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Abstract

We compare direct forecasts of HICP and HICP excluding energy and food in the euro
area and five member countries to aggregated forecasts of their main components from large
Bayesian VARs with a shared set of predictors. We focus on conditional point and density
forecasts, in line with forecasting practices at many policy institutions. Our main findings are
that point forecasts perform similarly using both approaches, whereas directly forecasting
aggregate indices tends to yield better density forecasts. In the aftermath of the Great
Financial Crisis, relative forecasting performance was typically only affected temporarily.
Inflation forecasts made by Eurosystem/ECB staff perform similarly or slightly better than
those from our models for the euro area.
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1 Introduction

Inflation forecasts play a crucial role in both public and private sector decisions, and considerable

effort is devoted to both their production and ex-post evaluation1. One interesting feature of

the aggregate price indices that are commonly used to measure inflation, such as the HICP in

the euro area or the PCE in the United States, is that they can be represented as weighted

sums of their component indices.2 This raises the natural question of whether it is better to

forecast the aggregate index directly (direct or top-down approach), or to aggregate forecasts

for its underlying components using appropriate weights (indirect or bottom-up approach).

When the data-generating process is known, theory predicts that aggregating component fore-

casts can improve forecasts of the aggregate relative to the direct approach (see for example

Luetkepohl, 1984), but in practice the true data-generating process is unknown and has to be

estimated. Thus, the relative performance of the two approaches is an empirical issue, and one

to which the existing literature does not provide a univocal answer in the case of inflation. The

question is not purely academic: many forecasting tools and processes at central banks and

other institutions lean towards one or the other approach, and those choices warrant regular

scrutiny in light of new empirical evidence.

In this paper we revisit the merits of bottom-up versus top-down forecasts of price inflation. We

compare both point and density forecasts of HICP inflation (headline and excluding energy and

food) from a joint model of the components, augmented with a number of additional predictors,

to those obtained from a model of aggregate inflation augmented with the same set of predictors.

We adopt a Bayesian VAR (BVAR) framework, as VARs provide a natural framework to model

the joint dynamics of a relatively large number of time series such as ours. We focus on euro

area forecasts and on forecasts for the five largest euro area economies, that is, France, Germany,

Italy, Spain and the Netherlands. As in Bańbura et al. (2015), we evaluate forecasts conditioned

on paths for some of the predictors, to be more directly comparable to real-world forecasting

setups in central banks and beyond3.

For both measures of inflation, point forecasts from the two models perform similarly, which

is in line with the inconclusive findings of the existing literature. However, we also find that

for density forecasts, the aggregate model performs slightly better at most horizons, confirming

previous results for the US. Our main result for individual countries is that the aggregate model

seems to perform as well as or slightly better than the component model for both inflation

measures and both point and density forecasts. One notable exception are very short-term point

forecasts, where the bottom-up model mostly yields better results. Overall, these results suggest

1For a more detailed discussion, see for example Nakamura (2005), Stock and Watson (2007), Koop and
Korobilis (2012), Faust and Wright (2013), or Bermingham and D’Agostino (2014).

2This holds exactly for HICP, which is a Laspeyres index, while for PCE it involves an approximation, as the
latter is a Fisher index, and thus non-additive in the component indices.

3Results for unconditional forecasts are available upon request.
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that except perhaps for very short-term forecast (a few months ahead), there’s no real loss in

forecasting ability from a simpler forecasting approach that focuses directly on the aggregate

indices.

We also assess the impact of the aftermath of the Great Financial Crisis on the forecasting

performance of both models: for headline inflation and most forecast horizons, the aggregate

model only becomes obviously better for a short set of rolling forecast windows centered around

the 2011 period, whereas for HICP excluding energy and food, there is no clear change in

ranking following the crisis, although longer-term forecasts from the component model appear

to deteriorate relative to the top-down model during the so-called “missing inflation” period.

Finally, we also find that point forecasts for both euro area HICP and HICP excluding food

and energy made by Eurosystem/ECB staff, which employ the same conditioning assumptions

we use for our projections, are at least as accurate, and in the near term more accurate, than

those from our models. That Eusystem/ECB staff projections are competitive with state-of-the

art model-based forecasts based on a similar information set is in itself an important counter to

the criticism they have sometimes been subjected to (see for example Darvas, 2018). Neverthe-

less, past inflation forecast errors were at times undoubtedly large and persistent (see Koester

et al., 2021). Since our model-based density forecasts clearly highlight the large uncertainty sur-

rounding inflation projections (even before the COVID-19 shock), a greater emphasis on such

uncertainty in their communication might help better understand Eurosystem/ECB staff and

other publicly available inflation forecasts going forward.

