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Abstract

Instrumental variables (IV) are commonly used to estimate treatment effects in case of noncompliance.
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a new link between the true and mismeasured treatment effect. Second, we provide three IV strategies

to partially identify the heterogeneous treatment effects when both noncompliance and misreporting are

present. Third, we use our new Stata command, ivbounds, and obtain novel results of the benefits of

participating in the 401(k) pension plan on savings.
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1 Introduction

The instrumental variables (IV) method is commonly used to estimate treatment effects in case of

noncompliance (Athey and Imbens, 2017). Standard approaches for the identification and infer-

ence of causal parameters require that the treatment variable is correctly measured. In program

evaluation, misreporting (misclassification) of key variables due to the “desire to shorten the time

spent on the interview, the stigma of program participation, the sensitivity of income information,

or changes in the characteristics of those who receive transfers” is an increasing problem for social

scientists (Meyer et al., 2015, p. 219).1 Since participation is usually binary, attempting to evaluate

the benefits of a program using standard techniques would lead to biased estimates (Kreider, 2010;

Millimet, 2011).2 In this paper, we focus on the average causal effect for compliers (Imbens and

Angrist, 1994) and develop an IV method that can be used to measure the benefits of a program

when both noncompliance and misreporting of treatment status are present. When the IV is binary,

our target parameter is the local average treatment effect (LATE); with discrete or multiple-discrete

IVs, it is the weighted average of LATEs (WLATE).3

Recent works have developed methods to deal with an endogenous and misclassified binary

treatment variable. Identification of our target parameter(s) in case of exogenous (nondifferential)

misclassification of the treatment is achieved assuming resurvey data (Battistin et al., 2014), two

instrumental variables (Yanagi, 2019), two measurements of the same treatment (Calvi, Lewbel,

and Tommasi, 2018) or homogeneous treatment effects (DiTraglia and García-Jimeno, 2019). Sharp

bounds on the causal effects are provided by Jiang and Ding (2020). A few papers provide solutions

for the general case of endogenous (differential) misclassification of the treatment. Kreider et al.

(2012) formalized an approach to partially identify the average treatment effect, which requires

auxiliary data. Nguimkeu et al. (2018) achieved point identification of our target parameter(s)

under the assumption of homogeneous treatment effects and a strong parametric structure. Ura

(2018) considered the heterogeneous treatment effects and provided a partial identification strategy

of LATE by using a binary instrument.

This paper considers the problem of endogenous (differential) misclassification in a heterogeneous-

treatment-effects framework and extends the above works in several directions. First, we character-

ize the bias of the mismeasured IV estimand and establish a link between the true and mismeasured

treatment effects. This link is mediated by a new parameter, defined in terms of the misclassification

probabilities, which can be used to approximate the possible level of bias of the estimated benefits

of a program in a binary, discrete or multiple-discrete-instruments setting. Second, we generalize

the partial identification result of Ura (2018) to allow the support of the instrument to grow from

1Also Meyer and Mittag (2019a,b) and Meyer et al. (2020) documented that item nonresponse rates in all major United States (US) surveys
for various transfer programs were large and increasing.

2In a measurement error scenario, instrumental variables correct for endogeneity and measurement error of the treatment variable simul-
taneously. However, measurement error is always nonclassical for a binary treatment because of the negative correlation between the true
treatment status and the error term.

3We provide results valid for both parameters; hence, to avoid any confusion, throughout the text, one should carefully note when we refer
to LATE or WLATE.
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binary to discrete to multiple-discrete, which is likely to be useful for practitioners.4 Different to

a binary IV setting, we gain identification power by using multiple total variation distances, which

capture the distributional effect of the instrument(s) on observable variables. Two strategies yield

the bounds for the WLATE: first, via the bounds of LATEs; second, via the bounds of a new estimand

that we introduce, the local average of treatment misclassifications (LATMs), which captures the

average of the misclassification probabilities for compliers. We also provide sufficient conditions

under which the bounds of LATEs and LATMs are sharp. Finally, we formalize a third partial iden-

tification strategy to combine external information about the extent of misclassification to obtain

tighter bounds or a point estimate of LATE or WLATE. Our strategy improves upon others that rely

on auxiliary data because (i) external information are only used to narrow our bounds (e.g., Krei-

der and Pepper, 2007; Kreider et al., 2012), (ii) we do not need to assume an exogenous treatment

(e.g., Imai and Yamamoto, 2010; Battistin and Sianesi, 2011), nor to observe who has missing treat-

ment (e.g., Molinari, 2010), and (iii) treatment misclassification in our case can also be endogenous

(differential).

Our approach, using external information, is based on the observation that an increasing number

of researchers can link administrative records of program receipts to standard survey data and

report the extent of misreporting. Hence, for a wide range of programs, some information about

treatment misclassification probabilities is available even to researchers who do not have access

to administrative data.5 Alternatively, one could also retrieve these data using small validation

studies or repeated measurements of the same individual. In cases where the practitioner has a

good approximation of the misclassification probabilities in the survey, our proposed bounds, using

external information, degenerate to a point estimate. Even if these misclassification probabilities

are approximate, our approach provides the least-biased point estimate, which is much closer to the

truth than the naive IV estimate, which ignores treatment misclassification. Hence, our estimator

has a bias reduction property.

Regarding inference, for each partial identification strategy, we construct confidence intervals for

the bounds with uniform and asymptotic size control. They are built based on a two-step bootstrap

procedure following the work by Chernozhukov, Chetverikov, and Kato (2019). We demonstrate

the finite sample properties of the proposed inference methods through a series of Monte Carlo

simulations.

We extend these results in two main directions. First, to further improve the bounds, we show

the benefits of having multiple treatment indicators or repeated measures of the same treatment.

4Instrumental variables with a support larger than two values are commonly applied in empirical research. Moreover, allowing also the
case of multiple-discrete-instruments is likely to be useful to practitioners because, according to Mogstad et al. (2020b), more than half of the
empirical papers using instrumental variables and published in top journals in the last 20 years “make use of multiple instrumental variables
for a single treatment.”

5For example, Meyer et al. (2020) used administrative data from the food stamp program, Supplemental Nutrition Assistance Program
(SNAP), participation and link them to the ACS, the CPS, and the Survey of Income and Program Participation (SIPP). They found that the
extent of true food-stamp-recipient households that did not report receipt (false negative) in these surveys was 35%, 23%, and 50%, respectively.
Misclassification probabilities of other US government transfer programs were reported in Meyer and Mittag (2019a,b). In a similar vein, Dushi
and Iams (2010) merged tax records information with the SIPP data. They found that over 17% of participants in defined contribution (DC)
pension plans self-reported as nonparticipants (false negative), and almost 10% of nonparticipants self-reported as participants (false positive).
As more researchers gain access to linked administrative data, similar information about misclassification probabilities can be obtained for other
countries and programs.
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Importantly, we do not restrict the dependence among the treatment measures; thus, these vari-

ables can be considered endogenous. Second, since the instrument(s) may be confounded without

conditioning on some covariates, or treatment effects may be heterogeneous across the population

characterized by different attributes, we provide a strategy to use the propensity score index to

include covariates in the analysis.

Overall, this paper shows that researchers measuring the benefits of a program can obtain

bounds of LATE or WLATE if the binary treatment is misclassified. To do so, they can use the

ivbounds Stata command, which is available from the SSC repository (see Lin, Tommasi, and

Zhang (2021) for how to use this command). We use this new command to reassess the benefits

of participating in the 401(k) pension plan on savings in the US. The empirical results are twofold.

First, we find that the benefits of the plan estimated with a naive approach are biased (overesti-

mated) approximately by 37%. Second, using our preferred strategy in the presence of external

information, we obtain bounds of the true benefits that can be up to 36% narrower in width than

comparable results in the literature (Ura, 2018).

Our method has at least three applications. First, it can be used as the leading identification

strategy in any setting where the practitioner knows that the endogenous binary treatment is not

well measured. Second, it can be used as the leading robustness check if misreporting is only sus-

pected. Third, it can assess the sensitivity of program benefits under different assumptions of the

misclassification probabilities. Although our method is primarily motivated by (and directed to prac-

titioners in) the program evaluation literature, it is not limited to applications within this context.

It can be applied to any setting where the endogenous binary treatment is contaminated by endoge-

nous measurement error, and the researcher considers LATE or WLATE the relevant parameter(s)

for evaluating the policy change.

This paper relates to a long-standing tradition in the program evaluation literature concerned

with using IVs to infer causal parameters when the treatment is misclassified. Papers empirically

documenting substantial misclassification error in the treatment include Bollinger (1996), Angrist

and Krueger (1999), Kane et al. (1999), Bound et al. (2001), Card (2001), Black et al. (2003) and

Hernandez et al. (2007). A few earlier papers considered techniques for dealing with treatment

misclassification. In the context of homogeneous treatment effects of a mismeasured binary regres-

sor, Aigner (1973), Bollinger (1996), Kane et al. (1999) and Black et al. (2000) used IV techniques

to estimate the effects of an exogenous treatment. Under more general conditions, Klepper (1988)

provided bounds on average treatment effects with multiple misclassified treatments. In the context

of heterogeneous treatment effects, Mahajan (2006), Lewbel (2007) and Hu (2008) also used in-

struments to point-identify average treatment effects in the case of an exogenous and mismeasured

binary (or discrete) treatment indicator.

Our estimation problem has the standard LATE structure; that is, a binary treatment is correlated

with a binary, discrete or multiple-discrete instrument(s). The LATE or WLATE, “may be the only

relevant information that is credibly identifiable under weak conditions” (Imbens, 2014) and it “is

of intrinsic interest when the instrument itself represents an intervention, like a policy change or a
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randomized control trial” (Mogstad et al., 2018).6 In situations where the causal effect for compliers

might not represent the effect of interest, the LATE or WLATE could be used to extrapolate to causal

effects for individuals other than those affected by the instrument available. Recently, Heckman

et al. (2006), Brinch et al. (2017), Vuong and Xu (2017), Chen et al. (2017) and Mogstad et al.

(2018, 2020a) among others, have provided methods along this line. In particular, Mogstad et al.

(2018, 2020a) consider multiple IVs and propose a partial identification method for policy-relevant

treatment effects (PRTE), via the identifiable LATE or WLATE and the marginal treatment effect

(MTE) framework. Note that the papers above all rely on the treatment variable to be correctly

measured. Thus, our approach can be used as the first step when the targets are the PRTEs and the

treatment suffers from misclassification. In addition, Acerenza et al. (2021) and Possebom (2021)

conduct bounding analysis for the MTEs and PRTEs with misclassified treatment. This paper can

be viewed as an alternative and complement to them, because our method provides the bounds for

LATEs and WLATE, but also serves as the starting point of studying PRTEs.

The remainder of the paper is organized as follows. Section 2 presents our framework and the

main results. Section 3 develops an inference procedure for the parameters of interest. Section 4

discusses extensions, how to use our partial identification strategies in practice, simulations and an

application using our new ivbounds command. Concluding remarks are in Section 5. Proofs and

additional material are in the Appendix.

2 Theoretical Framework

This section proceeds in four acts. First, we describe our theoretical framework and show the limi-

tations of the standard IV approach when the treatment variable is contaminated by measurement

error. This leads to a simple relationship between the true and mismeasured effect, which can be

captured by a summary statistic of the misclassification probabilities. Second, we present tractable

outer sets of the LATEs and the LATMs, and provide sufficient conditions for the sharp identified

sets. Third, we outline different strategies to partially identify the parameter(s) of interest based on

different sources of information. Fourth, we show how to use external information regarding the

extent of the misclassification probabilities to obtain tighter bounds or, under certain conditions, to

obtain a point estimate of the effect.

2.1 Setup and Limitations of the Standard IV Approach

We introduce some notation which will be used throughout the text. For the moment, we derive our

results without conditioning on covariates. Later, we extend the partial identification and inference

procedure to accommodate a generic vector X of observable characteristics.

6This is an estimand subject to a heated debate and many distinguished researcher, both in economics and statistics, have contributed to
this debate (e.g. Heckman et al., 2006; Manski, 2007; Deaton, 2010; Heckman and Urzúa, 2010; Imbens, 2010). More recently, considerable
effort have been put into developing connections between instrumental variables and structural estimators (e.g. Kline and Walters, 2019).

5



True effect. Let D be the true binary treatment variable that affects the outcome of interest.

D is not observed and its effects cannot be consistently estimated. Let Z be a h×1 vector of discrete

instruments. Let ΩZ = {z0, z1, ..., zK} be the support of Z with zk ∈ Rh. Denote Dk ∈ {0, 1}, for

k = 0,1, ..., K , as the potential treatment corresponding to possible realization zk of Z . By definition,

D =
K
∑

k=0

1[Z = zk]Dk,

where 1[·] denotes the indicator function. Denote Pr(zk) = E(D|Z = zk) the propensity score. Let Y

be an observed outcome of interest and let Yd be the potential outcome with d ∈ {0, 1} for possible

realization of D. Denote by ΩY ⊂ R the support of Y , Y1 and Y0. Then,

Y = DY1 + (1− D)Y0.

A common way to exploit multiple instruments is to introduce a scalar function g : ΩZ 7→ R, for

example, g(z) can be an estimate of Pr(z) or other known functions.7

Assumption 2.1. Y , D and Z satisfy the standard Imbens and Angrist (1994) assumptions:

(i) (i.i.d.) (Y1, Y0, {Dk}Kk=0, Z) are independent and identically distributed across all individuals and

have finite first and second moments;

(ii) (Unconfoundedness) Z ⊥ (Y1, Y0, {Dk}Kk=0) and Pr(z) = E(D|Z = z) for z ∈ ΩZ is a nontrivial

function of z; 0< πk = Pr(Z = zk)< 1, k = 0, 1, ..., K;

(iii) (First stage) Cov(D, g(Z)) ̸= 0;

(iv) (Monotonicity) For any zl , zw ∈ ΩZ , with probability one, either Dl ≥ Dw for all individuals,

or Dl ≤ Dw for all individuals. Furthermore, for all zl , zw ∈ ΩZ , either Pr(zl) ≤ Pr(zw) implies

g(zl)≤ g(zw), or Pr(zl)≤ Pr(zw) implies g(zl)≥ g(zw).

The monotonicity assumption is satisfied if no subjects respond in the opposite way to their

instrument assignment status (no defiers). When there is more than one instrument, Mogstad

et al. (2020a,b) point out that the monotonicity assumption can only be satisfied if the treatment

choice behavior is homogeneous, which means that all individuals respond to the same shift in

the instrument value in the same direction.8 Throughout the paper, we denote compliers (Dk−1 =

0, Dk = 1) as Ck. If D was observed, under Assumption 2.1, the Imbens and Angrist (1994)’s

weighted average of local average treatment effect (WLATE) would be identified by the instrumental

7If Z is a scalar binary or discrete instrument satisfying monotonicity assumption, we can simply set g(z) = z. If Z includes multiple
instruments, g(z) can be set as, for example, an estimate of E[Y |Z = z] or of Pr(T = 1|Z = z) for z ∈ ΩZ , where T represents a proxy of the
true treatment and will be introduced later.

8Mogstad et al. (2020b) refer to Assumption 2.1 (iv) as "IA Monotonicity" and distinguish it from the "Actual Monotonicity", meaning that
if zl ≥ zw component-wise then Dl ≥ Dw for all individuals. It is unclear whether the analysis in this paper can be extended using only the
"Actual Monotonicity" assumption, unless all elements in ΩZ can be ranked by the component-wise "≤" or "≥". Słoczyński (2020) also studies
the relaxation of IA Monotonicity in the LATE setting, but focusing on correctly measured treatment.
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variables estimand:

αIV :=
Cov(Y, g(Z))
Cov(D, g(Z))

=
E[(Y −E(Y ))(g(Z)−E[g(Z)])]
E[(D−E(D))(g(Z)−E[g(Z)])]

=
K
∑

k=1

γIV
k αk,k−1, (1)

where γIV
k := Pr(Ck)

∑K
l=kπl(g(zl)−E[g(Z)])

∑K
m=1 Pr(Cm)

∑K
l=mπl(g(zl)−E[g(Z)])

are the weights, Pr(Ck) = Pr(zk)− Pr(zk−1) and αk,k−1 :=

E[Y1 − Y0|Ck] is the local average treatment effect (LATE) for each subgroup of compliers Ck. The

weights {γIV
k }

K
k=1 are nonnegative and

∑K
k=1 γ

IV
k = 1. However, since in practice we do not observe

D, we cannot implement this standard approach.

Mismeasured effect. Instead of D, suppose we can observe a binary treatment indicator T ,

which could be a proxy for D, or could correspond to reported values of D that are misclassified for

some observations. This means that T does not equal D for some individuals because of misclassi-

fication errors. Define Td ∈ {0, 1} as the potential observed treatment with d ∈ {0,1} for possible

realization of D. Then by definition:

T = DT1 + (1− D)T0.

The variables T0 and T1 can be interpreted as indicators of whether treatment is correctly measured

or not. That is, if T0 = 0 and T1 = 1, then the true treatment D is not misclassified. This shows

that, in a binary treatment setting, there are two possible measurement or misclassification errors:

if T0 = 1, then a true D = 0 is misclassified as treated (false positive), and if T1 = 0, then a true

D = 1 is misclassified as untreated (false negative).

Assumption 2.2. The treatment indicator T is such that the following conditions are satisfied:

(i) (Extended unconfoundedness) Z ⊥ (Y1, Y0, {Dk}Kk=0, T1, T0);

(ii) (Extended first stage) Cov(T, g(Z)) ̸= 0.

Assumption 2.2-(i) combines the LATE unconfoundedness assumption that Z ⊥
�

Y1, Y0, {Dk}Kk=0

�

with the assumption that the instruments are also independent of the potential measurement er-

rors, and hence of (T1, T0). Random assignment of Z would be sufficient to make 2.2-(i) hold.

Assumption 2.2-(ii) is used to ensure that the identifiable estimand from observable data is well-

defined and it is a minimal relevance condition. It says that, although T suffers from potential

misclassification error, it still provides some information regarding D. We do not restrict the extent

of misclassification here and will revisit this matter in the next section.

Using the proxy T in place of D leads to the identification of a new parameter, which is useful

to characterize. Let pd,k = E (Td | Ck) for d ∈ {0, 1} and k = 1,2, ..., K . By definition, p1,k is the

probability that compliers Ck would have their treatment correctly observed if they were treated.

That is, p1,k is the probability that the compliers would have T = 1 if they were assigned D = 1. In

contrast, p0,k is the probability that compliers Ck would have their treatment incorrectly observed
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if they were untreated. That is, p0,k is the probability that the compliers would have T = 1 if they

were assigned D = 0.

Theorem 2.1. Let Assumption 2.1 and 2.2 hold. Then:

αMis :=
Cov(Y, g(Z))
Cov(T, g(Z))

=
E[(Y −E(Y ))(g(Z)−E[g(Z)])]
E[(T −E(T ))(g(Z)−E[g(Z)])]

=
K
∑

k=1

γMis
k αk,k−1, (2)

where γMis
k := Pr(Ck)

∑K
l=kπl(g(zl)−E[g(Z)])

∑K
m=1(p1,m−p0,m)Pr(Cm)

∑K
l=mπl(g(zl)−E[g(Z)])

are the weights for each subgroup of compliers Ck.

Proof of Theorem 2.1. See Appendix A.1.

Intuitively, αMis denotes the new estimand that can be identified if we ignore the misclassification

error and use a mismeasured treatment indicator T in place of the true treatment D. If the treatment

indicator contains sufficient information about the true treatment, that is, if the summation of the

false positive and false negative rates is less than one for all complier groups, then we have 0 ≤
p1,k−p0,k ≤ 1 and γMis

k is positive for all k. However, the summation
∑K

l=k γ
Mis
k is likely to be greater

than one because each γMis
k is inflated by the misclassification error in the denominator. In contrast,

if the misclassification is severe, it is possible that p1,k− p0,k < 0 and weight γMis
k becomes negative

for some k. In this case, αMis may be negative (positive) even if treatment effects are positive

(negative) for everyone in the population. Clearly, αMis ̸= αIV because γMis
k ̸= γIV

k . A sufficient

condition for αMis = αIV is that p1,k = 1 and p0,k = 0 for all k (no misclassification error).

Relationship between the true and mismeasured effect. There is a simple relationship

between αIV and αMis which can be captured by a summary statistic of the misclassification proba-

bilities.

Corollary 2.1. Let Assumption 2.1 and 2.2 hold and, without loss of generality, assume γIV
k ̸= 0 and

γMis
k ̸= 0 for ∀k. Then, there exists a summary statistic ξ such that:

αMis =
K
∑

k=1

γIV
k αk,k−1 ×

γMis
k

γIV
k

=⇒ αIV = ξαMis (3)

where the ratio ξ= γIV
k /γ

Mis
k =

∑K
k=1 γ

IV
k (p1,k − p0,k).

Proof of Corollary 2.1. See Appendix A.2.

The parameter ξ is a weighted average of the difference between misclassification probabilities,

it is constant across k, with absolute value less than or equal to one, and unobserved in practice.

A similar link between the causal and the identifiable parameter has been established in an IV

setting by Hausman et al. (1998), Frazis and Loewenstein (2003), Lewbel (2007), Battistin and

Sianesi (2011), Stephens Jr and Unayama (2019) and Calvi, Lewbel, and Tommasi (2018), under a
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variety of different conditions.9 Our main contribution with respect to this literature is to show that

such relationship can be expressed in terms of the probabilities of false positive and false negative,

which are statistics that are increasingly available in the data, in a heterogeneous-treatment-effects

framework.

Indeed, denote the weighted average probability of false negative as wn = 1 −
∑K

k=1 γ
IV
k p1,k

(this is the probability of treated individuals misclassified as untreated) and false positive as wp =
∑K

k=1 γ
IV
k p0,k (this is the probability of untreated individuals misclassified as treated). Then, by

definition,

ξ= 1−wn −wp, 10 (4)

which makes clear that ξ can be interpreted as a measure of how severe the treatment misclas-

sification is. When there is no misclassification (wn = wp = 0), the parameter ξ = 1 and hence

αMis = αIV because the bias is 0. As misclassification worsen (wn > 0, wp > 0), ξ falls and the bias

becomes increasingly severe. When 0 < ξ < 1, the bias in αMis is 1/ξ− 1×αIV . When ξ < 0, αMis

and αIV are of opposite signs.

Table 1: Bias of αMis relative to αIV for different misclassification probabilities

Bias = (1/ξ− 1)×αIV

wn ↓ | wp→ 0 0.05 0.10 0.20 0.30 0.40

0.00 0.000 0.053 0.111 0.250 0.429 0.667
0.05 0.053 0.111 0.176 0.333 0.538 0.818
0.10 0.111 0.176 0.250 0.429 0.667 1.000
0.20 0.250 0.333 0.429 0.667 1.000 1.500
0.30 0.429 0.538 0.667 1.000 1.500 2.333
0.40 0.667 0.818 1.000 1.500 2.333 4.000

Notes: Each cell reports (1/ξ−1)×αIV for different values of wn (false negative) and wp (false positive). αIV is normalized
to 1.

A practitioner can use relationship (4) to approximate the possible level of bias of the estimated

benefits of a program for different misclassification probabilities. In Table 1 we report the differ-

ence in the values between αMis and αIV for different values of wn and wp. The true effect αIV is

normalized to 1. Hence, if the sample contains, e.g., 10% false negative and 5% false positive, this

9First, similarly to Frazis and Loewenstein (2003) and Stephens Jr and Unayama (2019), but differently from Lewbel (2007) and Battistin
and Sianesi (2011), we establish a link between the causal and identifiable parameter by assuming an endogenous treatment. However, the
assumed model in these papers is parametric, therefore the treatment effects are homogeneous. Second, similarly to Lewbel (2007) and
Battistin and Sianesi (2011), we assume a nonparametric model, therefore the treatment effects are heterogeneous. However, they assume an
exogenous treatment, hence unconfoundedness, which is not required in our context. Third, differently from Frazis and Loewenstein (2003),
we assume monotonicity of the instrumental variable(s), which allows us to derive the misclassification probabilities in terms of the compilers.
Finally, αMis generalizes the B-LATE (for Biased LATE) estimator of Calvi, Lewbel, and Tommasi (2018) to a discrete and multiple-discrete-
instruments setting. Our factor 1/ξ becomes their factor 1/p (the fraction of individuals correctly reporting their treatment status) when a
scalar binary instrument is used. All these papers, including ours, are related to one another and benefited from the result by Hausman et al.
(1998).

