of CPP mismatch uses all CPPs in the CABI database in order to capture
the full extent of CPP differences around the world today. To investigate the potential role of invasive
species, which are an important mechanism but also potentially endogenous to human behavior, we
use the CABI Invasive Species Compendium (ISC) to identify all invasive and high-invasive-potential
CPPs and drop them from the calculation of CPP Mismatch. The ISC data and corresponding analysis
are discussed in more detail in Appendix Section B.1.

We also investigate the importance of non-CPP differences in ecology and geography—including
temperature, precipitation, and soil characteristics—as additional shifters of appropriateness. Ap-
pendix Section B.2 discusses our measurement of alternative sources of crop-by-country-pair geo-
graphic mismatch, as well as all empirical results using these alternative measures alongside our
baseline CPP mismatch measure. In summary, we find that differences in other agro-climatic features
also inhibit technology transfer and distort specialization; that these effects are independent from the
effects of CPP mismatch; and that the effects of CPP mismatch are larger. These results, along with
the anecdotal evidence about plant breeding and technology diffusion from earlier in this section,
motivate our focus on CPP differences in the primary analysis.

4. Main Results: Technology Diffusion

In this section, we investigate the relationship between inappropriateness and technology diffusion.
Our empirical strategy uses variation in inappropriateness and technology transfer at the country-
pair-by-crop level, combining our CPP Mismatch measure introduced in the previous section with a
new database of the invention and international transfer of plant varieties.

This metric has the same range (0 to 1) and interpretation of extreme values as our baseline, but different properties for
intermediate levels of similarity.
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4.1 Data: The UPOV Plant Variety Database

We measure the development and international transfer of biotechnology inventions using a novel
dataset of all global instances of intellectual property protection for crop varieties. We obtained
these data from The International Union for the Protection of New Varieties of Plants (UPOV), the
inter-governmental organization tasked with designing, promoting, and administering systems of in-
tellectual property protection for plant varieties around the world.27 The data provide comprehensive
coverage of all plant variety certificates, an internationally standardized form of intellectual property,
across the member countries identified in the map in Figure A2.28

In order to obtain protection under UPOV, a variety must be new, distinct, uniform (i.e. identical
across plants within a generation), and stable (i.e. identical across generations); this means that each
variety in the database represents a unique technology that is usable in production.29 Moreover,
this set of variety characteristics is relatively straightforward to document, meaning that barriers to
obtaining protection—both in terms of legal fees and the burden associated with documenting the
inventive step—are limited. The ease of obtaining protection helps ensure that the UPOV database
captures a large share of varieties in circulation.30 Finally, a breeder must protect a variety separately
in each country where they want legal enforcement, meaning that observing that a variety is protected
in a particular country is a strong indication that the variety was transferred to that country, and the
absence of protection is a strong indication that the variety was not transferred to that country.31

For each certificate, we observe (i) the date of issuance; (ii) the country of issuance; (iii) the
plant species; and (iv) a unique “denomination” identifier associated with the variety. The UPOV
Convention of 1991 stipulates that the denomination of a specific plant variety must be consistent
across member countries.32 That is, wherever in the world a denomination code is observed in the
database, it corresponds to a single, unique plant variety. This allows us to track the diffusion of
individual varieties, which we also refer to interchangeably as “technologies,” across countries. The
certificate data, when cross-linked to a list of major agricultural crops and screened for duplicate
entries, consists of 458,034 total variety registrations, spanning 62 countries, 109 crops, and 236,529
unique denominations.

Figure 3 displays a snapshot of the raw UPOV data. These five rows are from the section of the
database on cotton varieties registered between 1999 and 2003. This example consists of three unique
denominations (Sicot 41, Sicot 53, and Sicot 71) registered across three countries (Australia, Argentina,

27Our project required a formal application process and approval from the UPOV Council.
28This set notably excludes several large agricultural producers in South Asia, North Africa, and Sub-Saharan Africa, on

account of these countries’ imperfect recognition of plant variety intellectual property. We return to this topic at various
points in the analysis, including with an alternate measure of variety presence in Sub-Saharan Africa (see Section B.4).

29For more detail, see the description here: https://www.upov.int/overview/en/conditions.html.
30This helps ameliorate concerns associated with measuring technology using patent data, which is often skewed toward

large, private sector firms due to the high financial barriers to obtaining protection.
31For additional detail, see here: https://www.upov.int/about/en/faq.html#QG90.
32This stipulation is described in Article 20.5 (“Same denomination in all Contracting Parties”) of the most recent (1991)

revision of the UPOV Convention (Union for the Protection of New Varieties of Plants, 1991). Further clarification is
provided in the “Explanatory Notes” on variety denominations (Union for the Protection of New Varieties of Plants, 2015).
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Figure 3: Example Rows from UPOV Data Set

UPOV	Code Country Denomination Botanical	Name Common	Name App.	Date
GOSSY_HIR AU Sicot	53 Gossypium	hirsutum Cotton 14-Sep-99
GOSSY_HIR AU Sicot	41 Gossypium	hirsutum Cotton 14-Sep-99
GOSSY_HIR AR Sicot	41 Gossypium	hirsutum	L.	 Algodonero 13-Aug-01
GOSSY_HIR AU Sicot	71 Gossypium	hirsutum Cotton 07-Aug-02
GOSSY_HIR BR Sicot	53 Gossypium	hirsutum	L.	 Algodao 11-Nov-03

Notes: This figure reports example rows from the UPOV PLUTO database. The rows reported are those
related to unique varieties Sicot 53, Sicot 41, and Sicot 71, developed by Australia’s Commonwealth Scientific
and Industrial Research Organization. The UPOV Denomination Code uniquely identifies specific varieties
wherever they appear in the world.

and Brazil). The data reveal that Sicot 53 cotton was first registered in Australia in 1999 and later in
Brazil in 2003. Sicot 41 cotton was also introduced in Australia in 1999 and transferred to Argentina
in 2001. Finally, Sicot 71 cotton was introduced in Australia in 2002, but was never introduced in any
other country.33

We generalize the above example into a method for tracking the diffusion of specifically identified
pieces of technology, like Sicot 41 cotton, between locations. For every unique denomination in the
data, we identify a country of first appearance. We use the country of first appearance as the origin
country since this is most likely to be the market for which the variety was first developed.34 We then
count, in any given time period, the number of varieties identified for a crop 𝑘, newly registered in
country ℓ , and originating from country ℓ ′. This will be our primary measure of technology diffusion
between country pairs at the crop level. For our main analysis, we focus on a static cross section and
sum over all final registration events after 2000.35

Echoing the previous discussion about the concentration of innovation in richer countries, 67%
of all recorded varieties are first reported in one of the United States, Canada, or a European Union
member state.36 Among all varieties, 34% are transferred at least once between countries. This
number increases to 49% when sub-setting to varieties first reported in the aforementioned set of
countries, offering a first indication that varieties from “leader countries” are more often spread
worldwide. Figure A3 presents summary statistics on the likelihood of variety transfer in our sample
and visualizes the network structure of variety transfers across countries. Appendix B.3 also presents a

33Sicot cotton is a product of Australia’s Commonwealth Scientific and Industrial Research Organization, an Australian
governmental agency, which incorporates genetic modification to achieve “desired fibre quality, disease resistance and
yield.” See here: https://csiropedia.csiro.au/cotton-breeding-and-new-cotton-varieties/.

34This avoids potential issues associated with using the country of the innovating firm or firm headquarters. For
example, while Monsanto was headquartered in the US during our sample period, is invested substantially in developing
soybean technology tailored to the Brazilian market. Our strategy would correctly identify the intended beneficiary of this
technology as Brazil, rather than the US.

35Note that we do not truncate the data to post-2000 when identifying country of origin, so a variety like Sicot 41 in the
example (first registered in 1999 in Australia) is still in our final data set as a variety transferred to Argentina in 2001.

36These constitute 26 of the 62 countries in our sample.
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more detailed analysis of the global direction of innovation in the UPOV variety database, mirroring
our analysis of CPP-level patents in Section 3.3. There is a strong concentration of innovation in
crops cultivated in high-income and in crops cultivated in countries that enforce intellectual property
protection for plant biotechnology, and that this effect is driven by substantial home bias toward
locally abundant crops.

4.2 Empirical Model

Our main estimating equation is the following linear regression, which is the empirical analog of
Equation 2.4 in Proposition 1:

𝑦𝑘,ℓ ′,ℓ = 𝛽 · CPP Mismatch𝑘,ℓ ′,ℓ + 𝜒ℓ ,ℓ ′ + 𝜒𝑘,ℓ + 𝜒𝑘,ℓ ′ + 𝜀𝑘,ℓ ,ℓ ′ (4.1)

where 𝑘 indexes crops, ℓ indexes technology receiving countries, and ℓ ′ indexes technology sending
countries. The outcome 𝑦𝑘,ℓ ′,ℓ is a monotone transformation of the number of unique varieties of
crop 𝑘 developed in ℓ ′ and transferred to ℓ between 2000-2018. Since there are many zeroes in
the varieties data, we report the effect separately for the intensive margin with log biotechnology
transfers, the extensive margin with an indicator for any transfer, and the inverse hyperbolic sine
(asinh) transformation which blends the two margins. Our baseline specification includes all possible
two-way fixed effects: origin-by-destination fixed effects, crop-by-origin fixed effects, and crop-by-
destination fixed effects. These absorb, for example, the fact that certain countries persistently demand
or develop more technology for particular crops, as well as any crop-invariant features of country
pairs (e.g. physical and cultural distance, common geography, trade linkages, etc.).37 Standard errors
are double-clustered by origin and destination.

The main hypothesis is that 𝛽 < 0, which would indicate that the local focus and context specificity
of innovation depresses technology diffusion and that, on average, biotechnology flows less when
technology is inappropriate. We may find no effect, however, if the context-specific component of
technological progress or local research spillovers are relatively small, or if technology diffusion is
sufficiently “inelastic” with respect to incentives.

While estimates of 𝛽 from Equation 4.1 capture the average relationship between CPP mismatch
and technology transfer, Proposition 1 demonstrated that the effect could be very different across
crop-origin pairs; in particular, the marginal effect of ecological dissimilarity should be larger when
the sending country is very active in research for crop 𝑘. To empirically investigate this idea, we also
estimate versions of the following augmented version of (4.1) that parameterizes heterogeneity in the
main effect :

𝑦𝑘,ℓ ′,ℓ = 𝛽1 · CPP Mismatch𝑘,ℓ ′,ℓ + 𝛽2 · 𝐹𝑘,ℓ ′ × CPP Mismatch𝑘,ℓ ′,ℓ + 𝜒ℓ ,ℓ ′ + 𝜒𝑘,ℓ + 𝜒𝑘,ℓ ′ + 𝜀𝑘,ℓ ,ℓ ′ (4.2)

37The exact interpretation of these effects is described in Proposition 1 and its proof.
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Table 1: CPP Mismatch Inhibits International Technology Transfer

(1) (2) (3)

Dependent	Variable:

Biotech	

Transfer	

(asinh)

Any	Biotech	

Transfer	

(0/1)

log	Biotech	

Transfer

CPP	Mismatch	(0-1) -0.0624** -0.0275** -1.202***

(0.0235) (0.0106) (0.386)

Crop-by-Origin	Fixed	Effects Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes

Origin-by-Destination	Fixed	Effects Yes Yes Yes

Observations 204,287 204,287 5,791

R-squared 0.439 0.383 0.797

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	All	possible	two-way	fixed	effects	are	included	in	
all	specifications.	The	dependent	variable	is	listed	at	the	top	of	each	column.	Standard	errors	are	double-

clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

where 𝐹𝑘,ℓ ′ is an indicator variable that equals one for the countries ℓ ′ that we identify as the biotech-
nological leaders for crop 𝑘. We have two strategies for defining 𝐹𝑘,ℓ ′. The first is to treat the United
States as the frontier for all crops, or set 𝐹𝑘,ℓ ′ = I[ℓ ′ = US]. This method is motivated by the United
States’ pre-eminence in modern agricultural research.38 The second is to identify a set of crop-specific
“leaders” 𝑇𝑁 (𝑘) in the UPOV data, based on being among the top 𝑁 countries in variety registrations
for 𝑘.39 This data-driven approach sets 𝐹𝑘,ℓ ′ = I[ℓ ′ ∈ 𝑇𝑁 (𝑘)], and is parameterized by the list length
𝑁 . In this specification, 𝛽2 < 0 captures the difference in the marginal effect of inappropriateness on
technology diffusion when the origin country is a leader in biotechnology development.

4.3 Results

Estimates of Equation 4.1 are reported in Table 1. On all margins, we find that CPP mismatch
significantly inhibits the international flow of technology. The intensive-margin estimates from
column 3 imply that CPP mismatch inhibits 30% of international technology transfer for the median
crop and country-pair, suggesting that even in the full sample crops and countries CPP mismatch and
the inappropriateness of foreign technology is a major barrier to international technology diffusion.

Before proceeding, we probe the sensitivity of the baseline estimates. We first reproduce our
results under different measurement strategies for ecological differences. Column 1 of Table A3

38The US alone produced 30% of citation-weighted global agricultural science publications. The US is also the global
leader in patented agricultural technology and produces three times as many patents as the next highest country (Japan).
52% of agricultural research and development companies are incorporated in North America and US inventors generate
roughly 1.5 thousand patents for plant modification and 1 thousand patents for cultivar development per year (Fuglie, 2016).

39By counting registrations, we multiply count unique denominations that are registered in multiple countries. This
is intentional, to capture the countries whose technologies are most diffusive. Similar results are obtained by doing the
analysis at the denomination level.
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reproduces our baseline estimates for reference. In column 2 , we show our results are stable using
the Jaccard (1900, 1901) mismatch metric (see Equation 3.3). In column 3, we show the same using an
alternative CPP mismatch classification that counts CPPs as “present” if CABI lists any information
about them, including whether they have been eradicated in the past.40 In Appendix B.1, we discuss
how we can use the CABI data to identify possible species invasions in recent history, which could be
affected by crop-level trade or connectedness between countries, and show the stability of our results
to excluding all invasive CPPs. Thus, the findings are not driven by CPP eradications or invasions,
both of which are rare compared to the full set of global CPP threats.

We also explore whether the results are influenced by links across countries that are not related
to differences in the CPP environment. All specifications include origin-by-destination fixed effects,
so any relevant omitted variable must also vary across crops within a country pair. Features like
geographic or cultural distance between countries are fully absorbed by the country pair fixed effects.
In column 4 of Table A3, we control for an indicator that equals one if countries ℓ and ℓ ′ engage in
bilateral final good trade for crop 𝑘. In column 5, we control for (log of) the geographic distance
between all country pairs interacted with a full set of crop fixed effects, allowing the effect of distance
to vary flexibly across crops (for instance, via crop-specific trade costs). In columns 6 and 7, we exclude
from the sample origin-destination pairs within 1000km or 2000km of each other respectively. Each
exercise produces stable results. Finally, Table A13 reports results after controlling for several non-
CPP measures of ecological dissimilarity across crops and country-pairs, and again the estimates are
very similar. This analysis is discussed in detail in Appendix B.2.

We next identify the effect of ecological mismatch relative to the frontier on technology diffusion.
Table 2 reports estimates of (4.2), which includes an interaction term between CPP mismatch and
an indicator that equals one if the origin country is a frontier technology developer. The blended,
extensive, and intensive margin effects are reported in Panels A, B, and C, respectively; and our
definitions of the frontier as the US, 𝑇1(𝑘), 𝑇2(𝑘), and 𝑇3(𝑘) are used in columns 1-4. In the extensive
and blended-margin specifications, we find strong, significant evidence of 𝛽2 < 0; in the intensive-
margin specification, we have consistently negative point-estimates, which are statistically significant
in one of four cases. The effect of CPP mismatch on technology diffusion is considerably larger for
research intensive origins, and in some specifications we find that CPP mismatch with countries
outside of the frontier has not impact on technology diffusion. For example, in columns 3-4 of Panel
A, the marginal effect of CPP distance on (asinh) technology diffusion is roughly thirty times larger for
frontier origin markets and statistically indistinguishable from zero for non-frontier origin markets.

These estimates imply that high ecological dissimilarity to the frontier can leave a country with
little or no appropriate modern technology. Interpreted via the model, they are consistent with a large
context-specific component of modern technology and local research spillovers in frontier countries.
As a result, ecological mismatch substantially reduces the cross-border transfer of biotechnology.

40Potential eradications are quite rare. The number of CPP-country-crop triads increases by under 3% when using the
“broad” CPP presence classification.
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Table 2: CPP Mismatch with Frontier Countries and Technology Transfer

(1) (2) (3) (4)

Frontier	defined	as: United	States
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Mismatch	(0-1) -0.0571** -0.0453** -0.0330 -0.0207

(0.0216) (0.0215) (0.0199) (0.0196)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.392*** -1.237*** -1.076*** -1.076***

(0.0313) (0.290) (0.249) (0.249)

Observations 204,287 204,287 204,287 204,287

R-squared 0.439 0.442 0.444 0.444

CPP	Mismatch	(0-1) -0.0241** -0.0229** -0.0181* -0.0136

(0.00956) (0.00986) (0.00917) (0.00884)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.254*** -0.332*** -0.343*** -0.322***

(0.0142) (0.0699) (0.0623) (0.0535)

Observations 204,287 204,287 204,287 204,287

R-squared 0.383 0.384 0.385 0.385

CPP	Mismatch	(0-1) -1.161*** -1.084*** -1.154*** -0.852**

(0.364) (0.350) (0.322) (0.381)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.698 -0.694 -0.173 -0.892**

(1.248) (0.423) (0.503) (0.437)

Observations 5,791 5,791 5,791 5,791

R-squared 0.797 0.797 0.797 0.797

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes

(1) (2) (3) (4)

Frontier	defined	as: United	States
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Mismatch	(0-1) -0.0571** -0.0453** -0.0330 -0.0207

(0.0216) (0.0215) (0.0199) (0.0196)

CPP	Mismatch	(0-1)	x	Frontier	(0/1) -0.392*** -1.237*** -1.076*** -1.076***

(0.0313) (0.290) (0.249) (0.249)

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes

Observations 204,287 204,287 204,287 204,287

R-squared 0.439 0.443 0.444 0.444

(1) (2) (3)

Frontier	defined	as:
Top	Variety	

Developer

Top	2	Variety	

Developers

Top	3	Variety	

Developers

CPP	Distance	(0-1) -0.0429* -0.0302 -0.0178

(0.0217) (0.0198) (0.0194)

CPP	Distance	(0-1)	x	Frontier	(0/1) -1.251*** -1.091*** -0.972***

(0.292) (0.250) (0.216)

Crop-by-Origin	Fixed	Effects Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes

Observations 204,287 204,287 204,287

R-squared 0.443 0.444 0.444

Panel	A:	Dependent	Variable	is	(asinh)	Biotech	Transfers

Panel	B:	Dependent	Variable	is	Any	Biotech	Transfer	(0/1)

Panel	C:	Dependent	Variable	is	log	Biotech	Transfers

Dependent	Variable	is	(asinh)	Biotech	

Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	secification	is	noted	
at	the	to	of	each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-

clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	secification	is	noted	at	the	to	of	
each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-clustered	by	origin	and	

destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	(asinh)	Biotech	Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	definition	of	a	leader	in	each	specification	is	noted	at	the	top	of	
each	column	and	the	dependent	variable	is	noted	in	the	panel	heading.	Standard	errors	are	double-clustered	by	origin	and	

destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

5. Main Results: Production

The previous section established that potential inappropriateness determined by ecological mismatch
inhibits technology transfer. We now study how ecological differences relative to frontier innovators
affect global production and specialization.

