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Abstract

We propose a method for estimating the effect of a program or policy when all
individuals in a population are treated. We show how individual pre-treatment
information - even from very short panels - can be exploited to forecast individual
counterfactuals, which can then be used to estimate the average treatment effect.
We propose a simple estimator based on local polynomial regressions, which does
not require correct specification of the individual forecast model or a long pre-
treatment history. Our first contribution is to show that this estimator is unbiased
and asymptotically normal for a broad class of data-generating processes (DGPs)
that express the individual potential outcomes as the sum of (possibly) three un-
observed components: a stationary process, a unit root process, and a polynomial
time trend. Simulation results suggest that the choice of a larger polynomial order
could mitigate the bias due to a "non-stationary" initial condition in short panels.

1 Introduction

The common approach to estimating average treatment effects (ATT) assumes the avail-
ability of a control group of untreated individuals. This paper proposes an alternative
way to estimate ATT using panel data that does not require the existence of a control
group. We propose an estimator of the ATT - the Forecasted Treatment Effects (FAT)
- that is based on forecasting individual counterfactuals using pre-treatment data. The
main insight of the paper is that a simple forecast that fits a polynomial time trend to
the individual pre-treatment time series can deliver an unbiased estimate of the ATT
with good finite-sample performance. The only requirement is that the chosen order of
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the polynomial is larger than the true one. We show analytically that this result holds
for a broad class of data-generating processes that express the individual outcomes as
the sum of (possibly) three unobserved components: a stationary process, a unit root
process and a polynomial time trend. We show in simulations that choosing a larger
polynomial order could also mitigate the bias due to a "non-stationary" initial condition
in a short time series.

The findings in this paper suggest that for unbiased estimation of the ATT it is
sufficient to focus on forecasting the deterministic component of the individual time
series, while the stochastic component could be left unspecified. This claim may seem
counterintuitive from a forecasting perspective, as it suggests that even a misspecified
forecasting model can deliver an unbiased estimate of the ATT. It also signals a shift
in focus relative to the dynamic panel data literature: rather than trying to obtain
unbiased estimates of the model’s parameters, we want unbiased forecasts of counter-
factuals. To this extent, our conclusion is that it seems important to avoid misspecifying
the deterministic component, while correctly specifying the stochastic component (and
using an unbiased estimator for its parameters) is not crucial and may actually worsen
the finite-sample performance.

Our baseline estimator uses individual time series of pre-treatment outcomes to
forecast the counterfactual outcome for each individual. The difference between the
observed post-treatment outcome and the forecasted outcome estimates the individual
treatment effect, while the sample average of individual effects estimates the ATT.
Importantly, we do not require specifying a forecasting model but allow for a broad class
of data-generating processes for the individual counterfactuals that potentially allow for
a large degree of individual heterogeneity, including fixed effects, lagged outcomes with
heterogeneous coefficients, and differential treatment times, even when the panel is
short.

We then consider several extension of our method, including the presence of a control
group and staggered adoption. Our method is particularly relevant for situations with
a limited number of pre-treatment periods, or with periods in which all or most units
are treated (for which two-way fixed effects estimation obtains negative weight on the
treatment effects in later periods for early-adopters).
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2 Related Literature

This paper is related to several strands of the literature on treatment effect estimation,
forecasting and panel data econometrics. There are some examples in the literature of
approaches to estimating treatment effects without assuming the existence of a con-
trol group. Some use Bayesian methods under strong parametric assumptions (e.g.,
Brodersen et al. (2015); Varian (2014)) and some (the so-called “interrupted time se-
ries" approach, e.g., Bernal et al. (2017), Baiker and Svoronos (2019), Miratrix (2020))
make strong assumptions such as a single treated unit and no variation in treatment
timing. Unlike these approaches, our method is valid under more general assumptions
on the data-generating process and allows for multiple treated units and staggered
adoption.