10Notice that a practitioner does not need to know each value of p1,k and p0,k, for k = 1,2, ..., K , to be able to approximate the value of ξ.
This is because, in practice, the type of information that is increasingly reported in the data is the overall misclassification probabilities, wn

and/or wp, like in our application to the 401(k) Pension Plan. These are the only information actually required to approximate ξ. We come
back to this point in Section 2.4 when we discuss the partial identification strategy that allows to incorporate external information to shrink
the bounds of αIV .
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table tells the practitioner that the estimated effect αMis is approximately 17.6% larger than the

(unknown) true effect.

2.2 Bounds of the LATEs and the LATMs

We introduce an additional assumption needed for partial identification results.

Assumption 2.3 (Informative Treatment Proxy). For all k = 1,2, ..., K, Pr(T = d|Ck, D = d) >

Pr(T = d|Ck, D = 1− d), d = {0,1}.

Assumption 2.3 states that T is an informative proxy of the actual treatment status and it also

rules out the negative weights in αMis. One sufficient condition for it is that max{Pr(T = 1|Ck, D =

0), Pr(T = 0|Ck, D = 1)} < 1/2 for all k = 1,2, ..., K , meaning that the observations of T are more

accurate than pure guesses about the true treatment. A similar restriction is widely invoked in

the measurement error literature.11 Moreover, in a similar vein to the monotonicity condition of

Hausman et al. (1998), in the following Lemma we show that Assumption 2.3 ensures that, when

the instrumental variable Z varies, the mismeasured propensity score Pr(T = 1|Z) moves in the

same direction of the true propensity score Pr(D = 1|Z).

Lemma 2.1. Under Assumption 2.1, 2.2 and 2.3, we have that E(T |Z = zl) ≤ E(T |Z = zw) implies

Pr(zl)≤ Pr(zw) for ∀zl , zw ∈ ΩZ .

Proof of Lemma 2.1. See Appendix A.3.

Lemma 2.1 says that, even though the magnitude of propensity score Pr(z) cannot be recovered

from the observed data, the proxy T reveals relevant information about how the actual treatment

responds to the changes of Z . Given this Lemma, without loss of generality, hereafter we assume

the elements {z0, z1, ..., zK} of the support ΩZ follow an ascending order, in the sense that ∀l, w ∈
{0,1, ..., K}, l < w implies Pr(zl)≤ Pr(zw). This order is identifiable given Lemma 2.1.

Bounding the probability of compliers. To bound the probability of compliers, we use

the concept of total variation (TV) distance. For any generic random variable (or vector) A and

zk, zk−1 ∈ ΩZ , TV is a L1 distance between the two conditional distribution functions fA|Z=zk
and

fA|Z=zk−1
, defined as follows:

T VA,k =
1
2

∫

| fA|Z=zk
(a)− fA|Z=zk−1

(a)|dµA(a),

where µA denotes a dominating measure for the distribution of A.12 If A is discrete, the integral is

replaced by summation across all possible values of A. The T VA,k is identifiable and it captures the

extent of the distributional effect of Z on A, when Z changes from zk−1 to zk. If A= Y , then T VY,k

11See e.g. Bollinger (1996), Lewbel (2007), Hu (2008), Chen et al. (2011), Battistin and Sianesi (2011), and Battistin et al. (2014).
12For two σ-finite measures µ and µ′, the measure µ′ is dominated by µ, if, for any measurable set A , µ(A ) = 0 implies µ′(A ) = 0. For

more detailed definition, see the Radon-Nikodym Theorem in Billingsley (2008).
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is the distribution version of the “intent-to-treat” effect. The TV will play a crucial role in bounding

the probability of compliers when the actual treatment D is unobservable.

Lemma 2.2. Let Assumption 2.1-(ii) to (iv), 2.2-(i) and 2.3 hold. We have that, for ∀k = 1, 2, ..., K:

T V(Y,T ),k ≤ Pr(Ck)≤ 1−
∑

k′ ̸=k

T V(Y,T ),k′.

Proof of Lemma 2.2. See Appendix A.4.

By the definition of total variation distance, we know that Pr(Ck) = T VD,k, therefore T V(Y,T ),k

can be understood as the smallest effect of Z changing from zk−1 to zk on the true treatment D. The

bound for Pr(Ck) in Lemma 2.2 depends on the strength of the instrument(s). For example, if the

change of Z from zk−1 to zk causes no distributional variation of the outcome and the treatment

proxy, the lower bound of Pr(Ck) reduces to 0. Similarly, if no distributional variation is triggered

by the change of Z from zk′−1 to zk′ for all k′ ̸= k, the upper bound of Pr(Ck) increases to 1.13

Given Lemma 2.2, we can now proceed to consider the bounds for (i) the LATE (αk,k−1) and (ii)

the difference between misclassification probabilities (∆pk = p1,k−p0,k). For convenience, hereafter

we refer to ∆pk as the local average of treatment misclassification (LATM), because it is analogous

to the LATE if we replace Y1 − Y0 by T1 − T0:

LATM=∆pk = E[T1 − T0|Ck]

Let P be an arbitrary data generating process (DGP) of (Y, T, Z). Denote the class of DGPs of P

as P0, then we have P ∈ P0. Denote Θ to be the parameter space of αIV , αMis and of all αk,k−1.

For example, Θ = {−1,1} if outcome Y is binary, and Θ = ΩY if outcome Y is continuous.14 For

A= {Y, T}, denote ∆kE(A|Z) = E(A|Z = zk)−E(A|Z = zk−1).

Bounding the LATEs. Theorem 1 in Imbens and Angrist (1994) says that under Assumption

2.1 in this paper, we have:

∆kE(Y |Z) = αk,k−1Pr(Ck). (5)

Multiplying both sides of (5) by αk,k−1, we obtain that:

αk,k−1∆kE(Y |Z) = α2
k,k−1Pr(Ck)≥ 0. (6)

13Lemma 2.2 generalizes Lemma 3 of Ura (2018) to accommodate multiple or multi-valued IV(s). Notice that, when instrument is discrete,
this author proposes to use only the subpopulation where the instrument takes two values, and bound Pr(Ck) by [T V(Y,T ),k, 1]. However, we
demonstrate the identification power gain of discrete IV(s), as we can actually bound Pr(Ck) from above by 1−

∑

k′ ̸=k T V(Y,T ),k′ instead of 1.
14The parameter space for each αk,k−1 may be different for each k. However, we ignore this possibility for notational simplicity.
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Moreover, by applying Lemma 2.2 to the absolute value of (5), we have:

|∆kE(Y |Z)| ≤ |αk,k−1|



1−
∑

k′ ̸=k

T V(Y,T ),k′



 , (7)

|∆kE(Y |Z)| ≥ |αk,k−1|T V(Y,T ),k. (8)

Thus, under Assumptions 2.1, 2.2 and 2.3, each LATE αk,k−1 satisfies the inequalities (6)-(8). In-

equality (6) indicates that the sign of αk,k−1 is identified by ∆kE(Y |Z) whenever Pr(Ck) is nonzero.

In addition, when ∆kE(Y |Z) ̸= 0, inequalities (7) and (8) give the lower and upper bounds of

|αk,k−1|, respectively. Denote the set of αk,k−1, characterized by (6)-(8), as Θαk (P) ⊂ Θ. In the next

Lemma, we derive explicit expressions for Θαk (P), and provide sufficient conditions under which

Θαk (P) is a sharp identified set of LATE.

Lemma 2.3. Let Assumption 2.1-(ii)-(iv), 2.2-(i) and 2.3 hold. Then, for ∀k = 1,2, ..., K:

(i) If T V(Y,T ),k = 0, then Θαk (P) = Θ. Whereas if T V(Y,T ),k > 0, then:

Θαk (P) =



















h

∆kE(Y |Z)
1−
∑

k′ ̸=k T V(Y,T ),k′
, ∆kE(Y |Z)

T V(Y,T ),k

i

, if ∆kE(Y |Z)> 0,

{0}, if ∆kE(Y |Z) = 0,
h

∆kE(Y |Z)
T V(Y,T ),k

, ∆kE(Y |Z)
1−
∑

k′ ̸=k T V(Y,T ),k′

i

, if ∆kE(Y |Z)< 0;

(9)

(ii) If max
0≤m≤K

T V(Y,T ),m = 0, thenΘαk (P) = Θ is the sharp identified set ofαk,k−1. Whereas, if T V(Y,T ),k >

0 and T V(Y,T ),k′ = 0 for all k′ ̸= k, then Θαk (P) in (9) is the sharp identified set of αk,k−1.

Proof of Lemma 2.3. See Appendix A.5.

Lemma 2.3 (i) shows that, if T V(Y,T ),k = 0, then no useful information about how the instrument’s

value changing from zk−1 to zk affects the treatment can be extracted from the observable data, so

that we fail to exclude any values from the parameter space of the LATE, Θ. Once T V(Y,T ),k > 0, the

instrument has nontrivial identification power, and analytic bounds can be derived for the LATE. To

be more specific, if ∆kE(Y |Z) = 0, then αk,k−1 is point identified as zero. If ∆kE(Y |Z) ̸= 0, the sign

of αk,k−1 is identified by the sign of ∆kE(Y |Z). Importantly, Θαk (P) can be seen as an informative

bound for LATE, because it excludes the intention to treat (ITT) effect∆kE(Y |Z) and the naive Wald

estimand ∆kE(Y |Z)/∆kE(T |Z),15 which are the two trivial bounds of the LATE. Moreover, if the

total variation is nonzero only when Z changes from zk−1 to zk, then Θαk (P) is the sharp identified

set and it reduces to the identified set of Ura (2018). This is intuitive because T V(Y,T ),k′ = 0 for all

k′ ̸= k implies that Z = zk−1 and Z = zk are the only two values inducing nonzero changes in the

outcome or the treatment. Thus, the multiple total variation distances generated from the discrete

IV(s) are essentially equivalent to that generated from a binary IV.

15This is because, by Lemma A.1 in Appendix, we have T V(Y,T ),k ≥ |∆kE(T |Z)|.
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For more general cases, where more than two total variation distances are nonzero, although

sharpness result is not established for Θαk (P), this outer set still possesses desirable properties. First,

it is tighter than the bound provided by Ura (2018) using two values of Z . Second, since an outer

set is always a superset of the sharp identified set, inference based on the outer set is conservative

yet valid. Moreover, the outer set is often considered useful in practice, since it may be sufficient to

answer important empirical questions, such as whether the treatment effect is negative or what is the

possible range of program benefits (see Molinari, 2020, for more details). Third, point identification

of LATE can be established, if either (i) there is no misclassification or (ii) the IV(s) has perfect

explanatory power of the treatment, e.g., when Pr(D = 1|Z = zk) = 1 and Pr(D = 0|Z = zk−1) = 1.

Intuitively, the bounds will be tighter in cases that are "closer" to either of these two extreme cases.

Bounding the LATMs. Similar arguments can be applied to obtain the inequalities (10)-(12)

below, satisfied by each ∆pk:

∆pk∆kE(T |Z)≥ 0, (10)

|∆kE(T |Z)| ≤ |∆pk|



1−
∑

k′ ̸=k

T V(Y,T ),k′



 , (11)

|∆kE(T |Z)| ≥ |∆pk|T V(Y,T ),k. (12)

Denote the set of ∆pk, characterized by (10)-(12), as Θp
k(P). The Lemma below gives analytic

bounds of ∆pk, as well as sufficient conditions for the sharp identified set.

Lemma 2.4. Let Assumption 2.1-(ii)-(iv), 2.2-(i) and 2.3 hold. For ∀k = 1,2, ..., K,

(i) If T V(Y,T ),k = 0, then Θp
k(P) = [−1, 1]. Whereas, if T V(Y,T ),k > 0, then:

Θ
p
k(P) =



















h

∆kE(T |Z)
1−
∑

k′ ̸=k T V(Y,T ),k′
, ∆kE(T |Z)

T V(Y,T ),k

i

, if ∆kE(T |Z)> 0,

{0}, if ∆kE(T |Z) = 0,
h

∆kE(T |Z)
T V(Y,T ),k

, ∆kE(T |Z)
1−
∑

k′ ̸=k T V(Y,T ),k′

i

, if ∆kE(T |Z)< 0;

(13)

(ii) If max
0≤m≤K

T V(Y,T ),m = 0, then Θp
k(P) = [−1,1] is the sharp identified set of ∆pk. Whereas, if

T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0 for all k′ ̸= k, then Θp
k(P) in (13) is the sharp identified set of

∆pk.

Proof of Lemma 2.4. See Appendix A.6.

We are interested in the identified set of ∆pk because it plays a crucial role in characterizing

the bias of αMis relative to the object of interest, αIV . As shown in Lemma 2.4, the sign and an

informative bound for ∆pk can be obtained as long as T V(Y,T ),k > 0.16 It is also clear that, in order

16Since, without loss of generality, we assume {z0, z1, ..., zK} follow the ascending order, then it is clear that ∆kE(T |Z) ≥ 0 for all k. For the
sake of completeness, however, in Lemma 2.4 we still present the result for the case ∆kE(T |Z)< 0.
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to partial identify ∆pk, we do not need any prior or external information about how severely the

treatment proxy T is contaminated by measurement error.

2.3 Partial Identification of αIV

The bounds of the LATEs and the LATMs provide the fundamental basis for the identification of the

estimand αIV . In this section, we begin by proposing two strategies to partially identify αIV . Both

strategies do not rely on additional or external sources of information.

First strategy. Recall that the estimand αIV is a weighted average of LATEs {αk,k−1}Kk=1 with

nonnegative weights {γIV
k }

K
k=1 summing up to one. Hence the first partial identification strategy is

based on {αk,k−1}Kk=1:

min
k=1,2,...,K

{αk,k−1} ≤ αIV =
K
∑

i=1

γIV
k αk,k−1 ≤ max

k=1,2,...,K
{αk,k−1} (14)

Given (14), our first partial identification result of αIV can be obtained from the bounds of LATEs

given in Lemma 2.3.

Theorem 2.2. Let Assumption 2.1, 2.2, and 2.3 hold. Denote Θα(P) =
⋃

k∈{1,2,...,K}Θ
α
k (P). Then we

have αIV ∈ Θα(P).

Proof of Theorem 2.2. See Appendix A.7.

The superscript α of Θα(P) means that it is constructed from {Θαk (P)}
K
k=1. Theorem 2.2 shows

that αIV lies in the union of the partially identified sets of LATEs {αk,k−1}Kk=1. In principle, the set

Θα(P) might be uninformative about the direction of the WLATE in situations where at least two

LATEs, αk,k−1 andαk′,k′−1, have opposite signs. Fortunately, because we can recover the sign of all the

LATEs from the observed data (Lemma 2.3), we are able to recover the sign of αIV as long as all the

LATEs stand on the same side of zero. We refer to this feature of the data as “direction consistency”

of LATEs. This knowledge reveals partly how the treatment affects the outcome which, in many

empirical applications, is supported by economic theory. For example, in a study of the returns to

schooling, a higher education level indicates, on average, higher wages. Hence, in this case, the

“direction consistency” of LATEs is positive.17

Corollary 2.2. Let Assumption 2.1, 2.2, and 2.3 hold.

(i) If ∆kE(Y |Z)> 0 for all k = 1, 2, ..., K, then αIV > 0 and

Θα(P) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z)
1−

∑

k′ ̸=k T V(Y,T ),k′

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z)
T V(Y,T ),k

��

.

17Such sign restriction, or direction consistency, is commonly assumed in the treatment effects partial identification literature. For example,
the monotone treatment response Y1 ≥ Y0 (or Y1 ≤ Y0) for all individuals in Manski (1997), Manski and Pepper (2000, 2009) and Bhattacharya
et al. (2008) among others. Another weaker condition is the monotonicity of average outcomes in treatment at strata level, E(Y1|Ck)≥ E(Y0|Ck),
proposed by Chen et al. (2018). The strata level monotonicity is more plausible in practice, without restricting the sign for all individuals.
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(ii) If ∆kE(Y |Z)< 0 for all k = 1, 2, ..., K, then αIV < 0 and

Θα(P) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z)
T V(Y,T ),k

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z)
1−

∑

k′ ̸=k T V(Y,T ),k′

��

.

Proof of Corollary 2.2. The proof follows from Lemma A.1 in Appendix and Theorem 2.2.

The Corollary above provides the identification of the sign of αIV , as well as the explicit ex-

pression of Θα(P), when the direction consistency of LATEs is satisfied. If for some k, we have

∆kE(Y |Z) = 0, the results above still hold with one side of the bounds being zero and the possibil-

ity αIV = 0.

In finite samples, estimators taking maximums and minimums are systematically biased (Kreider

and Pepper, 2007; Chernozhukov et al., 2013). For Θα(P), because we take the union of the bounds

of LATEs, then its lower bound, i.e., the minimum of the lower bound estimators of the LATEs, is

biased downward, and its upper bounds, i.e., the maximum of the upper bound estimators of the

LATEs, is biased upward. Hence, in our setting, this bias is not of particular concern because it

results in wider bounds rather than narrower bounds in finite samples. Nevertheless, we note that

the confidence interval of our proposed bounds will be conservative in the sense its size is less than

the nominal size. The same logic applies to the bounds in second strategy in the next section.

Second strategy. Our second strategy is built upon the relation between αIV and αMis, and

the bounds of LATMs. Recall from Corollary 2.1 that αIV = ξαMis, where ξ =
∑K

k=1 γ
IV
k ∆pk. Based

on the definition of ξ, we have:

min
k=1,2,...,K

{∆pk} ≤ ξ=
K
∑

k=1

γIV
k ∆pk ≤ max

k=1,2,...,K
{∆pk}. (15)

Based on (15), our second partial identification result of αIV can be characterized using the bounds

of LATMs.

Theorem 2.3. Let Assumption 2.1, 2.2, and 2.3 hold. Denote

Θp(P) =

¨

αMis ×∆p : ∆p ∈
⋃

k=1,2,...,K

Θ
p
k(P)

«

, (16)

where ∆p represents any generic value in the union
⋃

k=1,2,...,K Θ
p
k(P). Then we have αIV ∈ Θp(P).

Proof of Theorem 2.3. See Appendix A.8.

The superscript p of Θp(P) represents its key components {Θp
k(P)}

K
k=1. Theorem 2.3 gives the

general form of the set Θp(P), based on both the identifiable estimand αMis and the bounds of

{∆pk}Kk=1. If αMis = 0, αIV is point identified as zero.

Corollary 2.3. Let Assumption 2.1, 2.2, and 2.3 hold. Suppose ∆kE(T |Z)> 0 for all k = 1, 2, ..., K.
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(i) If αMis ≥ 0, then αIV ≥ 0 and

Θp(P) =

�

αMis × min
k=1,2,...,K

�

∆kE(T |Z)
1−

∑

k′ ̸=k T V(Y,T ),k′

�

,αMis × max
k=1,2,...,K

�

∆kE(T |Z)
T V(Y,T ),k

��

,

(ii) If αMis < 0, then αIV < 0 and

Θp(P) =

�

αMis × min
k=1,2,...,K

�

∆kE(T |Z)
T V(Y,T ),k

�

,αMis × max
k=1,2,...,K

�

∆kE(T |Z)
1−

∑

k′ ̸=k T V(Y,T ),k′

��

.

Proof of Corollary 2.3. It follows directly from Lemma A.1 in Appendix and Theorem 2.3.

The Corollary above gives the sign of αIV , and the explicit expression of Θp(P). Note that

∆kE(T |Z) ≥ 0 for all k is satisfied under the ascending order of ΩZ . If ∆kE(T |Z) = 0 for some

k, then one side of the bounds for αIV reduces to zero.

First vs Second strategy. The partial identification results of the two strategies introduced

thus far are both compatible with the observable data under Assumption 2.1, 2.2 and 2.3. Moreover,

they make distinct contributions to the identification of αIV because they are based on different

sources of information. Since the two sets Θα(P) and Θp(P) are likely to be different, it is important

to determine their relative performance. In order to facilitate this comparison, we re-write Θα(P)

and Θp(P) as the unions of the re-scaled Θp
k(P).

Corollary 2.4. Under Assumption 2.1, 2.2 and 2.3, Θα(P) and Θp(P) can be rewritten as follows:

Θα(P) =
⋃

k=1,2,...,K

§

αk,k−1

∆pk
×∆p : ∆p ∈ Θp

k(P)
ª

,

Θp(P) =
⋃

k=1,2,...,K

�

αIV

ξ
×∆p : ∆p ∈ Θp

k(P)

�

,

where ∆p is any generic value in Θp
k(P).

Proof of Corollary 2.4. See Appendix A.9.

Corollary 2.4 delivers four crucial messages. First, in general, unless more information are

available, it is not a-priori obvious which set outperforms the other, since αk,k−1/∆pk may not

be uniformly larger or smaller than αIV/ξ across all k. Second, when the ratios {αk,k−1/∆pk}Kk=1

are the same across all k, we have that Θα(P) = Θp(P). This special case, however, relies on

both unconfounded treatment and homogenous misclassification, which may be quite restrictive

in practice. Third, for all∆p ∈ Θp
k(P) and all k, the closer to 1 is the ratio∆p/ξ, the narrower is the

set delivered by Strategy 2 (that is, the narrower is the set Θp(P)). Fourth, at the limit, if ∆pk = ξ

for all k, that is, the data satisfy homogeneous misclassification, then Θp
k(P) = ξ. In this last case,
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point identification is achieved by Θp(P) as follows:

Θp(P) =
⋃

k=1,2,...,K

{αIV}= αIV .

However, for ∆pk = ξ, the improvement of Strategy 1 is not as good as that of Strategy 2. This

is because, although αk,k−1 can be point identified by ξ∆kE(Y |Z)/∆kE(T |Z),18 from Corollary 2.4

we have:

Θα(P) =
�

min
k=1,2,...,K

{αk,k−1}, max
k=1,2,...,K

{αk,k−1}
�

which only partially identifies αIV . Thus, whenever the misclassification error is close to be ho-

mogenous (that is, the correlation between the misclassification error and the potential treatments

is small), Strategy 2 should, in general, outperform Strategy 1.

Two final remarks. First, following the method of intersecting the bounds, which is commonly

applied in the treatment effect partial identification literature, there is no issue preventing us from

intersecting Θα(P) and Θp(P) to achieve a tighter bound. Intersection bounds can be biased in finite

samples, with the estimated bounds being too narrow and its size being routinely underestimated

(Kreider and Pepper, 2007; Chernozhukov et al., 2013). Note that it is different from the bias result-

ing from taking the union of bounds. One solution to avoid such bias is to apply the bias correction

method proposed by Chernozhukov et al. (2013). For practical purpose, however, adopting only

one strategy may be beneficial for computational simplicity. Second, it is interesting to note that, if

the instrument is binary, αIV is just the LATE and αMis with g(x) = x reduces to:

αMis =
E[Y |Z = 1]−E[Y |Z = 0]
E[T |Z = 1]−E[T |Z = 0]

=
E[Y1 − Y0|D1 = 1, D0 = 0]

p1 − p0
.

Then, Theorem 2.2 and 2.3 will be identical. In addition, the results of our first two partial iden-

tification strategies will also coincide with that in Ura (2018), because K = 1 and
∑

k′ ̸=k T V(Y,T ),k′

degenerates to zero.