5.1 Data and Measurement

5.1.1 Agricultural Production

We compile data on crop output, trade (imports and exports), and prices from the UN Food and
Agriculture Organization statistics database (FAOSTAT). We also compile sub-national agricultural
output data from the latest nationally representative agricultural census for both Brazil and India.
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The Brazilian data are from the 2017 round of the Censo Agropecuario, and they cover 49 crops. The
Indian data are from the ICRSAT Database and constructed from the 2015 Agricultural census, and
they cover 20 states and 20 crops.41

5.1.2 Mismatch with the Frontier

Mapping our analysis to the predictions of Proposition 2 requires taking a stand on “which inappro-
priateness matters” for determining a given country’s production, or from where that country sources
its technology. Since we lack detailed data on the country of origin for the crop-specific inputs used in
each market, we instead use two more heuristic but parsimonious strategies to measure each country’s
ecological dissimilarity to the frontier technology producers, as introduced in Section 4.2.

The first, and simpler, strategy is to assume that the United States produces the frontier technology
for all crops and set CPPMismatchFrontierUS

𝑘,ℓ = CPPMismatch𝑘,ℓ ,US. In the model, this method is
exactly correct if the United States were the sole producer of technology. In reality, nearly fifty percent
of private research investment takes place in the US, representing a large share of global innovation
(Fuglie, 2016). Our second strategy is to define the technological frontier for each crop based on the
frequency of variety releases in the UPOV data. Given a set 𝑇𝑁 (𝑘) of the 𝑁 top countries for 𝑘-variety
releases, we calculate:

CPPMismatchFrontierEst
𝑘,ℓ =

∑
ℓ ′∈𝑇(𝑘)

(
Share VarietiesUPOV

𝑘ℓ ′

)
×

(
CPP Mismatch𝑘,ℓ ,ℓ ′

)
(5.1)

where CPP Mismatch𝑘,ℓ ,ℓ ′ is our main bilateral measure defined in Equation 3.2. This method picks up
geographic variation in technological leadership, but relies on cross-national comparisons of variety
release intensity.42 For our baseline results, we use 𝑁 = 2; however, the results are very similar for
alternative values for 𝑁 .

These strategies for defining frontier innovators are further motivated by the results in Table 2,
showing that CPP mismatch with the US or countries in 𝑇(𝑘) have a disproportionate negative effect
on biotechnology diffusion. In fact, in some specifications, CPP mismatch with countries outside this
set of frontier countries has zero effect on technology diffusion (e.g. columns 3-4 of Panel A).

In practice, the multiple measures of CPPMismatchFrontier have a similar distribution across
crops and space and a strong positive correlation with one another. In a univariate regression of the
former on the latter, the coefficient 0.93 (0.047) and 𝑅2 is 0.91. The underlying reason is that our
identified technological leaders, in the majority of cases, are subsets of the US, Canada, and temperate
countries in Western Europe. This foreshadows the fact that our main findings are similar using
either measure.

41For a description of the ICRSAT data, see here: http://data.icrisat.org/dld/src/about-dld.html.
42In the model, this can be mapped to case in which only the countries ℓ ∈ 𝑇(𝑘) produce technology for 𝑘, productivity

Θ(𝑘, ℓ ) is linearly approximated around a steady state with 𝛿(𝑘, ℓ , ℓ ′) ≡ 0 for all ℓ ′ ∈ Θ(𝑘, ℓ ), and ShareVarieties𝑘ℓ ′ equals
the fraction of farms that would use ℓ ′ technology if all technology were equally appropriate.
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5.1.3 Direct Effects of the Local Environment

In the model, the relationship between ecological mismatch and production was correctly specified
conditional on measurements of the parameter 𝜔(𝑘, ℓ ), local innate suitability for growing crop 𝑘

in country ℓ (see Proposition 2). To directly capture the impact of local suitability on output in our
analysis, we use two measurement strategies. First, we directly measure crop-specific production
as predicted by local geography from the FAO Global Agro-Ecological Zones (GAEZ) model and
database (see, e.g., Costinot and Donaldson, 2012; Costinot et al., 2016). We compute total predicted
production under GAEZ’s low-input, rain-fed scenario, which holds fixed background differences in
input use and technology, on land area within a country on which a given crop was grown according
to a cross-section in 2000, as measured by the EarthStat database of Monfreda et al. (2008). While this
method parsimoniously summarizes agronomic predictions of innate suitability, it is only available
for 34 of our 132 crops.

Our second approach is to compile a larger set of environmental variables and then use post-double
LASSO (Belloni et al., 2014) to select an appropriate set of control variables, tantamount to specifying
our own crop-specific empirical models for suitability. We first construct fixed effects for the 200
“most geographically prevalent” CPPs, as determined by the number of countries in which they are
present, and the 200 “most agriculturally prevalent” CPPs, as determined by the number of host
species that they infect. We also construct measures of average temperature, precipitation, elevation,
ruggedness, the growing season, and soil acidity, clay content, silt content, coarse fragment content,
and water capacity at the crop-by-country level, by averaging these variables over the historical
planting locations from the EarthStat database. Appendix B.2 describes these data in more detail.

5.2 Empirical Model

We estimate the following model which is the empirical analog of Equation 2.7 in Proposition 2:

𝑦𝑘,ℓ = 𝛽 · CPPMismatchFrontier𝑘,ℓ + 𝜒ℓ + 𝜒𝑘 +Ω′
𝑘ℓΓ + 𝜀𝑘,ℓ (5.2)

The outcome 𝑦𝑘,ℓ is average production from 2000 to 2018 in log physical units. All specifications
include country and crop fixed effects (𝜒ℓ and 𝜒𝑘), which capture any aggregate differences across
countries (e.g., income, productivity) or crops (e.g., market size, price). Depending on the specifica-
tion, we include a subset of proxies for innate suitability in the vector Ω𝑘,ℓ . The coefficient of interest
is 𝛽, which captures the effect of CPP dissimilarity from technology producing countries on features
of agricultural production.

5.3 Results

Our baseline estimates of (5.2) are reported in Table 3. In columns 1-4, CPP mismatch with the frontier
is parameterized as crop-specific mismatch with the US and, in columns 5-8, it is parameterized as
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Table 3: CPP Mismatch Reduces Agricultural Output

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -9.285*** -10.60*** -9.325*** -8.454*** -7.136*** -5.721*** -7.202*** -6.288***
(1.199) (3.024) (0.617) (0.652) (0.959) (0.663) (0.461) (0.501)

log(FAO-GAEZ-Predicted	Output) 0.298*** 0.353***
(0.0814) (0.0499)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,926 2,353 6,931 6,069 6,704 2,353 6,707 5,903
R-squared 0.599 0.617 0.600 0.609

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -9.285*** -10.60*** -9.325*** -8.454*** -7.136*** -5.721*** -7.202*** -6.288***
(1.199) (3.024) (0.617) (0.652) (0.959) (0.663) (0.461) (0.501)

log(FAO-GAEZ-Predicted	Output) 0.298*** 0.353***
(0.0814) (0.0499)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,926 2,353 6,931 6,069 6,704 2,353 6,707 5,903
R-squared 0.599 0.617 0.600 0.609

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -9.285*** -10.60*** -9.325*** -8.454*** -7.136*** -5.721*** -7.202*** -6.288***
(1.199) (3.024) (0.617) (0.652) (0.959) (0.663) (0.461) (0.501)

log(FAO-GAEZ-Predicted	Output) 0.298*** 0.353***
(0.0814) (0.0499)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,926 2,353 6,931 6,069 6,704 2,353 6,707 5,903
R-squared 0.599 0.617 0.600 0.609

CPP	Distance	to	US CPP	Distance	to	Estimated	Frontier	Set

Dependent	Variable	is	log	Output

CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier

Notes:	The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP		mismatch	with	the	US	and	columns	5-8		use	CPP	mismatch	
with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	
double	LASSO	estimates.	Country	and	crop	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	set	in	thet	post-
double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	countries	in	whch	they	are	
present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	335.	The	set	of	ecological	
features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growng	season	days,	soil	acidity,	soil	clay	content,	soil	silt	content,	
soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output

Dependent	Variable	is	log	Output

CPP	Distance	to	US CPP	Distance	to	Estimated	Frontier	Set

Notes:	The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	dstance	to	the	US	and	columns	5-8		use	CPP	dstance	to	the	
estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	double	
LASSO	estimates.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growng	season	days,	soil	
acidity,	soil	clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	
crop	and	country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	dstance	to	the	US	and	columns	5-8		use	CPP	dstance	to	the	
estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	double	
LASSO	estimates.	Country	and	crop	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	set	in	thet	post-double	
LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	countries	in	whch	they	are	present	and	
(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	335.	The	set	of	ecological	features	includes:	
temperature,	precipitation,	elevation,	ruggedness,	growng	season	days,	soil	acidity,	soil	clay	content,	soil	silt	content,	soil	coarse	fragment	
volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	state	and	*,	**,	and	***	indicate	significance	at	the	10%,	
5%,	and	1%	levels.

crop-specific mismatch with the crop-specific estimated frontier country set, 𝑇2(𝑘). In both cases, we
estimate a large and significant negative coefficient. Our estimates imply that a one standard deviation
in increase in CPP mismatch with frontier countries lowers output by 0.51 standard deviations.

The specifications in columns 1 and 5 only include the CPP mismatch measure, along with crop
and country fixed effects, on the right-hand side of the regression. The remaining columns show the
stability of these estimates under each of our control strategies for innate suitability. In columns 2 and
6, we include the FAO GAEZ agronomic model-derived output estimate as a control. In columns 3 and
7, we show estimates from the post-double LASSO control strategy using the top CPP fixed effects.
In columns 4 and 8, we expand the LASSO pool to include the full set of country-level geographic
covariates, and their square, interacted with crop-fixed effects, to allow for crop-specific effects of each
characteristic.43 Results are stable in each variation of the control strategy.

Table A4 reports an analogous set of estimates to Table 3 with log of area harvested (instead
of output) as the dependent variable. Consistent with the predictions of the Fréchet model for
selection effects, we find statistically indistinguishable magnitudes relative to our main estimates for
production. Economically, this implies that agricultural allocations eliminate cross-crop differences
in marginal products. As we will discuss extensively in Section 7, we can use the model structure plus
the measured effects on production to infer overall productivity effects consistent with the model.

43Thus, all control vary at the country-by-crop level. When we include all aforementioned controls, the LASSO pool
contains 3.935 potential covariates. Throughout, we include crop and country fixed effects in the LASSO amelioration set.
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Table A5 investigates the impact of CPP mismatch on additional features of agricultural production
and output. First, we document that CPP mismatch with the frontier is significantly negatively
correlated with crop-specific exports (column 2), and positively (albeit insignificantly) correlated
with crop-specific imports (column 3). Second, we document that CPP mismatch is significantly
positively correlated with producer price volatility. This finding indicates that the appropriateness
of frontier technology might not only raise average productivity but also increase producers’ ability
to withstand periodic negative productivity shocks.44 The negative relationship with producer price
volatility is similar even after holding total output fixed (columns 5 and 7).

The stability of all findings after accounting for local suitability is consistent with the fact that, ex
ante, there is no reason to expect that the locations with the best biotechnology firms for producing
seeds for a particular crop are also innately the best places for growing that crop. Thus, there is no
reason to believe that being ecologically “distant” from technology producing countries is tantamount
to being ecologically “bad.” Indeed, in the US there is a long history of science and technology devel-
opment to confront crop disease and the challenging pathogen environment (Olmstead and Rhode,
2008).45 Consistent with this history of ecological challenges in what would become a highly agricul-
turally productive country, existing empirical evidence suggests that variation in local land suitability
plays a limited role in explaining global productivity differences (Adamopoulos and Restuccia, 2018).

Our results, on the other hand, suggest that the indirect role of geography via production technol-
ogy, or the endogenous determination of “good geographies” that resemble technological leaders’, is
an important determinant of production patterns. To make this point explicitly, Appendix Section
B.5 documents that the unprecedented rise of US biotechnology research since the 1990s is associ-
ated with shifts in global specialization toward crops and countries where US technology is more
appropriate. In particular, we show that CPP mismatch with the US is negatively associated with
changes in crop-by-country level output since 1990, and that the same is not true for CPP mismatch
with Europe, where biotechnology research grew substantially less during the past two decades.
These results, along with related estimates investigating the changing locations of breeding during
the Green Revolution which we turn to in Section 6.1, further indicate that our findings are not driven
by a static omitted variable, and that “good geographies” change with the focus of innovation.

5.4 Sensitivity Checks

5.4.1 Additional Controls and Measurement

The results in Table 3 are very similar after including a range of additional controls. Table A6
documents that the results are very similar including crop-by-continent fixed effects, which allow us
to focus on even more geographically precise variation in the inappropriateness instrument. Table A7

44Bad insect outbreaks are a commonly cited example. See Stone (2020) for a discussion of recent locust outbreaks in East
Africa and their economic impact.

45In fact, during its early history, the US government made a major effort to recover plant varieties from around the world
in order to increase farm productivity and promote agricultural resilience (Kloppenburg, 2005).
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shows that results are similar after controlling for a broad spectrum of country-level characteristics,
all interacted with crop fixed effects, which rules out confoundedness with crop-specific effects of
other determinants of income.46 The results are also similar after purging the CPP mismatch measure
of variation driven by invasive species (Appendix B.1) and accounting for mismatch with the frontier
in non-CPP ecological characteristics (Appendix B.2). Inappropriateness measured using non-CPP
ecological characteristics also depress technology diffusion also reduces output; however, this effect
is independent from and smaller than the effect of CPP distance (Table A14).

5.4.2 Falsification Tests

If our main estimates capture the impact of inappropriateness on technology diffusion and hence
productivity, then we would expect to find a limited or absent relationship between CPP distance to
countries that are not centers of biotechnology development and productivity. This idea motivates a
falsification exercise, in which we re-estimate Equation 5.2, replacing CPPMismatchFrontierUS

𝑘,ℓ with
CPP mismatch with each country in the world; this generates a series of coefficient estimates 𝛽̂ℓ , one
for each country. That is, we estimate:

𝑦𝑘,ℓ ′ = 𝛽ℓ · CPP Mismatchℓ𝑘,ℓ ′ + 𝜒ℓ ′ + 𝜒𝑘 +Ω′
𝑘ℓ ′Γ + 𝜀𝑘,ℓ ′

for all ℓ . Figure A4 reports histograms of estimates of the 𝛽̂ℓ , from specifications that do not include
CPP mismatch the US as a control (Figure A4a) as well as from specifications that do (Figure A4b).
In both cases, the coefficient on CPP mismatch with the US, marked with a dark green, dotted line,
is the negative coefficient with the highest magnitude. Estimates of the effect of CPP distance to
other countries are all smaller in magnitude and clustered around zero, especially conditional on CPP
distance to the US.

Moreover, the 𝛽̂ℓ are significantly negatively correlated with country-level biotechnology devel-
opment measured in the UPOV database. We estimate:

𝑦ℓ = 𝜉 · 𝛽̂ℓ + 𝜀ℓ

where the dependent variable is either the number of varieties development in ℓ in the UPOV
data, or an indicator that equals one of country ℓ enforces intellectual property protection for plant
biotechnology. These are two proxies for the R&D intensity of country ℓ . Table A8 reports estimates
of 𝜉. The coefficient estimates are negative and significant, suggesting that CPP mismatch has more
bite on global production for precisely the countries that are more active in R&D. These findings are
consistent with our main estimates capturing the causal impact of technology’s inappropriateness.

46These country-level characteristics include income, openness to trade, inequality, specialization in agriculture, agricul-
tural productivity, and R&D intensity.
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Table 4: CPP Mismatch Reduces Agricultural Output: Sub-national Estimates

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -8.925*** -10.20*** -8.695*** -9.355*** -11.89*** -10.10*** -11.85*** -10.37***
(2.386) (3.327) (1.752) (2.096) (1.937) (2.475) (1.538) (2.247)

log(FAO-GAEZ-Predicted	Output) 0.654*** 0.659***
(0.138) (0.133)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Crop	x	Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
State	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,436 696 1,437 1,093 1,370 696 1,371 1,036
R-squared 0.641 0.680 0.658 0.683

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -8.925*** -10.20*** -8.695*** -9.355*** -11.89*** -10.10*** -11.85*** -10.37***
(2.386) (3.327) (1.752) (2.096) (1.937) (2.475) (1.538) (2.247)

log(FAO-GAEZ-Predicted	Output) 0.654*** 0.659***
(0.138) (0.133)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Crop	x	Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
State	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 1,436 696 1,437 1,093 1,370 696 1,371 1,036
R-squared 0.641 0.680 0.658 0.683
Notes:	 The	unit	of	observation	is	a	state-crop	pair.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	
double	LASSO	estimates.	State	and	crop-by-country	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	set	
in	thet	post-double	LASSO	specifications.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	
growng	season	days,	soil	acidity,	soil	clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	
errors	are	double-clustered	by	crop	and	state.	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier
Dependent	Variable	is	log	Output

Notes:	 The	unit	of	observation	is	a	state-country	pair.	Columns	1-4	use	CPP	mismatch	with	the	US	and	columns	5-8		use	CPP	mismatch	
with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	
post	double	LASSO	estimates.	State	and	crop-by-country	fixed	effects	are	included	in	all	specifications,	and	included	in	the	
amelioration	set	in	thet	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	
countries	in	whch	they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	
335.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growng	season	days,	soil	acidity,	soil	
clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	
state	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output

CPP	Distance	to	US CPP	Distance	to	Estimated	Frontier	Set

5.5 Within-Country Estimates: Brazil and India

Finally, we exploit state-level information on CPP presence for both Brazil and India, along with the
fact that both countries report detailed data on crop production at the state-level, to measure the
effects of inappropriateness at a sub-national level. Our estimation framework is:

𝑦𝑘,𝑠 = 𝛽 · CPPMismatchFrontier𝑘,𝑠 + 𝜒𝑠 + 𝜒𝑘.ℓ (𝑠) +Ω′
𝑘.𝑠Γ + 𝜀𝑘,𝑠 (5.3)

where now 𝑠 indexes states and ℓ (𝑠) ∈ {Brazil, India}. In all specifications, we include crop-by-country
fixed effects (𝜒𝑘.ℓ (𝑠)). By estimating the effect of inappropriateness on sub-national regions, we hold
fixed all country-by-crop characteristics, including crop-specific R&D, trade, market size, demand,
and pest composition. Thus, we estimate a qualitatively different parameter from the preceding
analysis but also fully absorb potential unobservable features in the country-by-crop level analysis.