1.1 Related literature

The idea that aggregation of forecasts of components of a series could improve accuracy relative

to a direct forecast has a long tradition. Theil (1954) argues that if the data-generating process

(DGP) is known, the components contain at least as much information as the aggregate mea-

sure, and because the forecast errors of the components partially cancel out, forecast accuracy

should improve; Rose (1977), Tiao and Guttman (1980), Kohn (1982), Luetkepohl (1984) pro-

vide corroborative results for a range of DGPs. However, as shown in Luetkepohl (1987), if the

DGP is unknown and needs to be estimated, a common situation in practice, then the relative

forecast accuracy of direct and bottom-up approach depends on the specifics of the underlying

component series and aggregation method4, and is thus an empirical rather than a theoretical

issue.

4Hendry and Hubrich (2006) and Hendry and Hubrich (2011) investigate additional options for exploiting
disaggregated information to forecast the aggregate measure: instead of aggregating forecasts for the components,
they propose to include disaggregated information directly in the model for the aggregate using factor models.
This idea has found fruitful ground in the GDP nowcasting literature (see for example Bok et al., 2018, and
references therein).
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Recent contributions focusing on inflation5 usually compare the top-down approach with fore-

casts aggregated either over geographical space (e.g. individual country forecasts) or components

of the aggregate price index, with mixed findings. A prominent study of spatial aggregation is

Marcellino et al. (2003), where various AR, VAR, and dynamic factor models for inflation and

other macroeconomic variables are evaluated for 11 EMU countries and the resulting aggregates,

finding that aggregation of country forecasts can improve the accuracy of aggregate forecasts.

Benalal et al. (2004) investigate both dimensions of aggregation for four large euro area coun-

tries, namely France, Germany, Italy, and Spain, and the five main HICP components. They

conclude that in the longer run, the direct approach provides better forecasts for the euro area

as a whole and for individual countries as well. On the other hand, for shorter horizons, the

results are mixed: for the euro area as a whole, the bottom-up approach for HICP components

is better, but spatial aggregation does not improve forecasting accuracy.

Hubrich (2005) finds that for the euro area, direct forecasts are more accurate for some horizons,

while studies focusing on single European countries tend to find evidence in favour of the bottom-

up approach, at least for some forecasting horizons (Reijer and Vlaar, 2006, Duarte and Rua,

2007, Moser et al., 2007). Bermingham and D’Agostino (2014) argue that such inconclusive

findings could be due to short data samples for the euro area, but they themselves claim to

find clear evidence in favour of the bottom-up approach for both the euro area and the United

States. On the other hand, Espasa and Mayo-Burgos (2013) qualify such a claim, arguing that

disaggregation as such does not improve aggregate forecasts, unless the common features shared

amongst the components are also taken into account, for example by means of a factor structure.

More recently, Des and Guentner (2016) also find that bottom-up forecasts of sector-level value-

added deflators dominate direct forecasts, and attribute the difference to the competing models’

behaviour during the Great Financial Crisis.

Ravazzolo and Vahey (2014) is one of the first papers to also evaluate the density forecast

performance of direct and bottom-up approaches, finding that for the period preceding the

Great Financial Crisis, bottom-up approaches performed invariably better in forecasting US

PCE, a finding later also confirmed by Tallman and Zaman (2017). Further evidence favouring

bottom-up approaches in terms of density forecast accuracy is provided by Mazur (2016) for

Poland, and Cobb (2019) for France, Germany and the UK.

The rest of the paper is structured as follows: in Section 2 we describe our estimation strategy,

the forecast evaluation tests that we run and the data we use. In Section 3 we discuss our

results, and in Section 4 we conclude. We report results for HICP excluding food and energy in

Appendix A, while detailed results for individual countries and some additional charts for the

euro area can be found in a separate Online Appendix, available upon request.

5Forecast aggregation is of course not confined to price indices. For example, a classic issue are the relative
merits of bottom-up versus top-down GDP forecasting approaches (see for example Anesti et al., 2017, Heinisch
and Scheufele, 2018).