2.4 Partial Identification of αIV Using External Information

Suppose the practitioner has some prior or external information about the possible range of ξ, and

this range is narrower than
⋃

k=1,2,...,K Θ
p
k(P) which is obtained using the observable data. Then we

can utilize this narrower range to further tighten the bounds. This strategy is based on the observa-

tion that administrative records of program receipts are not easily accessible to all researchers, and

hence we cannot know exactly who is misclassified in a survey. However, an increasing number of

studies report the average extent of misreporting for a wide range of programs. This information

often comes in the form of average number of false negative (wn) and/or false positive (wp) in

the sample. In light of Equation (4), this information is sufficient to restrict the possible range of

ξ. Validation studies or repeated measurements of the same individual can also provide valuable

18This is because ∆kE(Y |Z)
∆kE(T |Z)

= αk,k−1

∆pk
. If ∆pk = ξ for a known ξ, then αk,k−1 = ξ

∆kE(Y |Z)
∆kE(T |Z)

is point identified.
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information.

At the risk of repetition, recall from Corollary 2.1 that αIV = ξαMis, where ξ= 1−wn−wp. Our

third identification strategy is described below.

Theorem 2.4. Let Assumption 2.1 and 2.2 hold. Suppose there exist two known constants ξ ≤ ξ and

ξ,ξ ∈ [0, 1], such that ξ≤ ξ≤ ξ.

(i) If αMis ≥ 0, denote Θξ(P) =
�

ξαMis,ξαMis
�

. Then, αIV ≥ 0 and αIV ∈ Θξ(P).

(ii) If αMis < 0, denote Θξ(P) =
�

ξαMis,ξαMis
�

. Then, αIV < 0 and αIV ∈ Θξ(P).

Proof of Theorem 2.4. See Appendix A.10.

Intuitively, the constants ξ and ξ are two bounds of the weighted average of LATMs. By using

these extra information, the set Θξ(P) will be at least as good as that in Corollary 2.3 (second

strategy). If no extra information about the measurement accuracy is available, one could simply set

ξ and ξ as the ending points of
⋃

k=1,2,...,K Θ
p
k(P). Therefore, compared to the first two identification

strategies, which are based purely on the observable data, by following our third strategy one can

further tighten the bounds of αIV and obtain (potentially) significant improvements.

Point estimate. From Theorem 2.4, two sets of conditions suffice to obtain tighter bounds.

Firstly, having ξ close to 1 means less overall misclassification. At the extreme, when ξ = 1, we

have no misclassification error at all (wn = wp = 0), hence we can achieve point identification

of αIV = αMis. Secondly, having (ξ,ξ) close to each other indicates more accurate knowledge

of the overall misclassification probabilities, which produces a narrower bound as well. At the

extreme, when ξ = ξ = ξ, we can also achieve point identification of αIV = ξαMis. Notice that,

in application, the constants ξ and ξ are going to be two approximations of the bounds of the

misclassification probabilities. Hence, if the practitioner can set ξ = ξ = ξ, the point estimate

delivered by the estimator ξαMis is going to be biased with respect to αIV , unless ξ is the exact

value of misclassification. If ξ and ξ are approximations, then our approach can be used as a bias

reduction method with respect to a naïve IV estimator.

3 Inference

A feasible approach to compute the confidence interval for the partially identified αIV is via the

bootstrap-based testing of moment inequalities proposed by Chernozhukov et al. (2019). In the

present paper, the inferential procedure is based on a modification of their approach that accom-

modates our setting. Specifically, since the partial identification of αIV is based on the union of

either Θαk (P) or Θp
k(P), we proceed with the estimation in three steps. First, we construct the mo-

ment inequalities representations of the sets Θαk (P) and Θp
k(P). Second, we construct the confidence

intervals for αk,k−1 and ∆pk. Third, depending on the chosen identification strategy, we construct

the appropriate confidence intervals of αIV by taking the unions of the confidence intervals of either
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αk,k−1 or∆pk. To save on space, we here report only the proposed confidence intervals of our partial

identification strategies and their asymptotic properties. All the technical details and derivations

are left in Appendix A.1.

To obtain the confidence interval of αIV , the nuisance parameters πk and αMis are estimated in

advance. Suppose a (1−ηπ)-confidence interval of πk and a (1−ηαMis)-confidence interval of αMis

are available to the practitioner. For any β > 0, denote the (1 − β)-confidence interval of αk,k−1,

∆pk and αMis as Cαk,k−1
(β), C∆pk

(β) and CαMis(β), respectively.

First, based on the first partial identification strategy in Theorem 2.2, we propose a (1 − βα)-
confidence interval for αIV :

C α(βα) :=
⋃

k=1,2,..,K

Cαk,k−1
(η+ 2ηπ), (17)

where the size βα = η+ 2ηπ.

Second, based on the second partial identification strategy in Theorem 2.3, we propose another

(1− β p)-confidence interval for αIV :

C p(β p) :=
⋃

α∈CαMis(ηαMis)

¨

α×∆p : ∆p ∈
⋃

k=1,2,..,K

C∆pk
(η+ 2ηπ)

«

, (18)

where the size β p = ηαMis +η+ 2ηπ.

The last confidence interval comes from our partial identification strategy with external sources

of information in Theorem 2.4:

C ξ(βξ) :=
⋃

α∈CαMis(ηαMis)

¦

α×∆p : ∆p ∈
�

ξ,ξ
�©

, (19)

where βξ = ηαMis and ξ,ξ are known values such that the true value of ξ ∈
�

ξ,ξ
�

.

The next Corollary gives the asymptotic properties of C α(βα), C p(β p) and C ξ(βξ).

Corollary 3.1. Let the assumptions in Theorem A.1 hold. Furthermore, let θ be any point in Θ j(P ),
j ∈ {α, p,ξ}. Then, C α(βα), C p(β p) and C ξ(βξ) defined in (17)-(19) all control their sizes asymp-

totically and uniformly over P0, i.e.

lim inf
n→∞

inf
P∈P0, θ∈Θ j(P)

Pr
�

θ ∈ C j
�

β j
��

≥ 1− β j, for all j ∈ {α, p,ξ}.

Proof of Corollary 3.1. See Appendix A.1.6.

Corollary 3.1 proves that, for all the three confidence intervals of αIV , their asymptotic coverage

rate, at any point inside the associated identified set, achieves the desired level. Moreover, for

given η and ηπ, C α(βα) has a higher coverage rate than C p(β p), because C p(βα) is constructed

also based on the (1−ηαMis)-confidence interval of αMis. The coverage rate of C ξ(βξ) is in general

the highest, since we can set ηαMis ≤ βα.
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4 Extensions and Applications

This section is organized in four parts. First, we sketch two extensions of our partial identification

strategies, which are fully developed in the appendix. Second, we show how to implement our

method in practice. Third, we describe the main ideas and results of our Monte Carlo simulations,

which are fully presented in the older version of our paper (Tommasi and Zhang, 2020). Finally, we

use our Stata command, ivbounds, to measure the benefits of participating in the 401(k) pension

plan on savings.

4.1 Multiple treatments or repeated measurements

The results in section 2.3 and 2.4 require only one binary treatment indicator, T . Nevertheless,

we show that if there are multiple treatment proxies (or repeated measurements), we can further

tighten the bounds ofαIV , since each proxy may carry different relevant information about the actual

treatment, D.19 Based on the full set of results presented in Appendix A.2, when multiple treatment

proxies are available, all three confidence intervals can be obtained in the same manner as in (17)-

(19). Moreover, there are two main differences between our approach and those commonly used

in the literature when multiple treatments are available.20 First, we do not restrict the dependence

among our treatment proxies; therefore, the extra measures might be endogenous and do not have

to be instruments. In addition, our proxies may be built upon the same, not repeated, measurement

by creating multiple treatment dummies from the same discrete treatment variable and capturing

various pieces of useful information in the same measurement.

Note that, in practice, one could argue that an easier way to use multiple treatment proxies is

to combine them into a new, single treatment measure that might suffer from less misclassification.

We verify in a simple case that if two treatment proxies, denoted as T and S, are both binary,

the bounds of αIV constructed as in Appendix A.2 are tighter than the bounds using a single proxy

1[T = 1, S = 1]. Therefore, when multiple proxies are available, our proposed method is preferable.

4.2 Including covariates

In many applications, the instrumental variable(s) may be confounded without conditioning on

some covariates. In addition, treatment effects may be heterogeneous across the population and

characterized by different attributes. Hence, in the identification of causal effects, particular atten-

tion has been paid to accounting for covariates (e.g., see Abadie (2003), Frölich (2007) and Angrist

and Fernandez-Val (2013) among many others). Following this literature, we extend all our partial

identification results to accommodate for covariates. To save on space, we here report only the

main insights and all details are relegated to Appendix A.3.

19Here we refer to multiple treatment measures as “multiple treatment proxies”, in the sense that the extra treatment measures (other than
the binary T used in the previous sections), can be binary, discrete or continuous.

20Indeed, in the presence of misclassification error, multiple treatment proxies in the form of repeated measurements are widely used in both
point and partial identification of treatment effects literature (see e.g. Hausman et al. (1991) among others).
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Let X be a vector of observables with support ΩX . Define the conditional IV estimand αIV (x),

which can be expressed as a weighted average of the conditional LATEs {αk,k−1(x)}kK=1:

αIV (x) :=
Cov(Y, g(Z)|X = x)
Cov(D, g(Z)|X = x)

=
K
∑

k=1

γIV
k (x)αk,k−1(x), (20)

where γIV
k (x) is the weight and

∑K
k=1 γ

IV
k (x) = 1 for ∀x ∈ ΩX . Given (20), the extension of our

three main partial identification strategies to their conditional version is straightforward.

We can distinguish two main cases based on the support of instrument(s). First, if the instrument

is binary and covariates are included, one can target the unconditional IV estimand, E[αIV (X )], by

equipping our bounding strategies with the result in Frölich (2007):21

E[αIV (X )] = E[α1,0(X )] =
E[E(Y |X , Z = 1)−E(Y |X , Z = 0)]
E[E(D|X , Z = 1)−E(D|X , Z = 0)]

=
E[∆1E(Y |X , Z)]
E[Pr(C1|X )]

,

where the numerator is identifiable and the denominator can be bounded via the conditional version

of our method.

Second, if the instrument(s) are discrete or multiple-discrete and covariates are included, one

can use our strategies to target the conditional IV estimand αIV (x). We focus on αIV (x) for two rea-

sons. First, since E[αIV (X )] ̸=
∑K

k=1E[γ
IV
k (X )]E[αk,k−1(X )], unless the weight γIV

k (X ) is degenerate

in X , the result in Frölich (2007) cannot be applied. One sufficient condition for γIV
k (X ) invariant

to X is that covariates are independent of (D, Z), which may not be feasible in many studies and

goes against our attempts to include the covariates. Thus, targeting the unconditional IV estimand

E[αIV (X )] in this general case is not straightforward (more details are provided in the end of Ap-

pendix A.3) and a rigorous solution is beyond the scope of this paper.22 Moreover, αIV (x) has a

clear relationship with the conditional LATEs, which are the foundation of our partial identification

strategies in the presence of covariates.

We need to further consider two scenarios in the general case when instrument(s) are discrete

or multiple-discrete and covariates are included. First, the simplest scenario is when all covariates

in X take on a finite number of values. Angrist and Imbens (1995) and Angrist and Fernandez-Val

(2013) study the conditional treatment effects when covariates are discrete. Assuming covariates

are discrete is not required for partial identification of αIV (x), while, in this case, a practitioner can

simply implement the same inference process outlined in Section 3 for each subpopulation with

X = x and x ∈ ΩX . The only requirement is that there must be a large enough sample size for each

covariate-cell.

Second, when covariates are continuous and/or high-dimensional, the inference procedure must

be adjusted.23 In this case, we suggest to follow a method adopted by Dehejia and Wahba (1999)

21See Ura (2018) for more details of this case.
22One way to construct a bound for the overall treatment effect E[αIV (X )] is to take expectations of the lower and upper bounds of the

identified set of αIV (x). In the final remarks of Appendix A.3, we point out another technical challenge that one would face if the identification
target was the unconditional IV estimand.

23We do not attempt to solve issues in inference arising from infinite dimensional covariates. By “high-dimensional”, we mean a relatively
large but still finite number of covariates, which may cause the curse of dimensionality when using traditional semi or nonparametric estimation
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and Battistin and Sianesi (2011) which is based on the idea of stratification matching. For the sake

of dimension reduction, denote e = e(x) =Pr(T = 1|X = x) as the observable propensity score of

the treatment proxy T , which is an index summarizing the information contained in the covariates.

We can create strata by dividing the support of e(X ) and grouping individuals with e in the same

range. By abuse of notation, denote the conditional IV estimand as αIV (e ∈ As) =
Cov(Y,g(Z)|e(X )∈As)
Cov(D,g(Z)|e(X )∈As)

where As represents one of the S strata and
⋃S

s=1 As is the support e(X ). More specifically, each

of our partial identification strategies can be implemented for αIV (e ∈ As) following three simple

steps:

Step 1. Estimate e(x) from a linear, logit or probit regression,24 where polynomials and

interactions of X may be included as regressors to account for possible nonlinear effects of X on the

probability of being observed as treated.

Step 2. Given the estimated propensity score ê(x), stratify samples into a finite number of

strata over the common support of the score. These strata can be either equally spaced, or user-

specified, such that the number of observations within each stratum is large enough to conduct

inference.25 This step is equivalent to converting the continuous variable e(x) into a discrete one.

Step 3. Within each stratum As with s = 1, ..., S, proceed with the chosen partial identification

strategy for αIV (e ∈ As) and conduct inference following the detailed procedure outlined in Section

3.26

4.3 Practical Guidance

We provide guidance about: (i) how to choose among the three partial identification strategies; (ii)

how to incorporate external information about the misclassification error and calculate the bounds

using strategy 3; and (iii) how to obtain a point estimate of the effect, which can be used as a bias

reduction method in place of a conventional IV approach.

First, the choice of which strategy to adopt depends on the information available. If no prior or

external information about measurement accuracy is available, strategies 1 and 2 can be applied

with the available dataset. Moreover, based on the discussion of corollary 2.4, in situations where

the practitioner suspects that the value of LATM, ∆pk, does not vary much across k (at the limit,

the data exhibit homogeneous misclassification), we suggest to use strategy 2. Note that, as we

methods.
24A practitioner could also estimate e(x) non-parametrically. That is, our choice of using a parametric method is only practical and it is not

required by our theoretical framework. In particular, this means that we do not require additional identifying assumptions to perform inference
in the case of covariates.

25As explained in Lin, Tommasi, and Zhang (2021), our specific routine divides the sample into equally spaced strata. For example, if the
sample is divided into 10 strata, our routine divides the sample such that, strata = 1 contains the 10% of the observations with the lowest
predicted values of e(X ); then strata = 2 contains the next 10% of the observations; and so on until strata = 10, which contains the 10% of
the observations with the highest predicted values of e(X ).

26Specifically for Strategy 3, this means to obtain first an estimate of αMis(e ∈ As) and its confidence interval using samples for each stratum.
Then, following Equation (19), construct the confidence interval of αIV (e ∈ As) using information on the misclassification error (see Section
4.3 for guidance).
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pointed out at the end of section 2.3, if the available instrument is binary, there is no choice to

make between Strategy 1 and 2 because they are exactly the same. Lastly, when there are available

information about the weighted average of LATMs, ξ, and we are quite confident about the accuracy

of the range [ξ,ξ], then strategy 3 is strongly recommended.

Second, prior information about the misclassification error is useful because it helps improve

the bounds of αIV . The objective of strategy 3 is to combine the estimated αMis with information

about the misclassification error to obtain the tightest bounds of αIV . Recall, the weighted average

probability of false negative is wn = 1−
∑K

k=1 γ
IV
k p1,k (this is the probability of treated individuals

misclassified as untreated), of false positive is wp =
∑K

k=1 γ
IV
k p0,k (this is the probability of untreated

individuals misclassified as treated), and hence, by definition, ξ= 1−wn−wp. As explained before,

researchers do not need to know each value of p1,k and p0,k, for k = 1,2, ..., K; it is sufficient to know

the overall wp and wn in the sample. Without loss of generality, we assume the ascending order

of ΩZ so that [ξ,ξ] ⊂ [0, 1]. Assumption 2.3 implies that the probability of false positive is lower

than the probability of false negative for each group of compliers, Ck,: that is, 0 ≤ p0,k ≤ 1− p1,k,

implying 0≤ wp ≤ wn.

To show how to implement the third strategy, we consider four cases and illustrate how one

should set [ξ,ξ] in each scenario. For illustrative purpose, suppose αIV = 1 but the practitioner can

only obtain an estimate of αMis, using a conventional 2SLS, such that eαMis = 1.5 and the 95% CI is

[0.52, 2.48]. We calculate the corresponding confidence intervals (CI) of αIV using (19).

Case 1: Approximation of false negative probability. The first case mimics a context where

only wn is known. This is a common situation under poor recalling of treatment status. Then,

ξ≤ 1−wn because wp is nonnegative, and ξ≥ 1−2wn because wp ≤ wn. In this case, a practitioner

can set ξ ∈ [max{0,1− 2wn}, 1− wn]. Assume wn = 0.40. Given the aforementioned CI of αMis,

the 95% CI for αIV in this case would be [0.10,1.49].27

Case 2: Approximation of false positive probability. In the second case, suppose only wp is

known. Then, ξ ≤ 1− 2wp because wp ≤ wn. In this case, a practitioner can set ξ ∈ [0, 1− 2wp].

Suppose wp = 0.05. Given the 95% CI of αMis, the 95% CI of αIV would be [0, 2.23].28

Three remarks follow directly from these first two cases. First, if the value of a false negative wn is

larger than 0.5 (that is, more than 50% of individuals who are truly treated report to be untreated),

in case 1, the lower bound of ξ should be set to zero. This would occur if the data collected are

heavily contaminated by misclassification error. Second, if the only available information is the

probability of a false positive, such information is generally likely to be quite weak for providing

27The ending points of the CI for αIV are the smallest and largest points of the interval C ξ(βξ). The rule to find these two extremes is
straightforward. Multiplying the two ending points of CI of αMis by ξ and ξ respectively, gives us four values. Then, the smallest and largest
value among these four values, will be the two ending points of the CI of αIV . For example, given the CI of αMis, since both its extremes are
positive, the CI is [0.52×0.2,2.48×0.6] = [0.104, 1.488]. The calculation is slightly more complicated if the CI of the αMis contains both positive
and negative values. For example, suppose the practitioner uses a smaller sample size, so that, eαMis = 1.5, but the 95% CI of this 2SLS estimate
is [−0.08, 3.08]. In this case, if we apply the same rule, the CI would be calculated as follows: αIV ∈ [−0.08×0.6,3.08×0.6] = [−0.05, 1.85].

28The CI of αIV is [2.48× 0, 2.48× 0.9] = [0,2.23]. Whereas, if eαMis = 1.5 with 95% CI [−0.08, 3.08], the CI of αIV would be [(−0.08)×
0.9,3.08× 0.9] = [−0.07,2.77].
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an informative bound of αIV . This is because, in case 2, the lower bound of ξ is zero, which fails

to recover the sign of the parameter of interest. In this situation, we recommend imposing further

restrictions, such as setting the maximum probability of a false negative at 0.5, leading to a narrower

bound ξ ∈ [max{0,0.5−wp}, 1−2wp]. The latter choice should be motivated by the specific context.

Finally, even if ξ and ξ are both positive, it is possible that Θξ(P)may fail to recover the sign of αIV

in the finite sample estimation, if the CI of αMis is on both side of zero.

Case 3: Bounds of false negative and false positive probabilities. The third case mimics a

context where the practitioner know the bounds of wn and wp: wn ≤ wn ≤ wn and wp ≤ wp ≤ wp.

In this case, the range of ξ can be set as [1 − wn − wp, 1 − wn − wp]. For example, let us take

0.4 ≤ wn ≤ 0.5 and 0 ≤ wp ≤ 0.05 as prior information, then ξ ∈ [0.45, 0.6]. Given the CI of αMis,

the 95% CI of αIV would be [0.23,1.49].29

Case 4: Approximations of false negative and false positive probabilities. In the last case,

we mimic a situation where the practitioner has a good approximation of both wp and wn, which is

equivalent to having a good approximation of ξ= 1−wn−wp. In this case, Θξ(P) degenerates to a

point αMis(1− wn − wp). Suppose wn = 0.50 and wp = 0.05, then ξ = 0.45. Given the estimate of

αMis, the point estimate of αIV would be 0.675 with a 95% CI of [0.23, 1.12].30

Case 4 is particularly interesting for a practitioner because we can obtain a point estimate of αIV .

However, it is worth noting that, since the value of wn and wp are likely to be only approximations,

the point estimate obtained will be biased regarding the true αIV . Nevertheless, our approach can be

used in place of a conventional IV estimator as a bias reduction method. Moreover, our simulation

results, fully presented in the older version of our paper (Tommasi and Zhang, 2020), demonstrate

that the confidence interval of the point estimates αMis(1−wn−wp) yields a desirable coverage rate

of the true value of αIV .

One final remark. In practice, the possible values of misclassification rates might be estimated

by matching survey data to administrative records and computing the fraction of false positives

and negatives. If a confidence interval of [ξ,ξ] or of ξ is available, we can additionally adjust

the confidence interval of αIV by taking into account the uncertainty captured by such confidence

interval of [ξ,ξ] or ξ.31

4.4 Monte Carlo Simulations

In Tommasi and Zhang (2020), we use Monte Carlo simulations to illustrate the finite sample prop-

erties of the confidence intervals C j(β j), with j = α, p,ξ, proposed in Section 3. We study the

performance of the three strategies for practical applications, hence we compute the simplified ver-

sion of the confidence intervals of αk,k−1 and∆pk as in (A8). Based on this, the confidence intervals

29Whereas, if eαMis = 1.5, but the 95% CI of this 2SLS estimate is [−0.08, 3.08], the CI of αIV would be again [−0.048, 1.85].
30Whereas, if eαMis = 1.5, but the 95% CI of this 2SLS estimate is [−0.08, 3.08], the CI of αIV would be [−0.036, 1.39].
31More details can be found in the proof of Corollary 3.1 in Appendix A.1.6.
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of αIV are constructed in the same manners as in (17), (18) and (19). We extensively explore

the sensitivity of the bounds along three dimensions: (i) strength of the instrumental variable, (ii)

extent of the misclassification error, and (iii) external information. Overall, the conclusion is that

our partial identification strategies represent a reliable alternative approach when practitioners can

only use a mismeasured binary treatment T in place of D to estimate the benefits of a program.

Moreover, our approach becomes very powerful and works best when external information about

the accuracy of the measurement error can be considered.

4.5 Examples of Misreported Treatment

When doing applied work, economists are persistently challenged by mismeasured binary endoge-

nous variables. The papers that we present in the following literature review highlight the value of

applying our estimator when facing a mismeasured treatment.

Misreporting is an important and common feature of population surveys that collect socio-

economic data. For example, it is no surprise that we observe misreporting when survey participants

are asked to disclose illegal or shameful activities. Domestic violence and alcohol intake are two

such areas that suffer from this phenomenon. More precisely, Alderman et al. (2013) found that

there is a high mistreatment of women’s outcomes and children’s development because victims do

not truthfully report domestic violence. Similarly, Agüero and Frisancho (2020) analysed a Peru-

vian data-set of the Demographic and Health Surveys and found a measurement error in responses

to direct questions.32 In particular, up to 30% of women underreported physical and sexual vio-

lence by their intimate partners. Palermo et al. (2014) extended this line of enquiry by exploring

data from 24 developing countries and found that only seven percent of domestic violence victims

actually made an official report. Whereas, Molinari (2010) points out that, in the National Longi-

tudinal Survey on Youth, a survey which asks pregnant women to comment on their alcohol intake,

there was an item nonresponse rate of 6 to 14% in 1984. Such a low response rate compounds the

oversight of social problems, in this case, the effect of alcohol on birth outcomes. These low re-

sponse rates are likely to affect causal analysis of a particular program aimed at reducing children’s

negative health outcomes.