Our estimates of Equation 5.3 are displayed in Table 4, which follows the exact same structure
as the baseline country-by-crop estimates in Table 3. Despite the inclusion of country-by-crop fixed
effects, we find negative and significant estimates that are very similar in magnitude to our country-
by-crop results. The coefficient estimates, if anything, increase when we account for local suitability,
either controlling for state-by-crop level FAO GAEZ predicted output (columns 2 and 5), or using our
more flexible post double LASSO approach (columns 3-4, 7-8). The findings are also very similar if
we focus on either India or Brazil separately (Figure A5). Together, these estimates suggest that the
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(in)appropriateness of technology not only shapes productivity differences across country-crop pairs,
but also shapes productivity differences across regions within countries for a given crop.

6. Case Studies: Inappropriateness and Technology Adoption

The empirical results of Sections 4 and 5 quantified the impact of CPP mismatch on technology dif-
fusion and its consequences for production and specialization. In this section, we provide additional
empirical evidence about the key intervening mechanism: that inappropriate technology is less likely
to be adopted by farmers.47 To do this, we home in on the geographically heterogeneous penetration
of improved high-yielding varieties developed in the Green Revolution, and the relatively low usage
of frontier agricultural technology in modern Africa.

6.1 High-Yield Varieties in the Green Revolution

The Green Revolution was a coordinated international effort, backed by philanthropic organizations
like the Rockefeller Foundation, to develop high-yielding varieties (HYVs) of staple crops for countries
with high risk of famine (Pingali, 2012). The engine at the heart of the Green Revolution was a set of
international agricultural research centers (IARCs), including the International Rice Research Institute
(IRRI) in the Philippines and the International Maize and Wheat Improvement Center (CIMMYT) in
Mexico. These centers ultimately coalesced to form the Consultative Group for International Agricul-
tural Research (CGIAR), an organization charged with coordinating international crop development
for the poor world (Evenson and Gollin, 2003b).

Modern variety adoption and productivity growth during this period, however, still differed
markedly across crops and countries (Evenson, 2005). One potentially important source of this
heterogeneity, highlighted by scholars, is that varieties developed at the IARCs were inappropriate in
places that are ecologically dissimilar from the countries in which the IARCs were located (Binswanger
and Pingali, 1988; Lansing, 2009; Pingali, 2012). Lansing (2009) provides an in-depth case study of
the detrimental impacts of the introduction of Green Revolution rice varieties and farming practices
in Bali, where local practices had evolved to keep the local pest population at bay. The shift to Green
Revolution technology precipitated widespread crop failures, driven by pest outbreaks.48

To investigate whether the inappropriateness of Green Revolution technology shaped its impacts,
we first identify from Evenson and Gollin (2003b) the IARC and hence country in which breeding
investment for each crop was centered (see Table A9). Using this information, we compute a measure
of CPP mismatch with centers of Green Revolution breeding at the crop-by-country level:

CPPMismatchGR𝑘,ℓ =
∑
ℓ ′

CPP Mismatch𝑘,ℓ ,ℓ ′ · I {IARC for 𝑘 is in ℓ } (6.1)

47A formal articulation of this prediction is given in Corollary 1 in Appendix A.4.
48Reynolds and Borlaug (2006) document the significant challenges faced by CIMMYT to develop semi-dwarf wheat that

would thrive outside of Mexico.
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Figure 4: Inappropriateness and the Efficacy of the Green Revolution
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Notes: This figure displays binned partial correlation plots, after absorbing country and crop-by-
continent fixed effects, in which the independent variable is CPPMismatchGR𝑘,ℓ and the dependent
variable is listed at the top of each sub-figure. In Figure 4a, the dependent variable is the share
of production using modern varieties in 1980 (𝑝 = 0.006) and in Figure 4b, it is the change in log
output between the 1960s and the 1980s (𝑝 = 0.017). Standard errors are clustered by country and
continent-crop.

where I {IARC for 𝑘 is in ℓ } is an indicator that equals one if Green Revolution breeding of crop 𝑘 was
centered in country ℓ ′. For example, IRRI in the Philippines was the main IARC for rice, so in all
countries CPP distance for rice is computed as CPP distance to the Philippines.

We first study the relationship between CPPMismatchGR𝑘,ℓ and modern variety adoption at the
crop-by-country as reported by Evenson and Gollin (2003a,b). We regress the percent of area devoted
to high-yield varieties in 1980-85, a representative cross-section after the bulk of Green Revolution
research was instigated, on CPPMismatchGR𝑘,ℓ and absorbed effects at the location and crop-by-
continent (𝑘 × 𝑐(ℓ )) level:

HYVAdoption𝑘,ℓ ,1980 = 𝛽 · CPPMismatchGR𝑘,ℓ + 𝜒ℓ + 𝜒𝑘,𝑐(ℓ ) + 𝜀𝑘,ℓ (6.2)

Our sample is the 8 crops in Table A9 intersected with the 85 low-income countries in the Evenson
and Gollin (2003a,b) data.

CPP mismatch with centers of Green Revolution breeding substantially reduced the adoption of
modern seed varieties. The main finding is summarized in Figure 4a, which shows a binned partial
correlation plot of 𝛽 estimated from Equation 6.2. Our estimate of 𝛽̂ = −26.62 (9.15) implies that
the 75th percentile crop-country pair had 5 percentage points lower HYV penetration than the 25th
percentile in 1980, relative to a mean HYV penetration value of 5%. If we restrict attention to corn,
wheat, and rice, the three most prominent Green Revolution crops, our coefficient estimate jumps to
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𝛽̂ = −96.20 (27.17), implying a 18 percentage point difference between the 75th and 25th percentiles
relative to a mean of 14% (see Table A10).49

We next directly study the impact of this heterogeneous adoption on production and specialization
by adapting our empirical framework from Section 5. In particular, we study how CPP mismatch
with Green Revolution centers affected output growth from the 1960s to the 1980s, the period when
the majority of Green Revolution research took off. We estimate the following regression model:

𝑦𝑘,ℓ ,1980𝑠 − 𝑦𝑘,ℓ ,1960𝑠 = 𝛽 · CPPMismatchGR𝑘,ℓ + 𝜏 · 𝑦𝑘,ℓ ,1960𝑠 + 𝜒ℓ + 𝜒𝑘,𝑐(ℓ ) + 𝜀𝑘,ℓ (6.3)

where the dependent variable is the change in (log of) crop-level output between the 1960s and
the 1980s, and the sample includes all crop-country pairs from the HYV adoption model. This
estimating equation differences out the direct effects of time invariant ecology and local suitability,
identifying how changes in output respond to changes in the geography of innovation (and hence
inappropriateness) relative to the relevant set of innovating countries.

Our finding, summarized as a binned partial correlation plot in Figure 4b, is that production shifts
away, in relative terms, from crop-location pairs more ecologically mismatched with Green Revolution
hubs. Our coefficient estimate 𝛽̂ = −2.64 is about 1/3 of our previously estimated point estimate for
the effects of modern inappropriateness relative to the technological frontier.50 Table A11 documents
that the relationship between CPP distance to Green Revolution breeding centers and changes in
production is restricted to the period 1960-1980, the height of the Green Revolution (columns 1-3); the
effect is apparent in Asia, Africa, and South America, but not in Europe, which was not an intended
recipient of Green Revolution technology (columns 4-7). These findings are consistent with a causal
interpretation of the main result.

Taken together, our findings illustrate how geographical inappropriateness shaped impact of
the Green Revolution and, more broadly, how changes in the centers of innovation can shift the
relationship between ecological conditions and productivity. The focus of the Green Revolution on
developing a relatively small set of HYVs and distributing them widely may have undermined its
global reach, since new varieties were less productive and less likely to be adopted in the first place
in environments that were different from HYV breeding centers.

6.2 Technology Adoption in Sub-Saharan Africa

We next study how inappropriateness affects production on smallholder farms in sub-Saharan Africa,
which have received substantial attention for the low penetration of agricultural technology in spite
of ostensible benefits (see, e.g., Suri, 2011; Duflo et al., 2011). Our specific question is the extent to
which the inappropriateness of frontier technology explains low use of improved inputs.

49In a falsification exercise, we estimate the relationship between HYV adoption and CPP distance to all other countries,
and we compile these placebo coefficients. Our main estimate is in the far left tail of the coefficient distribution (𝑝 = 0.013),
indicating that our findings are truly driven by features of IARC ecology and not spurious correlation.

50Table A10 reports summarizes the estimates for both of our regression models.
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To measure the use of improved technologies, we combine data from the latest round of all Living
Standard Measurement Survey (LSMS) Integrated Surveys of Agriculture (ISA). These are detailed
surveys on all facets of agricultural production, including technology use, collected by the World
Bank in collaboration with the statistical agencies of eight countries: Burkina Faso, Ethiopia, Malawi,
Mali, Niger, Nigeria, Tanzania, and Uganda. Data are collected at the field and farm level, and
the LSMS-ISA also provides the coordinates of the approximate location of each farm.51 Our key
dependent variable of interest is farm-by-crop information on the use of improved seeds (i.e., not
locally bred or “traditional” varieties). We construct an indicator variable for each crop grown in each
farm if improved seed varieties are used. In total, we have data on approximately 120,000 crop-farm
pairs across all eight countries.

Our main estimating equation is:

ImprovedSeed𝑘,𝑧 = 𝛽 · CPPMismatchFrontier𝑘,ℓ (𝑧) + 𝜒ℓ (𝑧) + 𝜒𝑘 + 𝜀𝑘,𝑧 (6.4)

where 𝑘 continues to index crops and 𝑧 indexes farms in the LSMS-ISA data. The dependent variable is
an indicator that equals one if farmer 𝑧 uses an improved seed variety for crop 𝑘. 𝜒𝑘 denote crop fixed
effects and 𝜒ℓ (𝑧) denote country fixed effects, included in all specifications. If the inappropriateness
of technology reduces technology adoption, we would expect that 𝛽 < 0; however, it is possible
that the smallholder farmers in the sample are not likely to use improved technology regardless of
its appropriateness, and the context specificity of frontier innovation is not an important barrier to
productivity enhancements in this setting.

Our findings are reported in Table 5, where CPP mismatch is measured either as CPP mismatch
with the US (Panel A) or CPP mismatch with the measured set of crop-specific frontier countries. We
estimate a negative and significant relationship between adoption and CPP mismatch. The estimates
of column 1 imply that improved seed use by the median farmer in our sample would be 14% more
prevalent absent inappropriateness, relative to an in-sample mean of 17.9%. The estimates are similar
after including state fixed effects (column 2) or a quadratic polynomial in farm latitude and longitude
(column 3) in order to control flexibly for the effect of geography. Our findings are also similar when
the regression is weighted by farm size (column 4) or using our two alternative constructions of CPP
mismatch (columns 5-6; these use the “broad” CPP presence definition and Jaccard functional form)

These estimates indicate that inappropriateness contributes toward low improved input use on
some of the world’s least productive small farms. Through the lens of our model, in which endogenous
innovation responds to demand for inputs, they further suggest a reason why research and marketing
investment from global biotechnology firms has not materialized in sub-Saharan Africa (Access to
Seeds Foundation, 2019), despite the ostensibly large market opportunity.

51To preserve farmer anonymity, the LSMS-ISA provides the latitude and longitude of each survey cluster rather than
unique coordinates for each household. To keep a consistent sample across specifications, we restrict our analysis to
households in which the cluster coordinates were included in the data set.
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Table 5: CPP Mismach Inhibits Biotechnology Adoption in Africa

(1) (2) (3) (4) (5) (6)

CPP	Mismatch	(0-1) -0.220*** -0.186*** -0.185*** -0.147*** -0.205*** -0.314***
(0.0635) (0.0610) (0.0614) (0.0511) (0.0689) (0.0870)

Observations 115,397 115,393 115,393 104,623 115,393 115,393
R-squared 0.213 0.246 0.247 0.235 0.247 0.247

Panel	B:	CPP	Mismach	with	the	Estimated	Frontier	Set
CPP	Mismatch	(0-1) -0.321*** -0.242*** -0.237*** -0.157*** -0.227*** -0.237***

(0.0793) (0.0805) (0.0812) (0.0563) (0.0793) (0.0812)

Observations 114,605 114,601 114,601 103,968 114,601 114,601
R-squared 0.213 0.246 0.247 0.235 0.246 0.246
Quadratic	Polynomial	in	Lat	and	Lon � � � �

log	Area-Weighted	Estimates �

Broad	CPP	Presence	Classification �

Jaccard	(1900,	1901)	Mismatch	Metric �

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes - - - - -
State	Fixed	Effects No Yes Yes Yes Yes Yes
Notes: 	The	unit	of	observation	is	a	plot.	In	Panel	A,		CPP	mismatch	with	the	frontier	is	estimated	as	CPP	mismatch	with	the	
US	and	in	Panel	B	it	is	estimated	using	the	frontier	set	selected	from	the	UPOV	data.	The	controls	included	in	each	
specification,	as	well	as	the	mismatch	metric	when	the	baseline	measure	is	not	used,	are	noted	at	the	bottom	of	each	column.	
Standard	errors	are	clustered	by	crop-country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	Improved	Seed	Use	(=1)

Panel	A:	CPP	Mismatch	with	the	US

7. Inappropriate Technology and Productivity: Present and Future

In this section, we use empirical estimates from Section 5 in combination with the model to study
how the inappropriateness of technology and existing ecological bias of the global innovation system
affects global productivity. We first explicitly describe the mapping from our empirical results to our
model interpretation and counterfactuals (Section 7.1). We then the level and distributional effects of
“removing inappropriateness” in the observed equilibrium (Section 7.2). We finally use our model to
study the productivity effects of three potential future scenarios: targeted research in a Second Green
Revolution (Section 7.3), the realignment of agricultural research toward emerging markets (Section
7.4), and the global movement of crop pests and pathogens due to climate change (Section 7.5).

7.1 Methods

7.1.1 From Theory to Data

Our empirical findings about technology transfer in Section 4 and production distortions in Section 5
suggest that the observed world equilibrium is well-approximated with a structure of a few “leaders”
driving the frontier of agricultural technology. In this subsection, we describe a simplification of our
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full model from Section 2 which embodies this logic, maps transparently to the empirical findings,
and allows us to formally define counterfactual scenarios of interest.

Concretely, we specialize the model by assuming that for each crop 𝑘 there is a “Frontier technology
producer” 𝐹(𝑘) ∈ {1, . . . , 𝐿}. In the Frontier producer of each crop 𝑘, general research is inelastically
supplied at level 𝐴̄(𝑘) > 0, own-CPP research at level 𝐵̄ > 0, and foreign-CPP research at level 𝐵̄𝑒−𝜏̂ for
some 𝜏̂ > 0.52 These assumptions encode a fixed knowledge gap in productivity units for each crop,
to match our empirical identification strategy. They abstract from the endogeneity of the magnitude
of knowledge gaps in response to incentives, a topic about which we have little information in the
data. We finally close the model in general equilibrium by assuming each crop price 𝑝(𝑘) lies on the
isoleastic demand curve

𝑝(𝑘)
𝑝̄(𝑘) =

(
𝑌(𝑘)
𝑌̄(𝑘)

)−𝜀
(7.1)

where (𝑝̄(𝑘), 𝑌̄(𝑘))𝐾
𝑘=1 are constants, 𝑌(𝑘) is total production of crop 𝑘, and 𝜀 > 0 is an elasticity of

demand for each crop relative to a numeraire (e.g., a good representing the rest of the economy). This
model recognizes that international prices provide a natural hedge against lower physical productivity,
but abstracts from specific patterns of demand substitution across crops.

We now describe the key model predictions about specialization and productivity, introduced in
Proposition 2, in the context of this case of the model. Let 𝛿(𝑘, ℓ , 𝐹(𝑘)) denote CPP dissimilarity with
the crop-specific frontier. Production of crop 𝑘 in country ℓ is given by

log𝑌(𝑘, ℓ ) = −𝜂𝛾𝛿(𝑘, ℓ , 𝐹(𝑘)) + 𝜂(log 𝑝(𝑘) + log 𝜔(𝑘, ℓ ) + 𝛼𝐴̄(𝑘) + (1 − 𝛼)𝐵̄) − (𝜂 − 1) logΞ(ℓ ) (7.2)

where 𝛾 := (1 − 𝛼)𝜏̂ > 0 is the sensitivity of log crop-specific productivity to CPP dissimilarity in the
model and Ξ(ℓ ) is the productivity index:

logΞ(ℓ ) = 𝛼 log 𝐴̄(𝑘) + (1 − 𝛼) log 𝐵̄ + 1
𝜂

log

(
𝐾∑
𝑘=1

𝑝(𝑘)𝜂𝜔(𝑘, ℓ )𝜂𝑒−𝜂𝛾𝛿(𝑘,ℓ ,𝐹(𝑘))
)

(7.3)

Comparing Equation 7.2 with the regression model Equation 5.2 reveals that our empirical estimate
of 𝛽, the sensitivity of log output to CPP dissimilarity, identifies the product of the productivity effect
𝛾 and the elasticity of supply 𝜂. Equation 7.3 shows how, conditional on separately identifying 𝛾 (the
direct productivity effect) and 𝜂 (the elasticity of supply), we can translate our estimates into total
country-level revenue productivity.