5



2 Methodology

To evaluate the relative merits of bottom-up versus top-down inflation forecasts, we compare

joint models of high-level price index components (suitably aggregated) to models of the ag-

gregate price index itself, both augmented with a set of additional predictors. We model the

components jointly to avoid the loss of useful information for the aggregate forecast (as also

argued in Espasa and Mayo-Burgos, 2013)6. VARs provide a natural framework to model the

joint dynamics of a relatively large number of time series such as ours: Bayesian estimation

addresses the ensuing curse of dimensionality7, and Kalman filtering and smoothing techniques

allow us to study conditional as well as unconditional forecasts (see for example Bańbura et al.,

2015). We then apply a battery of standard tests to evaluate both point and density forecasts,

and we also compare point forecasts to those made by Eurosystem/ECB staff.

2.1 Model specification

The baseline model we estimate, similar to Giannone et al. (2014), is a V AR (p):

Xi,t = A0 +A1Xi,t−1 +A2Xi,t−2 + · · ·+ApXi,t−p + ei,t (1)

where Xt collects the observations of N scalar variables at time t, A0 is a vector of N constants,

Ak are, ∀k = 1, . . . , p, square matrices of size N collecting the other parameters of the model,

and et is a vector of residuals of size N × 1.

We estimate three versions of (1) that differ in the set and number of variables. An overview

of each specification can be found in Table 1. The largest model, which we refer to as the

Component model, features N = 14 variables and contains all five main HICP components. The

Aggregate models feature N = 11 variables. Data are mostly monthly, with a few quarterly

variables interpolated to monthly frequency. We estimate all models in (log) levels, and then

compute the implied inflation rates.

We set the number of lags to p = 13, and we implement Bayesian shrinkage using the standard

Minnesota prior centered on a random walk model (Litterman, 1986), complemented with the

sum-of-coefficients modification for the autoregressive coefficients initially introduced by Doan

et al. (1984). Thus, we shrink the parameters of our VAR system by controlling the scale of the

prior covariance matrix through a hyperparameter, λ, and we also introduce a restriction on the

Ak matrices that, for a general V AR(p) model, shrinks a model specified in levels towards one

6We have also estimated separate VAR models of each individual price index component augmented with the
same set of additional predictors, and found that the performance was invariably worse than that of the joint
component model. This is in line with Cobb (2019) and Ravazzolo and Vahey (2014), who argue that such an
approach ignores potentially useful cross-correlations among components.

7For a discussion, see Bańbura et al. (2010).
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specified in first differences. This is referred to as inexact differencing, and the tightness of this

prior is controlled by a second hyperparameter, µ.8 Based on a grid search and on long-standing

in-house use of the model, we set λ = 1/22 and µ = 1/ (22 ∗ 40).9 For estimation, we rely on the

BEAR Toolbox version 4.2 (see Dieppe et al., 2016), and forecasts conditional on assumptions

about future paths of selected variables in the system (see Section 2.3) are obtained with the

algorithm developed in Waggoner and Zha (1999).

2.2 Forecast evaluation

The evaluation of conditional forecasts presented in Section 3 is based on both point and density

forecasts for data vintages from June 2005 to March 2019 and forecast horizons up to 36 months.

As point forecasts we use the medians of the predictive distributions. For the component models,

the implied aggregate index is computed for each draw using appropriate weights. We evaluate

all forecasts against data outturns of the aggregate of interest (headline HICP or HICP excluding

food and energy) from the latest vintage available in our dataset, i.e. the one corresponding to

the ECB’s March 2019 Macroeconomic Projection Exercise (more details on the data we use are

provided in Section 2.3).

The main measures we use to compare forecasting performance are the root mean squared error

(RMSE) for point forecasts, and average log predictive scores for density forecasts, defined as

follows:

RMSEh =

√√√√ 1

R

R∑
r=1

(ŷr+h − yr+h)2 (2)

lh(yt+h) =
1

R

R∑
r=1

log p̂r(yt+h | yt) (3)

where R denotes the total number of vintages, h is the forecast horizon, ŷr+h the predicted value

at horizon h forecasted as of the last available observation for vintage r, yr+h the corresponding

data outturn, and p̂r(yt+h | yt) denotes the estimated predictive density for the r-th data vintage

and forecast horizon h, evaluated at the realization of the variable of interest yt+h. For both

measures we also evaluate the statistical significance of their differences, using the Diebold-

Mariano (Diebold and Mariano, 1995) and Amisano-Giacomini tests (Amisano and Giacomini,

8For λ = 0, the data information is ignored and the posterior equals the prior. On the other hand, for λ→∞,
the posterior is equivalent to the ordinary least square estimates; therefore, no prior information is taken into
account. For µ = 0, In = A1 + A2 + · · · + Ap and the specification of the model is equivalent to a VAR in first
differences, whereas for µ→∞ the prior becomes uninformative (diffuse).

