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Abstract

In this paper I argue that the dynamics of wealth inequality are largely driven by heteroge-
neous exposure to aggregate risk in asset returns. I propose a quantitative model of households’
optimal portfolio choice that builds on evidence that housing is a necessary good. The model
replicates households’ portfolio heterogeneity along the wealth distribution: just like in the data,
as households get wealthier they shift their portfolios away from safe assets, first towards hous-
ing, and then towards equity. Because households in different parts of the wealth distribution
are exposed to different sources of aggregate risk, the model has strong implications for the evo-
lution of inequality. In particular, temporary shocks in equity returns have large and persistent
effects on top wealth shares. A key implication is that the observed rise in U.S. wealth inequality
was mostly due to abnormal equity returns and it is therefore expected to revert back to lower
levels.
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1. Introduction
One of the key issues in macroeconomics and finance is understanding what explains the high de-
gree of concentration in the distribution of wealth of modern economies. In particular, while most
developed countries have extremely high degrees of wealth inequality and have experienced large
increases in it since the second half of the twentieth century, we are still missing a theory that can
explain both the high level and fast dynamics of inequality.

In this paper I develop a framework that can account for the observed dynamics of wealth in-
equality based on heterogeneous exposure to aggregate risk in asset returns. The connection between
asset returns and wealth inequality is evidently composed of two distinct (albeit interrelated) parts:
on the one hand, in the presence of systematic differences in portfolio composition along the wealth
distribution, changes in returns induce changes in wealth inequality; on the other hand, by affecting
their demand for assets, changes in households’ wealth holdings have the potential to affect asset
prices in return. Hereby I directly tackle the first half of such a connection: I build a model of
households’ optimal portfolio choice along the wealth distribution and show that, once paired with
a realistic process for asset returns, it generates dynamics of wealth inequality consistent with the
ones observed in the data. In particular, after feeding the realized sequence of asset returns into the
model, I show that it can replicate all of the observed increase in U.S. top wealth shares since the
1980s.1

Obviously enough, one of the key inputs in any theory of the role of heterogeneous exposure to
aggregate risk for wealth inequality is a realistic characterization of households’ portfolios. In order
to achieve such goal I therefore solve a heterogeneous-agent, partial equilibrium model of optimal
portfolio choice with aggregate risk featuring a rich menu of assets which is meant to capture the
main properties of households’ portfolio shares as a function of wealth. Hence, by matching portfolio
heterogeneity, the model is capable of replicating both the high level of wealth inequality – driven by
differences in total returns to wealth – and the response of wealth inequality to movements in asset
returns. I then use the model to run a series of counterfactual experiments that highlights the role
of shocks to asset returns for the evolution of households’ wealth.

The model has several implications for the dynamics of wealth inequality: First, I find that
shocks to equity returns have large and persistent effects on wealth inequality. In particular, a one
standard deviation increase in equity returns implies an increase in the top 10% wealth share of about
1 percentage point, an effect approximately 50% larger than an equally sized increase in housing
returns. Second, I show that whether changes in returns are assumed to be permanent or temporary
has extremely different implications for the evolution of wealth inequality: the long-run effect of
a sequence of temporary shocks is in fact about eight times larger than that of a corresponding
permanent change in returns. Third, by feeding the realized sequence of returns into the model, I

1In a companion paper, Cioffi (2021), I address the other half of the mechanism and look at how wealth inequality
influences equilibrium asset prices and how this in turn changes our understanding of policy.
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find that it is capable of replicating the observed increase in U.S. top wealth shares since the 1980s
and that most of the increase was driven by high returns to equity in the late 1990s and early 2000s.
Hence I use the model to conclude that, to the extent that changes in returns over the last 40 years
were temporary, future inequality is expected to slowly revert back to its long-run average.

In general, differences in wealth accumulation can come from at least two sources: heterogeneity
in rates of return, and heterogeneity in savings. Benchmark models of wealth inequality (e.g., Aiya-
gari 1994) assume that all households face a constant rate of return to total wealth. However, an old
result by Kesten (1973) – later revisited in the context of wealth accumulation by Benhabib and Bisin
(2018) – tells us that, in models without any heterogeneity in rates of return, tail inequality in wealth
will exactly mirror tail inequality in income, a feature that is simply not true in the data.2 Then, to
generate wealth inequality above and beyond income inequality, a mechanism that is often used is
to introduce idiosyncratic risk in rates of return. In fact, by generating ex-post positive correlation
between wealth and returns, idiosyncratic return risk acts as an amplifying force for wealth inequality
which allows the distribution of wealth to decouple from that of earnings. Nonetheless, Gabaix et al.
(2016) show that, compared to the data, a simple model of stochastic rates of return does not gener-
ate fast-enough movements in wealth inequality. To generate wealth dynamics that are closer to the
observed ones, they then propose two mechanisms that make the rate of return explicitly depend on
either individual characteristics (type dependence), or on wealth (scale dependence). Also in light of
the recent empirical work suggesting that these are indeed features of the data (e.g. Bach, Calvet, and
Sodini 2020; Fagereng et al. 2020, among others), the new generation of wealth-inequality models
has taken exactly this approach and usually features some form of either type or scale dependence
(e.g. Hubmer, Krusell, and Smith 2021; Xavier 2020). For the purposes of our discussion, notice
however that, in all models of idiosyncratic returns just mentioned, movements in inequality over
time can only be generated by changes in the economy’s fundamentals (such as, for instance, changes
in the dispersion of returns).

More often than not, these models do not take a stand on what is the underlying source of the
heterogeneity in rates of return to total wealth. However, for most households, such heterogeneity
is actually the result of the interaction of portfolio choice and differences in returns across assets. It
should in fact be apparent that even in the absence of idiosyncratic return risk, as long as different
agents hold different portfolios, rates of return can still be very different along the wealth distribu-
tion. Consider for instance an (empirically realistic) economy in which everyone has access to the
same assets and in which households, as they get richer, gradually shift their portfolios away from
low-risk/low-return assets (e.g. cash and bonds) to high-risk/high-return ones (e.g. stocks). On the
one hand, this generates an ex-ante positive correlation between wealth and returns to total wealth
which – just as in the idiosyncratic risk example – acts as an amplification mechanism for the level
of wealth inequality. On the other hand, because households hold the same assets, returns to wealth
also move together over time which – differently from an economy with only idiosyncratic risk –

2Both across countries and over time wealth has been found to be always much more concentrated than income.
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generates fluctuations in wealth inequality. For example in the economy just described, with wealth-
ier households having a larger exposure to the stock market than poorer ones, wealth inequality
will increase during stock-market booms and decrease during crashes, which is exactly what Kuhn,
Schularick, and Steins (2020) show to be the case for the post-war U.S. economy.3

In this paper I specifically highlight this mechanism: in section 2, I build a partial equilibrium
model of wealth inequality that carefully accounts for the role of portfolio choice and asset returns.
Importantly, I show that the dual role of housing as a risky investment and a necessary good is crucial
to generate the right schedule of portfolio shares: the fact that, in the data, the expenditure share
of housing is declining in total consumption indicates that housing is a necessary good and, conse-
quently, that preferences are non-homothetic. Such non-homotheticity in the utility aggregator of
housing services and non-housing consumption causes both the elasticity of intertemporal substi-
tution (EIS) and relative risk aversion (RRA) to change with wealth. In particular, RRA decreases
with wealth and the EIS increases with it. Hence, by effectively introducing decreasing relative risk
aversion, the model generates an optimal share of equity that is increasing in wealth.4

In section 3 I then show that themodel is in fact capable of replicating the observed heterogeneity
in households’ portfolios along the wealth distribution: poor households mostly hold low-risk/low-
return bonds, the middle class is heavily invested in housing, and the top of the wealth distribution
holds most of the equity in the economy. Such portfolio composition generates exactly the sort
of scale dependence in returns to total wealth that is necessary to generate a high level of wealth
inequality. On top of that, the fact that portfolio shares are different along the wealth distribution,
also implies wealth inequality will respond differently to different changes in asset returns.

In section 4, I in fact show that the model generates significant variation in wealth inequality
over time with a standard deviation for the Gini coefficient of 0.05. The main reason why the model
generates such large dispersion in wealth inequality is that movements in returns – in particular in
the equity market – have large and persistent effects on top wealth shares: a one standard deviation
increase in equity returns implies an increase in the top 10% wealth share of about 1 percentage point,
an effect about 50% larger than an equally-sized housing shock. With a half-life of approximately 40
years, the effect of movements in equity returns are extremely persistent and significantly contribute
to generate large swings in wealth inequality. Importantly, I also show that whether we assume
changes in returns are temporary or permanent has extremely different implications for wealth in-

3In the above discussion, I have been agnostic about where the changes in asset returns are originating from. This is
consistent with the approach I take in the rest of the paper, which treats returns as completely exogenous objects. In truth,
however, returns are general equilibrium objects that might in turn depend – among other things – on the distribution
of wealth, therefore closing the general equilibrium loop between households’ portfolio choices, wealth holdings, and
asset returns. Analyzing such general equilibrium feedback is beyond the scope of this paper, and is instead tackled in
Cioffi (2021).

4The basic intuition is that, if preferences are non-homothetic, the share of luxury goods in the consumption basket
is increasing in wealth. Because households care less about fluctuations in consumption when they consume a higher
share of luxury goods, RRA declines with wealth and EIS increases with wealth; see Browning and Crossley (2000) for
an early formal analysis of this argument.
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equality: in particular, a continuous sequence of unexpected shocks giving rise to an additional 1%
excess return to equity in each period implies an ever rising top 10% wealth share with a total in-
crease of about 5 percentage points; on the other hand, if the exact same sequence of returns were to
arise from a single, permanent shock, the top 10% wealth share would actually decrease in the short
run and only increase by about 0.6 percentage points in the long run. Because the model generates
fluctuations in wealth inequality even in the absence of any change in fundamentals (as opposed to
models of idiosyncratic return risk), I then ask how much of the observed increase in U.S. wealth
inequality since the 1980s can be explained by fluctuations in realized returns alone: I feed the ob-
served sequence of returns into the model and show that the evolution of top wealth shares closely
tracks the data. Then, by running a series of counterfactual experiments I also show that: First, large
positive changes in inequality are a perfectly reasonable outcome of a model in which the wealth dis-
tribution moves over time if initial inequality is below average. The model-implied probability of
observing the data (conditional on initial inequality being less than in 1986) is as high as 14.3%.
Second, the rise in U.S. top wealth shares was mostly the result of abnormal equity returns in the
late 90s and early 2000s. Third, to the extent that such abnormal returns were temporary, inequality
is expected to slowly revert back to its long-run average.

One of this paper’s main conclusions is therefore that, given return fluctuations have such impor-
tant implications for the evolution of wealth, if we want to have a better understanding of wealth-
inequality dynamics we should also have a good model of price determination. In this paper I take
a very reduced-form approach to the evolution of asset returns, which are simply assumed to follow
an exogenous process calibrated to fit some data moments. I do so for two reasons: First, by keeping
the return process fixed I can directly focus on the role of shocks to returns without having to isolate
it from the endogenous response of prices to changes in the wealth distribution. Second, solving
for prices in equilibrium would also require me to take a stand on how to generate a high equity
premium. While the model does include features that are likely to help in that respect, this would
involve a whole different set of challenges that are just beyond the scope of this paper (I do tackle
some of these issues in companion work, Cioffi 2021).

Compared to the rest of the literature, in this paper I therefore reach a very different conclusion
about the increase in U.S. wealth inequality observed in the last 40 years; namely that the observed
history might just have been the result of chance, rather than of structural changes. Such a sharp
rise in inequality is in fact perfectly compatible with an unchanging economy in which, among the
many possible realizations of asset returns, the observed one happened to be especially favorable to
the portfolios of the rich.