In the next section, will elaborate on exactly how we will calibrate the model to incorporate each
of these forces. We first precisely define how we will conduct counterfactual analysis in the context
of the present model. We describe a counterfactual scenario that “removes inappropriateness” as one
in which non-local-CPP research is subsidized to reach level 𝐵̄ > 𝐵̄ exp(−𝜏̂) in all frontier countries.

52More formally, in the frontier countries, we set 𝐵0 = 𝐵̄−1 and take a limit of 𝜙 → ∞ and 𝜏 → ∞ such that 𝜏(𝐵̄)
1+𝜙 → 𝜏̂ > 0.

In other countries, we set 𝐵0 → ∞ so no research is performed.
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Table 6: Model Parameters and Data for Estimation

Parameter Estimate Specification/Source Definition

𝛽 -7.14 Equation 5.2 Reduced form effect of CPPDistFrontier on output
𝜂 2.46 Costinot et al. (2016) Elasticity of supply to productivity
𝛾 2.90 −𝛽/𝜂 Sensitivity of log productivity to CPPDistFrontier
𝜀 0.35 Muhammad et al. (2011) Price elasticity of global food demand

𝜋(𝑘, ℓ ) — FAOSTAT Database Planted area for each crop in each country
Ξ(ℓ ) — Fuglie (2012, 2015) Baseline total revenue productivity by country

This intervention removes the knowledge gap between frontier and non-frontier CPP research by
replicating the missing knowledge spillover, and it undoes the depressive effect of CPP differences
on technology diffusion. While we make no claim that such an intervention is “optimal” in the
underlying model under a welfare criterion, it provides one reasonable and interpretable benchmark
for the total productivity effect of the “inappropriate technology bias.” This counterfactual scenario
will our focus in Section 7.2, and the blueprint for defining all subsequent counterfactual experiments.

Letting hats denote quantities under the “removal of inappropriateness” scenario, it is straight-
forward to show that changes in production are given by

log 𝑌̂(𝑘, ℓ ) − log𝑌(𝑘, ℓ ) = 𝜂𝛾𝛿(𝑘, ℓ , 𝐹(𝑘)) + 𝜂(log 𝑝̂(𝑘) − log 𝑝(𝑘)) − (𝜂 − 1)
(
log Ξ̂(ℓ ) − logΞ(ℓ )

)
(7.4)

and changes in revenue productivity by

log Ξ̂(ℓ ) − logΞ(ℓ ) = 1
𝜂

log

(
𝐾∑
𝑘=1

𝑝̂(𝑘)𝜂𝜔(𝑘, ℓ )𝜂
)
− 1
𝜂

log

(
𝐾∑
𝑘=1

𝑝(𝑘)𝜂𝜔(𝑘, ℓ )𝜂𝑒−𝜂𝛾𝛿(𝑘,ℓ ,𝐹(𝑘))
)

(7.5)

Changes in productivity arise from a partial-equilibrium effect of removing the depressive effect of
inappropriateness and a general-equilibrium effect of price adjustment.

7.1.2 Calibration

As alluded to above, measuring the productivity effect of inappropriateness involves additional
information about the elasticity of supply to productivity changes. Our strategy is to obtain an
external estimate of the supply elasticity (𝜂 = 2.46) from Costinot et al. (2016), who study productivity
changes and re-allocation in global agricultural production using the same Fréchet discrete choice
model.53 , 54 Combining this estimate with our baseline estimate of 𝛽 = −7.14 (Table 3, column 5) yields
an estimate of 𝛾 = 2.90, in units of percent productivity loss per basis point of CPP distance.

Conditional on 𝜂, the crop-by-location productivity Θ(𝑘, ℓ ) is identified up to scale from data on

53Sotelo (2020), studying Peruvian agriculture, finds a comparable estimate of 𝜂 = 2.06.
54These authors’ estimate, in a nutshell, is the plot-level heterogeneity required to explain the relationship between

agronomically measured productivity (from the FAO-GAEZ model) and observed planting patterns at the plot level (about
50-square-kilometer-size) in the modern world.
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Table 7: Causal Effects of Inappropriateness

Scenario
Statistic Unit Flexible Prices Fixed Prices

Reduction in Productivity Percent 42.2 56.5
(4.0) (4.7)

Increase in IQR (75-25) Percent 15.1 19.7
(0.4) (0.7)

Notes: Calculations compare the observed equilibrium with inappropriate technology to the counter-
factual equilibrium without inappropriate technology, as described in the main text. Standard errors,
in parentheses, are calculated via the Delta Method, using the numerical gradient of statistics to the
estimated parameter 𝛽. Productivity losses are area-weighted means across countries.

planted area by crop, 𝜋(𝑘, ℓ ).55 Mirroring our analysis in Section 5, we measure these areas using the
crop-by-country planting data from the FAOSTAT database, averaged from 2000-2016. To maximize
clarity when reporting country-level results, and to limit the effect of outlier observations, we ignore
countries in the bottom decile of total agricultural area (the largest such country is Mauritius).

We use estimates of total agricultural revenue from Fuglie (2012, 2015), again averaged from 2000
to 2016, to calibrate all countries’ initial revenue productivity and hence pin down the scale of local
innate productivity and prices. In our results, unless otherwise stated, we define “productivity” as
productivity per acre. Finally, to calibrate the crop-level demand curves, we use the average value
estimated by the US Department of Agriculture for the (compensated) own-price elasticity of global
food consumption (Muhammad et al., 2011). This yields 𝜀 = 0.35.56 All necessary model parameters
are listed and summarized in Table 6.

7.2 The Productivity Effects of Inappropriateness

We first study the counterfactual scenario of removing inappropriateness. In Table 7, we summarize
our main findings about productivity and productivity disparities in the observed equilibrium relative
to the counterfactual equilibrium. We report average productivity changes (area weighted averages)
for the entire world, and the percent change in the 75-25 percentile gap (inter-quartile range) of
log productivity. In our baseline model with price adjustment, inappropriateness reduces global
productivity by 42.2%. Inappropriateness increases the IQR of the log productivity distribution by
15.1%; in other words, inappropriateness “explains” this percentage of global disparities. We also
report results under an alternative model with fixed prices (𝜀 = 0) to gauge the importance of the
global price hedge. As expected, the effects under rigid prices are larger in the aggregate and for
reduction of disparities.

55The model suggests that an equivalent method is to use production in value terms. We favor using areas because it
avoids the need for data on local prices.

56Specifically, we use the average of the “low,” “middle,” and “high” income estimates in Appendix Table 3 of that
publication.
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Figure 5: Causal Effects of Inappropriateness: Heterogeneity by Location
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Notes: The left graph is a histogram of productivity losses from inappropriateness. The right graph is
a scatterplot of productivity losses against observed productivity. The dashed line is a best-fit linear
regression across countries. In each plot, colors indicate continents.

We next more closely explore the distributional implications of our findings. The left panel of
Figure 5 shows the distribution of productivity losses by country as a histogram, focusing on the full-
model, flexible-price calculation. The largest losses from inappropriateness are concentrated in Africa
and Asia, while the smallest are in Europe. The right panel documents a negative and significant
relationship between our estimated productivity losses and present-day revenue productivity (coef.
= −0.017, 𝑡 = −6.2). Thus, inappropriateness has the largest negative effects on productivity in
precisely the countries that are least productive today.57

These results, taken together, put into sharp relief the inequality created by the interaction of
ecological heterogeneity and the global innovation system. Neglected agricultural ecosystems, like
neglected tropical human diseases (Hotez et al., 2007), are concentrated in specific and predominantly
poor parts of the world. These regions are unproductive today, and kept unproductive due to an
absence of appropriate technology or incentives to develop it. Our framework suggests that the main
short-run remedies are policies that seed the ground for local biotechnological research.

Sensitivity Analysis. Our empirical analysis is focused on accurately estimating 𝛽, the effect of CPP
mismatch on output. As discussed above, in order to estimate the aggregate effects of inappropriate-
ness we also rely on two additional parameters that we obtain from existing literature, the elasticity

57Some, but not all, of this effect is spanned by the cross-continent variation highlighted above. Replicating the same
regression model with continent fixed effects gives a coefficient of -0.014 and 𝑡-statistic of -3.8.
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of supply to productivity (𝜂) and the price elasticity of food demand (𝜀). To explore sensitivity of our
findings, we identify maximum and minimum plausible estimates of each parameter from the liter-
ature. For the maximum and minimum plausible values for 𝜀, we use the maximum and minimum
price elasticities reported in Muhammad et al. (2011). For the minimum plausible value for 𝜂, we use
𝜂 = 2 which is slightly lower than the estimate of 𝜂 = 2.06 in Sotelo (2020), to our knowledge the lowest
estimate of the relevant parameter in existing literature. For the maximum plausible value, we add the
difference between the Sotelo (2020) estimate and our baseline estimate of 𝜂. Our results are reported
in Figure A9, which recreates the histogram of losses and relationship between current productivity
and losses as shown for our baseline in Figure 5. Our findings of large average losses, between
30% to 60% of counterfactual agricultural productivity, and significantly greater losses in observed
unproductive locations are robust across parameter choices. As expected, reducing price impacts
(increasing 𝜀) dampens the effects of inappropriateness, while decreasing the extent of unobserved
heterogeneity (decreasing 𝜂) amplifies them.

Inappropriateness Due to Other Ecological Differences. Our main results focus on CPP mismatch
as a key shifter of technology diffusion and inappropriateness. However, as highlighted in Section
3.4, CPP mismatch is not the only determinant of inappropriateness; other features of ecological
and geographic mismatch with the frontier could contribute to the inappropriateness of modern
technology and affect the aggregate effect of inappropriateness on global productivity. In Section
B.2, we describe our measurement of ecological mismatch in non-CPP related features, including
temperature, precipitation, topography, and soil characteristics. We then estimate the effect of non-
CPP ecological mismatch with the frontier on output, and study the counterfactual scenario of
removing inappropriateness in the form of this broader set of geographic and ecological features,
in addition to CPP mismatch. Figure A10 shows the equivalent of Figure 5, visualizing the cross-
country distribution of losses due to inappropriateness, under this scenario. At the aggregate level,
incorporating these additional dimensions of potential inappropriateness increases our estimate of
the losses due to inappropriateness total productivity to 52%, and increases the effect on disparities
in productivity to 16%. Comparing these estimates to our baseline reported in Table 7, we find that
CPP mismatch has roughly four times the effect on global output as the combination of all non-CPP
characteristics. This finding further justifies our focus on CPP mismatch for the main analysis.

7.3 Mapping a Second Green Revolution

Having studied how the present distribution of biotechnology research shapes global productivity,
we now use our model to study the effects of counterfactually shifting that distribution. Our first
exercise, in the spirit of the historical Green Revolution, is to study how to target a modern “Second
Green Revolution” that is as appropriate, and as productivity enhancing, for the world as possible.

Concretely, for each of the eight major crops that were the focus of the historical Green Revolution,
we calculate the counterfactual productivity benefit of moving the “Frontier” to each possible country
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Table 8: Inappropriateness-Minimizing Centers for Modern Agricultural Innovation

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Best	Site %	Change	in	
Productivity	

Second	
Best	Site

%	Change	in	
Productivity	

Best	Site %	Change	in	
Productivity	

Second	
Best	Site	

%	Change	in	
Productivity	

Wheat Russia 1.9 Australia 1.5 Russia 4.3 Australia 3.1
Maize China 3.9 USA 3.8 South	Africa 1.7 India 1.6
Sorghum India 0.8 Nigeria 0.7 India 1.6 Nigeria 1.5
Millet India 1 South	Africa 0.8 India 1.9 South	Africa 1.6
Beans India 1.3 China 1 India 1.8 China 1.2
Potatoes China 0.4 Russia 0.2 Russia 0.4 Turkey 0.1
Cassava Nigeria 0.5 Ghana 0.4 Nigeria 1 Tanzania 0.8
Rice India 6.7 China 6.6 India 7.9 China 5.4

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Best	Site %	Change	in	
Productivity	

Second	
Best	Site

%	Change	in	
Productivity	

Best	Site %	Change	in	
Productivity	

Second	
Best	Site	

%	Change	in	
Productivity	

Wheat China 3.29 India 1.87 India 10.42 Pakistan 6.97
Maize China 8.50 USA 6.16 Nigeria 9.26 Tanzania 7.46
Sorghum India 0.83 Nigeria 0.76 Nigeria 3.10 India 2.71
Millet Nigeria 0.90 India 0.68 Nigeria 2.97 Zimbabwe 1.76
Beans India 1.30 Brazil 1.13 India 3.25 Tanzania 1.41
Potatoes China	 0.97 India 0.48 India 0.94 Russia 0.52
Cassava Nigeria 0.41 Ghana 0.31 Nigeria 1.60 DRC 1.33
Rice China 7.55 India 6.53 India 13.32 Thailand 8.65

Notes: 	Column	1	reports	the	crops	included	in	our	analysis	of	the	Green	Revolution.	Columns	2-5	report	the	results	of	
our	analysis	to	select	the	two	countries	where	breeding	investment	would	have	the	largest	positive	effect	on	global	
output	for	each	crop.	Columns	6-9	report	the	results	of	our	analysis	to	select	the	two	countries	where	breeding	
investment	would	have	the	largest	positive	effect	on	output	in	countries	with	below	median	productivity	for	each	crop.	
All	estimates	rely	on	the	full	model	with	non-linear	adjustments	and	price	responses.	

Sites	Chosen	to	Minimize	Global	Inappropriateness Sites	Chosen	to	Minimize	Inappropriateness	in	
Countries	with	Below	Median	Productivity

Notes: 	Column	1	reports	the	crops	included	in	our	analysis	of	the	Green	Revolution.	Columns	2-5	report	the	results	of	
our	analysis	to	select	the	two	countries	where	breeding	investment	would	have	the	largest	positive	effect	on	global	
output	for	each	crop.	Columns	6-9	report	the	results	of	our	analysis	to	select	the	two	countries	where	breeding	
investment	would	have	the	largest	positive	effect	on	output	in	countries	with	below	median	productivity	for	each	crop.	

Crop

Crop

Sites	Chosen	to	Minimize	Global	Inappropriateness Sites	Chosen	to	Minimize	Inappropriateness	in	
Countries	with	Below	Median	Productivity

ℓ ′ ∈ {1, . . . , 𝐿}. As in our previous exercise, we consider this as a pure adjustment to inappropriateness
without shifting the maximum productivity of frontier research or the size of knowledge gaps, which
are controlled by (𝐴̄, 𝐵̄, 𝜏̂). We identify the new Frontier choices that would have the largest effect on
global productivity, as well as on productivity in initially below-median-productivity countries.

Table 8 displays the results for each studied crop. Columns 2 and 4 report the two countries
where breeding research would increase global output by the most, and columns 3 and 5 show
the corresponding quantitative effects on global agricultural productivity in log points times 100.
Columns 6-10 report analogous results if we instead calculate productivity gains only for countries
with below median productivity in the contemporary cross-section.

This analysis, while necessarily speculative, yields several interesting conclusions. First, the set of
countries that increases total versus low-productivity countries’ output is similar. This is consistent
with our findings in Section 7.2 that reducing ecological mismatch would both increase global output
and reduce production disparities. Second, the findings are consistent with the hypothesis that a
lack of breeding in Africa, including during the Green Revolution, holds back global productivity
growth (Pingali, 2012). Nigeria, Ghana, Zimbabwe, Tanzania, and the Democratic Republic of Congo
all emerge as countries where breeding research could have large, positive effects.

Finally, the prominence of China on the lists highlights the role that geopolitics might have played
and continue to play in shaping where research takes place. Political connections may limit where
governmental or philanthropic organizations can invest in technology development, constraining the
potential of such investments to develop globally appropriate technology. The same pattern, however,
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Figure 6: Growth in Agricultural Patented Technologies, BRIC vs. the United States
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Notes: Total number of patented agricultural technologies (i.e., in CPC class A01) in each five year
period, comparing patents with assignees in the US to patents with assignees in Brazil, Russia, India,
or China, from one of the five major patent offices (USPTO, WIPO, EPO, JPO, KIPO). Bars are the
number of patents issued in the five year bin noted on the horizontal axis.

suggests that there are potentially large opportunities for countries like China, India, and Russia—
growing players in global R&D—to market their technology around the world, especially in countries
where appropriate technology is lacking today.

7.4 New Biotechnological Leaders

In the past several decades, the United States and Western Europe have been at the center of global
biotechnology development. However, there is reason to believe that the landscape of biotechnology
research could change in the coming years—and some evidence that this process has already begun.
Figure 6 displays the number of patented agricultural technologies over time, relative to the period
1990-1995, comparing technologies developed in the United States to the trend for technologies
developed in “BRIC” countries (Brazil, Russia, India, China). While throughout the period the level
of innovation in the US is higher, agricultural innovation has grown substantially in the BRICs.

What might the impact in this shift in the center of global research be on global productivity? The
findings of our Second Green Revolution exercise (Table 8) hinted that shift in international focus may
be broadly beneficial for boosting global productivity and reducing disparities. Moreover, several
anecdotes suggest that BRIC-nation policymakers have recognized the associated business—and soft
power—opportunities from investment in agricultural R&D.58

To operationalize a “rise of BRIC” scenario in our model, we first calculate the CPP mismatch of

58As one example, the Brazilian Agricultural Research Corporation (EMBRAPA), a state-owned agricultural research
organization, has a long-standing cooperation with several African countries based on the premise of their ecological
similarity. For example, see here: https://www.embrapa.br/en/cooperacao-tecnica/m-boss. The description of the
collaboration on the EMBRAPA website argues that the “exchange of knowledge and technologies is facilitated due to
similarities in their cultures, climate, ecosystems, and agricultural practices.”
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Figure 7: Rise of BRIC: Global Productivity Changes
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Notes: This graph reports a histogram of productivity changes in the counterfactual scenario where
we simulate the rise of Brazil, Russia, India, and China (BRIC) as biotechnological leaders.

every country-crop pair with the BRIC research frontier as:

CPPMismatchFrontierBRIC
𝑘,ℓ =

∑
ℓ ′∈BRIC

𝜋(ℓ ′, 𝑘)∑
ℓ ′′∈BRIC 𝜋(ℓ ′′, 𝑘) × CPPMismatch𝑘,ℓ ,ℓ ′ (7.6)

In words, we estimate the inappropriateness of BRIC ecology for each crop, weighting each BRIC
country by its share of total area devoted to that crop within the BRIC countries.59 We then, analo-
gously to the previous counterfactual experiments, consider the effects of moving the frontier such
that 𝛿(𝑘, ℓ , 𝐹(𝑘)) = CPPMismatchFrontierBRIC

𝑘,ℓ .
Figure 7 summarizes our findings in a continent-coded histogram of the implied revenue produc-

tivity changes. The average effect is a 18.5% productivity boost, speaking to the fact that the BRIC
countries span more ecological diversity than the existing set of technological leaders. Africa stands
particularly to gain, on average, from this realignment, even though none of the BRIC countries are
in Africa itself. However, there are also clear losers, including several countries in Europe and Asia,
which benefit from their ecological similarity to the current set of technological leaders. From the
perspective of the developing world, a shift of innovation investment to the BRIC nations may be a
partial, if incomplete, substitute for encouraging purely local technological development.