9Optimising the values of λ and µ, as in Giannone et al. (2015), each time the model is re-estimated yields
forecasts that are very similar to our main results.
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To further assess the calibration of the predictive densities, we also compute probability integral

transforms (PITs), defined as

ur,t+h =

∫ yt+h

−∞
p̂r(x | yt)dx ≡ Pr(yt+h | yt) (4)

and formally test for some of their ’desirable’ attributes, using a similar set of tests as Rossi

and Sekhposyan (2014), Ravazzolo and Vahey (2014), Korobilis (2017), or Cobb (2019). Specifi-

cally, we run uniformity tests (Kolmogorov-Smirnov and Anderson-Darling), independence tests

(Ljung-Box test of serial correlation) and Berkowitz (2001)’s joint test of zero mean, unit vari-

ance and independence. Since for h > 2 independence is violated by construction, we follow

suggestions from Diebold et al. (1998), Clements and Smith (2000), and Rossi and Sekhposyan

(2014), split our sample of 56 recursive estimates into non-overlapping sub-samples and carry

out inference separately for each such sub-sample, and then consolidate results using Bonferroni

bounds.

2.3 Data

The price series we use are based on the Harmonized Index of Consumer Prices (HICP). Specif-

ically, we use monthly series for headline HICP, HICP excluding food and energy prices, and

the five main components of HICP: prices of unprocessed food, processed food, non-energy in-

dustrial goods, energy, and services. To compute forecasts for the aggregate measures from the

main components we sum their weighted values using HICP weights available on an annual basis

from the ECB’s Statistical Data Warehouse (SDW) portal12.

As for the additional variables used in our BVAR models, we include the producer price index

(PPI), non-energy commodity prices (food and overall), the oil price, the EUR/USD and the

nominal effective exchange rate, euro area real GDP, unit labor costs and compensation per

employee13, as detailed in Table 1. These variables were taken from the Eurosystem/ECB staff

projection database, but are also publicly available. HICP data (excluding energy prices) are

seasonally (not calendar) adjusted up to the March 2016 vintage, the more recent vintages are

both seasonally and calendar adjusted. The rest of the monthly variables are not seasonally

adjusted, while all quarterly variables are seasonally and calendar adjusted. We take logarithms

10In our computations we use both tests with the correction introduced by Harvey et al. (1997), which improves
the small-sample properties of the underlying likelihood ratio test.

11Strictly speaking, both testing frameworks are not designed for recursive estimation schemes such as ours;
however, Clark and McCracken (2013) show that disregarding this fact has negligible practical implications.

12For more information, see: https://sdw.ecb.europa.eu/browse.do?node=9691207
13GDP, compensation per employee and unit labor costs are only available at quarterly frequency. Since our

model is specified at monthly frequency, we interpolated these series prior to estimation using Kalman filtering
and smoothing techniques.
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Table 1 Different BVAR specifications

Aggregate Models
HICP Overall index
HICP All-items excl. food and energy

Component Model

HICP Unprocessed food
HICP Processed food (incl. alcohol and tobacco)
HICP Non-energy industrial goods
HICP Services

All models

HICP Energy
PPI (domestic sales, consumer goods industry)
Unit labor costs (whole economy)
Non-energy commodity prices: Food (in USD)
Non-energy commodity prices (in USD)
Nominal effective exchange rate
Oil price (in USD)
EUR/USD Exchange rate
Compensation per employee
Real GDP

of all variables entering our models.

In order to mimic the Eurosystem/ECB staff projections, we use real-time data as they were

available to forecasters at the time of each projection exercise14 from June 2005 to March 2019,

yielding a total of 56 vintages. We adopt a recursive estimation strategy, so observed values

for all variables and all vintages start in January 1997, and the last observation advances over

time. Thus, we use data with at least 100 observations (for the oldest vintage), and up to

264 observations for the most recent vintage. Since availability of data vintages for HICP

excluding food and energy and PPI consumer goods is limited (real-time data are available only

starting from the March 2009 and December 2015 exercises, respectively), we use ex-post revised

historical data for all the previous unavailable data vintages.15

Conditional forecasts are based on assumptions about the future development of the following

variables: HICP energy16, non-energy food commodity prices, non-energy commodity prices, the

nominal effective exchange rate, the oil price and the EUR/USD exchange rate. For each vin-

tage, these assumptions match exactly those made in the corresponding Eurosystem/ECB staff

projection exercise. Moreover, for certain vintages, flash estimates of HICP data are available

and treated as data.

14The cut-off dates for data availability are therefore as published in the Eurosystem/ECB staff macroeconomic
projections.