Another approach to estimating treatment effects without a control group is the so-
called “regression discontinuity in time" that is often applied in empirical environmental
economics. This approach requires high-frequency data around the treatment time and
it involves local estimation before and after the treatment. Our approach has a different
theoretical justification and does not require high-frequency data. We also use local
estimation but only on data before the treatment in order to forecast counterfactuals.

Our estimation of treatment effects is based on forecasting individual counterfactuals
using panel data. There is a large literature on forecasting with panel data (for recent
examples, see the Empirical Bayes approach of Liu, Moon and Schorfheide, 2020). This
literature makes strong parametric assumptions and focuses on forecast accuracy. In
contrast, we allow for a broad class of DGPs and we focus on forecast unbiasedness,
rather than accuracy.

The focus on unbiasedness relates our work to the classical literature on unbiased
forecasts in time series (e.g., Fuller and Hasza, 1980, Dufour, 1984) and to more recent
contributions in panel data such as Mavroeidis et. al. (2015). Unlike our approach,
this literature considers more restrictive DGPs, for example assuming stationarity and
symmetric error distributions.

Finally, there has been a lively recent discussion in the literature on how the stan-
dard approach to estimating average treatment effects using Ordinary Least Squares or
Two-way Fixed Effects regressions in panel data is generally inconsistent under treat-
ment effect heterogeneity (e.g., Wooldridge (2005); Chernozhukov et al. (2013); Imai and
Kim (2019); Sloczynski (2020); de Chaisemartin and D’Haultfoeuille (2020); Goodman-
Bacon (2021). All proposed solutions assume the existence of a control group in every
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period, see, e.g., Cengiz et al. (2019); Callaway and Sant’Anna (2020); Sun and Abra-
ham (2020); Goodman-Bacon (2021); Baker et al. (2021); Borusyak et al. (2021); Liu
et al. (2021). This means that there is presently no standard difference-in-difference
consistent estimator for the case of staggered, heterogeneous treatment. In contrast,
our solution allows for heterogeneous treatment effects, staggered adoption and does
not require the existence of a control group.

3 Forecasted treatment effects: the baseline case

3.1 Setup and notation

Suppose we observe outcomes yit for individuals i = 1, . . . , n and time periods t =

1, . . . , T . All individuals in the population are untreated for time periods t ≤ τ , and
treated for t > τ . Each individual has two potential outcomes at time t: yit (0) if the
individual is not treated and yit (1) if the individual is treated. Under SUTVA, the
observed outcomes are then given by

yit = (1− dit) yit(0) + dit yit(1), dit = 1(t > τ).

We consider more general situations later, in particular, for staggered adoption where
dit = 1(t > τi), with τi heterogeneous across i.

The parameter of interest is the average treatment effect on the treated h > 0

periods after the treatment:

ATTh := E [yiτ+h(1)− yiτ+h (0)] = E [yiτ+h − yiτ+h (0)] , (1)

where the expectation is taken with respect to the cross sectional distribution.

3.2 Proposed estimator of average treatment effects: the FAT

The challenge in identifying and estimating (1) is that the counterfactual yiτ+h (0) is
not observed for h > 0. If a control group is available, the usual strategy is to impose
sufficient assumptions that allow to identify E [yiτ+h(0)] from the observed outcomes of
the control group. In the absence of a control group, we exploit pre-treatment data to
obtain a forecast for the counterfactual yiτ+h (0). We denote this forecast by ŷiτ+h(0).

Our proposed estimator of ATTh, which we call the forecasted average treatment
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effect estimator (FATh), is given by

FATh =
1

n

n∑
i=1

[yiτ+h − ŷiτ+h (0)] , (2)

where ŷiτ+h(0) is a measurable function of the information set {yit, i = 1, ..., n; t =

1, ..., τ}.

3.3 The unbiasedness condition

Assumption 1 (Baseline model, cross-sectional sampling). The potential out-
comes (yit(0), yit(1) : t = 1, . . . , T ) are independent and identicially distributed across
i = 1, . . . , n.