7.5 Ecological Differences Under CPP Mass Migration

So far, we have treated ecology as immutable and allowed innovation to move around the world. But
climate change has accelerated changes in ecological systems themselves, and will continue to do so

59For crops that are not cultivated in any BRIC country, we use the estimated leader countries from the main analysis.
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Figure 8: Climate-Induced CPP Migration: Global Productivity Changes
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Notes: This graph reports a histogram of productivity changes in the counterfactual scenario where
we simulate the future migration of CPPs due to climate change.

over the coming decades (Parmesan and Yohe, 2003). In the context of crop pests and pathogens,
increases in temperature lead to a systematic, poleward movement (Bebber et al., 2013). While
poleward CPP movement to date has been limited (Bebber et al., 2013), temperature change over
the past fifty years is also much more limited than projected temperature change over the coming
decades.60 This could change the relevant “geography of innovation” by shifting the relevant set of
CPP threats in each country, even if the identity of innovating countries remains fixed.

The impact of climate change on the appropriateness of frontier technology across crops and
countries is also not clear ex ante. If CPP range shifts increase the CPP similarity between a given
country and R&D intensive regions, then it might be able to more effectively make use of technology
developed in the new equilibrium. However, CPP movement could also reduce the the CPP overlap
across countries if, for example, the US inherits several unique CPPs from Central America (or Europe
from North Africa), reducing their similarity to other large parts of the world. To capture this channel,
we extrapolate the estimates in Bebber et al. (2013) of poleward CPP movement to date into the future,
using projected changes in global temperature due to climate change between the present and 2100.61
We then use these data to construct CPPDistFrontier(𝑘, ℓ )CC based on ecological dissimilarity to the

60In the data, CPPs have moved poleward over the past 50 years by about 135 kilometers (Bebber et al., 2013). While
global temperatures have increased by about 1◦C over the past 50 years, in a “worst case” future scenario, temperature is
projected to increase by 4.3◦C by 2100. This projection corresponds to Representative Concentration Pathway (RCP) 8.5, a
consensus worse-case scenario.

61The consensus worst case scenario implies a 4.3◦C increase in temperature by 2100, and hence a 700km poleward
movement of CPPs on average (or approximately the distance from Tunis to Rome). We simulate poleward range spread of
each pest by identifying all countries that intersect a 700km translation of all countries that presently contain the CPP, and
appending these matches to the observed presence data to construct a dataset of predicted CPP presence in 2100. Finally,
we include manual corrections for countries with non-contiguous territory.
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modern set of frontier innovators, and re-calculate productivity as in the previous counterfactuals.
Figure 8 shows that we find an overall positive effect, which is relatively evenly spread across space.

Our analysis therefore highlights that increasing ecological similarity may provide a partially offsetting
force to the directly negative effects of ecological change, insofar as it coordinates the global research
system around a more common set of productivity threats. This dynamic in agricultural innovation,
and in climate-induced innovation more broadly, is an important topic for further research.

8. Conclusion

We investigate a long-standing hypothesis that frontier technologies’ endogenous appropriateness for
the high-income countries that develop them shapes global patterns of technology diffusion and
productivity. Our empirical focus is global agriculture, and we develop a new measure of the
potential inappropriateness of crop-specific agricultural biotechnology based on the dissimilarity in
crop pest and pathogen (CPP) environments across locations. We first show technology development
is concentrated in a small set of countries and focused on local pest and pathogen threats. We
next show that environmental mismatch is a substantial barrier to the international diffusion of
crop-specific biotechnology, and that countries move production away from crops for which their
CPP mismatch with the research frontier is higher. Technological progress in the frontier, far from
diffusing broadly and evenly around the world, underlies global inequality.

Combining our estimates with a model of global agricultural production, we estimate that inap-
propriateness as proxied by CPP mismatch reduces global agricultural productivity by 40-55%, and
increases global disparities in agricultural productivity by 10-15%. Substantial differences in pest
and pathogen threats around the world, and innovators’ neglect of ecosystem threats in low-income
areas, sustains large disparities in access to appropriate technology and, as a result, in productivity.
Moreover, changes in the geography of innovation can have large effects on the distribution of appro-
priate technology, and hence productivity, around the world. We show that the global impact of the
Green Revolution was shaped by ecological similarities differences with the key breeding centers, and
argue that in the future, changes in the center of global biotechnology development and in ecology
due to global warming could shift features of the technological frontier and hence appropriateness
of technology around the world. More exploration of these trends, which will define agriculture and
technology in the coming century, is an important area for future research.
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A. Omitted Proofs and Derivations

A.1 Statement and Proof of Lemma 1

We first state and prove a result deriving the optimal planting patterns in each country.

Lemma 1. The measure of farmers planting crop 𝑘 with technology ℓ ′ in country ℓ is given by

𝜋(𝑘, ℓ ′, ℓ ) = 𝑝(𝑘)𝜂𝜃(𝑘, ℓ ′ → ℓ )𝜂𝜔(𝑘, ℓ )𝜂∑
𝑘′,ℓ ′′ 𝑝(𝑘′)𝜂𝜃(𝑘′, ℓ ′′ → ℓ )𝜂𝜔(𝑘′, ℓ )𝜂 (A.1)

Proof. Let 𝑢∗
𝑖
∈ {1, . . . , 𝐾} × {1, . . . , 𝐿} denote the crop-technology choice of farmer 𝑖, let 𝜈(𝑘, ℓ ′, ℓ ) =

𝑝(𝑘)𝜔(𝑘, ℓ )𝜃(𝑘, ℓ ′ → ℓ ) determine the shifters of revenue productivity for each (𝑘, ℓ ′) pair in ℓ , and let
𝜋(𝑘, ℓ ′, ℓ ) = P[𝑢∗

𝑖
= (ℓ ′, 𝑘)] if 𝑖 ∈ [ℓ −1, ℓ ), which does not depend on the index 𝑖 within a given farming

country ℓ .62 Let 𝐹(𝑧) denote the cumulative distribution function of a Fréchet random variable with

62By a law of large numbers across i.i.d. realizations of the shocks, this corresponds with the measure of farmers making
the specified choice.
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scale one and shape parameter 𝜂 > 1, or

𝐹(𝑧) = exp (−𝑥𝜂) (A.2)

The random shock 𝜀𝑖(𝑖 , ℓ ′) is Fréchet random variable with mean one and shape parameter 𝜂 > 1, so
its scale parameter is 𝑠 = (Γ(1 − 1/𝜂))−1; thus the normalized shock 𝜀̂𝑖(𝑖 , ℓ ′) = 1

𝑠 𝜀𝑖(𝑖 , ℓ ′) is distributed
by 𝐹(𝑧). If a farmer draws 𝜀̂𝑖(𝑘, ℓ ′) = 𝑧 for their random productivity, then that farmer chooses pair
(𝑘, ℓ ′) only if this results in the maximum productivity among all options, or

𝜈(𝑘, ℓ ′, ℓ )𝑧 > 𝜈(𝑘′, ℓ ′′, ℓ )𝜀̂𝑖(𝑘′, ℓ ′′) (A.3)

for all other pairs (𝑘′, ℓ ′′). These events are independent across all (𝑘′, ℓ ′′). Thus the probability of
choosing (𝑘, ℓ ′) is given by the probability of the event described above, conditional on each realization
𝑧, integrated over the probability distribution of 𝑧:

𝜋(𝑘, ℓ ′ → ℓ ) =
∫ ∞

0

∏
𝑘′,ℓ ′′≠𝑘,ℓ ′

𝐹

(
𝜈(𝑘, ℓ ′, ℓ )
𝜈(𝑘′, ℓ ′′, ℓ ) 𝑧

)
d𝐹(𝑧) (A.4)

Substituting Equation A.2 into Equation A.4 and simplifying yields the expression

𝜋(𝑘, ℓ ′, ℓ ) =
∫ ∞

0
exp

(
−𝑧−𝜂 Ξ(ℓ )𝜂

𝜈(𝑘, ℓ ′, ℓ )𝜂

)
𝑧−1−𝜂 d𝑧 (A.5)

where we define the productivity index

Ξ(ℓ ) =
(
𝐾∑
𝑘=1

𝐿∑
ℓ ′=1

𝜈(𝑘, ℓ ′, ℓ )𝜂
) 1

𝜂

(A.6)

which corresponds with the index defined in Equation 2.6 in the main text. See that, after a change
in variables in the integrand to

𝑧̃ = 𝑧
𝜈(𝑘, ℓ ′, ℓ )
Φ(ℓ ) (A.7)

that the original integral can be re-written and simplified as

𝜋(𝑘, ℓ ′, ℓ ) = 𝜈(𝑘, ℓ ′, ℓ )𝜂∑
𝑘′,ℓ ′′ 𝜈(𝑘′, ℓ ′′, ℓ )𝜂

∫ ∞

0
exp (−𝑧̃−𝜂) 𝑧̃−1−𝜂 d𝑧

=
𝜈(𝑘, ℓ ′, ℓ )𝜂∑

𝑘′,ℓ ′′ 𝜈(𝑘′, ℓ ′′, ℓ )𝜂
∫ ∞

0
d𝐹(𝑧̃)

=
𝜈(𝑘, ℓ ′, ℓ )𝜂∑

𝑘′,ℓ ′′ 𝜈(𝑘′, ℓ ′′, ℓ )𝜂

(A.8)

Re-writing the last line with the definition of 𝜈(𝑘, ℓ ′, ℓ ) completes the proof □
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A.2 Proof of Proposition 1

We first derive the program of an innovator for profit-maximizing research. Fix the innovator’s
country ℓ ′ and crop 𝑘. Since individual innovators are small, the measure of farmers using any
technology 𝑗 ∈ [ℓ ′ − 1, ℓ ′) in country ℓ for crop 𝑘 is given by 𝜋(𝑘, ℓ ′, ℓ ) as derived in Lemma 1 and
Equation A.1. If all innovators have the same technology quality, or 𝜃𝑗(𝑘, ℓ ′) ≡ 𝜃(𝑘, ℓ ′ → ℓ ), then the
productivity of each farmer planting (𝑘, ℓ ′) is given by Ξ(ℓ ), defined in Equation in 2.6, due to the
arguments in the proof of Proposition 2. Finally, the productivity of a farmer planting technology
𝑗 is given by Ξ(ℓ ) 𝜃𝑗(𝑘,ℓ )

𝜃(𝑘,ℓ ′→ℓ ) , where the second term measures any differential productivity relative to
the average quality of technology. The innovator chooses general research, or 𝐴 𝑗(𝑘), and pest-specific
research, or the mapping 𝑡 , ℓ ↦→ 𝐵 𝑗(𝑡 , 𝑘, ℓ ), to solve the program

max
𝐴𝑗(𝑘),𝐵𝑗(𝑡 ,𝑘,ℓ )>0

𝐿∑
ℓ=1

𝜌(ℓ , ℓ ′)𝜋(𝑘, ℓ ′, ℓ )Ξ(ℓ )
𝜃𝑗(𝑡 , 𝑘, ℓ ′)
𝜃(𝑘, ℓ ′ → ℓ ) −

𝐿∑
ℓ=1

∫
𝒯
𝐶(𝐵 𝑗(𝑡 , 𝑘, ℓ ); 𝑡 , 𝑘, ℓ ′)d𝑡 −𝑄(𝐴 𝑗(𝑘)) (A.9)

where 𝒯 denotes the set of all pests and 𝑄(·) denotes the cost of researching general technology,
which we assume to be convex. The program is concave, owing to the concavity of the objective
(which is “Cobb-Douglas,” with constant returns to scale) and convexity of all costs, and its solution
is characterized by necessary first-order conditions for each choice variable.

We first establish two basic observations about pest-specific research within the home country ℓ ′.
See that, for any 𝑘 and 𝑡 ∉ 𝒯 (𝑘, ℓ ′), there is zero marginal benefit to research. Therefore, it is necessary
in any optimal allocation for 𝐵 𝑗(𝑡 , 𝑘, ℓ ′) ≡ 0 for all 𝑘 and 𝑡 ∉ 𝒯 (𝑘, ℓ ′). Next, see that the first-order
condition for any 𝑘 and 𝑡 ∈ 𝒯 (𝑘, ℓ ) is

(1 − 𝛼)𝜌(ℓ ′, ℓ ′)𝜋(𝑘, ℓ ′, ℓ ′)Ξ(ℓ ′)
𝜃𝑗(𝑡 , 𝑘, ℓ ′)

𝜃(𝑘, ℓ ′ → ℓ ′) = 𝐵
𝜙+1
0 𝐵 𝑗(𝑡 , 𝑘, ℓ ′)𝜙+1 exp(−𝜏(𝐵(𝑡 , 𝑘, ℓ ′))) (A.10)

Under a symmetric equilibrium, this has a unique solution 𝐵(𝑘, ℓ ′) > 0 for any specific pest.
We next focus on the first-order conditions for each 𝐵 𝑗(𝑡 , 𝑘, ℓ ) for ℓ ≠ ℓ . There are three cases.

First, 𝑡 ∉ 𝒯 (𝑘, ℓ ) or the pest is not present, marginal benefits are zero and optimal investment is zero.
Second, if 𝑡 ∈ 𝒯 (𝑘, ℓ ) and 𝑡 ∉ 𝒯 (𝑘, ℓ ′), then the first-order condition is given by the following

(1 − 𝛼)𝜌(ℓ , ℓ ′)𝜋(𝑘, ℓ ′, ℓ )Ξ(ℓ )
𝜃𝑗(𝑡 , 𝑘, ℓ ′)
𝜃(𝑘, ℓ ′ → ℓ ) = 𝐵

𝜙+1
0 𝐵 𝑗(𝑡 , 𝑘, ℓ )𝜙+1 (A.11)

incorporating the zero knowledge spillover, from zero ℓ ′ research. Finally, if 𝑡 ∈ 𝒯 (𝑘, ℓ ) and 𝑡 ∈
𝒯 (𝑘, ℓ ′), then the first-order condition is given by the following that incorporates the knowledge
spillover:

(1 − 𝛼)𝜌(ℓ , ℓ ′)𝜋(𝑘, ℓ ′, ℓ )Ξ(ℓ )
𝜃𝑗(𝑡 , 𝑘, ℓ ′)
𝜃(𝑘, ℓ ′ → ℓ ) = 𝐵

𝜙+1
0 𝐵 𝑗(𝑡 , 𝑘, ℓ )𝜙+1 exp(−𝜏(𝐵(𝑘, ℓ ′))) (A.12)
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We focus on symmetric equilibria in which 𝜃𝑗(𝑡 , 𝑘, ℓ ′) ≡ 𝜃(𝑘, ℓ ′ → ℓ ) for all 𝑗 ∈ [ℓ ′ − 1, ℓ ) and
𝐵(𝑡 , 𝑘, ℓ ′)𝜏 ≡ 𝐵(𝑘, ℓ ′)𝜏 for all 𝑡 ∈ 𝒯 (𝑘, ℓ ′). In this case, 𝜃𝑗(𝑡 ,𝑘,ℓ ′)

𝜃(𝑘,ℓ ′→ℓ ) = 1 in each equation.
We now derive the the expression for technology transfer, Equation 2.4. Taking logs, integrating

Equations A.11 and A.12 over all pests 𝑡 ∈ 𝒯 (𝑘, ℓ ), and adding log𝐴(𝑘, ℓ ′), we derive the following
condition for log𝜃(𝑘, ℓ ′ → ℓ ):

1 + 𝜙

1 − 𝛼
log𝜃(𝑘, ℓ ′ → ℓ ) = log(1 − 𝛼) − (1 + 𝜙) log 𝐵0 + log 𝜌(ℓ , ℓ ′) + 𝜏𝐵(𝑘, ℓ ′) − 𝛿(𝑘, ℓ ′, ℓ )𝜏(𝐵(𝑘, ℓ ′))

+ logΞ(ℓ ) + log𝜋(𝑘, ℓ ′, ℓ ) + 𝛼
1 − 𝛼

(1 + 𝜙) log𝐴(𝑘, ℓ ′)
(A.13)

Substituting in the expression for 𝜋(𝑘, ℓ ′, ℓ ) from Lemma 1, this re-arranges as desired to

log𝜃(𝑘, ℓ ′ → ℓ ) = 𝛽(𝑘, ℓ ′) · 𝛿(𝑘, ℓ ′, ℓ ) + 𝜒(𝑘, ℓ ) + 𝜒(𝑘, ℓ ′) + 𝜒(ℓ , ℓ ′) (A.14)

with the fixed effects defined by

𝜒(𝑘, ℓ ) = 1 − 𝛼

1 + 𝜙 − (1 − 𝛼)𝜂
(
𝜂 log 𝑝(𝑘) + 𝜂 log 𝜔(𝑘, ℓ ) − (𝜂 − 1)Ξ(ℓ )

)
𝜒(𝑘, ℓ ′) = 1 − 𝛼

1 + 𝜙 − (1 − 𝛼)𝜂
(
𝜏(𝐵(𝑘, ℓ ′)) + (1 + 𝜙) log𝐴(𝑘, ℓ ′)

)
𝜒(ℓ ′, ℓ ) =

(1 − 𝛼)(log 𝜌(ℓ ′, ℓ ) + log(1 − 𝛼) − (1 + 𝜙) log 𝐵0)
1 + 𝜙 − (1 − 𝛼)𝜂

(A.15)

and coefficient
𝛽(𝑘, ℓ ′) = −(1 − 𝛼)𝜏(𝐵(𝑘, ℓ ′))

1 + 𝜙 − (1 − 𝛼)𝜂 (A.16)

As 1+𝜙−(1−𝛼)𝜂 > 0, by the assumption stated in Footnote 16, we furthermore have that 𝛽(𝑘, ℓ ′) ≤ 0.