15This should not significantly affect our results since these data tend to be revised very little. For a detailed
discussion of data revisions in the euro area, see Giannone et al. (2012)

16By conditioning to Eurosystem/ECB projections we incorporate information about indirect tax changes,
refining and distribution margins and administrative prices.
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Figure 1 Conditional forecasts of headline inflation over time

2006 2008 2010 2012 2014 2016 2018 2020 2022

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Component model

2006 2008 2010 2012 2014 2016 2018 2020 2022

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Aggregate model

Note: The figures show consecutive forecast vintages of year-on-year inflation (colored lines) against the latest
data vintage (solid black).

3 Results

Our main results for headline HICP inflation are reported in Section 3.1, with some additional

charts reported in the Online Appendix. Results for HICP inflation excluding food and energy

are discussed in Section 3.2, with charts and tables reported in Appendix A. Results for the

rolling exercise are presented in Section 3.3, while results for individual countries are briefly

discussed in Section 3.4, with most charts and tables relegated to the Online Appendix.

3.1 Headline inflation

Figure 1 provides an overview of conditional point forecasts of headline inflation up to 36 months

ahead for all vintages in our sample. The Component and Aggregate models yield very similar

projections, with a strong tendency to mean-reversion. The similarity is reflected also in their

root mean squared errors (Table 2): RMSEs on year-on-year inflation for the Component model

increase monotonically from 0.10 for 1-month-ahead forecasts to 1.18 for forecasts three years

ahead, and the direct (Aggregate) and bottom-up (Component) projections are not statistically

different according to Diebold-Mariano tests.

We also compare the point forecasts from both models to the projections made by Eurosys-

tem/ECB staff as part of the (B)MPE projection exercises. These projections of course incor-

porate much more information than captured by the 11 to 14 time series in our models, as well

10



Table 2 Component vs Aggregate model conditional forecasts for headline inflation

Months ahead RMSE relative RMSE relative RMSE
Component model Component/Aggregate Component/(B)MPE

1 0.10 0.98 –
3 0.31 0.96 1.53
6 0.58 0.97 1.08
12 0.93 0.99 1.15
24 1.06 0.99 1.06
36 1.18 1.02 –

Note: A relative RMSE < 1 indicates that Component model forecasts are more accurate. Bold text
denotes statistical significance of the difference at the 5% level, based on Diebold–Mariano tests with
Harvey et al. (1997) correction. The comparison with Eurosystem/ECB staff (B)MPE projections
(last column) is made on quarterly, rather than monthly, year-on-year inflation rates.

as expert judgement. Nevertheless, they are made conditional on the same set of assumptions

about the evolution of certain variables over the forecast as our models, and are therefore a

natural and interesting benchmark17. The last column of Table 2 shows relative RMSEs for

the Component model and (B)MPE projections. Three months ahead, (B)MPE projections

perform markedly better, and the difference is statistically significant. This should not come

as a surprise, given the rich set of additional information and expert judgement that informs

especially near-term projections. However, by the second quarter, this advantage seems to be

much reduced, and the performance is similar, statistically speaking. The result that BVAR

forecasts are competitive with professional forecasts that also incorporate expert judgement,

such as those made by central banks, chimes with earlier findings by Angelini et al. (2019) (also

for the euro area, but based on quarterly VARs for the four largest EA countries), Domit et al.

(2019) (for the United Kingdom) and Iversen et al. (2016) (for Sweden).

Predictive densities from the two models can appear qualitatively similar for selected vintages.

Figure 2 plots two examples: forecasts from the December 2014 vintage, at the beginning of a

prolonged period of low inflation in the euro area (for a discussion, see Bobeica and Sokol, 2019),

and from the last vintage in our dataset, i.e. based on the same assumptions as the March 2019

ECB staff projection exercise. However, a comparison of average log predictive scores (Figure

3) shows that up to 18 months ahead, predictive densities from the aggregate model outperform

those from the bottom-up one by a margin, and the differences are statistically significant based

on Amisano and Giacomini (2007) tests. The differences largely disappear for longer horizons.