A key insight of the paper is that consistency of FATh for ATTh is guaranteed by a
cross-sectional weak law of large numbers, as long as the forecasts satisfy the following
unbiasedness condition,

E [ŷiτ+h(0)− yiτ+h (0)] = 0. (3)

Lemma 1. Let Assumption 1 hold. For each i = 1, . . . , n, let the forecast ŷiτ+h(0)

be a function of (yi1, . . . , yiτ ) such that (3) holds. Assume furthermore that V =

Var(yiτ+h(1)− ŷiτ+h (0) is finite. Then we have

√
n (FATh − ATTh) ⇒ N (0, V ) .

Proof. Let ui := yiτ+h(1)− ŷiτ+h (0). We have

FATh − ATTh =
1

n

n∑
i=1

[yiτ+h(1)− ŷiτ+h (0)]− E [yiτ+h(1)− yiτ+h (0)]

=
1

n

n∑
i=1

[yiτ+h(1)− ŷiτ+h (0)]− E [yiτ+h(1)− ŷiτ+h (0)]

=
1

n

n∑
i=1

(ui − Eui) .

Our assumptions guarantee that the ui − Eui have zero mean and finite variance and
are i.i.d. across i. The Lindeberg-Levy CLT therefore gives the desired result.
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3.4 Local polynomial regression

We construct forecasts of counterfactuals via individual-specific local polynomial re-
gressions using pre-treatment data. For individual i, let qi ∈ {0, 1, 2, . . . , τ − 1} be the
maximal order of the polynomial time trend, and let Ri ∈ {q+1, . . . , τ} be the number
of pre-treatment time periods used for the regression. The h-period ahead forecast of
the counterfactual is given by

ŷ
(qi,Ri)
i,τ+1 :=

qi∑
k=0

α̂
(i,qi,Ri)
k (τ + 1)k, α̂(i,qi,Ri) := argmin

α∈Rqi+1

∑
t∈Ti

(
yit −

qi∑
k=0

αk t
k

)2

, (4)

where α = (α0, . . . , αqi) is a qi + 1 vector, Ti = {τ − Ri + 1, . . . , τ} is the set of the Ri

time periods directly preceding the treatment date.

Remark 1. An interesting special case is Ri = qi + 1 and h = 1. In that case,
ŷ
(qi)
iτ+1(0) := ŷ

(qi,qi+1)
iτ+1 (0) can equivalently be defined iteratively by

ŷ
(qi)
iτ+1(0) =

{
yiτ for qi = 0,

ŷ
(qi−1)
iτ+1 (0)−

[
ŷ
(qi−1)
iτ (0)− yiτ

]
for qi > 0.

(5)

This iteration is quite intuitive: the order-qi forecast is formed by subtracting the lagged
forecast error ŷ(qi−1)

iτ (0)−yiτ from the forecast ŷ(qi−1)
iτ+1 (0) of order qi−1. Explicit formulas

for this case are given by

ŷ
(0)
iτ+1(0) = yiτ ,

ŷ
(1)
iτ+1(0) = 2yiτ − yiτ−1,

ŷ
(2)
iτ+1(0) = 3yiτ − 3yiτ−1 + yiτ−2,

ŷ
(qi)
iτ+1(0) =

τ∑
t=τ−qi

w
(qi,1)
t yit, w

(qi,1)
t = (−1)(τ−t)

(
qi + 1

τ − t+ 1

)
,

where
(
a
b

)
= a!

b!(a−b)!
is the binomial coefficient.1

Remark 2. The first alternative way to obtain the same estimate in that case is via
the cross-sectional averages yt =

1
n

∑n
i=1 yit of the observed outcomes in time period t.

1Laderman and Laderman (1982) derive a similar expression in the context of forecasting a time
series by polynomial regression using the entire available time series.
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Due to linearity of the forecasting procedure we can rewrite FATh as

FATh = yτ+h −
q∑

k=0

αk (τ + h)k, α := argmin
α∈Rq+1

∑
t∈T

(
yt −

q∑
k=0

αk t
k

)2

, (6)

where T = {τ − R + 1, . . . , τ}, and we suppress the dependence on τ , q, R. Here, the
cross-sectional averages for t ≤ τ are used to obtain a forecast for t = τ + h, which is
then subtracted from the cross-sectional average observed at that time period.