Relation to Literature — This paper is connected to several strands of literature: First,
it directly relates to models of optimal portfolio choice in the presence of non-homothetic prefer-
ences and housing. Most of the literature on portfolio choice focuses on how portfolio shares vary
over the life-cycle. One important reason for why this is the case is that in the classic Merton
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(1971) model of portfolio choice with CRRA preferences, the optimal equity share is independent
of wealth (while age, often mainly through its effect on human capital, directly affects households’
portfolio decisions). Instead, I hereby emphasize the direct role of wealth. In my model, non-
homothetic preferences in fact imply that wealth directly affects portfolio shares through its effect
on total consumption expenditure and therefore on expenditure shares. In this sense, my work is
more closely related to papers of non-homothetic preferences exhibiting decreasing RRA such as
Meeuwis (2020) and Wachter and Yogo (2010). Using a representative sample of U.S. retirement
investors Meeuwis (2020) finds substantial evidence in favor of decreasing RRA and a significant
degree of non-homotheticity in risk preferences. This is consistent with results in Wachter and Yogo
(2010) who are able to replicate the fact that the equity share is increasing in wealth by incorporating
non-homothetic utility over necessary and luxury goods. Relative to Wachter and Yogo (2010), my
model also features a form of non-homotheticity that generates decreasing RRA. One notable dif-
ference is that, while their model does not feature housing (neither as a consumption good nor as an
investment asset), I assume the non-homotheticity is directly driven by housing. This is motivated
by the novel observation that, in the data, the expenditure share of housing is declining in total con-
sumption – implying housing is in fact a necessary good; a point that, to the best of my knowledge,
has not been made before.

Due to the effect of non-homothetic preferences on RRA and EIS my paper is also loosely
related to papers of preference heterogeneity such as Gomes and Michaelides (2008); Gomez (2019);
Guvenen (2009) and Vestman (2019). These papers often feature two different types of investors:
a high risk-aversion, wealth-poor agent and a low risk-aversion wealthy agent. In this paper, on the
other hand, because I assume agents are identical ex-ante, preference heterogeneity is completely
endogenous. My model can therefore also be interpreted as a microfoundation for such form of
preference heterogeneity based on the necessary-good nature of housing.

Aside from being a consumption good, housing is obviously also an investment asset, which also
ties my model to the large literature on portfolio choice in the presence of housing. An exhaustive
list of such literature would obviously require a paper on its own (which already exists in Piazzesi and
Schneider 2016), rather it is here worth mentioning that in this paper I do not strive to achieve a
comprehensive model of housing, but rather of the interaction between households’ portfolio shares
and wealth inequality. Because of this I take some shortcuts in the characterization of the housing
problem and the model here is therefore more closely related to early papers such as Cocco (2005);
Flavin and Nakagawa (2008); Flavin and Yamashita (2002); Piazzesi, Schneider, and Tuzel (2007).

Second, my paper connects to the recent literature on return heterogeneity as a key driver of
wealth concentration. Relative to already existing work (see the empirical contributions in Bach,
Calvet, and Sodini 2020; Fagereng et al. 2020; and the model-based analyses in Gabaix et al. 2016;
Hubmer, Krusell, and Smith 2021; Xavier 2020), I specifically focus on the role of households’ op-

timal portfolio choice as a driver of heterogeneity in returns. As quickly mentioned before, Gabaix
et al. (2016) provides the first theoretical analysis of the role of return heterogeneity for the dynamics
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of wealth inequality: although their main argument focuses on inequality in incomes, they also show
that a simple model of stochastic returns is not capable of matching the fast dynamics of wealth
inequality. They then show that allowing for scale dependence in rates of return can overcome this
shortcoming of models of idiosyncratic return risk. While my paper does feature a scale-dependent
component to returns (wealthier household investing in higher-return assets), I show that the pres-
ence of aggregate risk alone also allows us to match the dynamics of wealth inequality by making
the whole wealth distribution stochastic. Xavier (2020) instead solves a model of type dependence
and shows that return heterogeneity is necessary to match the wealth shares of the top 10%. While
I focus more closely on the dynamics of wealth inequality, my paper also corroborates her result in a
model of scale dependence in which rates of return are directly tied to households’ optimal portfolio
choices.

Finally, my paper also speaks to the literature that links the evolution of the wealth distribution
to movements in asset returns. My findings are in fact broadly consistent with empirical results
relating changes in wealth inequality to the succession of booms and busts in equity and housing
markets (Kuhn, Schularick, and Steins 2020; Martinez-Toledano 2020). More closely related,
however, are papers that try to explain the observed increase in U.S. wealth inequality since the
1980s via the effect of changes in asset returns: first, from a methodological perspective, I extend the
quantitative analyses in Favilukis (2013) and Hubmer, Krusell, and Smith (2021) who find that, even
though movements in asset returns do generate variation in wealth inequality, they are not in and of
themselves sufficient to explain such a large increase as observed in the data; second, my paper also
complements recent findings by Gomez and Gouin-Bonenfant (2020) and Greenwald et al. (2021)
who argue that the decline in real rates has been a key driver for the increase in top wealth shares.

In a similar model without housing Favilukis (2013) shows that, in order to explain the increase in
wealth inequality one needs to account for the combined role of increased wage inequality, loosening
borrowing constraints, and decreasing participation costs. However, his model ignores returns to
private equity which were a substantial source of excess returns at the top of the wealth distribution.
In fact Kartashova (2014) shows that, particularly after 2002, returns to private equity outpaced
returns to public equity. By allowing for the role of higher private equity returns in that period, I
therefore show that return movements alone can explain the increase in top wealth shares.

Hubmer, Krusell, and Smith (2021) also attempts to explain the observed variation of wealth
inequality by feeding the realized sequence of asset returns into a model of portfolio heterogeneity.
They find that while changes in asset returns are key to explain the U-shape of top wealth shares,
they “have also dampened the increase in wealth concentration on net, in particular explaining the
initial dip” (Hubmer, Krusell, and Smith 2021, p. 430). My paper differs from theirs in two key
aspects: First, households’ portfolio choice in their model is completely exogenous; that is, whenever
households make a consumption-saving choice, they take the change in average rates of return as
given and cannot change it by investing in different assets. Second, they assume all movements are
driven by changes in expected returns rather than by realized returns. In this paper I show that
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temporary changes in returns have a much larger effect on inequality than permanent ones, which
helps explain the difference in results.

The distinction between temporary and permanent changes in returns also differentiates my
paper from Gomez and Gouin-Bonenfant (2020) and Greenwald et al. (2021): Gomez and Gouin-
Bonenfant in fact claim that, by making it cheaper for entrepreneurs to raise capital, lower interest
rates have supported the growth of new fortunes thereby increasing wealth inequality; Greenwald et
al. on the other hand argue that a decline in interest rates causes higher (financial) wealth inequality
due to wealthier households needing to save more to finance the same consumption stream. Relative
to both, who start from a decline in expected returns, I instead emphasize that a large increase in
wealth inequality can also be consistent with an economy in which all movements in asset returns
are entirely temporary.

2. Model
In this section I present the model setup, which will later be used to quantify the effect of aggregate
risk in asset returns on both the level of wealth inequality and its dynamics. The model is set in
continuous-time and is a partial-equilibrium version of the standard heterogeneous-agent model in
macroeconomics in which households face idiosyncratic income risk and smooth consumption over
time by saving in a menu of assets (e.g. Achdou et al. 2017). However, especially when compared
to the rest of the literature on wealth inequality, the model directly innovates in the richness of
households’ portfolio choice.

The model purpose is therefore to propose a parsimonious yet realistic characterization of house-
holds’ optimal portfolio choice along the wealth distribution. In particular, we would like the model
to replicate the fundamental observation that households at the bottom of the wealth distribution
mostly hold safe assets, that the middle class is heavily invested in housing, and that equity is mainly
held by the rich. This is achieved by a combination of features: First, to generate an increasing
equity share along the wealth distribution, the model features both participation costs in the equity
market and non-homotheticity in preferences. Second, to capture the main features of the housing
market, I allow for both an illiquidity component and transaction costs. Finally, due to the nature of
preferences, households at the bottom of the distribution have a strong preference for housing con-
sumption; in order to avoid their housing share to be counterfactually high it is therefore important
to allow for a rental housing market.

2.1. Main environment

Demographics — There is a continuum of households facing a constant death rate ζ. Pop-
ulation is constant and normalized to 1 so every time an agent dies she is immediately replaced by a
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newborn agent. Agents are born according to distribution Ψ, to be specified later.5

Preferences — Households have recursive inter-temporal preferences as in Duffie and Ep-
stein (1992):

vt = E
[∫ ∞

t

f(us, vs)ds

]
(1)

where f(u, v) is an aggregator of intra-temporal utility u and continuation utility v and takes the
form:

f(u, v) =
ρ+ ζ

1− ψ−1
(1− γ)v


[

u

((1− γ)v)
1

1−γ

]1−ψ−1

− 1

 (2)

where ρ is the rate of time preference, and γ andψ govern risk aversion and elasticity of intertemporal
substitution, respectively.

Intra-temporal utility u is an aggregator of housing services n and non-housing consumption c.
The aggregator is of the addi-log form as in Wachter and Yogo (2010):

u(c, n) =

(
(1− ω)

1− ε−1
h

1− ε−1
c

c
εc−1
εc + ωn

εh−1

εh

) εh
εh−1

(3)

where ω captures the relative preference of housing services relative to non-housing consumption.
When εh = εc, equation (3) nests the constant elasticity of substitution (CES) case; however,

whenever εh ̸= εc, preferences are non-homothetic. In particular, the assumption that εh < εc im-
plies that housing is a necessary good and non-housing consumption is a luxury good.6 As we will
see later, the assumption that housing is a necessary good is well supported by data on consumption
expenditure and has significant implications for portfolio choice. In fact, the non-homotheticity
assumption implies that the composition of the consumption basket changes with total expenditure.
Because households are less willing to tolerate fluctuations in consumption when the share of hous-
ing consumption is higher, households with different total expenditure will care differently about
fluctuations in their consumption basket. This implies that both relative risk aversion and elastic-
ity of intertemporal substitution vary along the expenditure distribution, which will in turn affect

5The assumption that households face a constant death rate will obviously imply a stylized characterization of house-
holds’ portfolio choice over the life-cycle. While being a main departure from most of the literature on optimal portfolio
choice, this is unlikely to have major implications for wealth inequality and its evolution. In particular, given that the
model aim is a realistic characterization of portfolio choice as a function of wealth (and the strong correlation in the data
between age and wealth), this is a simplification that allows me to retain numerical tractability without giving away too
much in terms of model realism.

6While the assumption that housing consumption is the only source of non-homotheticities in the model is clearly a
simplification (as there are likely different sources of non-homotheticity in the data), it does capture the main mechanism
through which non-homotheticities work on households’ portfolio choice. The model is therefore broadly consistent
with the empirical evidence suggesting that households’ preferences are indeed non-homothetic (Atkeson and Ogaki
1996; Blundell, Browning, and Meghir 1994; Meeuwis 2020; Pakoš 2011; Straub 2019, among others)
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optimal allocations along the expenditure distribution and (as long as total expenditure varies with
wealth) along the wealth distribution. We return to this in section 2.2.

Earnings — At each instant, households receive an endowment of earnings subject to id-
iosyncratic risk. In particular, I assume log-earnings, z, follow an Ornstein-Uhlenbeck process:

dzi,t = η(z̄ − zi,t) dt+ σz dW̃i,t (4)

where W̃ is a standard Brownian motion idiosyncratic to each household. In the above process z̄
governs the average level of earnings; η is a measure of autocorrelation, and σz controls the dispersion
around the mean.