Turning to the impact of misreporting on divorce and marriage statistics, self-reported divorce

rates can be anywhere between 8% and 25% less than those held by government agencies, as

highlighted by O’Connell (2006) and Mitchell (2010). In particular, O’Connell (2006) documents

the impact of missing data by highlighting that up to 20% of people surveyed only partially reported

on the required information in the Survey of Income and Program Participation. Such low reporting

rates makes it difficult to predict social trends, such as single-parent families, and subsequently it

makes it difficult for policy-makers to devise tailored interventions.

Given the effect of shame and distrust on self-reporting on domestic violence, alcohol-intake,

illegal activity and divorce, it is not surprising that survey respondents inaccurately report on their

32This is a global data collection effort comprising 122 surveys in 61 developing countries.
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physical body size (and in particular their weight), as well as access to food stamps. For instance,

Zhang et al. (2016) make this observation as it relates to their analysis of the Consortium on the

Safe Labor Survey. Meyer et al. (2015) examined this phenomenon by looking at the degree to

which people are likely to disclose receipt of a government transfer. The Current Population Survey

revealed nonresponse rates of 16–20% and the National Health Interview Survey had nonresponse

rates of 24%. They also compared household survey data with official administrative data33 and

found that many survey respondents do not report receiving food stamps.34

These are a few examples where the estimator that we have designed can serve as the primary

identification strategy as well as a robustness check for causal inference. However, there is a va-

riety of other economic applications where the problem of misreporting of the treatment variable

has been established, including the misreporting of: union status (Card, 1996), participation to

trainings (Barron et al., 1997), coverage of health insurance (Black et al., 2000), language flu-

ency (Dustmann and Soest, 2001), self-evaluation of health-related status (Crossley and Kennedy,

2002), educational attainment (Black et al., 2003), chemical emissions by firms (Marchi and Hamil-

ton, 2006), disability status (Kreider and Pepper, 2007), types of corporate governance structure

(Almeida et al., 2010), school meals (Gundersen et al., 2012), dental insurance (Kreider et al.,

2015), firm’s formality status (Gandelman and Rasteletti, 2017), and technology adoption (Wossen

et al., 2018).

4.6 Application to the 401(k) Pension Plan

In this section, we use our method to measure the benefits of participating in the 401(k) pension

plan on savings. The 401(k) pension plan is one of the most popular defined contribution retirement

plans in the US. It aims at increasing financial savings through the tax deductibility of contributions

to retirement accounts. Although the effects of this plan have been examined elsewhere (e.g.,

Abadie, 2003; Ura, 2018), the application contains all the ingredients to demonstrate the full extent

of the usefulness of the approach proposed in our paper.

First, the participation to the program is binary and notoriously misreported in survey data. Sec-

ond, the eligibility to the pension plan, which is provided only to workers in firms offering the plan,

is arguably a valid instrument (e.g., Poterba et al., 1995). Third, the eligibility can be interacted

with the year of introduction of the plan, which yields a discrete instrument that accounts for the

duration of the exposure to the plan. Fourth, credible information on treatment misclassification

probabilities are available from the literature and can be incorporated in estimation. Fifth, although

our main theoretical results hold without covariates, including covariates is almost always crucial in

application. In our specific context, for the instrument to be valid, it is really important to condition

on family income and age. Hence, this specific application gives us also the opportunity to show the

performance of our proposed suggestions to incorporate covariates in a realistic context. Finally,

33This is the Supplemental Nutrition Assistance Program (SNAP) or Food Stamp Program.
3423% in the Survey of Income and Program Participation (SIPP), 35% in the American Community Survey, and 50% in the Current Population

Survey (CPS).
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the fact that the application is well known makes it easier for us to evaluate our results in light of

the existing literature.

Given the three main contributions of the paper, we aim to answer the following questions: (i)

What is the likely bias of the estimated program benefits if we do not account for treatment misclas-

sification? (ii) In case of a binary instrument, how do the bounds of the program benefits shrink by

incorporating external information on misclassification probabilities? How do they compare with

the results of the existing literature? (iii) In case of a discrete instrument, how are the bounds (for

each chosen strata) compared to a naive approach that does not account for treatment misclassi-

fication? How do these bounds shrink by incorporating external information on misclassification

probabilities?

In measuring the benefits of the 401(k) pension plan, a researcher would face two main difficul-

ties: endogenous participation in the plan and misreporting of participation. The first problem may

arise due to unobserved differences in saving behaviors. That is, participants in the plan might save

more in general than those who do not participate. Hence, a comparison of accumulated financial

assets between participants and nonparticipants is likely to yield a positive bias of the true effect of

the program. If this was the only problem in the data, a practitioner could just use the eligibility to

the plan as a valid instrument and perform inference on the causal parameter as in Abadie (2003).

However, the contemporaneous presence of the second problem makes the task difficult. Misreport-

ing in this context may arise because individuals find it difficult to remember or understand their

pension plan, leading to reporting error. Indeed, Gustman et al. (2007) documented that about

one-fourth of respondents to the Health and Retirement Study (HRS) misreport their pension plan.

Further, Dushi and Iams (2010) documented that in the SIPP, over 17% of participants in the 401(k)

pension plan self-report as nonparticipants (false negative) and almost 10% of nonparticipants self-

report as participants (false positive). Understanding plan benefits is relevant for the economic

well-being of future retirees because these plans are important for retirement income security. This

is the economic motivation underlying our efforts.

We use data from the SIPP round from 1991. The construction of the dataset and the choice

of the covariates follows the work by Abadie (2003). Hence, our sample only includes households

where at least one person is employed and has no income from self-employment. Moreover, the

sample is restricted to individuals with an annual family income between $10,000 to $200,000,

because eligibility for the plan is rare outside this range. Table 2 reports the summary statistics

of the main variables used in the analysis. The average family net financial assets (outcome Y )

is around $19,000. Roughly 27% of the observations report participating in the 401(k) pension

plan (misreported treatment T), whereas 39% are eligible for the plan (instrument Z). The set of

covariates, X , includes a constant, family income, age, age squared, marital status, and family size.

The resulting sample size is 9,275.

First contribution. Given the available information regarding treatment misclassification

probabilities, a researcher can use our new relationship between the true and mismeasured treat-
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Table 2: Summary statistics

Variable Mean Standard deviation Minimum Maximum

Family net financial assets 19.0 63.9 -0.5 1,536
Participation to 401(k) 0.276 0.447 0 1
Eligibility to 401(k) 0.392 0.4356 0 1
Family income 39.2 24.1 10.0 199.0
Age 41.1 10.3 25 64
Family size 2.9 1.5 1 13

Notes: The Table reports the mean, standard deviation, minimum and maximum values of the main variables used
in the paper. There is a total of 9,275 observations. The average family net financial assets (in 1,000$ units) is the
outcome Y , the participation to the 401(k) pension plan is the misreported treatment T , whereas the eligibility to
the plan is the instrument Z . The set of covariates X includes a constant, family income (in 1,000$ units), age, age
squared, marital status and family size.

ment effect, Equation (4), to approximate the possible level of biases of the benefits of the 401(k)

plan. In our case, wn = 17% and wp = 10%, which means that the estimated (mismeasured)

treatment effect reported in the literature is likely biased (upward) by approximately 37%. A sim-

ilar approximation could be easily calculated for any program mentioned in Section 4.5, provided

credible information regarding treatment misclassification probabilities.

Second contribution. We proceed by estimating the bounds of the unconditional IV estimand

E[αIV (X )] in case of a binary instrument. Panel A of Table 3 reports the results. Column (1) reports

the conventional 2SLS estimate (assuming homogenous treatment effect) as shown in column (3)

of Table 2 by Abadie (2003). This represents a biased point estimate because it ignores the potential

treatment misclassification. The effect is statistically significant and says that participating in the

401(k) plan increases the total financial assets by roughly $9,400, with a 95% confidence interval

of $5–13,000. Column (2) reports the estimate of mismeasured treatment effect following Frölich

(2007) nonparametric approach to incorporate covariates.35 This accounts for treatment effect

heterogeneity, while ignoring the potential treatment misclassification. Next, Column (3) displays

the 95% confidence interval for the unconditional IV estimand from Ura (2018) which accounts

for the misclassification error of the treatment variable. This is our benchmark result from the

literature, to which we compare the performance of our partial identification strategies.

Columns (4)–(8) report the 95% confidence interval of our partial identification strategies under

different assumptions about the misclassification probabilities. The estimation error of the nuisance

parameters π(X ) =Pr(Z = 1|X ) and E[αMis(X )] are taken into account following the inference pro-

cess in Section 3, where their confidence intervals are obtained by nonparametric bootstrapping.

Column (4) assumes no information about the misclassification probabilities. Since the instrumen-

tal variable is binary, strategy 1 and 2 coincide and are equivalent to the method developed by

Ura (2018). Column (5)-(8) use external information about the misclassification probabilities. In

particular, Column (5) assumes that we know an approximation of the probability of false nega-

tive (wn = 17%) (Case 1 of Section 4.3); Column (6) assumes that we know an approximation of

35In this case, E[αMis(X )] is calculated by E
�

Z−π(X )
π(X )(1−π(X ))Y

�

/E
�

Z−π(X )
π(X )(1−π(X )) T

�

, where π(X ) =Pr(Z = 1|X ) is estimated via a linear probability

model. The confidence interval of E[αMis(X )] is computed using a nonparametric bootstrap.
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the probability of false positive (wp = 10%) (Case 2 of Section 4.3); Column (7) assumes that we

know the bounds of these probabilities (assuming the probability of false negative is higher than

the probability of false positive, we get 10% ≤ wn ≤ 17% and wp = 10%) (Case 3 of Section 4.3).

As one can see, using our partial identification strategies in the presence of external information,

we obtain bounds of the true benefits that can be up to 36% narrower compared to Column (3).

When both wn and wp are approximately known, as in this application, our approach can deliver a

point estimate of the effect, which is reported in Column (8) (Case 4 of Section 4.3). Since these are

both approximations of the misclassification probabilities, this point estimate is likely to be biased.

However, it is closer to the true (unknown) effect than the value reported in Column (2), which

ignores treatment misclassification.

Table 3: Empirical Illustration

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Binary instrument

E[αMis(X )] Target parameter: unconditional LATE E[αIV (X )]

2SLS Abadie nonpara. Ura Strategy 1 ≡ 2 Strategy 3

(2003) (2018) appr. wn appr. wp bounds wn and wp appr. wn and wp

9.4 16.3 (4.4, 28.3) (4.3, 27.8) (4.7, 21.2) (0, 20.4) (5.2, 20.4) 11.9
(5.3, 13.5) (6.0, 27.6) (5.2, 18.6)

Panel B: Discrete instrument

αMis(e ∈ As) Target parameter: conditional WLATE αIV (e ∈ As)

Strategy 1 Strategy 2 Strategy 3

appr. wn appr. wp bounds wn and wp appr. wn and wp

Strata 1 21.8 (2.5, 42.4) (2.9, 29.4) (11.2, 23.0) (0, 22.1) (12.2, 22.1) 15.9
(16.3, 27.3) (12.2, 20.2)

Strata 2 23.1 (2.3, 70.1) (4.6, 28.2) (12.7, 22.4) (0, 21.6) (14.0, 21.6) 16.9
(19.2, 27.0) (14.0, 19.7)

Strata 3 54.5 (19.2, 120.9) (15.5, 68.2) (29.6, 53.2) (0, 51.2) (32.8, 51.2) 39.8
(44.3, 64.8) (32.8, 46.7)

Notes: Results in this Table are in 1,000$ units. Confidence interval is in parentheses. Panel A reports the results using a binary IV. Panel
B reports illustrative results using a discrete IV. In Panel A, Column (1) reports the conventional 2SLS estimates as shown in column
(3) of Table 2 by Abadie (2003). Column (2) reports the mismeasured treatment effect taking unobserved heterogeneity into account
following Frölich (2007). Column (3) reports the best 95% CI of the LATE as shown in Table 2 by Ura (2018). Column (4)-(7) report the
95% CI of our partial identification strategies under different assumptions regarding the misclassification probabilities. Finally, Column
(8) delivers a point estimate of the effect. In Panel B, our target parameter is the conditional IV estimand. We stratify the samples
into three strata based on their estimated e = e(X ) =Pr(T = 1|X ). Column (2) reports the results of αMis(e ∈ As) for each stratum As
and s = 1,2, 3. Column (3)-(7) report the 95% CI using our partial identification strategies under different assumptions regarding the
misclassification probabilities. Finally, Column (8) delivers a point estimate of the effect.

Third contribution. Finally, we illustrate the performance of our method when the instrument

is discrete by interacting the eligibility for the 401(k) plan and the duration of exposure to the plan.

The duration of exposure is defined as how many years one has been exposed to the 401(k) program,

which became active in 1981. Those with less than 10 years of exposure were 15 to 24 years old in

1981. Those with at least 10 years of exposure were 25 or older in 1981. The discrete instrument

takes the value Z = 0 if an individual is not eligible and has been exposed for less than 10 years,
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Z = 1 they are eligible and have less than 10 years of exposure or are ineligible and have at least 10

years of exposure, and Z = 2 if they are eligible and have at least 10 years of exposure. Naturally,

with this instrument the ascending order requirement is satisfied.

When the instrument is discrete (or multiple-discrete), our target parameter is the conditional IV

estimand as discussed in Section 4.2. Hence, for this case, we stratify the sample into three strata

A1, A2, A3, based on their estimated probability of self-reported participation e = e(X ) =Pr(T =

1|X ).36 Each stratum consists of one-third of the samples, where samples in strata 1 have the

smallest e(X ), and samples in strata 3 have the largest e(X ). We proceed with the estimation as in

Panel A within each stratum. Panel B of Table 3 reports the results, which indicate that, without

accounting for treatment misclassification, αMis(e ∈ As) overestimates the true effect of the program.

Indeed, as one can notice, the lower bounds for αIV (e ∈ As) of each estimate in Column (3)-(8) are

much smaller than the left-end point of the 95% confidence interval of αMis(e ∈ As) in Column (2).

In addition, as mentioned in Section 2.3 (and explored in simulation), strategy 2 produces a more

informative bound than strategy 1; the lower bounds of strategy 1 and 2 are relatively comparable,

while the bounds of strategy 2 are considerably tighter than those of strategy 1. Similar to the

binary instrument case, in the discrete instrument case, and for each stratum, the more informative

external information is incorporated in estimation, the better is the performance of strategy 3 in

terms of tightest of the bounds.

5 Conclusion

In the evaluation of treatment effects, endogenous participation is often misreported in survey data.

When treatment is binary, using a standard instrumental variable method would lead to biased

estimates. Even with infrequent arbitrary errors in the binary treatment indicator, the bias can be

severe. In this paper, we focus on the local average treatment effect (LATE) or the weighted average

of LATEs (WLATE), which are parameters that can be estimated to measure the effects of a treatment

in case of noncompliance. We start by showing the limitations of the standard LATE approach when

the binary treatment is a mismeasured proxy of the true treatment and derive a simple relationship

between the true and mismeasured treatment effects. This link is mediated by a new parameter,

defined in terms of the misclassification probabilities, which can be used to approximate the possible

level of bias of the estimated benefits of a program. Then, we provide three partial identification

strategies to bound the LATE or WLATE and to further tighten the bounds using external information

about misclassification probabilities.

Overall, this article shows that researchers who aim to measure treatment effects with a misclas-

sified binary treatment can obtain bounds of the LATE or the WLATE. These bounds can potentially

be tight, provided accurate information about the extent of misreporting in survey data can be ob-

tained. This information can be accessed from treated individuals’ administrative records, which are
36A practitioner can choose any number of strata. We choose three only for illustration. Results with higher number of strata do not change

our analysis and are available upon request.
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becoming increasingly available. In applications where this information is unavailable, one could

also rely on small validation studies, or repeated measurements of the same individual, to retrieve

useful information. Our main conclusion is that the proposed method is universally applicable as

the leading identification strategy, or the leading robustness check, in any setting where the practi-

tioner suspects that the endogenous binary treatment is not well measured and binary, discrete or

multiple-discrete-instrument(s) are available.
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SŁOCZYŃSKI, T. (2020): “When Should We (Not) Interpret Linear IV Estimands as LATE?” arXiv
preprint arXiv:2011.06695. [6]

STEPHENS JR, M. AND T. UNAYAMA (2019): “Estimating the impacts of program benefits: Using
instrumental variables with underreported and imputed data,” Review of Economics and Statistics,
101, 468–475. [8], [9]

TOMMASI, D. AND L. ZHANG (2020): “Bounding Program Benefits When Participation Is Misre-
ported,” IZA Discussion Paper. [20], [24]

URA, T. (2018): “Heterogeneous treatment effects with mismeasured endogenous treatment,”
Quantitative Economics, 9, 1335–1370. [2], [4], [11], [12], [13], [17], [21], [26], [28],
[29], [38], [39]

VUONG, Q. AND H. XU (2017): “Counterfactual mapping and individual treatment effects in non-
separable models with binary endogeneity,” Quantitative Economics, 8, 589–610. [5]

WOSSEN, T., T. ABDOULAYE, A. ALENE, P. NGUIMKEU, S. FELEKE, I. Y. RABBI, M. G. HAILE, AND V. MANY-
ONG (2018): “Estimating the Productivity Impacts of Technology Adoption in the Presence of
Misclassification,” American Journal of Agricultural Economics, 101, 1–16. [26]

YANAGI, T. (2019): “Inference on local average treatment effects for misclassified treatment,” Econo-
metric Reviews, 38, 938–960. [2]

ZHANG, Z., W. LIU, B. ZHANG, L. TANG, AND J. ZHANG (2016): “Causal inference with missing
exposure information: Methods and applications to an obstetric study,” Statistical methods in
medical research, 25. [26]

35



A Appendix

A.1 Proof of Theorem 2.1

Proof of Theorem 2.1. Assumption 2.2-(ii) guarantees that the denominator of αMis is nonzero and
thus αMis is well-defined. Consider the denominator of αMis in equation (2),

E[T (g(Z)−E[g(Z)])]

=
K
∑

l=0

E
�

T
�

�Z = zl

�

(g(zl)−E[g(Z)])πl

=
K
∑

l=0

�

E(T |Z = z0) +E(T |Z = z1)−E(T |Z = z0) + ...

+E(T |Z = zl)−E(T |Z = zl−1)
�

(g(zl)−E[g(Z)])πl

=
K
∑

l=0

E(T |Z = z0)(g(zl)−E[g(Z)])πl +
K
∑

l=0

l
∑

k=1

�

E(T |Z = zk)−E(T |Z = zk−1)
�

(g(zl)−E[g(Z)])πl

=
K
∑

k=1

�

E(T |Z = zk)−E(T |Z = zk−1)
�

K
∑

l=k

(g(zl)−E[g(Z)])πl . (A1)

For any zl , zw ∈ ΩZ , by the definition of T and Assumption 2.2-(i) (extended unconfoundedness),

E(T |Z = zl)−E(T |Z = zw)
=E[T0 + Dl(T1 − T0)|Z = zl]−E[T0 + Dw(T1 − T0)|Z = zw]
=E[(Dl − Dw)(T1 − T0)]
=E[T1 − T0|Dl − Dw = 1]Pr(Dl − Dw = 1)−E[T1 − T0|Dl − Dw = −1]Pr(Dl − Dw = −1).

Due to Assumption 2.1-(iv) (monotonicity), it is either that Dl ≥ Dw and Pr(Dl − Dw = −1) = 0,
or Dl ≤ Dw and Pr(Dl − Dw = 1) = 0. Since zk is ordered such that P(zk−1) ≤ P(zk), we have that
Dk−1 ≤ Dk

37. Therefore,

E(T |Z = zk)−E(T |Z = zk−1) = E(T1 − T0|Ck)Pr(Ck). (A2)

Plug (A2) into (A1), we get

E[T (g(Z)−E[g(Z)])] =
K
∑

k=1

E(T1 − T0|Ck)Pr(Ck)
K
∑

l=k

(g(zl)−E[g(Z)])πl . (A3)

For the numerator of equation (2), using the same proof of Imbens and Angrist (1994), we have

E[Y (g(Z)−E[g(Z)])] =
K
∑

k=1

αk,k−1Pr(Ck)
K
∑

l=k

(g(zl)−E[g(Z)])πl . (A4)

Thus, based on equation (A3) and (A4), the mismeasured LATE is:

αMis =

∑K
k=1αk,k−1Pr(Ck)

∑K
l=k (g(zl)−E[g(Z)])πl

∑K
k=1E(T1 − T0|Ck)Pr(Ck)

∑K
l=k (g(zl)−E[g(Z)])πl

=
K
∑

k=1

γMis
k αk,k−1. (A5)

37In discrete IV setting, Pr(zk−1) ≤ Pr(zk) implies Dk−1 ≤ Dk can be simply proved by contradiction under Assumption 2.1-(ii) that Z ⊥
(Y1, Y0, Dk) for k = 0, 1, ..., K .

36



A.2 Proof of Corollary 2.1

Proof of Corollary 2.1. For ∀k, by definitions of γIV
k and γMis

k we have:

γIV
k

γMis
k

=
K
∑

k=1

Pr(Ck)
∑K

l=kπl (g(zl)−E[g(Z)])
∑K

m=1 Pr(Cm)
∑K

l=mπl (g(zl)−E[g(Z)])
× (p1,k − p0,k) =

K
∑

k=1

γIV
k (p1,k − p0,k). (A6)

A.3 Proof of Lemma 2.1

Proof of Lemma 2.1. Based on Assumption 2.1-(iv) and the fact that ΩZ is finite, we know that there
always exists an order of the possible values of Z , ordered as z0, z1, ..., zK , such that D0 ≤ D1 ≤ ...≤
DK holds for all individuals. It then follows that Pr(z0) ≤ Pr(z1) ≤ ... ≤ Pr(zK). In the rest of the
proof, we maintain such an order of z0, z1, ..., zK . It suffices to show rest of Lemma 2.1 by verifying
E(T |Z = zl)≤ E(T |Z = zw) implies Pr(zl)≤ Pr(zw) for ∀l, w ∈ {0, 1, ..., K}.

First, we show that Assumption 2.3 implies E[T1 − T0|Ck] > 0 for all k. Conditional on Ck, we
have that D = 1[Z = zk]. Since Z is independent of ({Dk}Kk=0, T1, T0), we have for all k,

p1,k − p0,k = E[T1 − T0|Ck] =E[T1|Ck, Z = zk]−E[T0|Ck, Z = zk−1]
=E[T1|Ck, D = 1]−E[T0|Ck, D = 0]
=E[T |Ck, D = 1]−E[T |Ck, D = 0]
=Pr(T = 1|Ck, D = 1)− Pr(T = 1|Ck, D = 0)
>0,

where the last line is due to Assumption 2.3.
Next, we show that for any l, w ∈ {0,1, ..., K} and w ̸= l, E[T1 − T0|Ck] > 0 implies E[T1 −

T0|Dw − Dl = 1] > 0 if w > l and E[T1 − T0|Dw − Dl = −1] > 0 if w < l. If given Dw − Dl = 1, it
is apparent that Dw = 1, Dl = 0 (l < w) and this individual belongs to one of the complier groups
Cl+1, Cl+2, ..., Cw; on the other hand, if conditional on Dw − Dl = −1, then we have Dw = 0, Dl = 1
(l > w) and this individual belongs to one of the complier groups Cw+1, Cw+2, ..., Cl . For the case
w> l, by the law of iterated expectation,

E[T1 − T0|Dw − Dl = 1] =
w
∑

k=l+1

E[T1 − T0|Ck, Dw − Dl = 1]Pr(Ck|Dw − Dl = 1)

=
w
∑

k=l+1

E[T1 − T0|Ck]Pr(Ck|Dw − Dl = 1)

>0,

where the last inequality is due that there exists at least one k ∈ {l + 1, ..., w} such that Pr(Ck|Dw −
Dl = 1)> 0. Similar arguments can be applied to show that E[T1 − T0|Dw − Dl = −1]> 0 if w< l.