The second alternative way to obtain FAT in the case R = Ri and q = qi is as a
simple pooled regression estimator, namely we have FATh = β̂h, where

(
β̂, α̂

)
= argmin{

β∈Rh, α∈Rn×(q+1)
} n∑

i=1

τ+h∑
t=τ−R+1

(
yit −

h∑
k=1

1{t = τ + k} βk −
q∑

k=0

αik t
k

)2

, (7)

which is the OLS estimator obtained from regressing yit on a set of time dummies
1(t = τ + k), for k ∈ {1, . . . , h}, and individual specific time trends.2

The alternative estimation strategies in (6) and (7) provide algebraically identical
treatment effect estimates in the case of our baseline setting with R = Ri and q = qi.
In a more general setting, however, those alternative estimation strategies do not give
the same treatment effect estimator, and may indeed easily give inconsistent estimates
for ATT if applied incorrectly.

Assumption 2 (Baseline model, time series process). The potential outcome in
the absence of the treatment follows the process:

yit(0) = y
(1)
it (0) + y

(2)
it (0) + y

(3)
it (0), (8)

where y
(1)
it (0) is a mean stationary process, y

(2)
it (0) = y

(2)
it−1(0) + uit(0) is a unit-root

process with innovations satisfying Euit(0) = 0, for all t ≥ 2, and y
(3)
it (0) =

∑q0
k=1 α

(3)
ik tk

is a polynomial trend of order q0 ∈ {0, 1, 2, . . .} and coefficients α
(3)
ik ∈ R.

Theorem 1. Let Assumption 2 hold and let qi ∈ {q0, . . . , τ − 1}, Ri ∈ {qi + 1, . . . , τ},
and h ∈ {1, 2, . . .}. Then,

E
[
ŷ
(qi,Ri)
iτ+h (0)− yiτ+h(0)

]
= 0.

2It actually does not matter for β̂ here whether we make the coefficients α on the time trend
individual specific or not.
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Proof. Since the forecast ŷ
(qi,Ri)
iτ+h (0) can be written as a linear combination of past

outcomes, and given (8), it is sufficient to show that for each component y
(r)
it (0), r ∈

{1, 2, 3},

E

[∑
t∈Ti

w
(qi,Ri,h)
t y

(r)
it − y

(r)
iτ+h(0)

]
= 0. (9)

For both the mean stationary component (r = 1) and the unit-root component (r = 2)
we have E

(
y
(r)
it − y

(r)
iτ+h(0)

)
= 0. Multiplying this equation by w

(qi,Ri,h)
t , summing over

t ∈ Ti, and using that the non-random weights w
(qi,Ri,h)
t satisfy

∑
t∈Ti w

(qi,Ri,h)
t = 1, we

obtain (9) for r = 1 and r = 2. To show (9) for the polynomial trend (r = 3), note that
by (4),

∑
t∈Ti w

(qi,Ri,h)
t y

(3)
it =

∑qi
k=0 α̃

(i,τ,qi,Ri)
k (τ + h)k, where

α̃(i,τ,qi,Ri) := argmin
α∈Rqi+1

∑
t∈Ti

(
y
(3)
it −

qi∑
k=0

αk t
k

)2

.

Since qi ≥ q0 for all i, the objective function in the last display is minimized (with value
zero) at α̃(i,τ,q,Ri) = α

(3)
ik , which implies y

(3)
iτ+h(0) =

∑
t∈Ti w

(q,Ri,h)
t y

(3)
it , that is, (9) holds

for r = 3 even without taking the expectations .