The process in equation (4) is simple enough to capture the main characteristics of earnings in
the data. There are, however, at least two moments of the distribution of earnings in the model that
will fall short of the data and that are worth some discussion: First, given that the ergodic distri-
bution associated to equation (4) is log-normal, the model will not be able to generate a fat tail in
the earnings distribution. Because earnings are a crucial determinant of the wealth distribution, I
deliberately ignore this feature of the data to highlight the strength of households’ portfolio choice as
a mechanism for generating wealth inequality. Second, Guvenen, Ozkan, and Song (2014) shows
that higher order moments of the earnings distribution are correlated with the business cycle. In
fact Catherine (2020) shows that modeling such correlation has important implications for portfolio
choice and helps explain equity shares along the wealth distribution. Excluding such correlation is
therefore also a conservative choice that allows me to focus the role of non-homotheticity in house-
holds’ preferences as a source of portfolio heterogeneity.

Asset Structure — Households can smooth consumption over time by trading in financial
assets (bonds and stocks), and housing. Denote by drj,t the asset j’s instantaneous return over a time
interval of length dt, with j ∈ {B, S,H} and collect them in a vector drt = (drB,t, drS,t, drH,t).7

Assuming return innovations are correlated across assets and expected returns are constant, we can
write instantaneous returns as:

drt = r dt+ σ dWt (5)

where r = (rB, rS, rH) is the vector of expected returns, Wt = (W1,t,W2,t,W3,t) is a vector of
three mutually independent standard Brownian motions, and σ is the 3 × 3 matrix of sensitivities
of returns to the three independent shocks (which therefore collects all the information related to
variances and covariances of returns).

7Notice that, consistent with the fact that households directly get utility from how much housing they own, we can
ignore the rental yield component in the returns to housing. drH,t therefore only captures the capital gain component
of housing returns.
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Frictions — Households face a participation decision in both housing and equity markets.
When it comes to housing, they can be owners – in which case they derive utility directly from the
amount of housing they own h – or renters – in which case they are free to choose every period how
much housing services to consume. With respect to the equity market on the other hand, households
can participate in the market – in which case they can freely adjust their portfolio of financial assets
between bonds and stocks – or not – in which case they will have 100% of their financial assets in
bonds. I will henceforth refer to households who participate in the equity market as participants and
everybody else as non-participants.

The entry and exit decisions in both the equity and housing markets have a similar structure
and have two components: a stochastic component that governs movements across participation
states, and a transaction-cost component. In particular, renters only get a chance to buy a house
with constant rate λh, at which point they can decide either to become homeowners or to continue
renting; if they decide to buy, they are free to choose their optimal housing size h and pay a transaction
cost κh(h) = κh0 + κh1h. Similarly, owners also get a chance to sell their house at rate λh and, to do
so, they have to pay cost κh(h). Infrequent trading in the housing market as captured by λh allows
us to model the illiquid nature of housing better than a transaction cost alone would do. We can in
fact interpret such stochastic component as a reduced-form way of modeling search and matching
frictions in the housing market

Similarly, in the equity markets, non-participants get an opportunity to enter the equity market
with constant probability λp0, at which point they can choose to pay an entry cost κp0 and become a
participant. Then, to stay in the market, participants have to pay a participation fee κp1 at a constant
rate λp1; if they don’t, they exit the equity market and become non-participants.8

Finally, households can borrow in bonds up to an exogenous borrowing limit ϕ but, when they
do so, face a wedge κb that increases the interest rate on borrowing.9 Notice that, while households
are allowed to borrow in bonds, they cannot borrow in stocks and are not allowed to borrow against
their house. Due to its short-term nature and the fact that it is unrelated to the amount of housing
owned, borrowing should therefore not be interpreted as mortgages. While mortgage choice is
clearly an important feature of the housing market, its introduction would significantly complicate
the model; because I do not strive to achieve a comprehensive model of housing, but rather of the
interaction between households’ portfolio shares and wealth inequality, I therefore take this as a
necessary shortcut that can be relaxed in future work.

8Notice that the stochastic component to the entry and exit decision in the equity market has a much different inter-
pretation than in the housing market. In fact, while some authors do model search and matching frictions in the equity
market (most notably McKay 2013), these frictions are usually associated to getting higher rates of return rather than
to the entry and exit decision. However, as discussed in the appendix, the stochastic components λp1 makes the numer-
ical solution of the model significantly simpler while allowing for minimal economics implications once appropriately
calibrated.

9Just as in Kaplan, Moll, and Violante (2018), this will allow me to match the fraction of households with zero
financial assets.
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Household Problem — Given the environment just described, all households choose the
optimal level of non-housing consumption c. Homeowners derive utility directly from the amount
of housing they own with multiplier χ > 1 (i.e. for owners n = χh). On the other hand, renters
get to choose how much housing services to consume each period, n, at the market rental rate rn;
participants additionally choose the optimal share θ of financial wealth to allocate in equity.

Because participants can freely choose how much to hold in bonds and stocks at every instant,
and non-participants can only hold bonds, we can collapse financial assets into a single state variable
a and a participation state in the equity market p ∈ {0, 1}. Households also differ based on their
(log) earnings, z, and their holding of housing h (where we denote renters as households with h = 0).

Financial wealth, a, and housing, h, therefore evolve according to:

dai,t =
(
ezi,t + rBai,t + (rS − rB)θi,tpi,tai,t − xi,t − κb(ai,t)

)
dt+ ai,tσa dWt (6)

dhi,t = hi,trH dt+ hi,tσ3 dWt (7)

where xi,t = ci,t−rnni,t1{hi,t = 0} is total consumption expenditure, κb(a) = κba1{(1−θ)a < 0},
σi is the i-th row of the σ matrix in equation (5), and σa =

(
(1− θi,tpi,t), θi,tpi,t

)
(σ1,σ2)

′ is the
vector of sensitivities of financial assets to the three independent shocks, which directly depends on
the optimal equity share θi,t and the participation state pi,t.

With some abuse of notation, it will be useful to collect the continuous states (conditional on
the participation state p) in a vector sp = (a, h, z), which allows us to more compactly rewrite their
evolution as:

dspi,t = µ(spi,t) dt+ σs(s
p
i,t) dWt + σ̃s(s

p
i,t) dW̃i,t (8)

where µ(spi,t) is the vector of drift components of (a, h, z) as in equations (4), (6) and (7), σs =

diag(s) · (σa, hσ3, 0) and σ̃s(s
p) = (0, 0, σz)

′.
Denoting by v(a, h, z, p) the household’s value function, the household problem can be simply

written as:
0 = max

{
f(u, v) +Av

}
(9)

where A is a partial differential operator including all the information about the evolution of house-
holds’ states.10,11

10As mentioned above, households choice set depends on their current participation and homeownership state: all
households choose non-housing consumption c, renters additionally choose housing consumption n, and participants
also choose the portfolio share θ; then, when hit by the stochastic participation shock, participants choose whether to
stay in the market or not while non-participants whether to enter or not; finally, when hit by the stochastic buying/selling
shock, homeowners choose whether to sell their house and become renters or not, and renters choose if they want to
become homeowners or not (and if they do, how much housing to buy).

11I leave the derivation and exact definition of A to the appendix as it is neither particularly useful nor enlightening.
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Cross-sectional Distribution — Given the assumption of exogenous returns, char-
acterizing the model economy amounts to describing the evolution of its cross-sectional distribution
gt(s). Proposition 1 therefore presents the main theoretical result which most of the quantitative
analysis will hinge on.

Proposition 1. The distribution of households over individual states, gt(s), solves the following Kol-
mogorov Forward Equation (KFE):

dgt(s) =
{
A∗gt(s) + ζ

(
Ψ(s)− gt(s)

)}
dt− ∂s

{[
σs(s) dWt

]
gt(s)

}
(10)

where A∗ is the adjoint of the differential operator in the HJB equation (9).

The proof of proposition 1, as well as the proofs of all other theoretical results can be found in
appendix A.1. Proposition 1 makes clear that, unlike in models of idiosyncratic return risk, the cross-
sectional distribution g varies along the ergodic distribution. In fact, the KFE (10) is composed of
two terms: a drift term – which is present in all continuous-time models a lá Achdou et al. (2017)
– that essentially determines the average level of inequality, and a diffusion term – which is only
present in models with aggregate risk (e.g. Gomez 2019; 2021; Schaab 2020) – that specifies how
the evolution of the cross-sectional distribution gt depends on both the specific path of shocks dWt

and on the exposure of households portfolios to aggregate shocks (through σs(s)).12

While it might not be particularly enlightening on its own, equation (10) is a crucial input of the
model: it in fact encompasses all the relevant information about households’ choices, the distribu-
tion of wealth, and, most importantly, their evolution. To gain some more intuition about the role
of heterogeneous exposure for the evolution of wealth inequality, in section 2.3 I therefore solve a
simplified version of the model which allows us to get an analytical expression for the evolution of
wealth shares.

2.2. The Role of Non-homothetic Preferences
As I briefly hinted at above, non-homothetic preferences imply that ψ and γ do not exactly coin-
cide with the elasticity of intertemporal substitution (EIS) and relative risk aversion (RRA); rather,
RRA and EIS are a function of total consumption expenditure and therefore vary along the wealth
distribution. To see how RRA and EIS change with expenditure, recall that total consumption ex-
penditure in housing services and non-housing consumption is given by x = c+ rnn. Proposition 2
characterizes how expenditure shares change along the expenditure distribution and shows that, if
εh < εc, the expenditure share in housing declines in total expenditure, implying that housing is a

12The HJB and KF equations (9) and (10) together constitute a forward-backward system with common noise. For
an introduction to the theory of mean field games with common noise see Carmona and Delarue (2018).
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necessary good.13,14

Proposition 2. If εh < εc, the expenditure share of non-housing consumption rises in total expenditure.
Define α(x) ≡ c(x)/x the expenditure share in non-housing consumption, where x = c+ rnn, then:

∂α(x)

∂x
> 0 ∀x

Furthermore:
α0 ≡ lim

x→0
α(x) = 0; α∞ ≡ lim

x→∞
α(x) = 1

Why does the assumption that housing is a necessary good imply EIS and RRA vary with wealth?
The first formal argument for the implications of non-homothetic preferences for the EIS can be
found in Browning and Crossley (2000) and is particularly intuitive: because wealthier households
have a larger share of their consumption basket in luxury goods (non-housing consumption in my
model), and because households do not care as much about fluctuations in the consumption of lux-
uries, the elasticity of intertemporal substitution increases with wealth. Browning and Crossley
actually present their argument for a model without any intratemporal risk, which therefore does
not have any implications for risk aversion. Nonetheless, because households do not care as much
about fluctuations in luxury-good consumption both across states and over time, the argument works
exactly the same way for risk aversion. Wachter and Yogo (2010) in fact use this exact mechanism
to generate variation in risk aversion and generate portfolio shares of equity that are increasing in
wealth. On the other hand, because Wachter and Yogo have time-separable preferences, RRA and
EIS are obviously linked and they only need to make a statement about one of the two. Corollar-
ies 2.1 and 2.2 therefore extend the results in Browning and Crossley (2000) and Wachter and Yogo
(2010) for RRA and EIS in a model with recursive preferences.

Corollary 2.1. Relative risk aversion is given by:

RRA(x) =
α(x)εc

(
1− ε−1

h

)(
1 + 1−ε−1

c

1−ε−1
h

(γ − 1)

)
+ (1− α(x))εh

(
1− ε−1

c

)
γ[

α(x)εc + (1− α(x))εh
] [
α(x)

(
1− ε−1

h

)
+ (1− α(x)) (1− ε−1

c )
]

13Aside from its theoretical implications, one also needs to assess if the assumption that εh < εc makes sense empir-
ically. In the calibration section I will be more specific on how to pin down εh and εc using data on expenditure. For
now let me just state that εh < εc is indeed the empirically relevant assumption.