A.3 Proof of Proposition 2

We first derive productivity of 𝑘, ℓ ′ production conditional on choice. Let

𝑉∗
𝑖 = max

𝑘′,ℓ ′′
{𝜓𝑖(𝑘′, ℓ ′′)} (A.17)

denote the productivity of farmer 𝑖 evaluated at the optimal choice. The probability that 𝑉∗
𝑖

is less
than some value 𝑣, conditional on the optimal choice being (𝑘′, ℓ ′′), can be obtained by integrating the
right-hand-side of Equation A.4 up to the realization 𝑣

𝑠𝜈(𝑘′,ℓ ′′,ℓ )𝜂 , and normalizing by the probability of
choosing (𝑘′, ℓ ′′):

P[𝑉∗
𝑖 ≤ 𝑣 | 𝑢∗𝑖 = (𝑘′, ℓ ′′)] = 1

𝜋(𝑘, ℓ ′ → ℓ )

∫ 𝑣
𝑠𝜈(𝑘′ ,ℓ′′ ,ℓ )𝜂

0
𝐹

(
𝜈(𝑘, ℓ ′, ℓ )𝜂
𝜈(𝑘′, ℓ ′′, ℓ )𝜂 𝑧

)
d𝐹(𝑧) (A.18)
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where 𝜈(𝑘, ℓ ′, ℓ ) = 𝑝(𝑘)𝜔(𝑘, ℓ )𝜃(𝑘, ℓ ′ → ℓ ) as defined previously. Doing the same manipulation of the
integrand and change-of-variables as in the proof of Lemma 1, we can re-express this probability as

P[𝑉∗
𝑖 ≤ 𝑣 | 𝑢∗𝑖 = (𝑘′, ℓ ′′)] =

∫ 𝑣
𝑠Ξ(ℓ )

0
d𝐹 (𝑧̃) (A.19)

which implies that 𝑉∗
𝑖
, conditional on 𝑢∗

𝑖
= (𝑘′, ℓ ′′), can be written as the product of Ξ(ℓ ) and a unit-

mean, 𝜂-shape Fréchet random variable. Since this is invariant to 𝑘′, ℓ ′′, this is also the unconditional
distribution of 𝑉∗

𝑖
. Moreover, it implies that E[𝑉∗

𝑖
|𝑢∗
𝑖
= (𝑘′, ℓ ′′)] = Ξ(ℓ ) for any (𝑘′, ℓ ′′), as well as

unconditionally.
We first derive an expression for the physical yield of crop 𝑘 in country ℓ . Because of the law of

large numbers, this is equal to the expected physical production per unit area:

𝑧(𝑘, ℓ ) = 1
𝑝(𝑘)E

[
𝑉∗
𝑖 | 𝑢∗𝑖 = (𝑘, ℓ ′), ℓ ′ ∈ {1, . . . , 𝐿}

]
(A.20)

As established above, the conditional expectation is Ξ(ℓ ). Thus, 𝑧(𝑘, ℓ ) = Ξ(ℓ )
𝑝(𝑘) .

Next, see that the planted area equals the probability of selecting crop 𝑘 within any location ℓ ′,
again due to the law of large numbers over individual farms. This probability is

𝜋(𝑘, ℓ ) =
∑𝐿
ℓ ′ 𝜈(𝑘, ℓ ′, ℓ )𝜂∑

𝑘′,ℓ ′′ 𝜈(𝑘′, ℓ ′′, ℓ )𝜂
(A.21)

Combining the previous with the definitions of Ξ(ℓ ) and 𝜈(𝑘, ℓ ′, ℓ ), and taking a log, we derive the
following expression in terms of primitives:

log𝜋(𝑘, ℓ ) = 𝜂 logΘ(𝑘, ℓ ) + 𝜂 log 𝜔(𝑘, ℓ ) + 𝜂 log 𝑝(𝑘) − 𝜂 logΞ(ℓ ) (A.22)

Finally, see that physical production can be written as

𝑌(𝑘, ℓ ) =
𝐿∑
ℓ ′
E

[
𝑉∗
𝑖

𝑝(𝑘) | 𝑢∗𝑖 = (𝑘, ℓ ′)
]
· 𝜋(𝑘, ℓ ′, ℓ ) (A.23)

By the arguments above, E
[
𝑉∗
𝑖

𝑝(𝑘) | 𝑢
∗
𝑖
= (𝑘, ℓ ′)

]
≡ Ξ(ℓ )

𝑝(𝑘) , or the uniform physical yield, and hence

𝑌(𝑘, ℓ ) = Ξ(ℓ )𝜋(𝑘, ℓ )
𝑝(𝑘) (A.24)

Combining this with Equation A.22, and taking a log, yields

log𝑌(𝑘, ℓ ) = 𝜂 logΘ(𝑘, ℓ ) + 𝜂 log 𝜔(𝑘, ℓ ) + (𝜂 − 1) log 𝑝(𝑘) + (1 − 𝜂) logΞ(ℓ ) (A.25)
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This proves the claim of Proposition 2.

A.4 Statement and Proof of Corollary 1

Corollary 1. The fraction of crop 𝑘 farmers using technology from country ℓ ′ in location ℓ is given by

log𝜋(𝑘, ℓ ′ → ℓ ) = 𝜂 · 𝛽(𝑘, ℓ ′) · 𝛿(𝑘, ℓ ′, ℓ ) + 𝜒̂(𝑘, ℓ ) + 𝜒̂(𝑘, ℓ ′) + 𝜒̂(ℓ , ℓ ′) (A.26)

where 𝛽(𝑘, ℓ ′) ≤ 0 is given in Equation 2.5, and the 𝜒̂(·) are additive effects varying at the indicated level.

First, see that we can write the conditional probability of using technology from ℓ ′ in terms of the
probabilities of choosing each (𝑘, ℓ ′) pair:

𝜋(ℓ ′ | 𝑘, ℓ ) = 𝜋(𝑘, ℓ ′, ℓ )∑𝐿
ℓ ′′=1 𝜋(𝑘, ℓ ′′, ℓ )

(A.27)

Applying Lemma 1, and simplifying, we derive

𝜋(ℓ ′ | 𝑘, ℓ ) = 𝑝(𝑘)𝜂𝜃(𝑘, ℓ ′ → ℓ )𝜂𝜔(𝑘, ℓ ′)𝜂∑𝐿
ℓ ′′=1 𝑝(𝑘)𝜂𝜃(𝑘, ℓ ′′ → ℓ )𝜂𝜔(𝑘, ℓ )𝜂

=
𝜃(𝑘, ℓ ′ → ℓ )𝜂∑𝐿

ℓ ′′=1 𝜃(𝑘, ℓ ′′ → ℓ )𝜂

(A.28)

We finally take logs to derive Equation A.26, defining the fixed effects as

𝜒̂(𝑘, ℓ ) = 𝜂𝜒(𝑘, ℓ ) − log

(
𝐿∑

ℓ ′′=1
𝜃(𝑘, ℓ ′′ → ℓ )𝜂

)
𝜒̂(𝑘, ℓ ′) = 𝜂𝜒(𝑘, ℓ ′)

𝜒̂(ℓ ′, ℓ ) = 𝜂𝜒(ℓ ′, ℓ )

(A.29)

where (𝜒(𝑘, ℓ ), 𝜒(𝑘, ℓ ′), 𝜒(ℓ ′, ℓ )) are as in Equation 2.4, and as defined in the proof of Proposition 1.
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B. Additional Empirical Analysis

B.1 Invasive Species

In our baseline estimates, we construct CPP mismatch using all known pests and pathogens present
in each country that affect each crop. This measure captures the true extent of global differences in
CPP ecology across crops and countries. An important conceptual question is whether the baseline
findings are driven by invasive species, or persistent differences in ecology across crops and locations.
Invasive species can cause disproportionate damage to plants and agricultural production since they
often have fewer natural predators in the new environment, and other species have not evolved
natural defense mechanisms. Moreover, if the results are strongly driven by invasive species, it
would be important to explore further the causes of species movement and ensure that they are not
correlated with omitted factors that could drive our results. However, as discussed in the main text,
there are several examples of persistent differences in CPP environment across locations shaping the
effectiveness of technology (see Section 3.1).

To investigate the role of invasive species, we use an additional data set produced by CABI: the
Invasive Species Compendium (ISC).63 The ISC is a list of global invasive species, as determined by
extensive literature searches and trawls of existing invasive species lists. Since the ISC is also a CABI
data set, we can use the unique species identifiers to link ISC species to CPC species in our main CPP
data set. 748 CPPs from our main sample are listed as invasive species in the ISC, comprising about
15% of our main CPP sample. We then estimate all versions of CPP distance from the main text after
restricting the sample of CPPs to non-invasive species, and re-produce all of our main estimates using the
CPP distance measures purged of variation from invasive species.64

The estimates are presented in Table A12. Columns 1-3 report estimates corresponding to our
analysis of international technology diffusion and columns 4 and 5 report estimates correspond to our
analysis of biotechnology adoption and output respectively. Compared to our baseline estimates, the
effects on technology diffusion are (if anything) slightly larger, and the effects on output are slightly
smaller (although the standardized effect is similar, since the standard deviation of CPP distance
without invasive species is somewhat smaller). These findings suggest that the baseline results are
not driven by invasive species.

B.2 Inappropriateness Driven By Non-CPP Agro-Climatic Conditions

This section investigates the possible importance of non-CPP agro-climatic conditions as shifters of
ecological inappropriateness. We estimate ecological differences across crop-specific growing areas in
different countries and study how these differences shape technology diffusion and crop-level output.

63The ISC homepage can be found here: https://www.cabi.org/isc
64It could be ideal to only exclude country-CPP pairs where the CPP is known to by invasive. However, we are unaware

of systematic data on the locations of species invasion; CABI do not report this level of detail.
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We also investigate the relationship between these measures of geographic mismatch and our baseline
CPP-derived measure. Finally, we estimate our baseline counterfactual scenario incorporating these
non-CPP differences in crop-specific growing conditions.

B.2.1 Constructing Agro-climatic Mismatch

We include ten key agroclimatic characteristics that shape the usefulness of biotechnology for pro-
duction in a region: temperature, precipitation, elevation, ruggedness, the growing season, and soil
acidity, clay content, silt content, coarse fragment content, and water capacity.65 We combine geo-
graphically coded raster files of each aforementioned characteristic with grid-cell level information
from the EarthStat database, which reports the global planting pattern of 175 important crops in
the year 2000 (Monfreda et al., 2008).66 We then compute the value of each characteristic for each
crop-by-country pair by estimating the average value of each characteristic in each country on just the
land that EarthStat identifies is devoted to the crop in question; we denote these as 𝑥𝑘,ℓ . We then simply
normalize each characteristic so that all are in comparable units by re-centering by the global mean
value of each attribute and normalizing by the global dispersion (standard deviation); we refer to
these normalized values as 𝑥̂𝑘,ℓ . For each agro-climatic characteristic 𝑥 ∈ 𝒳 we define:

Δ𝑥̂𝑘,ℓ ,ℓ ′ = |𝑥̂𝑘,ℓ − 𝑥̂𝑘,ℓ ′ | (B.1)

where, in words, 𝑥̂𝑘,ℓ ,ℓ ′ is the normalized distance (“inappropriateness”) in agro-climatic feature 𝑥
for crop 𝑘 between countries ℓ and ℓ ′. For simplicity, we also aggregate the individual agroclimatic
characteristics into a single index at the crop-by-country-pair level:

AgroClimMismatch𝑘,ℓ ,ℓ ′ =
1
|𝒳| ·

∑
𝑥∈|𝒳|

|𝑥̂𝑘,ℓ − 𝑥̂𝑘,ℓ ′ | (B.2)

where𝒳 is the set of agro-climatic characteristics 𝑥. The index is similar to the agro-climatic similarity
index used by Bazzi et al. (2016) to study patterns of migration. This index has the attractive feature
that it is additively separable the 𝑥’s and therefore simple to separate the contribution of each attribute.

B.2.2 Empirical Estimates

We next investigate the role of differences across agro-climatic features in shaping the transfer of
technology and productivity differences. Column 1 of Table A13 re-produces our baseline estimate
of Equation 4.1 on the sample of country-pairs and crops for which all agro-climatic features could be

65This set of characteristics builds from earlier work on the transferability of agricultural knowledge across ecologically
different regions (see, for example, Bazzi et al., 2016).

66The data set is described and can be accessed here: http://www.earthstat.org/harvested-area-yield-175-crops/. The
data set was created by combining national, state, and county level census data with information on crop-specific maximum
potential yield around the world, to construct a 5-minute by 5-minute grid of the area devoted to each of 175 important
crops circa the year 2000.
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measured. Our estimate is negative, significant, and slightly larger in magnitude than our estimate
on the largest possible sample reported in the main text.

In column 2, we add Δ𝑥𝑘,ℓ ,ℓ ′ for all 𝑥 ∈ 𝒳. Consistent with agricultural biotechnology also being
specific to particular non-CPP features of the environment (e.g. via repeated selection in a particular
local environment), the coefficients on the Δ𝑥𝑘,ℓ ,ℓ ′ are almost all negative and some are statistically
significant. Mismatch in temperature and precipitation are associated with the largest reductions in
technology transfer, and there is also a significant effect of mismatch in elevation and soil pH. Despite
the inclusion of all these additional distance metrics, however, the coefficient on CPP mismatch barely
changes. In column 3, we include the one-dimensional AgroClimMismatch𝑘,ℓ ,ℓ ′ on the right hand
side of the regression in place of the individual characteristics. The coefficient on agro-climatic
mismatch is negative and significant; however, the coefficient on CPP distance again remains very
similar, suggesting that non-CPP ecological differences do not bias our baseline estimates.

In Table A14, the dependent variable is log of agricultural output and the regression specification
is Equation 5.2. Column 1 reproduces our main result, the relationship between CPP mismatch
with the frontier and output, on the reduced sample on which we were able to estimates all agro-
climatic characteristics. The specification in column 2 includes both CPP mismatch and agro-climatic
mismatch on the right hand side. While mismatch with the frontier in non-CPP agro-climatic features
significantly lower output, these effects again operate largely independently from CPP mismatch.

Taken together, these results show that our main findings are not specific to CPP differences
across crops and places (or, more perniciously, not driven by some specific feature of our CPP data
and measurement strategy); other agro-climatic shifters of inappropriateness also affect technology
transfer and productivity gaps. At the same time, non-CPP agro-climatic differences as we measure
them seem to operate independently from our baseline measure of CPP mismatch, suggesting that
the baseline estimates are not simply picking up standard features of climate and geography.

These findings are all consistent with the fact that the pairwise correlations between CPP mismatch
with the frontier, and mismatch with the frontier in each other ecological characteristic, is relatively
low. Table A15 reports a correlation matrix, including CPP distance to the frontier along with all
agro-climatic characteristics discussed above. The first column shows the correlation between CPP
distance and all other distance measures; the correlation coefficients tend to be small, and only one is
above 0.2. Several are 0.1 or below. The remainder of the table includes correlation coefficients among
all other pairs of ecological characteristics.

Finally, we estimate our baseline counterfactuals scenario incorporating both CPP mismatch and
acro-climatic mismatch, using the estimates from column 3 of Table A14. Our empirical strategy is
identical to the one outlined in Section 7.1 of the main text. We find that inappropriateness, as captured
by both CPP mismatch and agro-climatic mismatch, reduces global productivity by 52% and increases
disparities in global productivity across countries by 16%. These results are summarized graphically
in Figure A10, which is structured in the same way as Figure 5 in the main text. Thus, incorporating
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agro-climatic mismatch as an additional shifter of inappropriateness increases our estimate of the
overall effect of inappropriateness on productivity. However, as foreshadowed by the reduced form
estimates in Table A14, the effect of CPP mismatch on global output is about four times as large as the
effect of agro-climatic mismatch, suggesting that inappropriateness in the form of agricultural pests
and pathogens is a particularly important determinant of global agricultural productivity.

B.3 The Global Direction of Agricultural Innovation

The inappropriate technology hypothesis is based on the premise that global innovation is biased
toward the needs and demands of wealthy frontier countries. There are two reasons we expect this
bias to exist, which were both implicit throughout the examples given so far. First, if innovation is
more likely to occur in rich countries with more biotechnological infrastructure, it may take advantage
of local “technology production opportunities.” This mechanism is embodied in the local knowledge
spillovers in the model, and may take the general form of accumulated expertise, available test fields
for breeding or trials, and readily available germplasm for genetic analysis. Second, since wealthy
countries tend to be large markets, global innovation which occurs anywhere in the world may still
be directed toward their needs as part of profit-maximizing behavior.

We explore both of these hypotheses in reduced form within our global varieties data (UPOV
PLUTO), focusing on novel plant varieties released anywhere in the world in the 21st century. Let
BioTech𝑘 be the count of all unique denominations produced in the world for crop 𝑘 over this period;
this will be our simple measure of global technological progress for a given crop. To quantify the
targeting of this technology, measured in this simple way, we estimate the following regression model:

log(BioTech𝑘) = 𝛼 + 𝛿1 · log WorldArea𝑘 + 𝛿2 · log GDPArea𝑘 + 𝛿3 · log IPArea𝑘 + 𝜀𝑘 (B.3)

in which log WorldArea𝑘 is the (log of) global area devoted to crop 𝑘, and the other two regressors
are respectively this area weighted by per-capita GDP (averaged over 1990-1999) and the presence of
intellectual property for plant varieties as of 2000:67

log GDPArea𝑘 = log
(∑

ℓ

Area𝑘,ℓ · GDPℓ
)

log IPArea𝑘 = log
(∑

ℓ

Area𝑘,ℓ · I𝐼𝑃ℓ
)

(B.4)

We think of the first regressor, and its coefficient 𝛿1, as (to first approximation) a proxy for each
crops importance to global livelihoods when not adjusted by production and/or willingness to pay
for technology; while the latter two regressors, and their coefficients (𝛿2 , 𝛿3), could each capture bias
via either channel described above.

Figure A6 reports our estimates of 𝛿2 and 𝛿3, in the form of partial correlation plots in which each
dot is a crop. Consistent with the hypothesis, both are positive and significant, and together have

67We compile the latter data using UPOV’s collation of relevant intellectual property law across its member states, under
the premise that participation in UPOV is essentially universal conditional on having meaningful IP protection.
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an incremental 𝑅2 of 29%. To give a sense of the estimated magnitudes, suppose the global market
size of cotton increased by 1%; the regression estimates imply that, if this expansion occurred in the
United States, the number of cotton varieties developed would increase by 4.41%; if it occurred in
Brazil, a less wealthy country but one that does protect intellectual property, the number of cotton
varieties developed would increase by 1.31%; and if it occurred in India, a low-income country that
does not protect intellectual property, there would be essentially no effect.