Corollary 1. Let Assumption 1 and the assumption of Theorem 1 hold. Let Var(yit)
be finite for all t ∈ {1, . . . , T}. Then we have

√
n
(
FAT

(qi,Ri)
h − ATTh

)
⇒ N (0, V ) ,

with V = Var(ŷ
(qi,Ri)
iτ+h (0)− ŷiτ+h (0).

4 Generalizations

In this section we discuss how to generalize our procedure to allow for modeling the
stochastic component, the presence of a control group, covariates, limited anticipation,
staggered adoption.

Our estimand, which we call Forecasted Average Treatment Effect, is then

FATh = E (yiτ+h − ŷiτ+h(0))
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A sufficient condition for FATh = ATTh is that the forecast be unbiased, i.e.

E (yiτ+h (0)) = E ( ŷiτ+h(0))) (10)

In this section we propose an estimator for the forecast that satisfies (10). Addition-
ally, we describe the class of data generating processes for yit(0) for which this forecast
is unbiased.

4.1 Modeling stochastic component

4.2 Control group

The presence of a control group makes it possible to consider a broader class of DGPs
for the individual counterfactuals. In particular, it allows for common shocks.

Suppose that all individuals are untreated before the implementation of the treat-
ment at time τ but that some individuals remain untreated after τ . Let Di = 1 if
individual i is untreated. The outcome variable is then given by:

yit = Di [1 (t ≤ τ) yit (0) + 1 (t > τ) yit (1)] + (1−Di) yit (0)

The parameter of interest is

ATTh = E (yiτ+h (1)− yiτ+h (0)|Di = 1)

= E (yiτ+h − yiτ+h (0)|Di = 1)

and our estimand is

FATh = E
(
yiτ+h − y

(Ri)
iτ+h (0)

∣∣∣Di = 1
)

where y
(Ri)
iτ+h (0) is the forecast of yiτ+h (0) given Ri outcomes {yit}τt=τ−Ri+1.

In Section 3, we showed that a sufficient condition for FATh = ATTh is that the
forecast be unbiased, i.e.

E (yiτ+h (0)|Di = 1) = E
(
y
(Ri)
iτ+h (0)

∣∣∣Di = 1
)
. (11)

The assumptions in Section 3 excluded processes subject to common shocks, such as
shocks that affect all individuals in the same way before the treatment. The presence
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of a control group allows us to weaken these assumptions and consider a larger class of
processes. To see this, consider that the potential outcome yit (0) is subject to a shock
at a known time j ∈ (1, τ), i.e.

yit (0) = γ1 (t ≥ j) + Yit (0) , Yit (0) ∈ Yt.

The counterfactual outcome at τ + h satisfies:

E (yiτ+h (0)|Di = 1) = E (γ|Di = 1) + E
(
y
(Ri)
iτ+h (0)

∣∣∣Di = 1
)
.

Should there be an untreated group subject to the same shock at time j, i.e.

E (γ|Di = 1) = E (γ|Di = 0) ,

the shock can be estimated from the control group as

E (γ|Di = 0) = E (yit1 (t ≥ j)|Di = 0)− E (yit1 (t < j)|Di = 0) .

Remark 3. Notice that, in fact, one can recover E (γ|Di = 1) from another time series
for the treated group that is different from the outcome of interest, is unaffected by the
treatment, and is subject to the same shock before the implementation of the treatment.
Call this time series zit. This assumption is not testable, however suggestive evidence
for it can be found by plotting the aggregate time series 1

n

∑n
i=1 zit against 1

n

∑n
i=1 yit

for t ∈ {1, . . . τ} and checking that the series move together except at time j.

Remark 4. When the shock happens between τ and τ + h, FAT treated
h − FAT control

h

estimates the effect of the treatment without the shock.

4.3 Staggered adoption

Our approach naturally lends itself to the possible presence of treatment anticipation,
as long as it is limited. One simply modifies the pre-treatment estimation window Ri

to include past observations only up to the time τ − δ at which it is still reasonable to
assume that there was no treatment anticipation, so that Ri ∈ {q + 1, . . . , τ − δ}.
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5 Simulation Study

6 Empirical illustrations
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