14Because the proofs of the theoretical results in this section make use of the intra-temporal Euler equation (which
generally does not hold for homeowners), these results only apply to the renters’ problem. Nonetheless, as households
have the opportunity to infrequently adjust their housing consumption, they still provide a useful device to understand
the main mechanism behind households’ portfolio choice.
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Then, if εh < εc < 1 < γ, we have that ∂RRA
∂x

< 0 and

γ0 ≡ lim
x→0

RRA(x) = γ; γ∞ ≡ lim
x→∞

RRA(x) = 1 +
1− ε−1

c

1− ε−1
h

(γ − 1) < γ0

Corollary 2.2. The elasticity of intertemporal substitution is given by:

EIS(x) ≡ −
∂
(

dln ct
dt

)
∂
(

dlnΛt
dt

) =
εc

1− ucc+unn
u

(
α(x)εc + (1− α(x))εh

) (
1
εh

− 1
ψ

)
where Λt = e

∫ t
0 fv(us,vs) dsfu(ut, vt)uc(ct, nt) is the utility gradient. Then , if ψ < εh < εc < 1, we

have:

ψ0 ≡ lim
x→0

EIS(x) =
εc

1−
(
1− εh

ψ

) ; ψ∞ ≡ lim
x→∞

EIS(x) =
εc

1− 1−ε−1
c

1−ε−1
h

(
1− εh

ψ

) > ψ0

Corollaries 2.1 and 2.2 tell us that, under reasonable parameter values for γ and ψ, εh < εc
implies risk aversion is declining in total expenditure and intertemporal elasticity is increasing in it.
Notice also that the relative distance between both γ0 and γ∞ and ψ0 and ψ∞ depends directly on
the ratio 1−ε−1

c

1−ε−1
h

. This ratio, which varies between 0 and 1, can therefore be interpreted as an inverse
measure of the non-homotheticity in the model.

As we will see shortly, the implications of the non-homotheticity for RRA and EIS are key to
replicate the portfolio shares we observe in the data (i.e. that poorer households mostly invest in
bonds; the middle-class in housing; and only the wealthiest in equity). In the model, because poorer
households have a large share of their consumption basket in housing services, they will have a high
RRA and low EIS: they really need to smooth consumption but the high level of risk associated
with stocks and the illiquidity of housing imply they would much rather invest in low-return bonds.
Viceversa wealthier households do not care about consumption smoothing that much and have a
lower risk aversion, hence they will heavily invest in stocks to reap the higher return.15

2.3. The Role of Heterogeneous Exposure
We saw in proposition 1 that the evolution of the wealth distribution gt depends on both the spe-
cific path of aggregate shocks dWt and on households’ exposure to such shocks (through σs). That
aggregate risk is asset returns affects the distribution of wealth is particularly intuitive: if everybody’s
returns are exposed to movements in the prices of the same assets, such movements will obviously

15This mechanism implicitly relies on the assumption that as wealth increases total expenditure does as well. However,
this is the case in almost all models of consumption smoothing and certainly the case in the model just presented.
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affect everybody’s wealth holdings. However, the KFE (10) does not tell us much about how hetero-
geneity in risk exposure influences the evolution of wealth inequality.

In this section I try to shed light on this mechanism by showing that, first, in the general case
of arbitrary exposure to aggregate risk in asset returns, wealth inequality depends on the specific
path of aggregate shocks and, second, that if exposure to aggregate risk is instead homogeneous,
inequality is independent of aggregate shocks. To do so, consider a (very) special case of the model
presented above. In particular, assume that households live forever (ζ = 0) and face no earnings risk
(zi,t = 0). Further assume they can invest in riskless bonds (σ1 = 0) and risky stocks but not in
housing (λh = 0, i.e. all households are renters). Finally, assume households face no other frictions:
that is, all households participate in the stock market and there are no restrictions on borrowing
(essentially a slightly more general version of the model in Merton (1971) in which we allow for
different preferences).

If without any further loss of generality we also assume that σ2 = (0, σS, 0), the evolution of
households total wealth ai,t solves the following stochastic differential equation:

dai,t =
[
rB + (rS − rB)θ(ai,t)− x(ai,t)

]
ai,t dt+ θ(ai,t)ai,tσS dW2,t (11)

where x(a) is total consumption expenditure as a function of wealth.
Denoting byµ(a) and σ(a) the drift and diffusion terms in equation (11), the KFE (10) simplifies

to:

dgt(a) =
{
−∂a

[
µ(a)gt(a)

]
+

1

2
∂aa
[
σ(a)2gt(a)

]}
dt− ∂a

[
σ(a)gt(a)

]
dW2,t. (12)

While being much simpler than equation (10), equation (12) still does not tell us much about the role
of heterogeneous exposure to aggregate risk. Its simplicity, however, makes it much more manage-
able, and we can in fact use it to look directly at the evolution of wealth inequality. Define aggregate
wealth in the economy as Āt =

∫ +∞
−∞ agt(a) da and the share of aggregate wealth held by the top p

percent of the wealth distribution as Sp,t. That is,

p =

∫ +∞

qt

gt(a) da (13)

Sp,t =
1

Āt

∫ +∞

qt

agt(a) da (14)

The next proposition, and its associated corollary, present a simple yet powerful theoretical result
that is at the heart of the full model presented in this paper.

Proposition 3. If the distribution of wealth evolves according to equation (12), top shares Sp,t as defined
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in equation (14) evolve according to:

dSp,t =
1

Āt

{∫ +∞

qt

µ(a)gt(a) da− Sp,t

∫ +∞

−∞
µ(a)gt(a) da+

1

2
σ(qt)

2gt(qt)

}
dt+

+
1

Āt

{∫ +∞

qt

σ(a)gt(a) da− Sp,t

∫ +∞

−∞
σ(a)gt(a) da

}
dW2,t

(15)

The second term on the right-hand side of equation (15) clarifies that top shares, just like the
overall wealth distribution, also depend on aggregate shocks and do so via exposure along the wealth
distribution σ(a). We already know from Merton (1971) that if preferences are CRRA and homo-
thetic, portfolio shares are constant. Corollary 3.1 then formalizes the effects of this assumption on
wealth inequality and brings us back to the usual result that, if exposure to aggregate risk is homo-
geneous, wealth inequality does not depend on aggregate shocks.

Corollary 3.1. If households exposure to aggregate risk is proportional to wealth, i.e. σ(a) ∝ a, top shares
Sp,t as defined in equation (14) are independent of aggregate shocks.

The corollary’s proof is simple enough to be included here. Notice in fact that, if σ(a) = θ∗a,
the second term in brackets on the right hand side of equation (15) simplifies to

θ∗
∫ +∞

qt

agt(a) da− θ∗Sp,t

∫ +∞

−∞
agt(a) da = θ∗Sp,tĀt − θ∗Sp,tĀt = 0

where in the first equality we have simply used the definition of Sp,t and Āt.
The above two results plainly tell us that aggregate risk in asset returns generates fluctuations in

wealth inequality and that portfolio heterogeneity is crucial to such result. That is, if we want to
understand inequality dynamics, we ought to understand households’ portfolios decisions too.

2.4. Numerical Solution
The model is solved by discretizing the state vector s and using finite difference approximations
to both the HJB (9) and KFE (10) (the numerical procedure is described more in detail in the
appendix and is similar to the one in Achdou et al. 2017). The solution to the household problem
in equation (9) essentially boils down to writing a discretization of the infinitesimal operator A.
Once we have that, the drift term of the kolmogorov forward equation (10) comes for free, as the
discretization of A∗, only involves computing a matrix transpose. The diffusion term in (10) can
then also be expressed in its discretized form, and solving the KFE therefore simply requires moving
forward in time starting from an initial distribution g0.

Unless stated otherwise all model solutions are solved by simulating a random sequence of prices
from equation (5) on a quarterly time grid. The simulation starts in period 0 and runs for 11,000
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years, of which the first 1,000 years are then discarded to remove dependence on the initial condition.
Running the simulation on a finer time grid or for longer does not change the results in any mean-
ingful way. The initial distribution g0 is the solution of the deterministic portion in equation (10)
(i.e. the solution to a model with Wt = 0 ∀ t). Finally, for the birth distribution Ψ, because the
model includes neither voluntary nor unvoluntary bequests, I assume every newborn agent starts as
a non-participant with no financial wealth, no housing and an endowment of earnings drawn from
the ergodic distribution associated to equation (4). Because bequests are often used as a mechanism
to increase wealth concentration, this is a conservative choice that allows me to focus directly on the
portfolio-choice channel.

3. Model Calibration
Themodel is calibrated tomatch some key features of the average cross-sectional distribution starting
from the 1980s. Some parameters are calibrated externally, in particular the processes for asset prices
and earnings, while others are calibrated internally by directly comparing moments from the model
to the data. In particular, for the internally-calibrated parameters, one key moment is the schedule
of households portfolio holdings along the wealth distribution. All model moments are calculated
using time averages along the ergodic distribution.16

Table 1 collects all the calibrated parameters with the exception of asset prices. One unit of time
is normalized to be one year and parameter values are expressed accordingly (e.g. a death rate of
ζ = 1/45 implies an average lifespan of 45 years). When expressed in percentage terms, values are
meant to be relative to average earnings in the model.

3.1. External

Asset Prices — Asset prices are calibrated using data from 1970 to 2010 taken both from
the MacroHistory Database of Jordà et al. (2019) for bonds and housing and from Kartashova (2014)
for equity. The database provides data for the rate of return on safe assets (taken to be the rate of
return on treasury bills) and on housing. For the latter, given that the model separates between
renters and owners, I only use the series on capital gains. Then, because I will calibrate portfolio
shares on households’ net home equity position, capital gains are also adjusted for leverage and costs
of mortgages by using the average loan-to-value ratio and the average 30-year fixed rate mortgage
series from FRED. The rental rate rn is set to equal the average rental returns over the period.17

16As mentioned above, unlike in model of idiosyncratic return risk, the cross-sectional distribution g varies over time.
To avoid any confusion between the distribution of households at a given point in time gt and the distribution of g over
time, I will henceforth always use the term “ergodic” when referring to the time-series dimension of g.

17This is consistent with the fact that most of the observed variation in the aggregate rent-to-price ratio comes from
movements in prices rather than rents.
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Table 1: Calibration

Parameter Value Target Source

Preferences
ζ 1/45 avg. working life internal
ρ 0.06 wealth-to-income ratio ”
γ 2 portfolio shares ”
ψ 0.5 time-separable preferences ”
χ 1.5 avg. homeownership rate ”
ω 0.31 avg. expenditure share ”
εh 0.75 expenditure shares ”
εc 0.91 avg. expenditure elasticity Aguiar and Bils (2015)

Earnings Process
z̄ 0 normalization -
ηz 0.03 autocorrelation -
σz 0.3 earnings inequality Kuhn and Rios-Rull (2016)

Frictions
ϕ 75% external Heathcote, Storesletten, and Violante (2020)
κb 0.06 ” Kaplan, Moll, and Violante (2018)

λp0, λ
p
1 12, 365 - -

κp0 0 external Vissing-Jorgensen (2002)
κp1 1.5% avg. participation internal

λh 5.2 external Garriga and Hedlund (2020)
κh0 5% ” Favilukis, Ludvigson, and Van Nieuwerburgh (2016)
κh1 0.055 ” ”
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Equity prices come directly from Kartashova (2014) and are a weighted average of returns on private
equity and on a public-equity index. All returns are adjusted for inflation.