In the rest of this proof, we show that E(T |Z = zl) ≤ E(T |Z = zw) implies Pr(zl) ≤ Pr(zw). For
any l, w ∈ {0,1, ..., K}, because of the monotonicity assumption, we have

E(T |Z = zw)−E(T |Z = zl) =

�

E[T1 − T0|Dw − Dl = 1]Pr(Dw − Dl = 1), if w> l
−E[T1 − T0|Dw − Dl = −1]Pr(Dw − Dl = −1), if w< l

(A7)
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and

Pr(zw)− Pr(zl) =

�

Pr(Dw − Dl = 1), if w> l
−Pr(Dw − Dl = −1), if w< l

. (A8)

Because E[T1 − T0|Dw − Dl = 1] > 0 if w > l and E[T1 − T0|Dw − Dl = −1] > 0 if w < l. Then, if
E(T |Z = zw)− E(T |Z = zl) > 0, from (A7) we know that w > l and Pr(zw)− Pr(zl) > 0. Similar
result holds if E(T |Z = zw)− E(T |Z = zl) < 0. At last, when E(T |Z = zw)− E(T |Z = zl) = 0, we
can get Pr(Dw−Dl = 1) = 0 and Pr(Dw−Dl = −1) = 0. Therefore, we can conclude that the sign of
E(T |Z = zw)−E(T |Z = zl) is the same with the sign of Pr(zw)−Pr(zl).

A.4 Proof of Lemma 2.2

Proof of Lemma 2.2. By law of iterated expectation and the independence of instrument Z ,

f(Y,T )|Z=zk
= f(Y,T )|Ck,Z=zk

Pr(Ck) + f(Y,T )|Dk−1=0,Dk=0,Z=zk
Pr(Dk−1 = 0, Dk = 0)

+ f(Y,T )|Dk−1=1,Dk=1,Z=zk
Pr(Dk−1 = 1, Dk = 1)

= f(Y1,T1)|Ck
Pr(Ck) + f(Y0,T0)|Dk−1=0,Dk=0Pr(Dk−1 = 0, Dk = 0)

+ f(Y1,T1)|Dk−1=1,Dk=1Pr(Dk−1 = 1, Dk = 1).

Similarly,

f(Y,T )|Z=zk−1
= f(Y0,T0)|Ck

Pr(Ck) + f(Y0,T0)|Dk−1=0,Dk=0Pr(Dk−1 = 0, Dk = 0)
+ f(Y1,T1)|Dk−1=1,Dk=1Pr(Dk−1 = 1, Dk = 1).

Therefore, we can get that

T V(Y,T ),k =
1
2

∑

t=0,1

∫

| f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)|dµY (y)

=
1
2

∑

t=0,1

∫

�

� f(Y1,T1)|Ck
(y, t)− f(Y0,T0)|Ck

(y, t)
�

� dµY (y)Pr(Ck)

≤
1
2

∑

t=0,1

∫

�

f(Y1,T1)|Ck
(y, t) + f(Y0,T0)|Ck

(y, t)
�

dµY (y)Pr(Ck)

=Pr(Ck).

By the monotonicity assumption, we know that compliers groups are mutually exclusive. Then,

Pr(Ck) =1−
∑

k′ ̸=k

Pr(Ck′)− Pr(D0 = D1 = ...= DK = 0)− Pr(D0 = D1 = ...= DK = 1)

≤1−
∑

k′ ̸=k

Pr(Ck′)≤ 1−
∑

k′ ̸=k

T V(Y,T ),k′,

where the last inequality is due that T V(Y,T ),k ≤ Pr(Ck) for all k = 1, 2, ..., K .

A.5 Proof of Lemma 2.3

The proofs of Lemma 2.3 are similar to the proof of Theorem 17 in Ura (2018), but with nontrivial
adjustments to deal with the multi-valued instrument setting of our paper. In order to prove this
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Lemma, we need to introduce Lemma A.1 below. In what follows, we first prove Lemma A.1 and
then proceed to the proof of Lemma 2.3.

Lemma A.1. Under Assumptions 2.1-(ii)-(iv), 2.2-(i) and 2.3, we have that for ∀k = 1,2, ..., K,

(i) T V(Y,T ),k ≥ |∆kE(T |Z)|;

(ii) |∆kE(Y |Z)|> 0 ⇒ T V(Y,T ),k > 0.

Proof of Lemma A.1. (i) This is a multi-valued IV version of the proof of Lemma 5 in Ura (2018).

T V(Y,T ),k =
1
2

∑

t=0,1

∫

| f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)|dµY (y)

≥
1
2

∑

t=0,1

�

�

�

�

∫

f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)dµY (y)

�

�

�

�

=
1
2

∑

t=0,1

�

� fT |Z=zk
(t)− fT |Z=zk−1

(t)
�

�

=
1
2

��

� fT |Z=zk
(1)− fT |Z=zk−1

(1)
�

�+
�

� fT |Z=zk
(0)− fT |Z=zk−1

(0)
�

�

�

=
�

� fT |Z=zk
(1)− fT |Z=zk−1

(1)
�

�

= |∆kE(T |Z)| .

(ii) We prove (ii) by verifying ∆kE(Y |Z) ̸= 0 implies that

Pr
��

(y, t) ∈ ΩY × {0,1} :
�

� f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)
�

� ̸= 0
	�

> 0. (A9)

It can be verified by proof by contradiction as below. Suppose ∆kE(Y |Z) ̸= 0 but the probability in
(A9) is zero. It means with probability one that

�

� f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)
�

�= 0

⇔ f(Y,T )|Z=zk
(y, t) = f(Y,T )|Z=zk−1

(y, t), for both t = 0, 1

⇔
∑

t=0,1

f(Y,T )|Z=zk
(y, t) =

∑

t=0,1

f(Y,T )|Z=zk−1
(y, t)

⇔ fY |Z=zk
(y) = fY |Z=zk−1

(y)

⇔ ∆kE(Y |Z) =
∫

y[ fY |Z=zk
(y)− fY |Z=zk−1

(y)]dµY (y) = 0, (A10)

which contradicts ∆kE(Y |Z) ̸= 0. Therefore, |∆kE(Y |Z)| > 0 implies (A9), and we have that
T V(Y,T ),k > 0 by definition.

Now we can proceed to the proof of Lemma 2.3.

Proof of Lemma 2.3. (i) If T V(Y,T ),k = 0, then by Lemma A.1 ∆kE(Y |Z) = 0, and any αk,k−1 ∈ Θ
satisfies the inequalities (6), (7) and (8). If T V(Y,T ),k > 0, we have 1−

∑

k′ ̸=k T V(Y,T ),k′ > 0 and

|∆kE(Y |Z)|
1−

∑

k′ ̸=k T V(Y,T ),k′
≤ |αk,k−1| ≤

|∆kE(Y |Z)|
T V(Y,T ),k

,

and the sign of αk,k−1 is identified by the sign of ∆kE(Y |Z).
(ii) The sharpness can be proved by the same proof of Lemma 2.4(ii), via replacing ∆kE(T |Z)

and ∆pk in the proof of Lemma 2.4(ii) by ∆kE(Y |Z) and αk,k−1 respectively.
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A.6 Proof of Lemma 2.4

Proof of Lemma 2.4. (i) If T V(Y,T ),k = 0, ∆kE(T |Z) = 0 by Lemma A.1, and any ∆pk ∈ [−1,1]
satisfies the inequalities (10), (11) and (12). If T V(Y,T ),k > 0, we have 1−

∑

k′ ̸=k T V(Y,T ),k′ > 0 and

|∆kE(T |Z)|
1−

∑

k′ ̸=k T V(Y,T ),k′
≤ |∆pk| ≤

|∆kE(T |Z)|
T V(Y,T ),k

,

and the sign of ∆pk is identified by the sign of ∆kE(T |Z).
(ii) The proof of sharpness can be implemented in two steps.
In Step 1, we show that if max

0≤m≤K
V T(Y,T ),m = 0, which means all V T(Y,T ),m = 0 for ∀m= 1, ..., K ,

the sharp identified set for∆pk is [−1,1]. In Step 2, we show that if T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0
with all k′ ̸= k, then any point lies inΘp

k(P) equals to∆pk under some DGP which generates (Y, T, Z).

Step 1. Since V T(Y,T ),m = 0 for all m, we know

f(Y,T )|Z=z0
(y, t) = f(Y,T )|Z=z1

(y, t) = ...= f(Y,T )|Z=zK
(y, t) = f(Y,T )(y, t) (A11)

almost sure for all (y, t) ∈ ΩY × {0, 1}.
Denote f1, f0 to be any arbitrary pair of well-defined probability functions with support [0,1],

satisfying 0 ≤ f1, f0 ≤ 1 and
∑

t=0,1 f1 =
∑

t=0,1 f0 = 1. Define a data generate process P∗f1, f0
based

on f1, f0 as below:

Z ∼ fZ , Dk|Z = 1 for all k = 0, 1, ..., K ,

(Y1, T1)|({Dk}Kk=0,Z) ∼
�

f(Y,T ), if all Dk are equal,
fY f1, if at least one Dk ̸= Dk−1.

(Y0, T0)|({Dk}Kk=0,Z) ∼ fY f0,

where fZ , fY and f(Y,T ) are the true marginal distributions of the observable (Y, T, Z). In what
follows, we denote f ∗ as any density function associated with the DGP P∗. Next, we show that for
any arbitrary pair f1, f0 described above:

(a) P∗f1, f0
satisfies Assumptions 2.1-(ii)-(iv) and 2.2-(i).

(b) P∗f1, f0
generates the data (Y, T, Z).

(c) Under P∗f1, f0
, we have that ∆pk = f1(1)− f0(1) for all k = 1,2, ..., K .

(a) The DGP P∗fT1
, fT0

above shows that Z⊥(Y1, Y0, {Dk}Kk=0, T1, T0), and Dl ≥ Dw almost surely and
P(zl)≥ P(zw) for l > w.

(b) Denote f ∗ as the distribution function under P∗f1, f0
, e.g. f ∗Y is the distribution of Y generated

by the DGP P∗f1, f0
. Then, for ∀k = 0, 1, ..., K

f ∗(Y,T )|Z=zk
(y, t) = f ∗(Y,T )|D0=1,D1=1,...,DK=1,Z=zk

(y, t)

= f ∗(Y1,T1)|D0=1,D1=1,...,DK=1,Z=zk
(y, t)

= f(Y,T )(y, t)
= f(Y,T )|Z=zk

(y, t)

where the third equality is due that (Y1, T1)|({Dk}Kk=0,Z) ∼ f(Y,T ) if all Dk are equal, and the last equality
is because of (A11). Thus, P∗f1, f0

generates (Y, T, Z), since f ∗(Y,T )|Z=zk
= f(Y,T )|Z=zk

.
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(c) Under P∗f1, f0
, we have the independence of Z to (T1, T0, {Dk}Kk=0),

∆pk = EP∗f1, f0
[T1 − T0|Ck] = EP∗f1, f0

[T1 − T0|Ck, Z]

= f ∗T1|Ck,Z(1)− f ∗T0|Ck,Z(1)

=

∫

f ∗Y1,T1|Ck,Z(y, 1)dµY (y)−
∫

f ∗Y0,T0|Ck,Z(y, 1)dµY (y)

= f1(1)

∫

fY (y)dµY (y)− f0(1)

∫

fY (y)dµY (y)

= f1(1)− f0(1).

Given that P∗f1, f0
with any pair of ( f1, f0) satisfies (a)-(c), it fulfills the proof of Step 1.

Step 2. We prove the statement in Step 2 above in three sub-steps.

(a) There exists a DGP P∗L that satisfies Assumptions 2.1-(ii)-(iv) and 2.2-(i), generates (Y, T, Z)
and ∆pk =∆kE(T |Z) under P∗L .

(b) There exists a DGP P∗U that satisfies Assumptions 2.1-(ii)-(iv) and 2.2-(i), generates (Y, T, Z)
and ∆pk =

∆kE(T |Z)
T V(Y,T ),k

under P∗U .

(c) For some constant ψ ∈ [0, 1], the mixture ψP∗L + (1−ψ)P
∗
U satisfies Assumptions 2.1-(ii)-(iv)

and 2.2-(i), generates (Y, T, Z) and ∆pk =ψ∆kE(T |Z) + (1−ψ)
∆kE(T |Z)
T V(Y,T ),k

.

(a) Given T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0 with all k′ ̸= k, define a DGP P∗L as below:

Z ∼ fZ , (Dk−1, Dk)|Z = (0,1), Dl ≤ Dw if l < w
(Y1, T1)|({Dk}Kk=0,Z) ∼ f(Y,T )|Z=zk

(Y0, T0)|({Dk}Kk=0,Z) ∼ f(Y,T )|Z=zk−1
.

It is easy to see that under P∗L , Z⊥(Y1, Y0, {Dk}Kk=0, T1, T0)′, Dl ≥ Dw almost surely and Pr(zl) ≥
Pr(zw) for l > w. Denote f ∗L as the distribution functions under P∗L . Then, for ∀m≤ k− 1,

f ∗L(Y,T )|Z=zm
(y, t) = f ∗L(Y,T )|D=0,Z=zm

(y, t) = f ∗L(Y0,T0)|Dm=0,Z=zm
(y, t) = f(Y,T )|Z=zk−1

= f(Y,T )|Z=zm
,

where the last equality is due to T V(Y,T ),k′ = 0 for all k′ ̸= k, implying f(Y,T )|Z=zm
= f(Y,T )|Z=zk−1

for all
m≤ k− 1. Furthermore, for ∀m≥ k,

f ∗L(Y,T )|Z=zm
(y, t) = f ∗L(Y,T )|D=1,Z=zm

(y, t) = f ∗L(Y1,T1)|Dm=1,Z=zm
(y, t) = f(Y,T )|Z=zk

= f(Y,T )|Z=zm
,

where the last equality is due to T V(Y,T ),k′ = 0 for all k′ ̸= k, implying f(Y,T )|Z=zm
= f(Y,T )|Z=zk

for all
m≥ k. Hence, we have shown that the DGP P∗L generates (Y, T, Z).

Next, consider ∆pk under P∗L :

∆pk = EP∗L
[T1 − T0|Ck] = EP∗L

[T1|Ck, Z = zk]−EP∗L
[T0|Ck, Z = zk−1]

= fT |Z=zk
(1)− fT |Z=zk−1

(1)
= E[T |Z = zk]−E[T |Z = zk−1]
=∆kE[T |Z].

(b) Given T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0 with all k′ ̸= k, we first define a random variable
H = 0.5× sign(∆k f(Y,T )|Z(Y, T )), where∆k f(Y,T )|Z(Y, T ) = f(Y,T )|Z=zk

(Y, T )− f(Y,T )|Z=zk−1
(Y, T ). Then,
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let us define a DGP P∗U as follows

Z ∼ fZ ,

(Dk−1, Dk)|Z =







(0, 1), Dl ≤ Dw if l < w, with probability ∆kE[H|Z],
(0, 0), Dl = Dw for all l, w, with probability Pr(H = −0.5|Z = zk),
(1, 1), Dl = Dw for all l, w, with probability Pr(H = 0.5|Z = zk−1).

(Y1, T1)|({Dk}Kk=0,Z) ∼

¨

∆k f(Y,T,H)|Z(y,t,0.5)
∆kE[H|Z]

, if Dk−1 < Dk,

f(Y,T )|H=0.5,Z=zk−1
(y, t), if Dk−1 = Dk

(Y0, T0)|({Dk}Kk=0,Z) ∼

¨

−∆k f(Y,T,H)|Z(y,t,−0.5)
∆kE[H|Z]

, if Dk−1 < Dk,

f(Y,T )|H=−0.5,Z=zk
(y, t), if Dk−1 = Dk

First of all, noticing that

∆kE[H|Z] = E[H|Z = zk]−E[H|Z = zk−1]

=
1
2

∑

t=0,1

�

∫

sign(∆k f(Y,T )|Z(y, t)) f(Y,T )|Z=zk
(y, t)dµY (y)

−
∫

sign(∆k f(Y,T )|Z(y, t)) f(Y,T )|Z=zk−1
(y, t)dµY (y)

�

=
1
2

∑

t=0,1

�∫

sign(∆k f(Y,T )|Z(y, t))∆k f(Y,T )|Z(y, t)dµY (y)

�

=
1
2

∑

t=0,1

∫

�

�∆k f(Y,T )|Z(y, t)
�

� dµY (y)

= T V(Y,T ),k.

It’s easy to check that DGP P∗U satisfies Assumptions 2.1-(ii)-(iv) and 2.2-(i). Denote f ∗U as the
distribution functions under P∗U . We first show that f ∗U is well-defined: (b.1) the summation of the
probabilities of all possible values for {Dk}Kk=0 is one, (b.2) the density functions of (Y1, T1)|({Dk}Kk=0,Z)

and (Y0, T0)|({Dk}Kk=0,Z) under P∗U are nonnegative, and (b.3) their integrals are one.
(b.1) Consider the following summation.

∆kE[H|Z] + Pr(H = −0.5|Z = zk) + Pr(H = 0.5|Z = zk−1)
=0.5Pr(H = 0.5|Z = zk)− 0.5Pr(H = −0.5|Z = zk)− 0.5Pr(H = 0.5|Z = zk−1)

+ 0.5Pr(H = −0.5|Z = zk−1) + Pr(H = −0.5|Z = zk) + Pr(H = 0.5|Z = zk−1)
=0.5Pr(H = 0.5|Z = zk) + 0.5Pr(H = −0.5|Z = zk) + 0.5Pr(H = 0.5|Z = zk−1)

+ 0.5Pr(H = −0.5|Z = zk−1)
=0.5+ 0.5= 1.

(b.2) We show that the density functions of (Y1, T1)|({Dk}Kk=0,Z) and (Y1, T1)|({Dk}Kk=0,Z) under P∗U are
nonnegative and integral are one.

∆k f(Y,T,H)|Z(y, t, 0.5) = f(Y,T,H)|Z=zk
(y, t, 0.5)− f(Y,T,H)|Z=zk−1

(y, t, 0.5)
= f(Y,T )|Z=zk

(y, t)1[∆k f(Y,T )|Z(y, t)≥ 0]− f(Y,T )|Z=zk−1
(y, t)1[∆k f(Y,T )|Z(y, t)≥ 0]

=∆k f(Y,T )|Z(y, t)1[∆k f(Y,T )|Z(y, t)≥ 0]≥ 0. (A12)
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Moreover,

∆k f(Y,T,H)|Z(y, t,−0.5) = f(Y,T,H)|Z=zk
(y, t,−0.5)− f(Y,T,H)|Z=zk−1

(y, t,−0.5)
= f(Y,T )|Z=zk

(y, t)1[∆k f(Y,T )|Z(y, t)< 0]− f(Y,T )|Z=zk−1
(y, t)1[∆k f(Y,T )|Z(y, t)< 0]

=∆k f(Y,T )|Z(y, t)1[∆k f(Y,T )|Z(y, t)< 0]≤ 0. (A13)

Since ∆kE[H|Z] = T V(Y,T ),k > 0, the density functions are both nonnegative.
(b.3) From (A12) and (A13) we have that

∑

t=0,1

∫

�

∆k f(Y,T,H)|Z(y, t, 0.5) +∆k f(Y,T,H)|Z(y, t,−0.5)
�

dµY (y)

=
∑

t=0,1

∫

∆k f(Y,T )|Z(y, t)dµY (y) = 0, (A14)

and

∑

t=0,1

∫

�

∆k f(Y,T,H)|Z(y, t, 0.5)−∆k f(Y,T,H)|Z(y, t,−0.5)
�

dµY (y)

=
∑

t=0,1

∫

∆k f(Y,T )|Z(y, t)sign(∆k f(Y,T )|Z(y, t))dµY (y)

=
∑

t=0,1

∫

|∆k f(Y,T )|Z(y, t)|dµY (y)

=2T V(Y,T ),k. (A15)

Based on (A14) and (A15), we get that

∑

t=0,1

∫

∆k f(Y,T,H)|Z(y, t, 0.5)dµY (y) = T V(Y,T ),k, (A16)

∑

t=0,1

∫

∆k f(Y,T,H)|Z(y, t,−0.5)dµY (y) = −T V(Y,T ),k. (A17)

Given (A16) and (A17), it is clear that the integrals of the density functions are all one.
Next, we show that P∗U generates the data (Y, T, Z). For ∀m≤ k− 1,

f ∗U(Y,T )|Z=zm
(y, t) = f ∗U(Y,T )|D0=...=DK=0,Z=zm

(y, t)Pr(H = −0.5|Z = zk)

+ f ∗U(Y,T )|D0=...=DK=1,Z=zm
(y, t)Pr(H = 0.5|Z = zk−1)

+ f ∗U(Y,T )|D0=0,...,=Dk−1=0,Dk=1,...,DK=1,Z=zm
(y, t)∆kE[H|Z]

= f(Y,T )|H=−0.5,Z=zk
(y, t)Pr(H = −0.5|Z = zk)

+ f(Y,T )|H=0.5,Z=zk−1
(y, t)Pr(H = 0.5|Z = zk−1)

−∆kE[H|Z]
∆k f(Y,T,H)|Z(y, t,−0.5)

∆kE[H|Z]
= f(Y,T,H)|Z=zk−1

(y, t, 0.5) + f(Y,T,H)|Z=zk−1
(y, t,−0.5)

= f(Y,T )|Z=zk−1
(y, t)

= f(Y,T )|Z=zm
(y, t),
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where the last equality is because T V(Y,T ),m = 0 for all m≤ k− 1. Moreover, we have for m≥ k,

f ∗U(Y,T )|Z=zm
(y, t) = f ∗U(Y,T )|D0=...=DK=0,Z=zm

(y, t)Pr(H = −0.5|Z = zk)

+ f ∗U(Y,T )|D0=...=DK=1,Z=zm
(y, t)Pr(H = 0.5|Z = zk−1)

+ f ∗U(Y,T )|D0=0,...,=Dk−1=0,Dk=1,...,DK=1,Z=zm
(y, t)∆kE[H|Z]

= f(Y,T )|H=−0.5,Z=zk
(y, t)Pr(H = −0.5|Z = zk)

+ f(Y,T )|H=0.5,Z=zk−1
(y, t)Pr(H = 0.5|Z = zk−1)

+∆kE[H|Z]
∆k f(Y,T,H)|Z(y, t, 0.5)

∆kE[H|Z]
= f(Y,T,H)|Z=zk

(y, t,−0.5) + f(Y,T,H)|Z=zk
(y, t, 0.5)

= f(Y,T )|Z=zk
(y, t)

= f(Y,T )|Z=zm
(y, t),

where the last equality is because of T V(Y,T ),m = 0 for all m ≥ k. Thus, so far we have shown that
P∗U generates the data (Y, T, Z).

The last step in (b) is to prove that under P∗U , ∆pk =
∆kE(T |Z)
T V(Y,T ),k

:

∆pk = EP∗U
[T1 − T0|Ck] =EP∗U

[T1|Ck, Z]−EP∗U
[T0|Ck, Z]

=

∫

∆k f(Y,T,H)|Z(y, 1, 0.5)

∆kE[H|Z]
dµY (y) +

∫

∆k f(Y,T,H)|Z(y, 1,−0.5)

∆kE[H|Z]
dµY (y)

=

∫

∆k f(Y,T )|Z(y, 1)

∆kE[H|Z]
dµY (y)

=
∆kE[T |Z]
T V(Y,T ),k

.