That is not surprising, given that conditioning assumptions tend to revert to the historical

averages of the respective variables over longer horizons18, and in their absence, the projections

would converge to the respective models’ unconditional predictive distributions, which we would

expect to be similar. For shorter horizons, probability integral transforms for the aggregate

17For a more comprehensive analysis of Eurosystem/ECB projections, see Kontogeorgos and Lambrias (2019).
18Except for variables such as the exchange rate, which is simply held flat over the whole projection period, or

the oil price, which reflects option prices.
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Figure 2 Fan charts with conditional forecasts of headline inflation
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Note: Top panel - December 2014 vintage; bottom panel - March 2019 vintage. The fan charts depict the
evolution of selected quantiles of the predictive distributions of year-on-year inflation over the projection horizon:
the darkest band is centered around the median, and the outer edges of the lightest bands correspond to the 0.05
and 0.95 quantiles.

model also suggest somewhat better calibration of the predictive densities compared to the

component model. Formal tests (Table 3) tend to reject null hypotheses of correct calibration

more often for the component model than for the aggregate model, although rejections become

the norm for both models at longer horizons.

3.2 HICP excluding energy and food inflation

For HICP excluding food and energy, a frequently used measure of underlying inflation that ex-

cludes some of the most volatile components from the headline index (see for example Ehrmann

et al., 2018), point and density forecasts from the direct and bottom-up approaches are also

qualitatively similar (Figures A.1 and A.2). Quantitatively, Table A.1 shows that point fore-

casts from the Aggregate model perform somewhat better than their component model counter-

parts, but the differences are typically not statistically significant19. The component model also

performs similarly or worse than Eurosystem/ECB staff projections, although differences are in-

variably statistically insignificant in this case. Log predictive scores indicate better forecasting

performance of the Aggregate model across all forecast horizons; the differences are small, but

statistically significant for most horizons (Figure A.3). As for headline inflation, formal tests on

19Differences are statistically significant in a few selected months, not shown in Table A.1 to conserve space;
the full results are available upon request.
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Figure 3 Average log predictive scores for conditional forecasts - headline inflation
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Note: A higher (less negative) log predictive score indicates better forecast accuracy. Black squares mark horizons
for which the two scores are statistically different from each other based on Amisano and Giacomini (2007) with
Harvey et al. (1997) correction.

Table 3 Calibration tests on Probability Integral Transforms for headline inflation models
Aggregate model Component model

Uniformity Independence Joint H0 Uniformity Independence Joint H0

h KS AD LB Ber KS AD LB Ber
1 0.670 0.442 0.964 0.525 0.039 0.009 0.832 0.004
3 0.003 <0.001 0.316 <0.001 0.009 <0.001 0.458 <0.001
6 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
12 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
24 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
36 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Note: P-values (for horizons h > 2, minimum p-values) of the respective test: Kolmogorov-Smirnov (KS),
Anderson-Darling (AD), Ljung-Box of the mean (LB), Berkowitz (Ber). Bold text indicates rejection at the
5% significance level (for horizons h > 2, using Bonferroni bounds). See Section 2 for more details and
references.

PITs (Table A.2) suggest somewhat better calibration of the aggregate model at short horizons,

while at longer horizons the null hypothesis of correct calibration tends to be rejected for both

models.

3.3 Rolling exercise

In order to investigate whether large aggregate shocks have any bearing on the performance of

the direct vs. bottom-up approaches, we also report relative RMSE and log predictive scores

over a rolling window of 5 years. Figure 4 shows the evolution of the relative RMSE between

the component and aggregate models for headline inflation over our forecast evaluation sample.

The most apparent feature that stands out across horizons is a marked, though temporary,

improvement of the relative performance of the aggregate model in the windows centered around

2011. This is driven by a faster fall in the rolling RMSE of the aggregate model following the

13



Figure 4 Rolling relative RMSE (component vs aggregate model) by forecast horizon for headline
inflation

2006200820102012201420162018
0.9

1

1.1

1.2

1.3

R
M

S
E

h=1 months

2006200820102012201420162018
0.9

0.95

1

1.05

1.1

R
M

S
E

h=2 months

2006200820102012201420162018
0.9

0.95

1

1.05

R
M

S
E

h=3 months

2006200820102012201420162018
0.9

0.95

1

R
M

S
E

h=4 months

2006200820102012201420162018
0.96

0.98

1

1.02

1.04

R
M

S
E

h=5 months

2006200820102012201420162018
0.96

0.98

1

1.02

R
M

S
E

h=6 months

2006200820102012201420162018
0.96

0.98

1

1.02

1.04

R
M

S
E

h=7 months

2006200820102012201420162018
0.96

0.98

1

1.02

R
M

S
E

h=8 months

2006200820102012201420162018
0.96

0.98

1

1.02

R
M

S
E

h=9 months

200820102012201420162018
0.96

0.97

0.98

0.99

1

R
M

S
E

h=10 months

200820102012201420162018
0.96

0.97

0.98

0.99

1
R

M
S

E

h=11 months

200820102012201420162018
0.96

0.97

0.98

0.99

1

R
M

S
E

h=12 months

Note: The black markers denote the center of the 5 year rolling window spanned by the light grey bars. The verti-
cal dashed line denotes the onset of the Great Recession. A relative RMSE> 1(< 1) indicates better performance
of the aggregate (component) model.