The estimated values for the vector of average returns r and the matrix of sensitivities σ in
equation (5) are:

r =

0.0190.111

0.003

 σ =

 0.022 . .

−0.025 0.095 .

−0.006 0.030 0.053


Earnings — I calibrate the earnings process in equation (4) tomatch inequality in the earnings
distribution; in particular I directly target a Gini coefficient of 0.67 from Kuhn and Rios-Rull (2016)
and an autocorrelation coefficient of 0.97 (which are matched exactly). The process also closely
matches other (untargeted) moments of the distribution such as the mean to median ratio and the
90-50 ratio. However, as mentioned above, because the process in equation (4) generates a log-
normal distribution of earnings, it does not feature a fat tail and will therefore miss some of the
earnings concentration at the very top (top 1% and above).

Borrowing and Housing Frictions — The exogenous borrowing limitϕ is set to 75%
of average earnings, which approximately corresponds to the median credit limit (from Heathcote,
Storesletten, and Violante 2020), while the borrowing wedge κb is set at 6% as in Kaplan, Moll,
and Violante (2018). Transaction costs in the housing markets are taken directly from Favilukis,
Ludvigson, and Van Nieuwerburgh (2016) who have a similar model of portfolio choice: variable
costs κh1 are set at 5.5% of the housing value, while the fixed cost is set to 5% of average earnings
(which approximately corresponds to their 3.2% of average consumption). The buying and selling
frequency λh is set such that the average search time in the housing market is of 10 weeks (from
Garriga and Hedlund 2020).

3.2. Internal

Preferences — Aside from providing intuition for why non-homothetic preferences help us
match portfolio shares along the wealth distribution, the theoretical results in section 2.2 also give
some useful guidance for the calibration of the preference parameters. We already mentioned that,
if εh = εc, the intratemporal consumption aggregator in equation (3) is of the CES form. Constant
elasticity would have two main implications: first, expenditure shares would be constant and, second,
all goods would have unit expenditure elasticity. On the other hand, if εh < εc, proposition 2 tells
us that the expenditure share of housing is declining in total expenditure; then, it is trivial to show
that the expenditure elasticity of housing is given by:

∂ logn
∂ logx

=
εh

α(x)εc + (1− α(x))εh
. (16)
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Figure 1: Housing Expenditure Shares

which, as households get wealthiers, gradually decreases from 1 to εh/εc < 1.
This suggests the change in expenditure shares along the expenditure distribution and the av-

erage expenditure elasticity of housing will be informative for the non-homotheticity parameters. I
therefore ask the model to match both the decline in housing expenditure shares along the expen-
diture distribution (measured as deviations in the average expenditure share for each expenditure
decile), and the average expenditure elasticity of housing (which is readily available from Aguiar and
Bils 2015, Table 2). Using data from the Consumer Expenditure Survey (CEX) they estimate an
average elasticity of 0.92, which my model matches exactly. Then, figure 1 shows that the model
also matches the declining pattern of expenditure shares along the expenditure distribution. The
data series in figure 1 is also obtained from the CEX using the same methodology and sample as in
Aguiar and Bils (2015), which allows for consistency between the data on expenditure shares and
the average elasticity.18

Finally, we also ask the model to match the wealth to earnings ratio and the average homeown-
ership rate. The calibrated values of εh and εc are of 0.82 and 0.92, respectively, with an implied
value for the non-homotheticity parameter 1−ε−1

c

1−ε−1
h

of approximately 0.38 suggesting that, although
the average expenditure elasticity of housing is close to 1, preferences exhibit a high degree of non-
homotheticity. Given the calibrated values for γ and ψ, corollaries 2.1 and 2.2 also give us implied
values for γ0 and γ∞ of 2 and 1.38, while those for ψ0 and ψ∞ are 0.56 and 0.745, which are well
within the range of estimated values from Calvet et al. (2021).

18Housing expenditure is computed using actual rent paid for renters and (self-reported) rental equivalence for home
owners (see Aguiar and Bils (2015) for more details about data definitions).
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Figure 2: Portfolio Shares

(a) SCF 1989-2019 (b) Model

Portfolio Shares — When it comes to households’ portfolio choice, I specifically target
the distribution of portfolio shares along wealth deciles. In particular, using data from the Survey of
Consumer Finances (SCF), I aggregate assets into three different asset-classes which can be immedi-
ately mapped to the three assets in the model. Risky assets include all direct and indirect holdings of
both public and private equity. Public equity comprises of stocks, stock mutual funds, IRAs/Keoghs
invested in stocks, and other managed assets with equity interest. Private equity instead refers to
the total value of businesses in which the household has either an active or nonactive interest. Safe
assets are then computed as a residual of total financial assets minus equity holdings, they include
transaction accounts (money market, checking, savings accounts etc.), certificates of deposit, bonds
and other managed assets. Finally, housing is computed as the total value of the primary residence
and of other residential real estate, and the value of net equity in nonresidential real estates other
than the principal residence. As discussed in section 2, since the model does not feature mortgages
but only short-term borrowing, I subtract mortgage debt from the total value of housing and directly
calibrate on households’ net housing position.

The decision to bundle together public and private equity as a single asset class is not entirely
without consequence, and is therefore worth to discuss more at length. With the exception of the
period from 1990 to 2000, which exhibited exceptionally high public equity returns, private equity
generally earns a premium over public equity (Kartashova 2014; Moskowitz and Vissing-Jørgensen
2002). Given private equity is disproportionately concentrated at the very top of the wealth distri-
bution, it is not surprising the literature on wealth inequality has often turned to models that try
to replicate the private equity concentration at the top. However, one thing these models miss by
modeling private equity as an asset subject to purely idiosyncratic risk is that private-equity returns
are generally highly correlated with public equity returns over time. Bundling together public and
private equity, while missing features associated to private equity such as idiosyncratic risk and illiq-
uidity, allows me to capture the common fluctuations in the return to both assets. While definitely
important, including such additional features of private equity in a model of endogenous portfolio
choice is not trivial and beyond the scope of the paper.
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Figure 2a plots portfolio holdings in the SCF pooling all waves from 1989 to 2019 and shows
that, while poor households mostly hold safe assets, housing is the asset of the middle class and that
equity only starts to have a predominant role in household portfolios above the 8th decile. Figure 2b
shows that the model captures the main characteristics of households’ portfolio holdings along the
wealth distribution as well as the fraction of households with negative net worth (represented with
the vertical red dashed line) which equal 25% vs. 22% in the model vs. the data.

Equity-market Frictions — I calibrate equity market frictions to match the average
fraction of equity holders in the SCF from 1989 to 2019, where equity is defined as in figure 2.
Unfortunately there is no clear data moment that can help setting the stochastic components gov-
erning entry and exit in the equity market. I therefore set them so as to minimize their economic
implications: the frequency of the entry shock λp0 is set such that no more than 1% of households
would ever want to be a stockholder but is forbidden to do so because of the entry friction, while the
frequency for the per-period participation cost λp1 is simply set so as to arrive on average once a day
(therefore mimicking a continuous-time cost structure).

When it comes to the participation costs, the model still has two parameters that are both acting
on households participation. Consistent with evidence from Vissing-Jorgensen (2002) in favor of
per-period transaction costs only, I set the entry cost κp0 to zero and only calibrate κp1. The calibrated
value of 2.5% is consistent with results from Favilukis, Ludvigson, and Van Nieuwerburgh (2016)
who set it at about one third of the fixed housing transaction cost.

4. Results
Now that we have shown that the model does a good job at matching households’ portfolio shares
along the wealth distribution, we are ready to move to the main objective of the paper: quantitatively
assess the role of heterogeneous exposure for wealth inequality and its dynamics. In particular, we
are interested in characterizing how the dynamics of wealth inequality are affected by changes in
asset returns and to what extent the model can help us understand the sharp rise observed from 1980
to 2010. Before doing so, however, it is useful to understand some key properties of the ergodic
distribution. Hence, I first look at howwell themodel matches the average distribution of wealth and
perform a series of exercises to understand how much each of the model ingredients contributes to
inequality; then, I look at the ergodic distribution and at what is the effect of changes in asset returns;
finally, I feed the realized sequence of prices into the model to show that it can indeed replicate the
observed increase in top wealth shares and that the latter was mostly the result of abnormal equity
returns.
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Table 2: Wealth Inequality

Bottom 60% Next 30% Top 10% Top 1% Gini

SCF (1989-2019) 7.0% 22.7% 70.3% 33.9% 0.827
Model 6.0% 31.1% 62.9% 27.1% 0.759

4.1. The Level of Wealth Inequality
In this section I show first, that the model generates a significant degree of wealth concentration
and, second, that the main driver of such concentration is heterogeneity in returns.

Average Inequality — Table 2 compares average wealth inequality along the ergodic dis-
tribution with average inequality in the U.S. from 1989 to 2019. The model roughly matches the
data, with a top 10% wealth share of 62.9% (vs. 70.3% in the data), a top 1% wealth share of 27.1%
(vs. 33.9% in the data), and a Gini coefficient of 0.76 (vs. 0.83 in the data).19

Notice also that, while average inequality in the model is slightly lower than in the data, it should
at this point be clear that, in the presence of portfolio heterogeneity, the model’s cross-sectional
distribution is a stochastic object. In section 4.2 I will in fact show that values for the top 10%
wealth share and Gini coefficient of 77.9% and 0.86 (as in the 2019 SCF) are well within the ergodic
distribution.

Decomposition — The model presented in section 2 includes several features that con-
tribute to generate wealth inequality: earnings risk, non-homothetic preferences, return heterogene-
ity, and aggregate risk in asset returns. What exactly is the contribution of each of these mechanisms
to generate wealth inequality? To answer this question I run a series of counterfactual exercises in
which, starting from a single asset model with idiosyncratic income risk and homothetic preferences
(essentially a version of the classic Bewley (1980) and Huggett (1993) models), I sequentially in-
troduce non-homothetic preferences, return heterogeneity, and aggregate risk in asset returns. One
problem that arises when solving the model with return heterogeneity only (i.e. without risk) and
risk only (i.e. without return heterogeneity) is that – in a model of optimal portfolio choice – no
agent would ever choose bonds over stocks if both are riskless (and rS > rB), and no agent would
ever choose equity over bonds if they have the same returns (and equity is riskier than bonds). To cir-
cumvent this problem I solve all models here by shutting off agents’ portfolio choices; that is, agents
get directly assigned a portfolio of bonds, stocks, and housing based on their wealth level. The

19That the model is capable of generating large levels of wealth inequality once it can match heterogeneity in portfolios
(and therefore returns) should not come as too much of a surprise, especially given the recent work that shows return
heterogeneity plays a crucial role in generating wealth inequality (see Hubmer, Krusell, and Smith 2021; Xavier 2020,
among others).
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Table 3: Wealth Inequality - Decomposition

Parameters Gini

Model Rates of return Risk Mean Std. dev.

Baseline r σ 0.759 0.049
Earnings - - 0.662 -

No Ret. Heterogeneity, Homothetic rj = 5.3% σi,j = 0 0.684 -
Non-Homothetic Preferences rj = 5.3% σi,j = 0 0.711 -
Only Risk rj = 5.3% σ 0.707 0.031
Only Ret. Heterogeneity r σi,j = 0 0.746 -
All r σ 0.743 0.040

Notes: The first two rows report the Gini coefficient for the baseline model in section 2, and that for the earnings
distribution, respectively. All other rows report results for amodel in which households get directly assigned portfolio
shares based on their wealth level (the exogenous shares are taken directly from SCF data). Models without return
heterogeneity set the average rate of return to be the same as in the baseline economy. Each model is recalibrated
to match the wealth to earnings ratio and, for models with non-homothethic preferences, expenditure shares.

exogenous portfolio shares are taken directly from SCF data, and will therefore perfectly replicate
figure 2a.20

Notice also that, in the data, at any given level of wealth there will obviously be both homeowners
and renters. Allowing for such separation in the model with exogenous portfolio shares would there-
fore require me to take a stance on how to assign households across homeownership states, as well as
on how households move from one state to the other. In these exercises I therefore simply separate
the investment dimension of housing from the consumption one: namely, investment in housing is
directly determined by the portfolio share, while the consumption choice is left unconstrained.