(c) For any ψ ∈ [0, 1], denote the mixture DGP P∗mix := ψP∗L + (1 −ψ)P
∗
U , which means with

probability ψ the data (Y, T, Z) is generated from P∗L and with probability 1−ψ the data (Y, T, Z) is
generated from P∗U . Given the results in Steps 1 and 2, we have that if T V(Y,T ),k > 0 and T V(Y,T ),k′ = 0
with all k′ ̸= k, the DGP P∗mix satisfies Assumptions 2.1-(ii)-(iv) and 2.2-(i); P∗mix generates the data
(Y, T, Z); and under P∗mix , ∆pk =ψ∆kE(T |Z) + (1−ψ)

∆kE(T |Z)
T V(Y,T ),k

.

A.7 Proof of Theorem 2.2

Proof of Theorem 2.2. From (14), we have min
k∈{1,2,...,K}

{αk,k−1} ≤ αIV ≤ max
k∈{1,2,...,K}

{αk,k−1}. Because

each LATE is partially identified by Θαk (P), based on which we have αIV ∈
⋃

k=1,2,...,K Θ
α
k (P).

A.8 Proof of Theorem 2.3

Proof of Theorem 2.3. Since ξ =
∑K

k=1 γ
IV
k ∆pk, we know that min

k=1,2,...,K
{∆pk} ≤ ξ ≤ max

k=1,2,...,K
{∆pk}.

Thus, ξ ∈
⋃

k=1,2,...,K Θ
p
k(P) leads to the result.
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A.9 Proof of Corollary 2.4

Proof of Corollary 2.4. By definition of∆kE(Y |Z) and∆kE(T |Z), we know∆kE(Y |Z)/∆kE(T |Z) =
αk,k−1/∆pk. From Theorem 2.2, we have that

Θα(P) =
⋃

k=1,2,...,K

Θαk (P) =
⋃

k=1,2,...,K







∆kE(Y |Z)
pc

: pc ∈



T V(Y,T ),k, 1−
∑

k′ ̸=k

T V(Y,T ),k′











=
⋃

k=1,2,...,K







αk,k−1

∆pk
×
∆kE(T |Z)

pc
: pc ∈



T V(Y,T ),k, 1−
∑

k′ ̸=k

T V(Y,T ),k′











=
⋃

k=1,2,...,K

§

αk,k−1

∆pk
×∆p : ∆p ∈ Θp

k(P)
ª

,

where the last equality is due to the definition of Θp
k(P). Similarly, from Theorem 2.3 and (3)

Θp(P) =

¨

αMis ×∆p : ∆p ∈
⋃

k=1,2,...,K

Θ
p
k(P)

«

=

¨

αIV

ξ
×∆p : ∆p ∈

⋃

k=1,2,...,K

Θ
p
k(P)

«

=
⋃

k=1,2,...,K

�

αIV

ξ
×∆p : ∆p ∈ Θp

k(P)

�

.

A.10 Proof of Theorem 2.4

Proof of Theorem 2.4. Since 0 < ξ ≤ ξ ≤ ξ̄ ≤ 1, it yields from αIV = ξαMis that αIV is between

ξαMis and ξαMis, and its sign is determined by the sign of αMis.
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A Online Appendix

This Online Appendix contains three sections with proofs, additional material and analysis. The in-
formation are organized as follows. Appendix A.1 provides the details to construct the confidence
intervals of the partially identified αIV . Appendix A.2 presents the details about the partial identi-
fication results using multiple treatment proxies. Appendix A.3 discusses the details about how to
use our partial identification strategies in empirical applications with covariates.
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A.1 Inference: Details

In this section, we provide the details to construct the confidence interval of αIV . Since, the partial
identification of αIV is based on the union of either Θαk (P) or Θp

k(P), we proceed with the estimation
in three steps. First, we construct the moment inequalities representations of the sets Θαk (P) and
Θ

p
k(P). Second, we construct the confidence intervals for αk,k−1 and ∆pk. Third, depending on the

chosen identification strategy, we construct the appropriate confidence intervals of αIV by taking
the unions of the confidence intervals of either αk,k−1 or ∆pk.

A.1.1 Moment Inequalities Representations

The Lemma below shows that Θαk (P) and Θp
k(P) have equivalent expressions in terms of uncondi-

tional moment inequalities.

Lemma A.1. Let Assumption 2.1, 2.2 and 2.3 hold. Denote a random variable

ϕk =
1[Z = zk]πk−1 − 1[Z = zk−1]πk

πkπk−1

for k = 1,2, ..., K. Then, Θαk (P) can be characterized by the following moment inequalities:

E
�

−ϕksign(αk,k−1)Y
�

≤ 0, (A1)

E
�

ϕk

�

|αk,k−1|h(Y, T )− sign(αk,k−1)Y
�	

≤ 0, ∀h ∈ H (A2)

E



ϕksign(αk,k−1)Y − |αk,k−1|

 

1−
∑

k′ ̸=k

ϕk′hk′(Y, T )

!



≤ 0, ∀hk′ ∈ H. (A3)

Moreover, Θp
k(P) can be characterized by the following moment inequalities:

E [−ϕksign(∆pk)T]≤ 0, (A4)
E {ϕk [|∆pk|h(Y, T )− sign(∆pk)T]} ≤ 0, ∀h ∈ H (A5)

E



ϕksign(∆pk)T − |∆pk|

 

1−
∑

k′ ̸=k

ϕk′hk′(Y, T )

!



≤ 0, ∀hk′ ∈ H, (A6)

where πk = Pr(Z = zk), H is a set of measurable functions mapping (y, t) ∈ ΩY ×{0,1} to {−0.5, 0.5}
and sign(x) = 1[x ≥ 0]− 1[x < 0].

Proof of Lemma A.1. See Appendix A.3.1.38

Lemma A.1 is based on the facts that ∆kE[h(Y, T )|Z] with h ∈ H can bound the total variation
distance:

∆kE[h(Y, T )|Z]≤ T V(Y,T ),k,

and ϕk helps rewrite the conditional moments to unconditional ones: for Q ∈ {Y, T, h(Y, T )},

∆kE[Q|Z] = E[ϕkQ].

Next, we introduce some regularity conditions on the data generating process. Denote π =
(π0,π1, ...,πK)′ and its parameter space as Π ⊂ [0,1](K+1). Suppose (1 − ηπ)-confidence interval

38We use subscript k′ to distinguish different hk′ , because each ϕk′ can be multiplied by different hk′ and it is not necessarily the same with
h. For simplicity, we do not distinguish h and hk′ elsewhere if it is not necessary, and we use h to denote any generic function in H.
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for all πk, denoted as Cπk
(ηπ), and (1−ηαMis)-confidence interval for αMis, denoted as CαMis(ηαMis),

are available.

Assumption A.1. The parameter space Θ×Π×P0 satisfies the following conditions:

(i) Θ is bounded. max{E[Y 3]2/3,E[Y 4]1/2}< M for some constant M.

(ii) All random variables inside E[·] in Lemma A.1 have nonzero variance for ∀h ∈ H, ∀αk,k−1 ∈ Θ
and ∀∆pk ∈ [−1,1].

(iii) lim inf
n→∞

inf
P∈P0

Pr[πk ∈ Cπk
(ηπ)]≥ 1−ηπ for k = 1, 2, ..., K.

(iv) lim inf
n→∞

inf
P∈P0

Pr[αMis ∈ CαMis(ηαMis)]≥ 1−ηαMis .

The number of the moment inequalities in Lemma A.1 can be either finite or infinite, depending
on the support of Y . If Y is discrete, the number of possible h ∈ H is finite, so as the total number of
the moment inequalities in Lemma A.1. When Y is continuous, the number of elements in H will be
infinite and we are then facing an infinite number of moment inequalities. To deal with the potential
uncountable infinite moment inequalities, we consider a sequence of sets Hn, which converges to H
in the sense defined in Assumption A.2 (When H has finite dimension, we can simply let Hn = H).
The key in forming Hn is the partition ΩY × {0, 1} =

⋃

l=1,2,...,Ln
In,l , in which Ln is the number of

the partitions {In,l}, and Ln may grow with the sample size n. Denote by hn, j, j = 1,2, ..., 2Ln, the
function that maps ΩY × {0, 1} into {−0.5,0.5}, which is a constant over each In,l , l = 1,2, ..., Ln.
We can then define Hn = {hn,1, hn,2, ...,hn,2Ln} to be the collection of all such functions.

By construction, Hn is a subset of H. Replacing H by Hn in the moment inequalities in Lemma
A.1 yields two sets, denoted by eΘαk (P) and eΘ

p
k(P). They cover and converge to Θαk (P) and Θp

k(P),
respectively, as the sample size increases. Their convergence will be formally described in Lemma
A.2 below. Thus, the confidence intervals considered later will be based on the moment inequalities
that characterize eΘαk (P) and eΘp

k(P).
Let κn = 2Ln be the number of functions in Hn, and denote by pn the number of moment inequal-

ities under Hn. Then, pn = 1+κn+κK−1
n . Assumption A.2 below outlines the sufficient assumptions

on the DGP and the partition {In,l}
Ln

l=1 that ensure the convergence of eΘαk (P) and eΘ
p
k(P) to Θαk (P)

and Θp
k(P).

Assumption A.2. The following assumptions hold:

(i) The density function f(Y,T )|Z=zk
(y, t) is Hölder continuous in (y, t) ∈ ΩY × {0, 1} with the Hölder

constant M0 and exponent m.

(ii) The partition In+1,1, In+1,2, ..., In+1,Ln+1
is a refinement of the partition In,1, In,2, ..., In,Ln

.

(iii) There is a positive constant M1 such that In,l is a subset of some open ball with radius M1/Ln in
ΩY × {0, 1}.

(iv) There exist some constants c1 ∈ (0,1/2) and C1 > 0 such that pn satisfies

log7/2(pnn)≤ C1n1/2−c1, log1/2 pn ≤ C1n1/2−c1, log3/2 pn ≤ C1n.

Assumption A.2-(i) restricts the smoothness of the density function of observable (Y, T ) and A.2-
(ii) implies the sequence {Hn} satisfying Hn ⊂ Hn+1 ⊂ · · · ⊂ H. Assumption A.2-(iii) is used to make
sure that the partition becomes finer as sample size increases. Assumption A.2-(iv) is borrowed
from Chernozhukov et al. (2019) for the asymptotic performance of the confidence interval.

If Hn = {hn,1, hn,2, ..., hn,κn
} based on partition {In,l}

Ln

l=1 satisfies Assumption A.2, we have the
following convergence results.
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Lemma A.2. Let Assumption 2.1, 2.2, 2.3, A.1 and A.2 hold. Then, Θαk (P) ⊂ eΘ
α
k (P) and Θp

k(P) ⊂
eΘ

p
k(P). As sample size increases, the convergence below hold uniformly over (π,P) ∈ Π×P0.

sup
h∈H
E [ϕkh(Y, T )]−max

h∈Hn

E [ϕkh(Y, T )]→ 0,

inf
{hk′}∈HK−1



1−
∑

k′ ̸=k

E[ϕk′hk′(Y, T )]



− min
{hk′}∈HK−1

n



1−
∑

k′ ̸=k

E[ϕk′hk′(Y, T )]



→ 0.

Proof of Lemma A.2. See Appendix A.3.2.

Given the convergence in Lemma A.2, we can now proceed to the inference stage.

A.1.2 Confidence Intervals of the LATEs and the LATMs

For simplicity, hereafter we use θk to represent αk,k−1 or ∆pk, and use Θθk (P) to represent Θαk (P)
(when θk = αk,k−1) or Θp

k(P) (when θk = ∆pk). In addition, and with slight abuse of notation, we
also use Θ to represent the parameter space of θk, and Θ = [−1,1] when θk =∆pk.

Given η ∈ (0, 0.5) and ηπ ∈ (0,η/2), the (1−η− 2ηπ)-confidence interval of θk is:

Cθk
(η+ 2ηπ) :=

⋃

πk∈Cπk
(ηπ), πk−1∈Cπk−1

(ηπ)

¦

θk ∈ Θ : τ(θk,πk,πk−1)≤ ck(η)
©

, (A7)

where the test statistic τ(θk,πk,πk−1) and the critical value ck(η) are defined in the two-step mul-
tiplier bootstrap procedure of Chernozhukov et al. (2019) described in our Appendix A.1.4. The
testing procedure is for the pn moment inequalities in Lemma A.1 under Hn.39 The following The-
orem holds for both θk = αk,k−1 and θk =∆pk.

Theorem A.1. Let Assumption 2.1, 2.2, 2.3, A.1 and A.2 hold. Construct the test statisticτ(θk,πk,πk−1)
and the critical value ck(η) by the two-step multiplier bootstrap described in Appendix A.1.4.

(i) The confidence interval Cθk
(η+ 2ηπ) controls the asymptotic size uniformly over P0,

lim inf
n→∞

inf
P∈P0, θk∈Θθk (P)

Pr
�

θk ∈ Cθk
(η+ 2ηπ)

�

≥ 1−η− 2ηπ.

(ii) Given π0
k = Pr(Z = zk) and π0

k−1 = Pr(Z = zk−1), for any fixed alternative θk /∈ Θθk (P),

lim
n→∞

Pr
�

τ
�

θk,π0
k,π0

k−1

�

≤ ck(η)
�

= 0.

Proof of Theorem A.1. See Appendix A.3.3.

Theorem A.1-(i) shows that the confidence interval Cθk
(η + 2ηπ) defined in (A7) covers any

point in Θθk (P) with probability at least (1 − η − 2ηπ) uniformly over P0. In addition, Theorem
A.1-(ii) tells us that the confidence interval, evaluated at the true π0

k−1,π0
k, will exclude any point

outside Θθk (P) with probability going to one. Hence, it is reasonable to expect that Cθk
(η + 2ηπ)

will not be too conservative for large enough sample sizes, as long as the standard
p

n-consistent
estimator of π and its associated confidence interval are used to construct the confidence interval.

In practice, a simpler version of the confidence interval of θk, denoted by Ĉθk
(η), can be imple-

mented as below:

Ĉθk
(η) :=

¦

θk ∈ Θ : τ(θk, π̂k, π̂k−1)≤ ĉk(η)
©

, (A8)

39The critical value ck(η) also depends on (θk,πk,πk−1). For notation simplicity, we simplify it to be ck(η).
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where (π̂k, π̂k−1) are
p

n-consistent estimators of (πk,πk−1), and ĉk(η) is obtained in the two-step
multiplier bootstrap using π̂k, π̂k−1. The asymptotic properties of the confidence interval, con-
structed by testing the moment inequalities with estimated nuisance parameters, are considered
in Appendix B.2 of Chernozhukov et al. (2019).40 Moreover, the simpler version confidence inter-
val Ĉθk

(η) in (A8) can also be applied to construct C α(βα) or C p(β p) for practical purpose.

A.1.3 Confidence Intervals of αIV

Given the confidence intervals of αk,k−1 and ∆pk, we can now move on to construct confidence
intervals of αIV . These are the only details that are reported in the main text in section 3.

A.1.4 Two-Step Multiplier Bootstrap: Details

In this final sub-section, we provide further details of the two-step multiplier bootstrap method
proposed in Chernozhukov et al. (2019) and how to use it to construct confidence intervals in our
paper. For the sake of notation consistency, we use θk and πk,πk−1 to denote the parameter of
interest and the nuisance parameters, respectively.

Denote the data as {Vi}ni=1 = {Yi, Ti, Si, Zi}ni=1 and V = {Y, T, S, Z}. As slight abuse of notations,
for hk, hk′ ∈ Hn and Q = {Y, T}, define moment functions in Lemma A.1 as

g1(V,θk,πk,πk−1) = −ϕksign(θk)Q,
g j(V,θk,πk,πk−1) = ϕk [|θk|hk(Y, T )− sign(θk)Q] , for j = 2, ...,κn + 1,

g j(V,θk,πk,πk−1) = ϕksign(θk)Q− |θk|

 

1−
∑

k′ ̸=k

ϕk′hk′(Y, T )

!

, for j = κn + 2, ..., pn,

where Q = Y when θk = αk,k−1 and Q = T when θk =∆pk. Denote

m̂ j(θk,πk,πk−1) =
1
n

n
∑

i=1

g j(Vi,θk,πk,πk−1),

σ̂2
j (θk,πk,πk−1) =

1
n

n
∑

i=1

�

g j(Vi,θk,πk,πk−1)− m̂ j(θk,πk,πk−1)
�2

.

The test statistic for H0 : E[g j(θk,πk,πk−1)]≤ 0 for all j = 1,2, ..., pn is defined as

τ(θk,πk,πk−1) = max
1≤ j≤pn

p
nm̂ j(θk,πk,πk−1)

σ̂ j(θk,πk,πk−1)

Given the above test statistic, τ(θk,πk,πk−1), its critical value ck(η) can be calculated by the two-
step multiplier bootstrap procedure, including two main steps: moment inequalities selection and
approximating the distribution of the test statistic by bootstrapping. For selecting inequalities, we
use β = βn as size and follow Chernozhukov et al. (2019) that βn satisfies βn ≤ η/3 and log(1/βn)≤
C1 log(n). Detailed algorithm of calculating critical value is given below.

40Although our moment inequalities in Lemma A.1 fail to satisfy the necessary condition of the uniform size control for the simpler Ĉθk
(η)

(Comment B.2 of Chernozhukov et al. (2019)), simulation results in (Tommasi and Zhang, 2020) show that Ĉθk
(η) still performs good in terms

of achieving the desired coverage rates and of indicating the sign and the true value of the treatment effect in all the DGP designs considered
in this paper. Therefore, practitioners may apply the simpler version for practical purpose, because it is less computational consuming and less
conservative.
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A.1.5 Algorithm

(1) Generate i.i.d. standard normal random variables ϵ1,ϵ2, ...,ϵn that are independent of {Vi}ni=1.

(2) Construct the multiplier bootstrap test statistic,

τB,1(θk,πk,πk−1) = max
1≤ j≤pn

p
nm̂B

j (θk,πk,πk−1)

σ̂ j(θk,πk,πk−1)
,

where m̂B
j (θk,πk,πk−1) =

1
n

∑n
i=1 ϵi

�

g j(Vi,θk,πk,πk−1)− m̂ j(θk,πk,πk−1)
�

. Repeat the pro-
cess in (1)-(2) N B times, and get the conditional (1− βn)-quantile of τB,1(θk,πk,πk−1) given
{Vi}ni=1, denoted as cB,1

k (βn).

(3) Select inequalities and define the set Ĵk by

Ĵk =

�

j = 1, 2, ..., pn :

p
nm̂ j(θk,πk,πk−1)

σ̂ j(θk,πk,πk−1)
> −2cB,1

k (βn)

�

.

(4) Calculate the critical value ck(η) for the test statistic τ(θk,πk,πk−1) as follows. Construct the
multiplier bootstrap test statistic,

τB,2(θk,πk,πk−1) =max
j∈Ĵk

p
nm̂B

j (θk,πk,πk−1)

σ̂ j(θk,πk,πk−1)
,

where τB,2(θk,πk,πk−1) = 0 if Ĵk is empty. The critical value ck(η) is the conditional (1−η+
2βn)-quantile of τB,2(θk,πk,πk−1) given {Vi}ni=1.

Further details about the algorithm we use to construct the confidence intervals in Stata are
given in Lin, Tommasi, and Zhang (2021).

A.1.6 Proof of Corollary 3.1

Proof of Corollary 3.1. (i) Consider C α(βα). Denote the set H α
0,n = {(θ ,P) ∈ Θα(P)×P0} . Since

Θα(P) =
⋃

k=1,2,..,K Θ
α
k (P), for ∀θ ∈ Θα(P), there exists a k∗ such that θ ∈ Θαk∗(P). Now, for ∀θ ∈

Θα(P), the probability such a θ does not lie in C α(βα) is

Pr [θ /∈ C α(βα)]≤Pr
�

θ /∈ Cαk∗,k∗−1
(η+ 2ηπ)

�

,

where the inequality is due that θ /∈ C α(βα) implies such θ not in any Cαk,k−1
(η + 2ηπ) for k =

1, 2, ..., K . It yields from the above inequality and Theorem A.1-(i) that

lim inf
n→∞

inf
(θ ,P)∈H α

0,n

Pr [θ ∈ C α(βα)]≥ lim inf
n→∞

inf
θ∈Θαk∗(P),P∈P0

Pr
�

θ ∈ Cαk∗,k∗−1
(η+ 2ηπ)

�

≥ 1− (η+ 2ηπ).

(ii) Consider C p(β p). Denote set H p
0,n = {(θ ,P) ∈ Θp(P)×P0} . Recall αMis = Cov(Y,g(Z))

Cov(T,g(Z)) . For
∀θ ∈ Θp(P), there exists a ∆p such that θ = αMis ×∆p and ∆p ∈

⋃

k=1,2,..,K Θ
p
k(P). Then, there

exists a k∗ ∈ {1,2, ..., K} such that ∆p ∈ Θp
k∗(P). Hence, for ∀θ ∈ Θp(P), probability such a θ does

not lie in C p(β p) is

Pr (θ /∈ C p(β p))
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=Pr
�

θ /∈ C p(β p),αMis ∈ CαMis(ηαMis)
�

+ Pr
�

θ /∈ C p(β p),αMis /∈ CαMis(ηαMis)
�

≤Pr

�

∆p /∈
⋃

k=1,2,..,K

C∆pk
(η+ 2ηπ),α

Mis ∈ CαMis(ηαMis)

�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

≤Pr

�

∆p /∈
⋃

k=1,2,..,K

C∆pk
(η+ 2ηπ)

�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

≤Pr
�

∆p /∈ Cp1,k∗−p0,k∗
(η+ 2ηπ)

�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

,

where the last inequality is due that∆p does not lie in any C∆pk
(η+2ηπ) for ∀k = 1, 2, ..., K , which

implies ∆p /∈ Cp1,k∗−p0,k∗
(η+ 2ηπ). By Theorem A.1 and Assumption A.1,

lim inf
n→∞

inf
(θ ,P)∈H p

0,n

Pr [θ ∈ C p(β p)]≥ lim inf
n→∞

inf
(θ ,P)∈H p

0,n

Pr
�

∆p ∈ Cp1,k∗−p0,k∗
(η+ 2ηπ)

�

− lim inf
n→∞

sup
P∈P0

Pr
�

αMis /∈ CαMis(ηαMis)
�

≥ 1− (η+ 2ηπ +ηαMis).

(iii) Similarly for C ξ(βξ), let H ξ
0,n be the set H ξ

0,n =
�

(θ ,P) ∈ Θξ(P)×P0

	

. Then, for ∀θ ∈
Θξ(P), there is a∆p such that θ = αMis×∆p and∆p ∈ [ξ,ξ]. Now, for ∀θ ∈ Θξ(P), the probability
such a θ does not lie in C ξ(βξ) is

Pr
�

θ /∈ C ξ(βξ)
�

=Pr
�

θ /∈ C ξ(βξ),αMis ∈ CαMis(ηαMis)
�

+ Pr
�

θ /∈ C ξ(βξ),αMis /∈ CαMis(ηαMis)
�

≤Pr
�

∆p /∈
�

ξ,ξ
�

,αMis ∈ CαMis(ηαMis)
�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

≤Pr
�

αMis /∈ CαMis(ηαMis)
�

,

where the last inequality is because Pr
�

∆p /∈
�

ξ,ξ
�

,αMis ∈ CαMis(ηαMis)
�

= 0 for θ ∈ Θξ(P). Then

lim inf
n→∞

inf
(θ ,P)∈H ξ

0,n

Pr
�

θ ∈ C ξ(βξ)
�

≥ 1−ηαMis .