Figure 5 Rolling relative log scores (component vs aggregate model) by forecast horizon for
headline inflation

2006200820102012201420162018

-0.3

-0.2

-0.1

0

Lo
g 

sc
or

e

h=1 months

2006200820102012201420162018

-0.2

-0.1

0

Lo
g 

sc
or

e

h=2 months

2006200820102012201420162018

-0.5

-0.4

-0.3

Lo
g 

sc
or

e

h=3 months

2006200820102012201420162018

-0.4

-0.2

0

0.2

Lo
g 

sc
or

e

h=4 months

2006200820102012201420162018

-0.6

-0.5

-0.4

-0.3

-0.2

Lo
g 

sc
or

e

h=5 months

2006200820102012201420162018

-0.6

-0.4

-0.2

Lo
g 

sc
or

e

h=6 months

2006200820102012201420162018
-0.7

-0.6

-0.5

-0.4

-0.3

Lo
g 

sc
or

e

h=7 months

2006200820102012201420162018

-0.8

-0.6

-0.4

-0.2

0

Lo
g 

sc
or

e

h=8 months

2006200820102012201420162018

-0.8

-0.6

-0.4

Lo
g 

sc
or

e

h=9 months

200820102012201420162018

-1

-0.5

0

Lo
g 

sc
or

e

h=10 months

200820102012201420162018

-1

-0.5

0

Lo
g 

sc
or

e

h=11 months

200820102012201420162018
-1

-0.8

-0.6

-0.4

Lo
g 

sc
or

e

h=12 months

Note: The black markers denote the center of the 5 year rolling window spanned by the light grey bars. The verti-
cal dashed line denotes the onset of the Great Recession. A negative (positive) value indicates better performance
of the aggregate (component) model.

14



Table 4 Relative RMSEs of Component vs Aggregate model conditional forecasts for headline
inflation in individual countries

Months ahead France Germany Italy Netherlands Spain

1 0.76 0.73 0.53 0.38 0.49
3 0.86 0.87 0.65 0.85 0.59
6 0.94 0.94 0.82 0.95 0.87
12 1.00 1.01 0.94 0.98 0.96
24 1.00 0.97 0.99 1.02 0.98
36 1.00 1.00 1.00 1.03 1.00

Note: A relative RMSE < 1 indicates that Component model forecasts are
more accurate. Bold text denotes statistical significance of the difference
at the 5% level, based on Diebold–Mariano tests with Harvey et al. (1997)
correction.

large errors made during the Great Financial Crisis, and also indicates a somewhat better ability

of the aggregate model to forecast inflation during the so-called ”missing disinflation” episode

(see for example Bobeica and Jarociński, 2019). A similar story holds for rolling logarithmic

scores (Figure 5). Rolling results for HICP inflation excluding food and energy, reported in

the Appendix, show two main features: a swift alignment of the performance of the two models

following the Great Financial Crisis at short horizons; and a gradual deterioration of the relative

performance of the component model at horizons longer than 9 months in the windows starting

from those centered in early 2010, that is, shortly before the onset of, as well as during the

”missing inflation” period that was one of the salient features of the euro area economy over

the last decade (see Bobeica and Sokol, 2019).

3.4 Individual countries

Results for the five largest euro area economies are mixed, although some common threads across

countries can be found. The bottom up approach usually yields better headline inflation point

forecasts in the very short run, while at longer horizons the models again perform similarly

(Table 4). On the other hand, the aggregate model delivers better, or very similar, density

forecasts throughout (see Online Appendix). For HICP excluding energy and food inflation,

point forecasts are typically not statistically different for the two approaches, with very few

exceptions, where the aggregate model is superior (Table A.3). Log scores for HICP excluding

energy and food inflation are typically very similar across models, with the notable exception

of Italy, where the aggregate model clearly dominates the other approach for horizons beyond a

year (see Online Appendix).
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4 Conclusions

We have provided a comparison of direct conditional forecasts of HICP and HICP excluding

energy and food in the euro area and five member countries to weighted sums of forecasts of

their main components from large Bayesian VARs with a shared set of predictors. Our main

finding is that point forecasts perform similarly using both approaches, whereas direct forecasts

tend to yield better density forecasts. For individual countries, the aggregate model also tends

to perform somewhat better, with a few exceptions, most notably short-term point forecasts

for headline inflation. Where such a comparison is possible, we find that inflation forecasts

made by Eurosystem/ECB staff perform similarly or slightly better than those from our models.