Table 3 presents the results of this exercise: in the first two rows I report the Gini coefficient for
the baseline model in section 2, and that for the earnings distribution (which is a useful benchmark
point all models start from), respectively. The third row then shows that a single-asset model with
homothetic preferences generates very little wealth inequality above and beyond earnings inequality,
a result consistent with the theoretical analysis in Benhabib and Bisin (2018) which tells us that
“standard” models without any heterogeneity in returns have a hard time generating high wealth
inequality.21 In the fourth row we see that adding non-homothetic preferences does slightly increase
wealth inequality (mainly through its effect on the optimal consumption-saving choice) but gets us
nowhere close to the level of inequality observed in the data. The last three rows then look at the roles

20For models without return heterogeneity we set the average rate of return to be the same as the average return
in the baseline economy. Each model is then recalibrated to match the wealth to earnings ratio and, for models with
non-homothetic preferences, expenditure shares.

21The theoretical results in Benhabib and Bisin (2018) actually applies only to the tail coefficient of the distributions
of earnings and wealth.
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of heterogeneity in the risk-return profile: the fourth row – only risk – keeps the return to all assets
at its average value of 5.3%, but reintroduces the σ matrix in the price equation equation (5). We can
immediately see that, while the average level of inequality is essentially unchanged, the introduction
of aggregate risk obviously makes the wealth distribution stochastic, as shown by a positive standard
deviation of the Gini coefficient along the ergodic distribution. Return heterogeneity, on the other
hand, increases wealth inequality far more than any other channel, and gets us essentially to the same
level as the baseline model; a result very much in line with the recent literature stressing the role of
return heterogeneity for wealth inequality Hubmer, Krusell, and Smith (2021); Kuhn, Schularick,
and Steins (2020); Xavier (2020). Finally, the last row – exogenous shares – reintroduces aggregate
risk in asset returns and reports inequality for a model with all the same features as the baseline but
without optimal portfolio choice. Both the level of inequality and its standard deviation here are
not much smaller than the baseline model which suggests that, aside from generating the correct
schedule of returns, optimal portfolio choice does not play a major role for inequality itself.

4.2. The Dynamics of Wealth Inequality
We have seen that, through the effect of heterogeneity in returns to wealth, the model does a good
job at matching the average level of inequality. In this section we look at the role such heterogeneity
plays for the dynamics of wealth inequality. In particular, I show that top wealth shares exhibit
large and long-lasting fluctuations and that, as a consequence wealth inequality takes a wide range
of values along the ergodic distribution. Then, I show that most of these effects are due to the
economy’s response to temporary shocks to equity returns.

Ergodic Distribution — To look at the how wealth inequality changes over the ergodic
distribution, in figure 3 I plot both the time series over a “short” time interval and the histogram
over the whole simulation. Panel 3a plots the evolution of the top 10% wealth shares over the last
500 years of the simulation: while the top share fluctuates mostly around its mean value, it also
experiences some sporadic large and long-lasting fluctuations with changes as large as 20% in less
than a century. Panel 3b then confirms what we see in the panel 3a: the bulk of the distribution is
concentrated around a top 10% share of approximately 60% but over time it ranges from about 50%
to well over 80% with some – very infrequent – peaks of almost 90%. The ergodic distribution in
figure 3b tells us that, although a realization of the top 10% wealth share of 76% (as in the 2019
SCF) is indeed high, it is still well within the ergodic distribution.

The Effect of Returns — The results in figure 3 suggest that prices must have large
effects on wealth inequality and that these effects must be persistent, or we would not see such long-
lasting periods of high inequality as in panel 3a. To understand what are the main determinants
of such large and persistent effects, we first look at the effects of shocks to the returns of different
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Figure 3: The Dynamics of Wealth Inequality
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assets, and then assess if the temporary nature of the shocks has anything to do with it. We start by
computing impulse response functions (IRF) of the top 10% wealth share to the various components
of Wt. In particular, figure 4 plots the IRF to a one-time shock in Wt corresponding to a 1%
excess return in each asset.22,23 The shock is entirely temporary and starts from the “steady-state”
distribution g0; that is, starting from a situation in which Wt = 0 ∀ t < 1, Wt suddenly increases
at t = 1 and then goes back to 0 forever.24 We are interested both in the impact effect of the shock,
measured at its peak, and in its duration, measured as the time it takes for inequality to go from its
peak to half of it (which I will refer to as a shock’s half-life).

Figure 4 shows that the three shocks imply very different responses in the top 10% wealth share:
First, the response to a 1% excess return in bonds is very small and negative on impact (less than
a 0.01% change from steady state). On the other hand, a shock to house prices generates a much
more substantial increase in inequality (0.08% on impact), reverting fairly quickly (with a half-life of
6 years) and has a negative but small effect on inequality from 25 years onwards. From the response
to the equity shock, however, we see that it is movements in equity prices that generate by far the
largest effect on inequality. The increase in the top 10% share reaches its peak 3 years after the initial
shock and is more than 50% larger than the effect of the corresponding housing shock with a peak
response of 12.7%. In fact, the equity shock is also the most persistent, with a half-life of almost 40
years. To get a sense of how large and important equity shocks are for inequality fluctuations, recall
that the estimated standard deviation of equity returns is about 9.5%. That means in steady state a
one standard deviation shock to equity returns is going to generate an increase in the top 10% wealth

22Notice that, because the variance-covariance matrix Σ(Pt) is non-diagonal, to get a 1% excess return in only one
asset the entire vector Wt might have to change (i.e. there is not a one-to-one mapping between the components of
Wt and returns to each asset).

23Given rB < rH < rS , a 1% excess return in equity will clearly be smaller (in relative terms) than a 1% excess
return in housing which is itself smaller than the same-sized shock to bonds. Given equity is by far the largest driver of
inequality, normalizing the shocks to be 1% for each asset is a conservative choice (rather than normalizing the shock
either to each asset’s standard deviation or to each asset’s average returns).

24Notice that, because households believe prices evolve according to equation (5), this is not technically an “unex-
pected” shock.
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Figure 4: IRF to one-time 1% excess return
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share of almost 1 percentage point.
A second question relates to whether the temporary nature of movements in returns has any

impact on the size and persistence of the shocks. To answer this question we can compare the
response of the model to two different sequences of shocks that generate the exact same sequence
of returns. In particular, in figure 5 I plot the evolution of the top 10% wealth share in response to:
first, a continuous sequence of shocks to Wt such that equity returns are always 1% above rS (in
orange) and, second, a one time increase of 1% in expected returns rS (in blue).25 Figure 5 shows
that the difference in the economy’s response to the two identical sequences of returns is extremely
different. In fact, in response to a 1% change in expected returns, inequality decreases in the short
run and eventually only increases by about 1% versus a total increase of about 8% in response to the
sequence of temporary shocks.

An important implication of this exercise is that, if we want to understand the dynamics of
wealth inequality, we need to carefully model the nature of aggregate risk in asset returns. That is,
there are two possible ways of modeling fluctuations in rates of returns: in one case we can interpret
all movements in returns as fluctuations around a constant expected rate of return, which is the
interpretation taken in this paper; in the other case we can interpret all movements in returns as
changes in expected returns. Figure 5 tells us that these two extreme cases have extremely different
implications for the wealth distribution. Hence, given reality is likely in between these two extremes,
if we want to carefully account for the role of changing asset prices for wealth inequality we should
carefully account for the nature of price changes.

25While the model does not allow for time variation in expected returns, we can easily solve for the response to a
one-time change by applying the households’ policy functions after the shock to the wealth distribution before the shock
and let the distribution move forward in time.
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Figure 5: IRF to constant 1% excess return to equity
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4.3. The Rise in Wealth Inequality
Given aggregate movements in asset returns have such large and persistent effects on wealth inequal-
ity, how much of the observed increase in inequality can the model explain? In this section I first
show that movements as large and as fast as observed in U.S. data are a perfectly normal outcome of
the model; then, by feeding the realized sequence of returns into the model, I show that the model
can in fact replicate the increase in observed top wealth shares. Third, by running a series of coun-
terfactual experiments, I show that most of the rise in inequality was due to abnormal equity returns
in the late 1990s and early 2000s, with housing playing a very minor role only during the housing
boom in the mid 2000s. Finally, I also show that the model predicts a slow reversal of inequality
towards its mean.

The Distribution of Changes — Saez and Zucman (2016) and Smith et al. (2021)
(henceforth SZ and SZZ) estimate the increase in the top 10% wealth share from 1986 to 2012 to
be 13.6 and 10.6 percentage points, respectively.26 We can compare these two numbers with the
distribution of 25-years changes in the same share along the ergodic distribution, plotted in figure 6.
Although the observed changes in inequality are indeed at the right end of the changes produced by
the model – that is, the model predicts such to be somewhat unlikely events – the estimated increases
are well within the ergodic distribution. In fact, in the model the probability that the top 10% wealth
share increases by more than 10.6 p.p. over the span of 25 years, P(∆25S0.1 ≥ 0.106) equals 6.1%,

26Depending on the methodology used to compute top shares, the literature is somewhat in disagreement about the
exact level of top shares across the sample period. Given the assumption of heterogeneous returns, my model is more
directly comparable to results from Smith et al. (2021). However, for sake of completeness I also include results from
Saez and Zucman (2016).
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Figure 6: Distribution of Changes
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while P(∆25S0.1 ≥ 0.136) = 0.023.
As a matter of fact, the probabilities computed above are unconditional probabilities; however,

accounting for the fact that the starting level of inequality was quite below average in 1986 signifi-
cantly increases the implied probabilities. To account for mean reversion in inequality, we can then
compute the probability of observing the same increases conditional on the starting value being be-
low the values estimated by SZ and SZZ in 1986 (i.e. 63% and 56%, respectively). Unsurprisingly,
the conditional probabilities implied by the model are significantly higher than the unconditional
ones at 14.3% for the change estimated in SZZ and 3.5% for SZ. That is, large positive changes in
wealth inequality are a perfectly reasonable outcome of a model in which inequality fluctuates over
time in response to asset-price movements.

The Realized Sequence of Returns — Given the model is capable of generating
large and positive changes in inequality, can it also replicate the observed increase in inequality if we
feed into it the realized sequence of asset returns directly from the data? In figure 7 I feed the realized
sequence of returns into the model and compare the evolution of the top 10% wealth shares across
model and data. The figure shows that the model is capable of closely replicating the U-shape in
the evolution of wealth inequality and that it indeed generates essentially all of the realized increase
since the 1980s. 27

The exercise is similar in spirit to the one performed by Hubmer, Krusell, and Smith (2021)

27Given the above discussion about the different model response to temporary vs. permanent changes, it is worth
noticing that all movements in returns are here assumed to be temporary. That is, to feed in the realized sequence of
prices I simply extract a sequence of shocks for Wt using the calibrated process in equation (5) and feed it into the
model.
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Figure 7: Top 10% Wealth Share Dynamics - Model vs. Data
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but their conclusions are, quite strikingly, almost exactly the opposite. In fact, first, they claim that
changes in taxes (rather than changes in returns) are the main driver of the increase in inequality.
Most importantly, however, when feeding in only the realized sequence of prices, their model is
capable of explaining the initial dip in inequality but generates almost none of the subsequent in-
crease. They in fact argue that, while changes in asset returns are key to explain the U-shape of top
wealth shares, they “have also dampened the increase in wealth concentration on net, in particular
explaining the initial dip” (Hubmer, Krusell, and Smith 2021, p. 430). The reason why they reach
such different conclusion is likely to be found in the difference between the effect of temporary ver-
sus permanent changes in returns explained in the last section. In fact, they assume all changes in
returns are entirely permanent and only feed the model with the “10-year moving averages of real-
ized aggregate returns” (p. 418). Given the overall response of inequality to permanent shocks in
figure 5, it is therefore not surprising that changes in expected returns have a hard time generating
the increase in wealth inequality observed in the data.28 This is neither to say that my assumption
about movements in asset returns being temporary is right, nor that theirs about such movements
being permanent is wrong. Rather, I simply hope to further highlight that it is not an inconsequen-
tial assumption and that, if we want to understand fluctuations in wealth inequality, future research
should do a better job at understanding the sources of fluctuations in asset prices in the first place.