In addition, if what we have is a ηξ-confidence interval of [ξ,ξ] (or, of ξ), denoted by Cξ(ηξ), and
construct the confidence interval for αIV as C ξ(βξ) =

⋃

α∈CαMis (ηαMis )
{α×∆p : ∆p ∈ Cξ(ηξ)}, then

for ∀θ ∈ Θξ(P), the probability such a θ does not lie in C ξ(βξ) is

Pr
�

θ /∈ C ξ(βξ)
�

=Pr
�

θ /∈ C ξ(βξ),αMis ∈ CαMis(ηαMis)
�

+ Pr
�

θ /∈ C ξ(βξ),αMis /∈ CαMis(ηαMis)
�

≤Pr
�

∆p /∈ Cξ(ηξ),αMis ∈ CαMis(ηαMis)
�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

≤Pr
�

∆p /∈ Cξ(ηξ)
�

+ Pr
�

αMis /∈ CαMis(ηαMis)
�

=ηξ +ηαMis .

It leads to that βξ = ηξ +ηαMis and lim infn→∞ inf(θ ,P)∈H ξ
0,n

Pr
�

θ ∈ C ξ(βξ)
�

≥ 1− (ηξ +ηαMis).
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A.2 Extension: Partial Identification of αIV using Multiple Treatment Proxies

Consider two treatment proxies T and S, where T is the binary indicator used in Section 2.2 and
S is a discrete or continuous variable (hence, for the moment, we do not restrict the support of S).
The extension to multiple treatment measurements is straightforward, hence we do not discuss it
here. The bounds of αk,k−1 and ∆pk under two treatment measures T and S, and their sharpness

results, are summarized by Lemma A.3. Denote ΘpW

k (P) as Θp
k(P) associated with W ∈ {T, S}.

Lemma A.3. Let Assumption 2.1-(ii)-(iv) and 2.3 hold, and suppose Assumption 2.2-(i) is satisfied by
both T and S.

(i) For ∀k = 1, 2, ..., K,

(1) if T V(Y,T,S),k = 0, then Θαk (P) = Θ; if T V(Y,T,S),k > 0, then

Θαk (P) =















h

∆kE(Y |Z)
1−
∑

k′ ̸=k T V(Y,T,S),k′
, ∆kE(Y |Z)

T V(Y,T,S),k

i

, if ∆kE(Y |Z)> 0,

{0}, if ∆kE(Y |Z) = 0,
h

∆kE(Y |Z)
T V(Y,T,S),k

, ∆kE(Y |Z)
1−
∑

k′ ̸=k T V(Y,T,S),k′

i

, if ∆kE(Y |Z)< 0.

(A9)

(2) if max
0≤m≤K

T V(Y,T,S),m = 0, then Θαk (P) = Θ is the sharp identified set of αk,k−1;

if T V(Y,T,S),k > 0 and T V(Y,T,S),k′ = 0 for all k′ ̸= k, then Θαk (P) in (A9) is the sharp identified
set of αk,k−1.

(ii) For ∀k = 1, 2, ..., K and ∀W ∈ {T, S},

(1) if T V(Y,T,S),k = 0, then ΘpW

k (P) = [−1, 1]; if T V(Y,T,S),k > 0, then

Θ
pW

k (P) =















h

∆kE(W |Z)
1−
∑

k′ ̸=k T V(Y,T,S),k′
, ∆kE(W |Z)

T V(Y,T,S),k

i

, if ∆kE(W |Z)> 0,

{0}, if ∆kE(W |Z) = 0,
h

∆kE(W |Z)
T V(Y,T,S),k

, ∆kE(W |Z)
1−
∑

k′ ̸=k T V(Y,T,S),k′

i

, if ∆kE(W |Z)< 0.

(A10)

(2) if max
0≤m≤K

T V(Y,T,S),m = 0, then ΘpW

k (P) = [−1, 1] is the sharp identified set of ∆pW
k ;

if T V(Y,T,S),k > 0 and T V(Y,T,S),k′ = 0 for all k′ ̸= k, then ΘpW

k (P) in (A10) is the sharp
identified set of ∆pW

k .

Proof of Lemma A.3. The proof of Lemma A.3-(i) is similar to the proof of Lemma A.3-(ii), so we
only consider (ii). For (ii), we use ∆pT

k as an example, analogue proof can deliver the results for
∆pS

k . The same proof of Lemma 2.4, together with Lemma A.4, can be used to get the results for
∆pT

k , with H = 0.5× sign(∆k fY,T,S|Z(Y, T, S)), and change P∗f1, f0
, P∗L , P∗U as follows. P∗f1, f0

becomes to

Z ∼ fZ , Dk|Z = 1 for all k = 0, 1, ..., K ,

(Y1, T1, S1)|({Dk}Kk=0,Z) ∼
�

f(Y,T,S), if all Dk are equal,
fY,S f1, if at least one Dk ̸= Dk−1.

(Y0, T0, S0)|({Dk}Kk=0,Z) ∼ fY,S f0,

P∗L is constructed as

Z ∼ fZ , (Dk−1, Dk)|Z = (0,1), Dl ≤ Dw if l < w
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(Y1, T1, S1)|({Dk}Kk=0,Z) ∼ f(Y,T,S)|Z=zk

(Y0, T0, S0)|({Dk}Kk=0,Z) ∼ f(Y,T,S)|Z=zk−1
.

P∗U should be changed to

Z ∼ fZ ,

(Dk−1, Dk)|Z =







(0,1), Dl ≤ Dw if l < w, with probability ∆kE[H|Z],
(0,0), Dl = Dw for all l, w, with probability Pr(H = −0.5|Z = zk),
(1,1), Dl = Dw for all l, w, with probability Pr(H = 0.5|Z = zk−1).

(Y1, T1, S1)|({Dk}Kk=0,Z) ∼

¨

∆k f(Y,T,S,H)|Z(y,t,s,0.5)
∆kE[H|Z]

, if Dk−1 < Dk,

f(Y,T,S)|H=0.5,Z=zk−1
(y, t, s), if Dk−1 = Dk

(Y0, T0, S0)|({Dk}Kk=0,Z) ∼

¨

−∆k f(Y,T,S,H)|Z(y,t,s,−0.5)
∆kE[H|Z]

, if Dk−1 < Dk,

f(Y,T,S)|H=−0.5,Z=zk
(y, t, s), if Dk−1 = Dk.

We then introduce the Lemma below, which shows that, when multiple proxies are available,
the identified set of compliers’ probability can be improved.

Lemma A.4. Let Assumption 2.1-(ii)-(iv) and 2.3 hold, and suppose Assumption 2.2-(i) is satisfied by
both T and S. For k = 1,2, ..., K,

T V(Y,T ),k ≤ T V(Y,T,S),k ≤ Pr(Ck)≤ 1−
∑

k′ ̸=k

T V(Y,T,S),k′ ≤ 1−
∑

k′ ̸=k

T V(Y,T ),k′.

Proof of Lemma A.4. Consider two treatment proxies T and S. If S is discrete, we can simply replace
the second integral in the equation below by a summation over the support of S. By the triangle
inequality, we have that for k = 1,2, ..., K

T V(Y,T,S),k =
1
2

∑

t=0,1

∫∫

�

�

� f(Y,T,S)|Z=zk
(y, t, s)− f(Y,T,S)|Z=zk−1

(y, t, s)
�

�

�dµY (y)dµS(s)

≥
1
2

∑

t=0,1

∫ �

�

�

�

∫

f(Y,T,S)|Z=zk
(y, t, s)− f(Y,T,S)|Z=zk−1

(y, t, s)dµS(s)

�

�

�

�

dµY (y)

=
1
2

∑

t=0,1

∫

�

� f(Y,T )|Z=zk
(y, t)− f(Y,T )|Z=zk−1

(y, t)
�

� dµY (y)

= T V(Y,T ),k.

In addition, we can get

f(Y,T,S)|Z=zk
(y, t, s)− f(Y,T,S)|Z=zk−1

(y, t, s) =Pr(Ck)
�

f(Y1,T1,S1)|Ck
(y, t, s)− f(Y0,T0,S0)|Ck

(y, t, s)
�

.

Then, T V(Y,T,S),k ≤ Pr(Ck)≤ 1−
∑

k′ ̸=k T V(Y,T,S),k′ follows from same proof of Lemma 2.2.

Lemma A.4 says that the bounds of Pr(Ck) shrink from [T V(Y,T ),k, 1 −
∑

k′ ̸=k T V(Y,T ),k′], when
only a single proxy T is used, to [T V(Y,T,S),k, 1 −

∑

k′ ̸=k T V(Y,T,S),k′], when both T and S are used.
The improved bound of Pr(Ck) also leads to narrower bounds of (i) LATEs, (ii) LATMs, and (iii) the
IV estimand αIV . In what follows, we focus on refining our partial identification strategies for αIV

when multiple treatment proxies are available.
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Lemma A.5. Suppose both T and S are binary variables. Define another treatment proxy as TS =
1[T = 1, S = 1]. Then, T V(Y,TS),k ≤ T V(Y,T,S),k for all k.

Proof of Lemma A.5.

T V(Y,TS),k =
1
2

∑

ts=0,1

∫

�

� f(Y,TS)|Z=zk
(y, ts)− f(Y,TS)|Z=zk−1

(y, ts)
�

� dµY (y)

=
1
2

∑

ts=0,1

∫

�

�

�

�

�

∑

s=0,1

�

f(Y,TS,S)|Z=zk
(y, ts, s)− f(Y,TS,S)|Z=zk−1

(y, ts, s)
�

�

�

�

�

�

dµY (y)

≤
1
2

∑

ts=0,1

∑

s=0,1

∫

�

� f(Y,TS,S)|Z=zk
(y, ts, s)− f(Y,TS,S)|Z=zk−1

(y, ts, s)
�

� dµY (y)

=
1
2

∫

�

� f(Y,TS,S)|Z=zk
(y, 0, 0)− f(Y,TS,S)|Z=zk−1

(y, 0, 0)
�

�

+
�

� f(Y,TS,S)|Z=zk
(y, 0, 1)− f(Y,TS,S)|Z=zk−1

(y, 0, 1)
�

�

+
�

� f(Y,TS,S)|Z=zk
(y, 1, 0)− f(Y,TS,S)|Z=zk−1

(y, 1, 0)
�

�

+
�

� f(Y,TS,S)|Z=zk
(y, 1, 1)− f(Y,TS,S)|Z=zk−1

(y, 1, 1)
�

� dµY (y).

By definition of TS, we have

f(Y,TS,S)|Z=zk
(y, 0, 0)− f(Y,TS,S)|Z=zk−1

(y, 0, 0) = f(Y,T,S)|Z=zk
(y, 0, 0)− f(Y,T,S)|Z=zk−1

(y, 0, 0)
+ f(Y,T,S)|Z=zk

(y, 1, 0)− f(Y,T,S)|Z=zk−1
(y, 1, 0)

f(Y,TS,S)|Z=zk
(y, 0, 1)− f(Y,TS,S)|Z=zk−1

(y, 0, 1) = f(Y,T,S)|Z=zk
(y, 0, 1)− f(Y,T,S)|Z=zk−1

(y, 0, 1)
f(Y,TS,S)|Z=zk

(y, 1, 0)− f(Y,TS,S)|Z=zk−1
(y, 1, 0) =0

f(Y,TS,S)|Z=zk
(y, 1, 1)− f(Y,TS,S)|Z=zk−1

(y, 1, 1) = f(Y,T,S)|Z=zk
(y, 1, 1)− f(Y,T,S)|Z=zk−1

(y, 1, 1),

thus,

T V(Y,TS),k ≤
1
2

∑

t,s=0,1

∫

�

�

� f(Y,T,S)|Z=zk
(y, t, s)− f(Y,T,S)|Z=zk−1

(y, t, s)
�

�

�dµY (y) = T V(Y,T,S),k.

First strategy. For the multiple treatment proxies case, the Corollary below gives the sign of
αIV and the expression of Θα(P).

Corollary A.1. Let Assumption 2.1, 2.3 hold. Suppose T and S satisfy Assumption 2.2.

(i) If ∆kE(Y |Z)> 0 for all k = 1, 2, ..., K, then αIV > 0 and

Θα(P) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z)
1−

∑

k′ ̸=k T V(Y,T,S),k′

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z)
T V(Y,T,S),k

��

.

(ii) If ∆kE(Y |Z)< 0 for all k = 1, 2, ..., K, then αIV < 0 and

Θα(P) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z)
T V(Y,T,S),k

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z)
1−

∑

k′ ̸=k T V(Y,T,S),k′

��

.

Proof of Corollary A.1. The proof follows from Theorem 2.2, Lemma A.4, and Lemmas A.1 and A.3
in Appendix A.
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If we relax Corollary A.1-(i) by ∆kE(Y |Z) ≥ 0, while keeping T V(Y,T,S),k > 0 for all k, the ex-
pression of Θα(P) is still valid and αIV ≥ 0. Similar arguments apply for A.1-(ii). If the direction
consistency of LATEs does not hold, the general form of Θα(P) will simply be the union of the
{Θαk (P)}

K
k=1 under multiple proxies given in Lemma A.3, while we fail to recover the sign of αIV .

The identification gains of Θα(P) in Corollary A.1 are only due to the improvement of the possible
region for Pr(Ck), from

[T V(Y,T ),k, 1−
∑

k′ ̸=k

T V(Y,T ),k′]

with single proxy T , to
[T V(Y,T,S),k, 1−

∑

k′ ̸=k

T V(Y,T,S),k′]

with multiple proxies (T, S).

Second and Third strategy. For our second and third partial identification strategies with
multiple treatment proxies, we require all proxies to be binary. This is because both strategies rely
on the existence of the LATMs, ∆pk, for all available proxies.

Denote the estimand αMis associated with W ∈ {T, S}, as αMis,W . Furthermore, denote the
LATMs, for W ∈ {T, S}, as∆pW

k . The sign of αIV and Θp(P), using our second identification strategy
with multiple treatment proxies, are characterized by the following Corollary.

Corollary A.2. Let Assumption 2.1, 2.3 hold. T and S are both binary and satisfy Assumption 2.2.
Suppose ∆kE(W |Z)≥ 0 for ∀k = 1,2, ..., K and W ∈ {T, S}.

(i) For W ∈ {T, S}, if αMis,W ≥ 0, then

Θp(P) =

�

max
W∈{T,S}

min
k∈{1,2,...,K}

�

∆kE(W |Z)
1−

∑

k′ ̸=k T V(Y,T,S),k′
×αMis,W

�

,

min
W∈{T,S}

max
k∈{1,2,...,K}

�

∆kE(W |Z)
T V(Y,T,S),k

×αMis,W

��

.

(ii) For W ∈ {T, S}, if αMis,W < 0, then

Θp(P) =

�

max
W∈{T,S}

min
k=1,2,...,K

�

∆kE(W |Z)
T V(Y,T,S),k

×αMis,W

�

,

min
W∈{T,S}

max
k=1,2,...,K

�

∆kE(W |Z)
1−

∑

k′ ̸=k T V(Y,T,S),k′
×αMis,W

��

.

Proof of Corollary A.2. The proof follows from Theorem 2.3, Lemma A.4, and Lemmas A.1 and A.3
in Appendix A.

Corollary A.2 states that, by employing multiple treatment measures, there are two sources of
gains compared to Corollary 2.3. Firstly, we narrow down the range of Pr(Ck) by using multiple
measurements (T, S). Secondly, we shrink the bound of αIV by intersecting its bounds associated
with T and S, respectively. The intersection contributes to tightening the bound of αIV , as long
as S contains additional information about the true treatment D, other than those contained in T ,
leading to different values of ∆kE(W |Z) and αMis,W with W ∈ {T, S}.

Next, for our third partial identification strategy with multiple treatment proxies, denote by

(ξW ,ξ
W
) the lower and upper bounds of the LATMs∆pW

k , for W ∈ {T, S}. Like before, these bounds
may come from external sources of information.
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Corollary A.3. Let Assumption 2.1, 2.3 hold. T and S are both binary and satisfy Assumption 2.2.

Suppose 0< ξT ≤ ξ
T
≤ 1 and 0< ξS ≤ ξ

S
≤ 1.

(i) If αMis,T ≥ 0 and αMis,S ≥ 0, then αIV ≥ 0 and

Θξ(P) =
h

max
¦

ξTαMis,T ,ξSαMis,S
©

,min
n

ξ
T
αMis,T ,ξ

S
αMis,S

oi

.

(ii) If αMis,T ≤ 0 and αMis,S ≤ 0, then αIV ≤ 0 and

Θξ(P) =
h

max
n

ξ
T
αMis,T ,ξ

S
αMis,S

o

,min
¦

ξTαMis,T ,ξSαMis,S
©
i

.

Proof of Corollary A.3. The proof follows directly from Theorem 2.4 and the fact that αIV lies in
both of the bounds derived using T and S.

We can summarize the results of this subsection as follows. When multiple treatment proxies are
available, the improvements are, in general, nontrivial compared to those with one binary proxy.
This is because different proxies may provide different and relevant information about the true
treatment. Again, by intersecting the bounds we can obtain, potentially, even tighter bounds of
αIV .
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A.3 Extension: Partial Identification Strategies with Covariates

Let X be a vector of observable covariates with support ΩX . For ∀x ∈ ΩX , denote πk(x) = Pr(Z =
zk|X = x) with k = 0,1, ..., K and Pr(z, x) = E(D|Z = z, X = x). The analysis in this section can be
directly extended to conditional on X ∈ A or e(X ) ∈ A, where e : ΩX → R is a scalar function and
A⊆ R denotes a set.

Assumption A.3. (Covariates) Y , D, T , Z and X satisfy the following assumptions:

(i) (i.i.d.) (Y1, Y0, {Dk}Kk=0, T1, T0, Z , X ) are independent and identically distributed across all indi-
viduals and have finite first and second moments;

(ii) (Unconfoundedness) Z ⊥ (Y1, Y0, {Dk}Kk=0, T1, T0)|X . For ∀x ∈ ΩX , Pr(z, x) with z ∈ ΩZ is a
nontrivial function of z and 0< πk(x)< 1, k = 0, 1, ..., K;

(iii) (First stage) For ∀x ∈ ΩX , Cov(D, g(Z)|X = x) ̸= 0 and Cov(T, g(Z)|X = x) ̸= 0;

(iv) (Monotonicity) For any zl , zw ∈ ΩZ , with probability one, either Dl ≥ Dw for all individu-
als, or Dl ≤ Dw for all individuals. Furthermore, for all zl , zw ∈ ΩZ and all x ∈ ΩX , either
Pr(zl , x)≤Pr(zw, x) implies g(zl)≤ g(zw), or Pr(zl , x)≤Pr(zw, x) implies g(zl)≥ g(zw);

Assumption A.4. (Conditional Informative Treatment Proxy) For all k = 1, 2, ..., K, Pr(T = d|Ck, D =
d, X = x)> Pr(T = d|Ck, D = 1− d, X = x), d = {0, 1}.

Assumption A.3 and A.4 extend Assumption 2.1, 2.2 and 2.3 to accommodate covariates. They
are sufficient to obtain the desired partial identification results.

For ∀x ∈ ΩX , define the conditional LATE as αk,k−1(x) = E[Y1−Y0|Ck, X = x] and the conditional
LATM as ∆pk(x) = E[T1 − T0|Ck, X = x] = p1,k(x)− p0,k(x), where pd,k(x) =Pr(Td = 1|Ck, X = x)
and d = {0,1}. Our identification target is the conditional IV estimand αIV (x), which can be
expressed as a weighted average of the conditional LATEs:

αIV (x) :=
Cov(Y, g(Z)|X = x)
Cov(D, g(Z)|X = x)

=
K
∑

k=1

γIV
k (x)αk,k−1(x), (A11)

with weights

γIV
k (x) :=

Pr(Ck|X = x)
∑K

l=k (g(zl)−E[g(Z)|X = x])πl(x)
∑K

m=1 Pr(Cm|X = x)
∑K

l=m (g(zl)−E[g(Z)|X = x])πl(x)
,

where Pr(Ck|X = x) is the conditional probability of compliers group.
Instead of D, suppose we can observe a binary treatment indicator T . In this case, we can obtain

the biased conditional IV estimand αMis(x):

αMis(x) :=
Cov(Y, g(Z)|X = x)
Cov(T, g(Z)|X = x)

=
K
∑

k=1

γMis
k (x)αk,k−1(x), (A12)

with weights

γMis
k (x) :=

Pr(Ck|X = x)
∑K

l=k (g(zl)−E[g(Z)|X = x])πl(x)
∑K

m=1∆pm(x)Pr(Cm|X = x)
∑K

l=m (g(zl)−E[g(Z)|X = x])πl(x)
.

Derivations of (A11) and (A12) can be obtained under Assumption A.3 by applying similar argu-
ments used in the proof of Theorem 2.1 when conditional on X . The relationship between the actual
and the biased conditional IV estimands can be summarized by the theorem below.
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Theorem A.2. Let Assumption A.3 hold. Then:

αIV (x) = ξ(x)αMis(x),

where ξ(x) =
∑K

k=1 γ
IV
k (x)∆pk(x) is the weighted average of the conditional LATMs.

Proof of Theorem A.2. Let ξ(x) = γIV
k (x)/γ

Mis
k (x). The proof follows directly from the expressions

of γIV
k (x), γ

Mis
k (x) and αMis(x).

Given Assumption A.4, without loss of generality, suppose for any given x ∈ ΩX , the support of
ΩZ = {z0, z1, ..., zK} is ordered in such a way that∀l, w= 0,1, ..., K , l < w implies Pr(zl , x)≤Pr(zw, x).
Define the conditional total variation distance for any generic random variable A as below:

T VA,k(x) =
1
2

∫

| fA|Z=zk,X=x(a)− fA|Z=zk−1,X=x(a)|dµA(a),

which bounds the conditional probability of compliers as shown by the lemma below.

Lemma A.6. Under Assumption A.3 and A.4, for k = 1,2, ..., K and ∀x ∈ ΩX ,

T V(Y,T ),k(x)≤ Pr(Ck|X = x)≤ 1−
∑

k′ ̸=k

T V(Y,T ),k′(x).

Proof of Lemma A.6. This proof is a direct extension of the proof of Lemma 2.2 conditional on X .

From the expressions of αIV (x), αMis(x) and their relationship in Theorem A.2, it is clear that
the partial identification for αIV

k (x) relies on the bounds of {αk,k−1(x)}Kk=1 or of {∆pk(x)}Kk=1. For
notational simplicity, let ∆kE(A|Z , X = x) = E(A|Z = zk, X = x) − E(A|Z = zk−1, X = x). Under
Assumption A.3, we have that the conditional LATE satisfies

∆kE(Y |Z , X = x) = αk,k−1(x)P(Ck|X = x). (A13)

Similarly, the following equation holds for each ∆pk(x):

∆kE(T |Z , X = x) =∆pk(x)P(Ck|X = x). (A14)

Given (A13), (A14) and Lemma A.6, we can obtain the following Lemmas that establish analytic
bounds of αk,k−1(x) and ∆pk(x), denoted by Θαk (P, x) ⊂ Θ and Θp

k(P, x) ⊂ [−1,1], respectively.

Lemma A.7. Let Assumption A.3 and A.4 hold. The results below hold for∀k = 1, 2, ..., K and∀x ∈ ΩX .