The aftermath of the Great Financial Crisis seem to mostly have had temporary effects on the

ranking between the aggregate and component models for either measure of HICP inflation.
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A Euro Area Results: HICP Excluding Food and Energy

Figure A.1 Conditional forecasts of HICP inflation excluding food and energy over time
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Note: The figures show consecutive forecast vintages of year-on-year inflation (colored lines) against the latest
data vintage (solid black).

Table A.1 Component vs Aggregate model conditional forecasts for HICP inflation excluding
food and energy

Months ahead RMSE relative RMSE relative RMSE
Component model Component/Aggregate Component/(B)MPE

1 0.10 1.03 –
3 0.16 1.03 1.64
6 0.25 1.03 1.00
12 0.41 1.04 1.00
24 0.51 1.06 1.09
36 0.55 1.07 –

Note: A relative RMSE < 1 indicates that Component model forecasts are more accurate. Bold text denotes
statistical significance of the difference at the 5% level, based on Diebold–Mariano tests with Harvey et al.
(1997) correction. The comparison with Eurosystem/ECB staff (B)MPE projections (last column) is made
on quarterly, rather than monthly, year-on-year inflation rates.
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Figure A.2 Fan charts with conditional forecasts of HICP inflation excluding food and energy
(top panel - vintage December 2014, bottom panel - vintage March 2019)
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Note: Top panel - December 2014 vintage; bottom panel - March 2019 vintage. The fan charts depict the
evolution of selected quantiles of the predictive distributions of year-on-year inflation over the projection horizon:
the darkest band is centered around the median, and the outer edges of the lightest bands correspond to the 0.05
and 0.95 quantiles.

Figure A.3 Average log predictive scores for conditional forecasts - HICP inflation excluding
food and energy
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Note: A higher (less negative) log predictive score indicates better forecast accuracy. Black squares mark horizons
for which the two scores are statistically different from each other based on Amisano and Giacomini (2007) with
Harvey et al. (1997) correction.
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Table A.2 Calibration tests on Probability Integral Transforms for HICP inflation excl. food
and energy

Aggregate model Component model
Uniformity Independence Joint H0 Uniformity Independence Joint H0

h KS AD LB Ber KS AD LB Ber
1 0.434 0.215 0.454 0.111 0.140 0.068 0.453 0.045
3 0.292 0.083 0.892 0.122 0.112 0.020 0.949 0.026
6 0.039 0.004 <0.001 <0.001 0.001 <0.001 <0.001 <0.001
12 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
24 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
36 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Note: P-values (for horizons h > 2, minimum p-values) of the respective test: Kolmogorov-Smirnov (KS),
Anderson-Darling (AD), Ljung-Box of the mean (LB), Berkowitz (Ber). Bold text indicates rejection at the
5% significance level (for horizons h > 2, using Bonferroni bounds). See Section 2 for more details and
references.

Figure A.4 Rolling relative RMSE (component vs aggregate model) by forecast horizon for HICP
inflation excluding food and energy
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Note: The black markers denote the center of the 5 year rolling window spanned by the light grey bars. The verti-
cal dashed line denotes the onset of the Great Recession. A relative RMSE> 1(< 1) indicates better performance
of the aggregate (component) model.
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Figure A.5 Rolling relative log scores (component vs aggregate model) by forecast horizon for
HICP inflation excluding food and energy
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Note: The black markers denote the center of the 5 year rolling window spanned by the light grey bars. The verti-
cal dashed line denotes the onset of the Great Recession. A negative (positive) value indicates better performance
of the aggregate (component) model.

Table A.3 Relative RMSEs of Component vs Aggregate model conditional forecasts for HICP
inflation excluding food and energy in individual countries

Months ahead France Germany Italy Netherlands Spain

1 1.21 1.04 0.95 1.07 1.22
3 0.96 0.95 0.97 1.05 1.01
6 0.91 0.94 0.97 1.02 1.00
12 0.98 0.92 0.98 1.05 1.01
24 1.05 0.97 1.02 1.04 1.03
36 1.04 0.95 1.03 1.04 1.03

Note: A relative RMSE < 1 indicates that Component model forecasts are
more accurate. Bold text denotes statistical significance of the difference
at the 5% level, based on Diebold–Mariano tests with Harvey et al. (1997)
correction.
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