To offer reduced-form clues that can distinguish between the two possible causes of this bias
described above, we also estimate the following model at the level of crop-𝑘 and country-ℓ pairs:

log(BioTech𝑘,ℓ ) = 𝛿0 · log Area𝑘,ℓ + 𝛿1 · log WorldArea𝑘 + 𝛿2 · log GDPArea𝑘 + 𝛿3 · log IPArea𝑘 + 𝜒ℓ + 𝜀𝑘,ℓ

(B.5)
in which BioTech𝑘,ℓ is the number of varieties of crop 𝑘 developed in country ℓ since 2000; and 𝜒ℓ are
country fixed effects. The term 𝛿0 · log Area𝑘,ℓ isolates “local focus,” potentially due to local specificity
of technology production, relative to all innovators’ uniform desire to cater to large markets, as
captured by the next three terms. Estimates of Equation (B.5) are reported in Table A16. We find
that 𝛿0 ≫ 0, suggesting that the local focus of innovators an important mechanism; 𝛿2 and 𝛿3 are also
positive, although only marginally significant. Finally, in this framework, 𝛿1 = 0; un-weighted global
market size is uncorrelated with technology development.

Together, this evidence suggests that in our data, technology development is biased toward the
demands of wealthy, IP-protecting countries; this effect appears driven by the fact that innovation
takes place in these countries and innovators develop technology for their home markets. These
estimates mirror our findings using the CPP-specific patent data in Section 3.3 and further motivate
the local R&D spillovers in the model.

B.4 Technology Transfer to Africa

The UPOV data set tracks all plant variety certificates and as a result only covers countries for which
intellectual property protection is in place; this results, as can be seen in Figure A2, several omissions,
most notably much of Africa. Moreover, despite the fact that barriers to obtaining protection under
UPOV are low and the fact that public entities often obtain protection (e.g. the Sicot Cotton example
from the main text), there is a potential concern that our main technology diffusion data under-samples
public sector innovation. To partially fill this gap, especially in light of our subsequent analysis on
technology adoption focuses on sub-Saharan Africa, we compile data from the Consultative Group
on International Agricultural Research (CGIAR) Diffusion and Impact of Improved Varieties in Africa
(DIIVA) project. DIIVA has collected data on improved crop varieties for 28 countries in sub-Saharan
Africa and across 19 crops since 1960, and incorporates an extensive search of public-sector research
and variety release.

Using the DIIVA Project data, we compute the number of varieties for each plant species introduced

61



in 28 African countries; since we do not know the country of origin of each variety, in order to
investigate whether inappropriateness is a barrier to technology using these data, we estimate a
simplified version of (4.1):

𝑦𝑘,ℓ = 𝛽 · CPPMismatch𝑘,ℓ + 𝜒ℓ + 𝜒𝑘 + 𝜀𝑘,ℓ (B.6)

where CPPMismatch𝑘,ℓ is defined using either method described in Section 5.1.2. We expect CPP
mismatch with the frontier to inhibit biotechnology transfer; that is, we hypothesize that 𝛽 < 0. Our
estimates of Equation B.6 are displayed in Figure A7. Consistent with our main technology transfer
results estimated at the country pair-by-crop level, we find that pathogen distance to frontier countries
significantly inhibits biotechnology introduction in sub-Saharan Africa. While these estimates are
necessarily less precise, given the smaller sample size and absence of data on the origin country, they
tell a very similar story to our main analysis.

B.5 Growth of US Biotechnology

Since the 1990s, the US agricultural biotechnology sector has produced a growing share of global
innovation, likely driven by the advent and increased use of genetic modification. Figure A8 displays
the relative growth of US patenting since 1990; the same trend for the EU is also reported, and does
not show nearly as prominent an increase.

We investigate whether this shift in the geography of research affected the global distribution of
production by disproportionately favoring producers in places where US technology—as opposed
to European technology—was appropriate. For each country-crop pair, we measure the change in
production (or area harvested) between the decade of the 1990s and the decade of the 2010s, and
estimate:

Δ log 𝑦90−10
𝑘,ℓ

= 𝛽1 · CPP Mismatch𝑈𝑆𝑘,ℓ + 𝛽2 · CPP Mismatch𝐸𝑈𝑘,ℓ + 𝛾 · log 𝑦1990
𝑘,ℓ

+ 𝜒ℓ + 𝜒𝑘 + 𝜀𝑘,ℓ (B.7)

Our first hypothesis is that 𝛽1 < 0, capturing the effect of the rise of the US on production in places
where US technology is more or less appropriate. Our second hypothesis is that 𝛽1 < 𝛽2, capturing
the fact that since 1990, US technology has grown substantially more than European technology, so
we would expect CPP mismatch with the US to be a more important determinant of productivity
changes than CPP mismatch with Europe.

Estimates of (B.7) are reported in Table A17, and across specifications we find evidence of both
hypotheses. 𝛽1 < 0 and 𝛽2 is close to zero and positive in all specifications. These estimates are
less precise than our main results, and 𝛽1 is statistically distinguishable from 𝛽2 in just one of the
four specifications. Nevertheless, dovetailing with Section 6.1, these findings suggest that global
productivity differences are endogenous to the evolving landscape of technology development. As
a result, geography does not have a fixed impact on development, but changing effects that can be
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shaped by the focus and direction of innovation.
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C. Supplemental Figures and Tables

Figure A1: Example of CPP Mismatch Variation
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Notes: Histogram (solid bars) and kernel density estimates (lines) for CPP Mismatchℓ ,ℓ ′,𝑘 , where ℓ is
the United States and 𝑘 is the crop indicated in each graph. Values for India and Brazil are labeled.

Figure A2: UPOV Compliant Countries

Notes: This figure denotes in green all UPOV member countries. This is the sample of countries for
which we have data on biotechnology development and transfer.
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Figure A3: Visualizing Variety Transfer

(a) Variety Transfer as a Directed Network (b) Frequency of Occurrence for Varieties
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Notes: In (a), each node is a country sized in proportion to its total variety production and each edge
is sized and colored in proportion to the number of varieties transferred. In (b), the percentages are
in terms of unique varieties.

Figure A4: Falsification Test: CPP Mismatch with All Countries

(a) Unconditional
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(b) Conditional on CPP Distance to the US
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Notes: This figure displays histograms of the coefficient estimates of the relationship between CPP
distance to each country separately and log of crop-level output. In A4a, CPP distance to each country
is included on the right hand side of the regression alone (along with crop and country fixed effects)
and A4b, CPP distance to the US is also included in the regression.
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Figure A5: CPP Mismatch and Agricultural Output: Brazil and India Separately

(a) India (𝑁 = 384)
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(b) Brazil (𝑁 = 1, 052)
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Notes: This figure displays binned partial correlation plots, after absorbing crop and state fixed effects,
of our estimates of Equation (5.3), separately for India (A5a), where we estimate 𝛽 = −9.20 (2.70), and
Brazil (A5b), where we estimate 𝛽 = −10.15 (5.17).

Figure A6: Bias in Global BioTech Development

(a) IP-Weighted Area and BioTech Development
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(b) GDP-Weighted Area and BioTech Development
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Notes: Partial correlation plots (𝑁 = 107) of our estimates of 𝛿2 and 𝛿3 from Equation (B.3). Both are
estimated from the same regression, which also included a control for log of global planted area.
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Figure A7: Pathogen Distance and Biotechnology Transfer to sub-Saharan Africa

(a) CPP Mismatch with the US
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(b) CPP Mismatch with Estimated Frontier Countries
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Notes: This figure displays binned partial correlation plots, after absorbing country and crop fixed
effects, of our estimates of Equation (B.6), both using pathogen distance to the US (left) and pathogen
distance to the estimated frontier set (right). The number of observations is 345 in both sub-figures
and standard errors are clustered by country.

Figure A8: Growth in Agricultural Patented Technologies, Europe vs. the United States
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Notes: Total number of patented agricultural technologies (i.e., in CPC class A01) in each five year
period, comparing patents with assignees in the US to patents with assignees in the modern EU (as
of 2018). Bars are the number of patents issued in the five year bin noted on the horizontal axis.
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Figure A9: Sensitivity Analysis of Counterfactual Experiment
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Figure A10: Causal Effects of Inappropriateness: CPP and Agro-Climatic Mismatch
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Notes: This figure recreates Figure 5 under an experiment that removes inappropriate due to both
CPP mismatch and Agro-Climatic mismatch. The left graph is a histogram of productivity losses
from inappropriateness. The right graph is a scatterplot of productivity losses against observed
productivity. The dashed line is a best-fit linear regression across countries. In each plot, colors
indicate continents.
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Table A1: Patenting Activity Directed Toward Local CPPs

(1) (2) (3)

CPP-Specific	

Patents	

(asinh)

Any	CPP-

Specific	

Patent	(0/1)

log	CPP-

Specific	

Patents

Local	CPP 0.0972*** 0.0479*** 0.181***

(0.0288) (0.0106) (0.0635)

Country	Fixed	Effects Yes Yes Yes

CPP	Fixed	Effects Yes Yes Yes

Observations 492,422 492,422 8,557

R-squared 0.211 0.202 0.557

Notes: The	unit	of	observation	is	a	CPP-by-country	pair.	The	dependent	variable	is	the	
number	of	patents	registered	to	inventors	in	the	country	and	with	the	CPP's	scientific	name	
in	the	title,	abstract,	or	patent	description.	Standard	errors,	clustered	by	country	and	CPP,	are	
included	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A2: Patenting Activity Directed Toward Local CPPs: Larger Effects in Rich Countries

(1) (2) (3) (4) (5) (6)

CPP-Specific	
Patents	
(asinh)

Any	CPP-
Specific	

Patent	(0/1)

log	CPP-
Specific	
Patents

CPP-Specific	
Patents	
(asinh)

Any	CPP-
Specific	

Patent	(0/1)

log	CPP-
Specific	
Patents

Local	CPP 0.0720*** 0.0395*** 0.142* 0.147*** 0.0679*** 0.172***
(0.0242) (0.00887) (0.0711) (0.0418) (0.0138) (0.0521)

Local	CPP	x	United	States	(0/1) 1.002*** 0.334*** 0.394***
(0.0274) (0.0108) (0.0825)

Local	CPP	x	log	per-capita	GDP	(pre-period) 0.0860*** 0.0366*** 0.0492
(0.0294) (0.0101) (0.0593)

Country	Fixed	Effects Yes Yes Yes Yes Yes Yes
CPP	Fixed	Effects Yes Yes Yes Yes Yes Yes
Observations 492,422 492,422 8,557 364,144 364,144 8,478
R-squared 0.233 0.214 0.559 0.240 0.228 0.557
Notes: The	unit	of	observation	is	a	CPP-by-country	pair.	The	dependent	variable	is	the	number	of	patents	registered	to	inventors	in	
the	country	and	with	the	CPP's	scientific	name	in	the	title,	abstract,	or	patent	description.	GDP	is	computed	at	the	country	level	from	
1990-2000	and	normalized	by	the	global	mean.	Standard	errors,	clustered	by	country	and	CPP,	are	included	in	parentheses	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A3: CPP Mismatch Inhibits International Technology Transfer: Sensitivity Analysis

(1) (2) (3) (4) (5) (6) (7)

CPP	Mismatch	(0-1) -0.0605** -0.120** -0.0848*** -0.0509** -0.0556** -0.0434** -0.0486***

(0.0241) (0.0481) (0.0258) (0.0231) (0.0222) (0.0189) (0.0169)

Jaccard	(1900,	1901)	Distance	Metric �

Broad	CPP	Presence	Classification �

Control	for	bilaterial	crop-level	trade �

Control	for	log	bilaterial	distance	x	Crop	FE �

Exclude	country	pairs	<1000km	apart �

Exclude	country	pairs	<2000km	apart �

Mean	of	CPP	Distance	Metric 0.423 0.327 0.413 0.423 0.423 0.423 0.423

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes

Observations 204,287 204,287 204,345 204,287 189,302 185,344 156,007

R-squared 0.439 0.439 0.439 0.442 0.461 0.405 0.372

(1) (2) (3) (4) (5) (6) (7)

CPP	Mismatch	(0-1) -0.0624** -0.113** -0.0848*** -0.0528** -0.0572** -0.0385** -0.0443***

(0.0235) (0.0467) (0.0258) (0.0227) (0.0220) (0.0186) (0.0161)

CPP	Mismatch	(0-1) -0.0275** -0.0570** -0.0373*** -0.0226** -0.0289*** -0.0204** -0.0239***

(0.0106) (0.0218) (0.0119) (0.00998) (0.0108) (0.00855) (0.00821)

CPP	Mismatch	(0-1) -1.202*** -0.937* -0.935** -1.198*** -1.247*** -1.888*** -1.955***

(0.386) (0.523) (0.363) (0.390) (0.444) (0.502) (0.666)

Jaccard	(1900,	1901)	Distance	Metric �

Broad	CPP	Presence	Classification �

Control	for	bilaterial	crop-level	trade �

Control	for	log	bilaterial	distance	x	Crop	FE �

Exclude	country	pairs	<1000km	apart �

Exclude	country	pairs	<2000km	apart �

Mean	of	CPP	Distance	Metric 0.423 0.327 0.413 0.423 0.423 0.423 0.423

Crop-by-Origin	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes

Crop-by-Destination	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes

Country	Pair	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	The	dependent	variable	is	noted	in	the	header	of	each	panel	and	the	
distiance	metric,	sample	restrictiotn,	and	control	set	included	in	each	specification	is	noted	at	the	bottom	of	each	column.	Standard	

errors	are	double-clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	(asinh)	Biotechnology	Transfers

Panel	A:	Dependent	Variable	is	(asinh)	Biotechnology	Transfers

Panel	B:	Dependent	Variable	is	Any	Biotechnology	Transfer	(0/1)

Panel	C:	Dependent	Variable	is	log	Biotechnology	Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	Specification	details	are	noted	at	the	bottom	of	each	column.		Standard	

errors	are	double-clustered	by	origin	and	destination	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A4: CPP Mismach Reduces Area Harvested

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -9.517*** -12.08*** -9.541*** -7.855*** -7.139*** -7.020*** -7.200*** -5.837***
(1.212) (2.892) (0.595) (0.635) (0.941) (0.725) (0.437) (0.496)

log(FAO-GAEZ-Predicted	Output) 0.303*** 0.363***
(0.0768) (0.0487)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Controls	in	LASSO	Pool - - 335 3935 335 3935
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,675 2,268 6,683 5,908 6,469 2,268 6,474 5,748
R-squared 0.612 0.612 0.609 0.603

Dependent	Variable	is	log	Area	Harvested

CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier

Notes:	The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	mismatch	with	the	US	and	columns	5-8		use	CPP	
mismatch	with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-
8	report	post	double	LASSO	estimates.	Country	and	crop	fixed	effects	are	included	in	all	specifications,	and	included	in	the	
amelioration	set	in	thet	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	
of	countries	in	whch	they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	
is	335.	The	set	of	ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growng	season	days,	soil	acidity,	
soil	clay	content,	soil	silt	content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	
and	state	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A5: CPP Mismach Reduces Exports and Increases Price Volatility

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

CPP	Mismatch	(0-1) -9.285*** -8.768*** 1.269 0.523*** 0.317*** 1.026*** 0.671***
(1.199) (1.200) (1.295) (0.126) (0.109) (0.237) (0.224)

Observations 6,926 5,495 5,854 4,580 4,559 4,580 4,559
R-squared 0.599 0.531 0.647 0.244 0.263 0.661 0.667

CPP	Mismatch	(0-1) -7.136*** -5.386*** -0.415 0.364*** 0.212** 0.628*** 0.349**
(0.959) (0.877) (0.871) (0.101) (0.0978) (0.177) (0.176)

Observations 6,704 5,332 5,687 4,481 4,461 4,481 4,461
R-squared 0.600 0.535 0.649 0.243 0.262 0.662 0.668
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes

(1) (2) (3) (4) (5) (6) (7)

Baseline

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

CPP	Distance	(0-1) -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

Pathogen	Distance	to	the	US -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

Pathogen	Distance	to	the	US -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

Pathogen	Distance	to	the	US -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

(1) (2) (3) (4) (5) (6) (7)
Baseline	
Measure

Dependent	Variable:
log	

Output
log	

Exports
log	

Imports

Pathogen	Distance	to	the	US -9.122*** -8.626*** 1.555 0.457*** 0.254** 0.966*** 0.619***
(1.152) (1.168) (1.290) (0.133) (0.121) (0.241) (0.228)

Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Control	for	log	Output No No No No Yes No Yes
Observations 6,915 5,493 5,844 4,580 4,559 4,580 4,559
R-squared 0.600 0.531 0.648 0.243 0.262 0.661 0.667

Trade Producer	Price	Volatility

Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Trade

Notes:	The	unit	of	observation	is	a	crop-country	pair.	The	dependent	variable	is	listed	at	the	top	of	each	column	and	
control	set	listed	at	the	bottom.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	indicate	
significance	at	the	10%,	5%,	and	1%	levels.