28Notice also that the model in Hubmer, Krusell, and Smith (2021) is quite different from the one presented here, in
that it focuses more on a realistic characterization of the earnings process rather than on households’ portfolio choice –
which are instead assumed to be completely exogenous. Nonetheless, the way in which fluctuations in asset return affect
wealth inequality is similar across the two models.

31



Figure 8: Top 10% Wealth Share Dynamics
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(b) Future

Counterfactuals — In order to further understand what exactly drove the increase in
wealth inequality since the 1980s we can also perform a series of counterfactual exercises in which
we fix returns to each asset at its historical average. Shutting down variation in returns to each asset
will then tell us how much returns to that one asset contributed to the evolution of inequality. Fig-
ure 8 plots the results of these counterfactual experiments, together with the baseline from figure 7
(the solid blue line). We can immediately see that, when keeping returns to bonds at the historical
average (purple line), the top 10% wealth share is virtually unchanged from the baseline simulation.
That is, variation in bond returns had very little impact on wealth inequality. In fact, most of the
observed increase in wealth inequality was actually driven by abnormal returns to equity in the late
90s and early 2000s, with housing only accounting for a minor part of the increase at the onset of
the housing bubble in the mid 2000s.

Finally, given the model predicts inequality to fluctuate over time, what should we expect the
future to look like? Figure 8 plots the average and 90% confidence intervals for the to 10% wealth
shares over 100 simulations starting from the final point of the simulation in figure 7. As it was to be
expected, because the current level of inequality is much higher than the model’s average, inequality
is expected to slowly revert back on average. However, due to the presence of aggregate risk, the
realized paths of inequality are very disperse and values for the top 10% wealth share of 75% would
still be a perfectly reasonable outcome.

5. Conclusions
Existing explanations for the observed increase inU.S. wealth inequalitymostly rely on the economy’s
response to changes in fundamentals. Examples of such changes include – but are not limited to –
increased income inequality, higher volatility in returns to wealth, and changes in the progressivity
of taxes. In this paper I instead propose a novel theory based only on heterogeneous exposure to
aggregate risk along the wealth distribution. I show that large increases in wealth inequality are
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natural outcomes of amodel in which households are differently exposed to the same shocks. One key
conclusion is that the observed increase in top wealth shares is perfectly compatible with a stationary
economy in which the realized history happened to be especially favorable to the portfolios of the
wealthy.

I propose a model of households’ portfolio choice that builds on the novel observation that hous-
ing is a necessary good, which generates non-homotheticity in preferences. Such non-homotheticity
is crucial for the model to generate the right schedule of portfolio shares: just like in the data – poor
households mostly hold safe assets, the middle class is heavily invested in housing, and equity is the
asset of the wealthy. This generates both scale dependence in rates of return and differential exposure
to aggregate risk, which allows me to match both the level of wealth inequality and its dynamics.

I use the model to show that temporary shocks to returns have large and persistent effects on
top wealth shares and ask how much of the observed rise in U.S. wealth inequality can be explained
by changes in asset prices alone. The model is perfectly capable of replicating the evolution of top
wealth shares in the data, which increased mostly due to the effect of abnormal returns to equity.

One of this paper’s main implications is that, to have a better understanding of the evolution of
wealth inequality we should turn our attention to prices. In particular, in this paper I take a very
reduced-form approach to asset price determination. However, asset prices are equilibrium objects
that are likely to be influenced by changes in the wealth distribution; that is, in this paper I show
that asset price movements matter for wealth inequality but the opposite is likely true as well.

In particular, consider a model – such as the one proposed here – in which equity demand is
increasing in wealth. In such model an increase in inequality generates additional demand for equity
which, as long as supply cannot immediately adjust, reflects into higher equity prices. Such higher
prices further increase stockholders’ wealth and therefore wealth inequality, generating an amplifica-
tion mechanism from wealth inequality to equity prices. This is exactly the approach I take in Cioffi
(2021) where I show that, in a model with increasing equity demand, approximate aggregation does
not hold and wealth inequality matters for asset-price determination. That is to say, asset prices
matter for wealth inequality and inequality matters for prices.
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Appendix

A. Theoretical Appendix

A.1. Proofs

Proof of Proposition 1

Incomplete, coming soon.

Proof of Proposition 2

Given the definition of α(x) = c(x)/x, x = c + rn · n is total consumption expenditure, and n
and rn are consumption of housing services and its user-cost, respectively, we need to prove that
∂α(x)/∂x > 0 and that

lim
x→0

α(x) = 0

lim
x→∞

α(x) = 1.

From the definition of α(x), we can immediately see that:

α′(x) =
1

x

(
c′(x)− α(x)

)
and, given x is always positive, the proof that α′(x) > 0 boils down to showing that c′(x) > α(x).

The intratemporal Euler equation has the usual form:

rn =
un
uc

=
ω

1− ω

n−1/εh

c−1/εc

where we have used the definition of u(c, n) in equation (3), which implies uc = (1−ω)u1/εhc−1/εc

and un = ωu1/εhh−1/εh . We can then use the intratemporal Euler equation and the definition of x
to find α(x):

c

x
=

1

1 + rn
(
1−ω
ω
rn
)−εh c εhεc −1

. (17)
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Then, to find c′(x), we use the fact that c(x) solves:

x = c(x) + rn n(c(x))

= c(x) + rn

(
1− ω

ω
rn

)−εh
c(x)εh/εc

where n(c(x)) came directly from the intratemporal Euler equation. Hence, we find:

1 =
dc

dx
+ rn

(
1− ω

ω
rn

)−εh εh
εc
c(x)

εh
εc

−1 dc

dx

which immediately gets us c′(x):

dc

dx
=

1

1 + rn
(
1−ω
ω
rn
)−εh εh

εc
c(x)

εh
εc

−1
.

Showing that c′(x) > α(x) therefore requires that

1 + rn

(
1− ω

ω
rn

)−εh εh
εc
c(x)

εh
εc

−1 < 1 + rn

(
1− ω

ω
rn

)−εh
c(x)

εh
εc

−1

which is satisfied as long as εh < εc.
Now we have left to prove that α0 = 0 and α∞ = 1. Before starting, in the same way we obtained

equation (17) above, we get
n

x
=

1

rn +
(
1−ω
ω
rn
)εc

n
εc
εh

−1
. (18)

To find α0 notice that x can go to 0 if and only if both c and n also go to 0. Because εh < εc,
from equation (18) have that n → 0 implies n

x
→ 1. Viceversa, from equation (17), c → 0 implies

c
x
→ 0. It immediately follows that

α0 ≡ lim
x→0

c

c+ rn n
= 0.

To prove that α∞ = 1 notice that, as x goes to ∞ we have one of three cases:

1. c→ ∞ and h→ ∞

2. c→ ∞ and h ≤ h̄ <∞

3. c ≤ c̄ <∞ and h→ ∞

In case 1, equations (17) and (18) imply both that c/x → 1 and that n/x → 0. In case 2, again by
equation (17), we have that c/x → 1 which, together with h ≤ h̄, implies c

c+rn n
→ 1. Finally, in
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case 3 equation (18) implies that n/x → 0 which, by the definition of x, can only happen if c also
grows to infinity, which contradicts c ≤ c̄. Hence, in all three cases we have that

α∞ ≡ lim
x→∞

c

c+ rn n
= 1

Proof of Corollary 2.1

Incomplete, coming soon.
The formula for RRA comes directly from applying Hanoch (1977), Theorem 1. Then, to show

that ∂RRA
∂x

< 0 we simply differentiateRRA(x) with respect to α(x) and use the fact that α′(x) > 0.

Proof of Corollary 2.2

The elasticity of intertemporal substitution in the presence of recursive utility is defined as:

EIS ≡ −
∂
(

dln ct
dt

)
∂
(

dlnΛt
dt

)
where Λ(t) is the utility gradient with respect to non-housing consumption, which is given by:29

Λ(t) = exp

[∫ t

0

fv(us, vs) ds

]
fu(ut, vt)uc(ct, nt).

To ease notation, whenever it is unambiguous we will denote time derivative with dots, i.e. ċ =
∂c(t)/∂t. In the proof we will also make use of the intratemporal Euler equation from the proof of
proposition 2, which also implies

ṅ

n
=
εh
εc

ċ

c
.

29See Schroder and Skiadas 1999.
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From the definition of Λ, it follows that

Λ̇ = Λ

{
fv +

1

fuuc

∂(fuuc)

∂t

}
= Λ

{
fv +

1

fuuc

(
ḟuuc + fuu̇c

)}
= Λ

{
fv +

ḟu
fu

+
u̇c
uc

}

= Λ

{
fv +

1

fu

[
fuu (ucċ+ unṅ) + fuvv̇

]
+

1

uc
[uccċ+ ucnṅ]

}
Using the intratemporal Euler equation we also know that

ucc =
1

εh

uc
u
uc −

1

εc

uc
c

ucn =
1

εh

uc
u
un.

Then, using the definition of f in equation (2), it is easy to show that

fuu
fu

= − 1

uψ

fuv
fu

=
ψ−1 − γ

1− γ

1

v

which allow us to rewrite:

Λ̇

Λ
= fv +

ψ−1 + γ

1− γ

v̇

v
+
ucċ+ unṅ

u

(
1

εh
− 1

ψ

)
− 1

εc

ċ

c
.

The intratemporal Euler equaiton un = rnuc implies

ucċ+ unṅ = ucx

(
α(x)

ċ

c
+ (1− α(x))

ṅ

n

)
= ucx

(
α(x) + (1− α(x))

εh
εc

)
ċ

c

= (ucc+ unn)

(
α(x) + (1− α(x))

εh
εc

)
ċ

c

40



which gives us

Λ̇

Λ
= fv +

ψ−1 + γ

1− γ

v̇

v
−

[
1

εc
− ucc+ unn

u

(
α(x) + (1− α(x))

εh
εc

)(
1

εh
− 1

ψ

)]
ċ

c

and, finally:

−
∂
(

dln ct
dt

)
∂
(

dlnΛt
dt

) =
εc

1− ucc+unn
u

(
α(x)εc + (1− α(x))εh

) (
1
εh

− 1
ψ

) .
Then, to find ψ0 and ψ∞ we are left to find limx→0

ucc+unn
u

and limx→∞
ucc+unn

u
. Using the

definitions for u, uc, and un we have:

ucc+ unn

u
=

(1− ω)c1−ε
−1
c + ωn1−ε−1

h

(1− ω)A−1c1−ε
−1
c + ωn1−ε−1

h

(19)

where A ≡ (1 − ε−1
c )/(1 − ε−1

h ). Then, to find the above two limits define the numerator and
denominator of equation (19) as f(x) and g(x), respectively. It follows that

f ′(x) = (1− ω)(1− ε−1
c )c(x)−1/εcc′(x) + ω(1− ε−1

h )h(x)−1/εhn′(x).