(i) If T V(Y,T ),k(x) = 0, then Θαk (P, x) = Θ. Whereas if T V(Y,T ),k(x)> 0, then:

Θαk (P, x) =















h

∆kE(Y |Z ,X=x)
1−
∑

k′ ̸=k T V(Y,T ),k′(x)
, ∆kE(Y |Z ,X=x)

T V(Y,T ),k(x)

i

, if ∆kE(Y |Z , X = x)> 0,

{0}, if ∆kE(Y |Z , X = x) = 0,
h

∆kE(Y |Z ,X=x)
T V(Y,T ),k(x)

, ∆kE(Y |Z ,X=x)
1−
∑

k′ ̸=k T V(Y,T ),k′(x)

i

, if ∆kE(Y |Z , X = x)< 0;

(A15)

(ii) If max
0≤m≤K

T V(Y,T ),m(x) = 0, then Θαk (P, x) = Θ is the sharp identified set of αk,k−1(x). Whereas,

if T V(Y,T ),k(x) > 0 and T V(Y,T ),k′(x) = 0 for all k′ ̸= k, then Θαk (P, x) in (A15) is the sharp
identified set of αk,k−1(x).

Proof of Lemma A.7. The proof is a direct extension of the proof of Lemma 2.3 conditional on X .
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The analytic bound for∆pk(x) can be defined in an analogous manner by replacing Y by T , and
replacing Θ by [−1, 1].

For x ∈ ΩX , the bound of αIV (x) can be constructed using either the bounds of {αk,k−1(x)}Kk=1
or {∆pk(x)}Kk=1 or external information. The same logic of partial identification Strategies 1, 2 and
3 still holds, thus can be extended straightforwardly to conditional on covariates.

Strategy 1 with covariates. Let Assumption A.3 and A.4 hold. For ∀x ∈ ΩX :

(i) Denote Θα(P, x) =
⋃

k∈{1,2,...,K}Θ
α
k (P, x), then αIV (x) ∈ Θα(P, x);

(ii) If ∆kE(Y |Z , X = x)> 0 for all k = 1, 2, ..., K , then αIV (x)> 0 and

Θα(P, x) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z , X = x)
1−

∑

k′ ̸=k T V(Y,T ),k′(x)

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z , X = x)
T V(Y,T ),k(x)

��

.

(iii) If ∆kE(Y |Z , X = x)< 0 for all k = 1, 2, ..., K , then αIV (x)< 0 and

Θα(P, x) =

�

min
k∈{1,2,...,K}

�

∆kE(Y |Z , X = x)
T V(Y,T ),k(x)

�

, max
k∈{1,2,...,K}

�

∆kE(Y |Z , X = x)
1−

∑

k′ ̸=k T V(Y,T ),k′(x)

��

.

Strategy 2 with covariates. Let Assumption A.3 and A.4 hold. Under the ascending order,
all ∆kE(T |Z , X = x)≥ 0. For ∀x ∈ ΩX :

(i) DenoteΘp(P, x) =
�

αMis(x)×∆p : ∆p ∈
⋃

k=1,2,...,K Θ
p
k(P, x)

	

, where∆p represents any generic
value in

⋃

k=1,2,...,K Θ
p
k(P, x). Then, αIV (x) ∈ Θp(P, x).

(ii) If αMis(x)≥ 0, then αIV (x)≥ 0 and

Θp(P, x) = αMis(x)×
�

min
k=1,2,...,K

�

∆kE(T |Z , X = x)
1−

∑

k′ ̸=k T V(Y,T ),k′(x)

�

, max
k=1,2,...,K

�

∆kE(T |Z , X = x)
T V(Y,T ),k(x)

��

,

(iii) If αMis(x)< 0, then αIV (x)< 0 and

Θp(P, x) = αMis(x)×
�

min
k=1,2,...,K

�

∆kE(T |Z , X = x)
T V(Y,T ),k(x)

�

, max
k=1,2,...,K

�

∆kE(T |Z , X = x)
1−

∑

k′ ̸=k T V(Y,T ),k′(x)

��

.

Strategy 3 with covariates. Let Assumption A.3 hold. Suppose there exist two known
constants ξ(x)≤ ξ(x) and ξ(x),ξ(x) ∈ (0,1], such that ξ(x)≤ ξ(x)≤ ξ(x). Then:

(i) IfαMis(x)≥ 0, denoteΘξ(P, x) =
�

ξ(x)αMis(x),ξ(x)αMis(x)
�

. Then, αIV (x)≥ 0 andαIV (x) ∈
Θξ(P, x).

(ii) IfαMis(x)≤ 0, denoteΘξ(P, x) =
�

ξ(x)αMis(x),ξ(x)αMis(x)
�

. Then, αIV (x)≤ 0 andαIV (x) ∈
Θξ(P, x).

where values of ξ(x) and ξ(x) may be obtained from external sources of information.
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Targeting the unconditional IV estimand in the presence of covariates. We conclude this
section by showing the technical challenge one would face if, in the case of a discrete or multiple-
discrete instrument(s) and when covariates are included, the identification target was a variant of
the unconditional IV estimand:

α̃IV =
Cov(Y, g(Z))
Cov(D, g(Z))

=
E
¦

Y
�

g(Z)−E[g(Z)]
�©

E
¦

D
�

g(Z)−E[g(Z)]
�© =
EX

¦

E
�

Y
�

g(Z)−E[g(Z)]
�

�

�

�X
�©

EX

¦

E
�

D
�

g(Z)−E[g(Z)]
�

�

�

�X
�©

.

For the numerator, we have

E
�

Y
�

g(Z)−E[g(Z)]
�

�

�

�X
�

=
K
∑

k=0

E[Y |Z = z0, X ] (g(zl)−E[g(Z)])πl(X )

+
K
∑

k=1

Pr(Ck|X )αk,k−1(X )
K
∑

l=k

(g(zl)−E[g(Z)])πl(X )

=E[Y |Z = z0, X ](E[g(Z)|X ]−E[g(Z)])

+
K
∑

k=1

Pr(Ck|X )αk,k−1(X )
K
∑

l=k

(g(zl)−E[g(Z)])πl(X ),

where if without further restrictions, the first term in the above equation is nonzero. Thus, we im-
pose restrictions that Z is independent to X , and consider two questions: (1) if α̃IV and EX

�

αIV (X )
�

are the same estimand; (2) if the answer is no in (1), whether α̃IV is a meaningful estimand. The
assumption Z ⊥ X is satisfied in randomized experimental settings where Z is randomly allocated
treatment assignment or incentives, while such an independence assumption may be infeasible in
other empirical studies.

First, under Z ⊥ X , we know that πl(X ) reduces to πl and

E
�

Y
�

g(Z)−E[g(Z)]
�

�

�

�X
�

=
K
∑

k=1

Pr(Ck|X )αk,k−1(X )
K
∑

l=k

(g(zl)−E[g(Z)])πl ,

E
�

D
�

g(Z)−E[g(Z)]
�

�

�

�X
�

=
K
∑

k=1

Pr(Ck|X )
K
∑

l=k

(g(zl)−E[g(Z)])πl .

(A16)

Moreover, we have

α̃IV =
K
∑

k=1

EX

�

Pr(Ck|X )αk,k−1(X )
�∑K

l=k (g(zl)−E[g(Z)])πl
∑K

k=1EX [Pr(Ck|X )]
∑K

l=k (g(zl)−E[g(Z)])πl

=
K
∑

k=1

Pr(Ck)
∑K

l=k (g(zl)−E[g(Z)])πl
∑K

k=1 Pr(Ck)
∑K

l=k (g(zl)−E[g(Z)])πl

×αk,k−1

=
K
∑

k=1

γIV
k αk,k−1, (A17)

where the second line follows from Frölich (2007) that

EX

�

Pr(Ck|X )αk,k−1(X )
�

= EX [Pr(Ck|X )]EX

�

αk,k−1(X )
�

= Pr(Ck)αk,k−1.
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However,

EX

�

αIV (X )
�

=
K
∑

k=1

EX [γ
IV
k (X )αk,k−1(X )]

=
K
∑

k=1

EX

�

Pr(Ck|X = x)
∑K

l=k (g(zl)−E[g(Z)])πl
∑K

m=1 Pr(Cm|X = x)
∑K

l=m (g(zl)−E[g(Z)])πl

×αk,k−1(X )

�

̸=
K
∑

k=1

γIV
k αk,k−1,

this is because, for two random variables A and B, E[AB] ̸= E[A]E[B] and the equality holds if
Pr(Ck|X = x) is invariant with X . One sufficient condition for Pr(Ck|X = x) = Pr(Ck) is that (D, Z)⊥
X , which, however, is quite restrictive and infeasible in many scenarios such as observational studies.
Thus, in general α̃IV and EX

�

αIV (X )
�

are not the same.
Second, under the assumption Z ⊥ X , α̃IV is still a meaningful estimand because it is also a

weighted average of unconditional LATEs αk,k−1. Given the expression in (A17), by Frölich (2007),

αk,k−1 = EX [αk,k−1(X )] =
EX [∆kE(Y |X , Z)]
EX [Pr(Ck|X )]

,

where the numerator is identifiable and the denominator can be bounded via the conditional version
of our method. We can then conduct the partial identification for α̃IV using a method analogue to
Strategies 1, 2 and 3. One final remark is, for studies where the assumption Z ⊥ X is not applicable,
we suggest practitioners follow our proposed method in Section 4.2 to incorporate covariates in the
presence of discrete or multiple-discrete IV(s).

A.3.1 Proof of Lemma A.1

Proof of Lemma A.1. Recall πk = Pr(Z = zk) and ϕk =
1[Z=zk]πk−1−1[Z=zk−1]πk

πkπk−1
. Similar to Abadie

(2003)’s binary instrument case, we can get for any generic random variable Q and ∀k,

∆kE[Q|Z] =E[Q|Z = zk]−E[Q|Z = zk−1]

=
1
πk
E [πkQ|Z = zk]−

1
πk−1
E [πk−1Q|Z = zk−1]

=E
�

Q× 1[Z = zk]
πk

�

−E
�

Q× 1[Z = zk−1]
πk−1

�

=E
�

1[Z = zk]πk−1 − 1[Z = zk−1]πk

πkπk−1
Q
�

=E[ϕkQ], (A18)

where 1[·] is the indicator function. In addition, it holds that for ∀h ∈ H,

∆kE[h(Y, T )|Z] =
∑

t=0,1

∫

h(y, t)∆k f(Y,T )|Z(y, t)dµY (y)

≤
1
2

∑

t=0,1

∫

�

�∆k f(Y,T )|Z(y, t)
�

� dµY (y) = T V(Y,T ),k, (A19)

where the inequality is by definition of h(y, t) ∈ {−0.5,0.5} and the last equality holds if and only
if h is such that for all (y, t) ∈ ΩY ×{0,1}, h(y, t)∆k f(Y,T )|Z(y, t)≥ 0. Moreover, (A19) also implies
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that for ∀h ∈ H,

1−
∑

k′ ̸=k

T V(Y,T ),k′ ≤ 1−
∑

k′ ̸=k

∆k′E[hk′(Y, T )|Z], (A20)

where the equality holds if and only if hk′ is such that ∀(y, t) ∈ ΩY×{0,1}, hk′(y, t)∆k′ f(Y,T )|Z(y, t)≥
0 for all k′ ̸= k. Given (A19) and (A20) above, we can then rewrite Θαk as

−sign(αk,k−1)∆kE [Y |Z]≤ 0,
|αk,k−1|∆kE [h(Y, T )|Z]≤ sign(αk,k−1)∆kE [Y |Z] , for all h ∈ H

sign(αk,k−1)∆kE [Y |Z]≤ |αk,k−1|



1−
∑

k′ ̸=k

∆k′E[hk′(Y, T )|Z]



 , for all hk′ ∈ H.

Applying (A18) to the above inequalities gives us the desired results. Same arguments can be
applied to prove the results for Θp

k .

A.3.2 Proof of Lemma A.2

Proof of Lemma A.2. Assumption A.2(ii) implies Hn ⊂ Hn+1 ⊂ · · · ⊂ H. Thus, it is straightforward
that eΘαk (P) and eΘp

k(P) cover Θαk (P) and Θp
k(P), respectively.

Define h∗k(y, t) = 0.5×sign(∆k f(Y,T )|Z(y, t)) and h∗k,n = argmaxh∈Hn
∆kE[h(Y, T )|Z]. Since (A19)

holds for ∀h ∈ H and the equality holds if and only if h is such that for all (y, t) ∈ ΩY × {0,1},
h(y, t)∆k f(Y,T )|Z(y, t)≥ 0, we know that

T V(Y,T ),k = sup
h∈H
∆kE[h(Y, T )|Z]. (A21)

In addition, because H = h∗k(Y, T ), where the random variable H is defined in the proof of Lemma
2.4 and we have shown that ∆kE[H|Z] = T V(Y,T ),k, it yields that

h∗k = arg sup
h∈H
∆kE[h(Y, T )|Z].

Due that f(Y,T )|Z=zk
is Hölder continuous, for l = 1, 2, ..., Ln

max
(y,t)∈In,l

∆k f(Y,T )|Z(y, t)− min
(y ′,t ′)∈In,l

∆k f(Y,T )|Z(y
′, t ′)

≤ max
(y,t)∈In,l

f(Y,T )|Z=zk
(y, t)− min

(y,t)∈In,l

f(Y,T )|Z=zk−1
(y, t)− min

(y ′,t ′)∈In,l

f(Y,T )|Z=zk
(y ′, t ′)

+ max
(y ′,t ′)∈In,l

f(Y,T )|Z=zk−1
(y ′, t ′)

≤2M0(
2M1

Ln
)m. (A22)

Denote Mn = 2M0(
2M1
Ln
)m. If max(y,t)∈In,l

|∆k f(Y,T )|Z(y, t)| > Mn, from (A22) it has to be the max-
imum and minimum of ∆k f(Y,T )|Z(y, t) over (y, t) ∈ In,l both stand on one side of zero. Thus,
sign(∆k f(Y,T )|Z(y, t)) is a constant over In,l , and h∗k = h∗k,n for those In,l . Therefore, for each In,l ,
we have either h∗k = h∗k,n and |∆k f(Y,T )|Z(y, t)| > Mn, or |∆k f(Y,T )|Z(y, t)| ≤ Mn. Now, consider the
following three cases. Firstly, h∗k = h∗k,n and |∆k f(Y,T )|Z(y, t)|> Mn. Then,

h∗k(y, t)∆k f(Y,T )|Z(y, t)− h∗k,n(y, t)∆k f(Y,T )|Z(y, t)≤ Mn, (A23)

since the left hand side of (A23) is zero and Mn ≥ 0. Secondly, for (y, t) such that h∗k(y, t) =
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h∗k,n(y, t) and |∆k f(Y,T )|Z(y, t)| ≤ Mn, (A23) still holds. Lastly, for (y, t) such that h∗k(y, t) = −h∗k,n(y, t)
and |∆k f(Y,T )|Z(y, t)| ≤ Mn, we have

h∗k(y, t)∆k f(Y,T )|Z(y, t)− h∗k,n(y, t)∆k f(Y,T )|Z(y, t)

=2h∗k(y, t)∆k f(Y,T )|Z(y, t)
=2h∗k(y, t)si gn(∆k f(Y,T )|Z(y, t))|∆k f(Y,T )|Z(y, t)|
=2× 0.5|∆k f(Y,T )|Z(y, t)|
≤Mn,

where the third equality is because h∗k(y, t) = 0.5× si gn(∆k f(Y,T )|Z(y, t)), and the last inequality is
due to |∆k f(Y,T )|Z(y, t)| ≤ Mn. Therefore, (A23) holds for ∀(y, t) ∈ ΩY × {0,1}.

0≤ sup
(π,P)∈Π×∈P0

§

sup
h∈H
E [ϕkh(Y, T )]−max

h∈Hn

E [ϕkh(Y, T )]
ª

= sup
(π,P)∈Π×∈P0

¦

E
�

ϕkh∗k(Y, T )
�

−E
�

ϕkh∗k,n(Y, T )
�©

= sup
(π,P)∈Π×∈P0

¨

∑

t=0,1

∫

h∗k(y, t)∆k f(Y,T )|Z dµY (y)−
∑

t=0,1

∫

h∗k,n(y, t)∆k f(Y,T )|Z dµY (y)

«

= sup
(π,P)∈Π×∈P0

¨ Ln
∑

l=1

∫

In,l

�

h∗k(y, t)− h∗k,n(y, t)
�

∆k f(Y,T )|Z dµY (y)dµT (t)

«

≤ sup
(π,P)∈Π×∈P0

Mn→ 0,

which gives the first convergence in Lemma A.2, since Mn→ 0 uniformly over Π×P0.
Moreover, recall that (A20) is satisfied by ∀hk′ ∈ H, and the equality holds if and only if hk′ is

such that ∀(y, t) ∈ ΩY × {0,1}, hk′(y, t)∆k′ f(Y,T )|Z(y, t)≥ 0 for all k′ ̸= k. Thus,

1−
∑

k′ ̸=k

T V(Y,T ),k′ = inf
{hk′}∈HK−1



1−
∑

k′ ̸=k

∆k′E[hk′(Y, T )|Z]



= 1−
∑

k′ ̸=k

sup
hk′∈H

∆k′E[hk′(Y, T )|Z]. (A24)

Hence, it follows from (A23) and (A24) that

0≤ sup
(π,P)∈Π×∈P0







min
{hk′}∈HK−1

n



1−
∑

k′ ̸=k

E[ϕk′hk′(Y, T )]



− inf
{hk′}∈HK−1



1−
∑

k′ ̸=k

E[ϕk′hk′(Y, T )]











= sup
(π,P)∈Π×∈P0

(

∑

k′ ̸=k

�

sup
hk′∈H

∆k′E[ϕk′hk′(Y, T )]− max
hk′∈Hn

E [ϕk′hk′(Y, T )]

�

)

≤ sup
(π,P)∈Π×∈P0

∑

k′ ̸=k

Mn = (K − 1)Mn→ 0.

A.3.3 Proof of Theorem A.1

By abuse of notation, denote by Θ the parameter space of θk, and denote by eΘθk (P) the partially
identified set of θk under Hn. Before we proceed to the proof of Theorem A.1, let us introduce
Corollary 5.1 and Theorem 6.1 in Chernozhukov et al. (2019) of the asymptotic size and power of
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the test statistic τ(θk,πk,πk−1).

Theorem A.3. By abuse of notation, we denote π0
k = Pr(Z = zk) to emphasis that it is the true

probability. Given a sequence of ϵn > 0 with ϵn→ 0 and ϵn

p

log(pn)→∞, denoteH0,n as

H0,n =
¦

(θk,π,P) ∈ Θ×Π×P0 : θk ∈ eΘθk (P), (πk−1,πk) = (π
0
k−1,π0

k)
©

.

DenoteH1,n as

H1,n =

�

(θk,π,P) ∈ Θ×Π×P0 : max
j=1,...,pn

m j(θk,πk,πk−1)

σ j(θk,πk,πk−1)
≥(1+ ϵn)

√

√2 log(pn)
n

, and

(πk−1,πk) = (π
0
k−1,π0

k)

�

.

Under assumptions in Theorem A.1,

(i) lim inf
n→∞

inf
(θk,π,P)∈H0,n

Pr [τ(θk,πk,πk−1)≤ ck(η)]≥ 1−η.

(ii) lim
n→∞

sup
(θk,π,P)∈H1,n

Pr [τ(θk,πk,πk−1)≤ ck(η)] = 0.

Now, the proof of Theorem A.1 can be shown as below.

Proof of Theorem A.1. Denote the event A as A= {π0
k ∈ Cπk

(ηπ),π0
k−1 ∈ Cπk−1

(ηπ)} and its comple-
ment as AC .

(i) Under assumptions in Theorem A.1, for any P ∈ P0 such that θk ∈ eΘθk (P), we can get

Pr
�

θk /∈ Cθk
(η+ 2ηπ)

�

=Pr
�

θk /∈ Cθk
(η+ 2ηπ), A

�

+ Pr
�

θk /∈ Cθk
(η+ 2ηπ), AC

�

≤Pr
�

θk /∈ Cθk
(η+ 2ηπ), A

�

+ Pr
�

AC
�

≤Pr
�

θk /∈ Cθk
(η+ 2ηπ), A

�

+ Pr
�

π0
k /∈ Cπk

(ηπ)
�

+ Pr
�

π0
k−1 /∈ Cπk−1

(ηπ)
�

≤Pr
�

τ(θk,π0
k,π0

k−1)> ck(η), A
�

+ Pr
�

π0
k /∈ Cπk

(ηπ)
�

+ Pr
�

π0
k−1 /∈ Cπk−1

(ηπ)
�

≤Pr
�

τ(θk,π0
k,π0

k−1)> ck(η)
�

+ Pr
�

π0
k /∈ Cπk

(ηπ)
�

+ Pr
�

π0
k−1 /∈ Cπk−1

(ηπ)
�

, (A25)

where the second last inequality is by definition of Cθk
. Therefore, it follows from Theorem A.3-(i),

Assumption A.1 and the convergence of eΘθk (P) to Θθk (P) in Lemma A.2, that

lim inf
n→∞

inf
P∈P0, θk∈Θθk (P)

Pr
�

θk ∈ Cθk
(η+ 2ηπ)

�

≥ 1− (η+ 2ηπ).

(ii) Given Theorem A.3-(ii), for ∀(θk,π,P) ∈ Θ ×Π×P0 such that (πk−1,πk) = (π0
k−1,π0

k) and
θk /∈ Θθk (P), it suffices to show that the above (θk,π,P) ∈ H1,n, when n is sufficiently large. Since
if so, Theorem A.3-(ii) leads to that for any fixed θk /∈ Θθk (P), we have Pr

�

τ(θk,π0
k,π0

k−1)> ck(η)
�

going to one. By Assumption A.1-(i), suppose there exists a constant M2 such that σ j(·) < M2 for
all j = 1,2, ..., pn. Consider the two cases below.

Case 1. θk = αk,k−1. If αk,k−1 /∈ Θαk (P), at least one of (A1)-(A3) is violated. If (A1) does not
hold, then E[−ϕksi gn(αk,k−1)Y ] > 0 at (πk−1,πk) = (π0

k−1,π0
k), which means its sample analogue

m̂1(αk,k−1,π0
k,π0

k−1)> 0 for large enough n. By the definition of the test statistic τ(αk,k−1,πk,πk−1)
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and the boundedness of σ j(·), we have that

τ(αk,k−1,πk,πk−1) = Op(
p

n)→∞.

While, it yields from ϵn→ 0 and the assumption on the rate of pn that (1+ϵn)
Ç

2 log(pn)
n goes to zero.

Therefore, we know that (θk,π,P) ∈H1,n for large enough n.
If (A2) does not hold, it implies that

sup
hk∈H
E
�

ϕk

�

|αk,k−1|hk(Y, T )− sign(αk,k−1)Y
�	

> 0.

Based on the first convergence result in Lemma A.2 and the fact that ϕk|αk,k−1| is bounded by
Assumption A.1, there exists some hk ∈ Hn such that when n is large enough,

E
�

ϕk

�

|αk,k−1|hk(Y, T )− sign(αk,k−1)Y
�	

> 0. (A26)

Let c > 0 be the value of the left hand side of (A26). We can then conclude that there exists a j =
2, ...,κn+1 such that m j(θk,πk,πk−1)≥ c when n is sufficiently large, leading toτ(αk,k−1,πk,πk−1) =
Op(
p

n)→∞. Thus, (θk,π,P) ∈H1,n is satisfied.
If (A3) does not hold, it implies

sup
hk∈H
E



ϕksign(αk,k−1)Y − |αk,k−1|

 

1−
∑

k′ ̸=k

ϕk′hk′(Y, T )

!



> 0.

The same arguments for (A26) can be applied to arrive the same conclusion, based on the second
convergence in Lemma A.2 as well as the fact that ϕk′|αk,k−1| is bounded. Hence, we can conclude
that if αk,k−1 /∈ Θαk (P), then (αk,k−1,π,P) ∈ H1,n. The desired result follows directly from Theorem
A.3-(ii).

Case 2. θk = ∆pk. Since ∆pk /∈ Θ
p
k(P), at least one of Equations (A4)-(A6) is violated. The

same arguments for Case 1 can be applied to achieve the desired results.
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