Trade Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Notes:	The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	CPP	Mismatch	wih	the	US

Panel	B:	CPP	Mismatch	wih	the	Estimated	Frontier	Set

Trade Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Notes:	The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Notes:	The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Notes:	The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Trade Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD

Notes:	The	unit	of	observation	is	a	crop-country	pair.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	
and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Trade Producer	Price	Volatility

Price	SD	(Norm.	by	
Global	Mean)

log	Price	SD
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Table A6: CPP Mismach Reduces Output: Crop × Continent Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Mismatch	(0-1) -8.809*** -9.831*** -8.780*** -8.198*** -8.780*** -8.198*** -6.999*** -6.385***
(1.124) (2.608) (0.769) (0.742) (0.769) (0.742) (0.595) (0.614)

log(FAO-GAEZ-Predicted	Output) 0.239*** 0.273***
(0.0704) (0.0770)

Included	in	LASSO	Pool:
Top	CPP	Fixed	Effects - - Yes Yes - - Yes Yes
Ecological	Features	x	Crop	Fixed	Effects - - No Yes - - No Yes

Crop	x	Continent	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Observations 6,844 2,334 6,920 6,069 6,631 2,334 6,696 5,903
R-squared 0.680 0.694 0.679 0.689

Dependent	Variable	is	log	Output

CPP	Mismatch	with	the	US CPP	Mismatch	with	the	Estimated	Frontier

Notes:	The	unit	of	observation	is	a	country-crop	pair.	Columns	1-4	use	CPP	mismatch	with	the	US	and	columns	5-8		use	CPP	mismatch	
with	the	estimated	set	of	technological	leader	countries.	Columns	1-2	and	5-6	report	OLS	estimates	and	columns	3-4	and	7-8	report	post	
double	LASSO	estimates.	Country	and	crop-by-continent	fixed	effects	are	included	in	all	specifications,	and	included	in	the	amelioration	
set	in	thet	post-double	LASSO	specifications.	The	Top	CPPs	are	defined	as	the	top	200	CPPs	defined	by	(i)	the	number	of	countries	in	whch	
they	are	present	and	(ii)	the	number	of	host	crops	that	they	infect.	Since	the	two	sets	overlap,	the	total	number	is	335.	The	set	of	
ecological	features	includes:	temperature,	precipitation,	elevation,	ruggedness,	growng	season	days,	soil	acidity,	soil	clay	content,	soil	silt	
content,	soil	coarse	fragment	volume,	and	soil	water	capacity.	Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A7: CPP Mismach and Output: Additional Controls

(1) (2) (3) (4) (5) (6) (7) (8)

CPP	Distance	(0-1) -9.122*** -8.849*** -9.573*** -9.323*** -9.186*** -9.661*** -10.10*** -10.83***
(1.152) (1.105) (1.217) (1.345) (1.221) (1.316) (1.295) (2.115)

Observations 6,915 6,678 6,433 4,949 6,719 6,032 3,729 2,946
R-squared 0.600 0.632 0.612 0.634 0.614 0.626 0.671 0.786

CPP	Distance	(0-1) -6.963*** -6.838*** -7.351*** -7.206*** -6.895*** -7.172*** -7.337*** -7.250***
(0.934) (0.879) (1.029) (1.065) (0.980) (1.011) (1.058) (1.743)

Observations 6,693 6,458 6,227 4,765 6,499 5,838 3,631 2,864
R-squared 0.600 0.632 0.611 0.633 0.613 0.623 0.669 0.781
Crop	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes Yes
log	Per	Capita	GDP	x	Crop	FE No Yes No No No No No Yes
Trade	Share	(%	GDP)	x	Crop	FE No No Yes No No No No Yes
Gini	Coefficient	x	Crop	FE No No No Yes No No No Yes
Share	Arable	Land	x	Crop	FE No No No No Yes No No Yes
log	Agricultural	Value	Added	x	Crop	FE No No No No No Yes No Yes
R&D	Share	(%	GDP)	x	Crop	FE No No No No No No Yes Yes

Dependent	Variable	is	log	Output

Notes:	 The	unit	of	observation	is	a	crop-country	pair.	Panel	A	uses	CPP	dstance	to	the	US	and	Panel	B		uses	CPP	dstance	to	the	estimated	
set	of	technological	leader	countries.	Controls	included	in	each	specification	are	noted	at	the	bottom	of	the	column.	Standard	errors	are	
double-clustered	by	crop	and	country	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Panel	A:	CPP	Distance	to	the	US

Panel	B:	CPP	Distance	to	Estimated	Frontier	Set
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Table A8: CPP Mismach Effects and Innovation

(1) (2)

Dependent	Variable:
log(BioTech	
Developed)

IP	Protection	
(0/1)

βℓ -0.584*** -0.134***
(0.159) (0.0173)

Observations	(Countries) 59 242
R-squared 0.173 0.250
Notes:	The	unit	of	observation	is	a	country.	log(BioTech	Developed)	is	the	(log	of	the)	
number	of	unique	varieties	developed	in	the	country	from	2000-2018.	IP	Protection	
(0/1)	is	an	indicator	variable	that	equals	one	if	a	country	had	UPOV	compliant	IP	
protection	for	plant	biotechnology	by	2000.	βℓ		refers	to	the	coefficient	estimate	of	the	
relationship	between	CPP	mismatch	with	country	ℓ	and	output.	Both	regressions	are	
weighted	by	the	inverse	of	the	standard	error	of	the	estiamte	of	βℓ.		Robust	standard	
errors	are	reported	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A9: Historical Green Revolution Breeding Sites

(1) (2)

Crop	 Site	Location

Wheat Mexico	(CIMMYT)
Maize Mexico	(CIMMYT)

Sorghum India	(ICRISAT)
Millet India	(ICRISAT)
Beans Colombia	(CIAT)
Potatoes Peru	(CIP)
Cassava Colombia	(CIAT)
Rice Philippines	(IRRI)

Green	Revolution	Breeding	Sites

Notes: 	Column	1	reports	the	crops	included	in	our	analysis	of	the	Green	
Revolution	and	column	2	reports	the	main	breeding	site	during	the	Green	
Revolution	for	each	crop,	along	with	the	corresponding	IARC.

Table A10: Inappropriateness and the Efficacy of the Green Revolution

(1) (2) (3) (4) (5)

	Δ	log	

Output	

	Δ	log	Area	

Harvested	

CPP	Mismatch	with	GR	Breeding	Centers -26.62*** -96.20*** -27.69*** -2.642** -2.501***

(9.155) (27.17) (9.492) (1.052) (0.881)

Crop	Fixed	Effects Yes Yes - - -

Country	Fixed	Effects Yes Yes Yes Yes Yes

Crop	x	Continent	Fixed	Effects - - Yes Yes Yes

Only	Rice,	Wheat,	and	Maize No Yes No No No

Observations 594 104 591 543 543

R-squared 0.406 0.677 0.471 0.419 0.419

Pct.	Modern	Variety	Adoption	

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	CPP	mismatch	for	each	crop	is	estimated	as	the	CPP	
distance	to	the	crop-specific	Green	Revolution	main	breeding	center.	All	columns	include	crop	and	country	
fixed	effects,	as	well	as	the	pre-period	value	of	the	dependent	variable,	and	columns	3-5	also	include	crop	by	
continent	fixed	effects.			In	columns	1-3,	the	dependent	variable	is	the	change	in	percent	(0-100)	land	area	
devoted	to	modern	varieties	between	1960	and	1980,	and	in	columns	4	and	5	the	dependent	variable	is	the	
change	in	log	output	and	log	area	harvested	respectively,	between	the	1960s	and	the	1980s.	Standard	errors	
are	double-clustered	by	country	and	crop-continent	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	
1%	levels.

75



Table A11: Inappropriateness and the Efficacy of the Green Revolution: Timing and Geography

(1) (2) (3) (4) (5) (6) (7)

Sample: All	Africa All	South	
America

All	Asia All	
Europe

Time	period: 1960s-
1980s

1980s-
2000s

1990s-
2010s

1960s-
1980s

1960s-
1980s

1960s-
1980s

1960s-
1980s

CPP	Mismatch	with	GR	Breeding	Centers -2.642** -0.339 -0.544 -1.307 -5.758** -1.990 0.668
(1.052) (0.832) (0.783) (0.808) (1.903) (1.372) (1.516)

Country	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Crop	x	Continent	Fixed	Effects Yes Yes Yes Yes Yes Yes Yes
Observations 543 540 538 277 83 207 118
R-squared 0.419 0.485 0.451 0.343 0.606 0.456 0.542

Dependent	Variable	is		Δ	log	Output	

Baseline	Sample

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	CPP	mismatch	for	each	crop	is	estimated	as	the	CPP	distance	to	
the	crop-specific	Green	Revolution	main	breeding	center.		All	columns	include	country	and	crop-by-continent	fixed	

effects,	as	well	as	the	pre-perod	value	of	the	dependent	variable.	The	dependent	variable	is	the	change	in	log	of	crop	

output.	The	regresson	sample	as	well	as	time	period	over	which	the	change	in	output	is	calculated	is	listed	at	the	top	

of	each	column.	Standard	errors	are	double-clustered	by	country	and	crop-continent	in	columns	1-3	and	by	country	

ni	columns	4-7,	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A12: CPP Mismatch Without Invasive Species: Baseline Estimates

(1) (2) (3) (4) (5)

Technology	

Adoption
Output

Dependent	Variable:

asinh	

Biotech	

Transfer

Any	Biotech	

Transfer	

log	Biotech	

Transfer

Improved	

Seed	(=1)
log	Output

CPP	Mismatch	Without	Invasive	Species -0.0712*** -0.0304*** -0.5451

(0.0241) (0.0096) (0.34)

CPP	Mismatch	with	the	Frontier	Without	Invasive	Species -0.248*** -6.335***

(0.0743) (0.948)

Crop-by-Origin	Fixed	Effects Yes Yes Yes - -

Crop-by-Destination	Fixed	Effects Yes Yes Yes - -

Country	Pair	Fixed	Effects Yes Yes Yes - -

Country	Fixed	Effects - - - Yes Yes

Crop	Fixed	Effects - - - Yes Yes

Observations 202,154 202,154 5,752 115,397 6,858

R-squared 0.4397 0.3831 0.7965 0.213 0.584

0.0241 0.0096 0.34

Technology	Trasnfer

Notes:	The	unit	of	observation	is	a	crop-origin-destination	in	columns	1-3	and	a	crop-country	pair	in	columns	4-6.	Standard	
errors	are	double-clustered	by	origin	and	destination	in	columns	1-3,	clustered	y	crop-country	in	columns	4-5,	and	double	

clustered	by	crop	and	country	in	column	6.	CPP	mismatch	with	the	frontier	is	computed	as	CPP	mismatch	with	the	US.	In	all	

cases,	the	independent	variable	is	constructed	after	excluding	invasive	CPPs.	The	fixed	effects	included	in	each	specification	are	

noted	at	the	bottom	of	each	column.		*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A13: Agro-climatic Mismatch and Technology Transfer

(1) (2) (3)

CPP	Mismatch	(0-1) -0.0783** -0.0737** -0.0752**
(0.0314) (0.0309) (0.0311)

Mismatch	in:
Temperature -0.0107*

(0.00619)
Precipitation -0.0141*

(0.00807)
Elevation -0.00589*

(0.00311)
Ruggedness -0.000652

(0.00246)
Soil	Clay	Content -0.00596

(0.00568)
Soil	Silt	Content 0.00342

(0.00575)
Soil	Coarse	Fragment	Content 0.000883

(0.00318)
Soil	pH -0.00825**

(0.00355)
Growing	Season	Length -0.00453

(0.00519)
Available	Water	Capacity -0.00561

(0.00466)
Overall	Agro-Climatic	Mismatch -0.0412***

(0.0129)

p-value	joint	significance - 0.007 -
Crop-by-Origin	Fixed	Effects Yes Yes Yes
Crop-by-Destination	Fixed	Effects Yes Yes Yes
Country	Pair	Fixed	Effects Yes Yes Yes
Observations 153,038 153,026 153,038
R-squared 0.464 0.464 0.464

Dependent	Variable	is	(asinh)	
Biotechnology	Transfers

Notes:	The	unit	of	observation	is	a	crop-origin-destination.	Mismatch	in	agro-
climatic	features	is	estimated	by	first	calcualting	the	value	of	each	
characteristic	in	the	land	area	devoted	to	each	crop	in	each	country,	as	
recorded	by	the	EarthStat	database.	The	agro-climatic	index	in	column	3	is	
constructed	as	a	sum	of	the	normalized	values	of	the	characteristics	listed	in	
column	2.	Standard	errors	are	double-clustered	by	origin	and	destination	
and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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Table A14: Agro-climatic Mismatch and Agricultural Output

(1) (2) (3)

CPP	Mismatch	(0-1) -10.17*** -8.996*** -9.393***
(1.559) (1.425) (1.518)

Mismatch	in:
Temperature -0.582***

(0.155)
Precipitation -0.329*

(0.186)
Elevation 0.150

(0.0924)
Ruggedness -0.254*

(0.135)
Soil	Clay	Content 0.0649

(0.0969)
Soil	Silt	Content 0.0283

(0.123)
Soil	Coarse	Fragment	Content -0.323**

(0.134)
Soil	pH -0.0720

(0.106)
Growing	Season	Length 0.0681

(0.124)
Available	Water	Capacity -0.255**

(0.116)
Overall	Agro-Climatic	Mismatch -1.319***

(0.285)
- 0.000 -

Crop	Fixed	Effects Yes Yes Yes
Country	Fixed	Effects Yes Yes Yes
Observations 5,285 5,270 5,285
R-squared 0.575 0.591 0.582

(1) (2)

CPP	Mismatch	(0-1) -7.511*** -6.682***
(1.361) (1.344)

Overall	Agro-Climatic	Mismatch -1.222***
(0.318)

Crop	Fixed	Effects Yes Yes
Country	Fixed	Effects Yes Yes
Observations 4,881 4,881
R-squared 0.574 0.580
Notes:	The	unit	of	observation	is	a	crop-country	pair.	Mismatch	in	agro-
climatic	features	is	estimated	by	first	calcualting	the	value	of	each	
characteristic	in	the	land	area	devoted	to	each	crop	in	each	country,	as	
recorded	by	the	EarthStat	database.	The	agro-climatic	index	is	constructed	
as	a	sum	of	the	normalized	values	of	the	individual	characteristics.		
Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	Output

Notes:	The	unit	of	observation	is	a	crop-country	pair.	Mismatch	in	agro-climatic	features	is	
estimated	by	first	calcualting	the	value	of	each	characteristic	in	the	land	area	devoted	to	
each	crop	in	each	country,	as	recorded	by	the	EarthStat	database.	The	agro-climatic	index	
in	column	3	is	constructed	as	a	sum	of	the	normalized	values	of	the	characteristics	listed	in	
column	2.		Standard	errors	are	double-clustered	by	crop	and	country	and	*,	**,	and	***	
indicate	significance	at	the	10%,	5%,	and	1%	levels.

Dependent	Variable	is	log	
Output

Table A15: Correlation Matrix: All Ecological Mismatch Measures

Difference	in: CPPs Temp. Precip. Elevation Rugged.
Soil	Clay	

Content

Soil	Silt	

Content

Coarse	

Frag.	

Content

Soil	pH

Growing	

Season	

Length

Available	

Water	

Capacity

CPPs 1.0000

Temp. 0.2356 1.0000

Precip. 0.1061 0.2121 1.0000

Elevation 0.1578 0.0104 -0.0405 1.0000

Rugged. 0.1726 -0.0382 0.05 0.5052 1.0000

Soil	Clay	Content 0.0374 0.1602 0.146 -0.0074 -0.0096 1.0000

Soil	Silt	Content 0.1807 0.3564 0.0236 0.0402 -0.1209 0.0966 1.0000

Soil	Coarse	Fragement	Content 0.1045 0.0697 0.0188 0.3407 0.5595 -0.0999 -0.1013 1.0000

Soil	pH 0.0793 0.0829 0.4994 -0.0082 0.0128 0.1087 0.0326 -0.0001 1.0000

Growing	Season	Length 0.084 0.1186 0.5092 -0.0121 0.009 0.0216 0.0275 0.0001 0.4116 1.0000

Available	Water	Capacity 0.1375 0.1829 0.099 0.0126 -0.0466 0.3531 0.3893 -0.0966 0.0906 0.0665 1.0000

Notes: 	This	table	presents	a	correlation	matrix	among	all	individual	measures	of	ecological	distance	to	the	frontienr,	including	CPP	distance	to	the	

frontier.	The	additional	characteristics	are:	tempearture,	precipitation,	elevation,	ruggedness,	soil	clay	content,	soil	silt	content,	soil	coarse	

fragement	content,	soil	pH,	growing	season	length,	and	available	water	capacity.	Each	cell	reports	a	pairwise	correlation	coefficient.
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Table A16: Global Bias of Technology Development: Crop-by-Country Estimates

(1) (2) (3) (4) (5) (6)

Dependent	Variable:

asinh(Local	Area) 0.227*** 0.213*** 0.209*** 0.204*** 0.204*** 0.155***
(0.0125) (0.00986) (0.0112) (0.00977) (0.00982) (0.00842)

asinh(Global	Area) 0.0565*** -0.0451 -0.0155 -0.0551
(0.0208) (0.0540) (0.0310) (0.0459)

asinh(GDP-Weighted	Area) 0.0925 0.0512
(0.0606) (0.0620)

asinh(IP-Weighted	Area) 0.0814*** 0.0625*
(0.0309) (0.0369)

Country	Fixed	Effects Yes Yes Yes Yes Yes Yes
Crop	Fixed	Effects No No No No No Yes
Observations 6,758 6,758 6,758 6,758 6,758 6,758
R-squared 0.495 0.501 0.505 0.506 0.507 0.600

asinh(BioTech	Since	2000)

Notes: The	unit	of	observation	is	a	crop-by-country	pair.	The	dependent	variable	is	the	number	of	
varieties	developed	in	the	country	for	the	crop	since	2000.	Standard	errors,	clustered	by	crop,	are	
included	in	parentheses	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.

Table A17: Growth of US Biotechnology and Global Production

(1) (2) (3) (4)

CPP	Mismatch	with	the	US -0.999* -0.974* -1.004** -1.044*
(0.520) (0.572) (0.502) (0.533)

CPP	Mismatch	with	the	EU 0.644 0.251 0.352 0.222
(0.512) (0.531) (0.529) (0.534)

Crop	Fixed	Effects Yes - Yes -
Country	Fixed	Effects Yes Yes Yes Yes
Crop	x	Continent	Fixed	Effects - Yes - Yes
p-value, 	Dist	US	-	Dist	EU 0.097 0.249 0.172 0.216
Observations 6,414 6,338 6,183 6,107
R-squared 0.281 0.366 0.262 0.353

	Δ	log	Output 	Δ	log	Area	Harvested	

Notes:	 The	unit	of	observation	is	a	country-crop	pair.	Both	CPP	mismatch	with	the	US	and	
CPP	mismatch	with	the	EU	are	included	in	all	specifications.	All	columns	include	crop	and	
country	fixed	effects,	as	well	as	the	pre-period	value	of	the	dependent	variable,	and	columns	
2	and	4	also	include	crop	by	continent	fixed	effects.	In	columns	1-2,	the	dependent	variable	
is	the	change	in	log	output	from	the	1990s	to	2010s	and	in	columns	3-4	it	is	the	change	in	
log	area	harvested	from	the	1990s	to	2010s.	Standard	errors	are	double-clustered	by	
country	and	crop	and	*,	**,	and	***	indicate	significance	at	the	10%,	5%,	and	1%	levels.
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