Then, use the fact that n(x) = B−εhc(x)εh/εc where B =
(
1−ω
ω
rn
)
, to rewrite:

f ′(x) = (1− ω)(1− ε−1
c )c(x)−1/εcc′(x) + ω(1− ε−1

h )Bc(x)−1/εch′(x)

= (1− ω)(1− ε−1
c )c(x)−1/εc

[
c′(x) + A−1rnn

′(x)
]
.

Analogously, we also find

g′(x) = (1− ω)A−1(1− ε−1
c )c(x)−1/εc

[
c′(x) + rnn

′(x)
]

and, using L’Hopital rule, we can rewrite:

lim
ucc+ unn

u
= lim

f ′(x)

g′(x)
= limA

c′(x) + A−1rnn
′(x)

c′(x) + rnn′(x)
.

Using the fact that x = c(x) + rnn(x) (and therefore c′(x) + rnn
′(x) = 1, this means we only need

to find

lim
x→0

Ac′(x) + rnn
′(x)

lim
x→∞

Ac′(x) + rnn
′(x).
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However, recall from the proof of proposition 2 that

dc

dx
=

1

1 + rn
εh
εc
B−εhc(x)

εh
εc

−1

dn

dx
=

1

rn +
εh
εc
Bn(x)

εc
εh

−1
.

Given the assumption of εh < εc, we have

lim
x→0

c′(x) = 0 lim
x→∞

c′(x) = 1

lim
x→0

n′(x) =
1

rn
lim
x→∞

n′(x) = 0

Hence,

lim
x→0

ucc+ unn

u
= lim

x→0
Ac′(x) + rnn

′(x) = 1

lim
x→∞

ucc+ unn

u
= lim

x→∞
Ac′(x) + rnn

′(x) =
εh

1− εh

1− εc
εc

.

Using the above two limits, and the fact that α0 = 0 and α∞ = 1, finally gives us ψ0 and ψ∞.

Proof of Proposition 3

Incomplete, coming soon
The proof here follows similar step to the proof of proposition 3, steps 2 and 3 in Gomez (2021).

A.2. HJB

The HJB equation is:
0 = max

{
f(u(c, n), v) +Av

}
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where

A = 1{p=0}
(
L0 + P0

)
+ 1{p=1}

(
L1 + P1

)
+ 1{h=0}H0 + 1{h̸=0}H+ + Z

L0v = µa(x)
∂

∂a
v

L1v =

(
µa(x)

∂

∂a
+ σa(x)2

1

2

∂2

∂a2
+ ρzσa(x)σz(z)

∂

∂a∂z

)
v

P0v = λp0

[
max

{
v(a− κp0, h, z, 1− p), v(a, h, z, p)

}
− v(a, h, z, p)

]
P1v = λp1

[
max

{
v(a− κp1, h, z, p), v(a, h, z, 1− p)

}
− v(a, h, z, p)

]
H0v = λhB max

{
max
h′

v(a− h′ − κhB(h
′), h′, z, p)− v(a, 0, z, p), 0

}
H+v = λhS max

{
v
(
a+ h− κhS(h), 0, z, p

)
− v(a, h, z, p), 0

}
+ µh(h)

∂

∂h
v(a, h, z, p)

Zv =

(
µz(z)

∂

∂z
+ σz(z)

1

2

∂2

∂z2

)
v

B. Numerical Appendix

B.1. Finite Differences

Incomplete, coming soon
Once we have a finite difference approximation A of the infinitesimal generator A we can solve

the problem. At each iteration n, the value function v needs to solve the (possibly non-linear) system
of equations:

0 = f(u, v) + Av

Achdou et al. (2017) stress the importance of using an implicit scheme. With recursive preferences
the implicit scheme is slightly more complicated. The reason is that, in the separable utility case f
is additive in u and v and we can easily solve the system with 0 = f(un, vn+1) + Avn. Viceversa,
with recursive preferences this separation does not occur and solving the implicit scheme in the same
fashion would imply solving a non-linear system of equation, which would significantly slow down
the computations. However, we can actually split f into a linear and a non-linear component to use
a semi-implicit scheme. We can in fact write f as:

f(un, vn, vn+1) =
ρ+ ζ

1− ψ−1

[
(1− γ)vn

]ψ−1−γ
1−γ (un)1−ψ

−1 − (ρ+ ζ)
1− γ

1− ψ−1
vn+1
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at which point we simply need to solve the system

0 = f(un, vn) + (ρ+ ζ)
1− γ

1− ψ−1
vn +

(
A− (ρ+ ζ)

1− γ

1− ψ−1
I
)
vn+1

B.2. Participation Costs

To avoid cluttering the problem with variables unrelated to the participation cost problem we here
analyze the simplest 2-asset model without any labor income risk, financial wealth a is therefore the
only continuous state variable of the household problem. There are two participation states denoted
by 0 and 1: households in state 0 only have access to bonds b, while households in state 1 can freely
move assets between bonds and equities s. Bonds earn a risk-free rate of return r, while equities earn
a risky return R with volatility σ. Households receive an opportunity to jump from state 0 to state
1 (entering the stock market) with intensity λ0 and the opportunity to jump from state 1 to state 0
(exiting the stock market) with intensity λ1. In addition, households that get hit by the participation
shock can only enter the stock market if they accept to pay an entry cost κs0; viceversa, households
who get hit by the exit shock can only stay in the stock market if they accept to pay a staying cost κs1.

The household problem therefore reads:

ρv0(a) = max
c
u(c) + v′0(a)(z + ra− c) + λ0

[
max

{
v1(a− κp0), v0(a)

}
− v0(a)

]
ρv1(a) = max

c,s
u(c) + v′1(a)(z + ra+ (R− r)s− c) + v′′1(a)

(sσ)2

2
+

+ λ1

[
max

{
v1(a− κp1), v0(a)

}
− v1(a)

]
The model nests both a model with a fixed cost of participation (with λ1 = 0) and a model

with a flow cost of participation (when λ1 → ∞). Making the opportunity to enter/exit the stock
market stochastic has the merit of making the numerical solution significantly simpler while also
being able to arbitrarily approximate the continuous entry/exit decision: in fact, using larger and
larger λs allows us to get closer and closer to the continuous entry/exit problem without having to
use the (more complicated) methods needed to solve variational inequalities.

The finite-differences approximation of the above HJB is then:

vn+1
i,p − vni,p

∆
+ ρvn+1

i,p = u(cni,p) + va,F,n+1
i,p ·

(
ȧc,F,ni,p

)+
+ va,B,n+1

i,p ·
(
ȧc,B,ni,p

)−
+

+ vaa,n+1
i,p ·

(
sni,pσ

)2
2

+ λp

[
max

{
vn+1
i′,p , v

n+1
i,0

}
− vn+1

i,p

]
where vi′,p = v1(ai − κsp).
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When specifying the above problem numerically, there are three things that one needs to be
especially careful with:

1. The a-state changes after the shock hits

2. ai − κsp does not necessarily fall on a grid point (this is especially true in the presence of non-
uniform grids)

3. For any two different v̂, ṽ, to compute max
{
v̂n+1, ṽn+1

}
we would need to know their values

at iteration n+ 1

Notice that 1) simply implies that there will be mass on some off-diagonal elements of A. Ad-
ditionally, in the presence of non-uniform grids this implies that the A matrix will not have a band-
matrix structure. This is not a problem if one uses general sparse solvers, but it does exclude the
possibility of exploiting the band structure to simplify the construction of A and/or the solution of
the linear system.

To tackle 2) we assign mass to both the two closest points to ai−κsp in proportion to their relative
distance: for each grid point ai, denote by ai′,p and ai′+1,p the two grid points closest to ai − κsp.
That is,

ai′,p ≡ sup
{
a ∈ {a1, a2, . . . , aI} : a < ai − κsp

}
.

We can then compute the mass assigned to grid-point i′ as ωsi′,p =
ai′+1,p−(ai−κsp)
ai′+1,p−ai′,p

and the mass
assigned to grid-point i′ + 1 as 1 − ωsi′,p. Notice also that, although in most cases the household
would choose to pay (or not) the cost for both ai′,p and ai′+1,p, there might be edge cases when the
household would only choose to pay the cost for ai′+1,p but not for ai′,p. Because the rows of A need
to always sum to 1, we let the household decide based on the average value and she is forced to accept
the “bet” and move to both points.

Finally, concerning 3), we use a semi-implicit scheme consistent with how the other choice
variables are determined, that is the choice of whether to enter or exit the stock market is based on
the value function at iteration n, but the change in value is based on the value function at iteration
n+ 1. Hence, if we define by Ini,p the household decision to participate or not, that is:

Ini,p ≡ 1
{
vn1 (ai) < ωpi′,pv

n
1 (ai′,p) + (1− ωpi′,p)v

n
1 (ai′+1,p)

}
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we can rewrite the finite difference approximation as

vn+1
i,p − vni,p

∆
+ ρvn+1

i,p = u(cni,p) + va,F,n+1
i,p ·

(
ȧc,F,ni,p

)+
+ va,B,n+1

i,p ·
(
ȧc,B,ni,p

)−
+ vaa,n+1

i,p ·

(
sni,pσ

)2
2

− λp(v
n+1
i,p − vn+1

i,0 )

+ λp

[(
ωpi′,pv

n
1 (ai′,p) + (1− ωpi′,p)v

n
1 (ai′+1,p)

)
− vn+1

i,0

]
· Ini,p

B.3. Kolmogorov Forward Equation

Incomplete, coming soon
The following section covers how to approximate the distribution over states in the presence of

non-uniform grid. To simplify notation we here work with a simplified problem with only two states
a and z, and no aggregate risk. The results immediately generalize to more states; the presence of
aggregate risk instead obviously changes the KFE that needs to be solved, but has no impact on the
numerical approximation of the cross-sectional distribution in the presence of non-uniform grids.

Following Achdou et al. (2017) to solve the KFE with non-uniform grids we can work with the
rescaled density g̃ = Dg where D is a diagonal matrix with elements ∆̃ι that appropriately adjust
for the presence of non-uniform grids. In particular, if A is the intensity matrix associated with the
HJB problem above we will be solving

g̃n+1 − g̃n

∆t
= AT g̃n+1

To understand why the above works notice that
∑I

ι=1 gι∆̃ι is an approximation of the integral
of g using a trapezoidal rule, and we denote by ι the ”composite” index of a and z, i.e. ι = (i, k).

∫
g(a, z)dadz ≈

I−1∑
i=1

K−1∑
k=1

(ai+1 − ai)

2

(zk+1 − zk)

2

(
gi,k + gi,k+1 + gi+1,k + gi+1,k+1

)
=

I∑
i=1

K∑
k=1

gi,k∆̃ai∆̃zk

=
I∑
ι=1

gι · ∆̃ι

where I = I · K, ∆̃ι = ∆̃ai · ∆̃zk, and the ∆̃ operator for a generic variable x indexed by j with
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j ∈ {1, 2, . . . , J} is

∆̃xj =


∆F

2
xj if j = 1

(∆B+∆F )
2

xj if 1 < j < J
∆B

2
xj if j = J

where ∆Fxj = ∆Bxj+1 = xj+1 − xj .
After having solved for g̃ we can then back out the true distribution using g = D−1g̃ and, to

compute moments, we can use the fact that
∑I

ι=1 gι∆̃ι approximates the integral of g. For instance,
to find average earnings we would use:

E(z) =
∫
zg(a, z)dadz ≈

I∑
ι=1

zιgι∆̃ι

=
I∑
i=1

K∑
k=1

zkgi,k∆̃ai∆̃zk

C. Data Appendix
Incomplete, coming soon.
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