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Abstract

I propose a time-weighted difference-in-differences (TWDID) esti-
mation approach that is robust against time-varying common factors
in short T panels. Time weighting substantially reduces both bias and
variance compared to an unweighted DID estimator through balancing
the pre-treatment and post-treatment factors. To conduct valid infer-
ence on the average treatment effect, I develop a correction term that
adjusts conventional standard errors for the presence of weight estima-
tion uncertainty. Revisiting a study on the effect of a cap-and-trade
program on NOx emissions, TWDID estimation reduces the standard
errors of the estimated treatment effect by 10% compared to a conven-
tional DID approach.

Keywords: Synthetic Difference-in-differences, Interactive Fixed Effects, Causal
Inference, Panel Data.

1 Introduction

The presence of interactive fixed effects, for example due to time-varying
common factors, leads to biased difference-in-difference (DID) estimates.
While the estimators of Arkhangelsky, Athey, Hirshberg, Imbens, and Wager
(2021) and Chan and Kwok (2021) address this issue in large T panels, the
question remains how to account for common factors in short T panels.

In this paper, I suggest using a time-weighted DID (TWDID) estimator.
Factor imbalances between pre-treatment and post-treatment periods cause
the DID estimator to be biased. This bias can be eliminated using time
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weights which give a higher weight to pre-treatment periods that are more
similar to the post-treatment periods. In theory, a complete elimination
of the bias requires oracle weights that perfectly balance the factors. In
practice, weights that are estimated from the control unit data succeed in
reducing the bias substantially.

A second effect of the factor imbalance is that it amplifies the variance
of the DID estimator. By balancing the factors, time weighting reduces the
variance and leads to more accurate estimates. In fact, when the number
of units is large compared to the number of periods, the estimated weights
converge to pseudo-true weights which minimize the variance of the esti-
mated treatment effect. Simulations show that the amount by which the
variance is reduced outweighs the additional variance caused by the weight
estimation uncertainty.

As a consequence of the bias, inference based on DID estimation will
be substantially oversized. The TWDID estimator reduces this problem
through bias correction. However, the presence of estimated weights still
leads to empirical size in excess of the nominal size when using standard
covariance estimators. I propose a two-step standard error procedure that
eliminates the remaining size distortions of TWDID inference. First, the
weighted cluster-covariance matrix estimator (Arellano, 1987) can be used
to estimate the variance of the estimated treatment effect under pseudo-true
weights. For the second step, I develop a correction term that accounts for
the presence of estimated weights. It uses the fact that in short T the time
weights are asymptotically normal around the pseudo true weights.

Revisiting a study by Deschenes, Greenstone, and Shapiro (2017) on the
effect of a cap-and-trade program on NOx emissions, I compare the practical
differences between DID and TWDID estimation in a short T panel. I
find evidence of time-varying common factors in the pre-treatment data.
While the point estimates only differ to a small degree, TWDID reduces the
standard errors of the estimated average treatment effect by 10% compared
to a conventional DID approach.

The TWDID estimator is a restricted version of the Arkhangelsky et al.
(2021) synthetic DID (SDID) estimator. Next to time weights, the SDID
estimator also uses synthetic control unit weights to address the influence of
common factors. Consistency results with estimated unit weights require a
larger number of pre-treatment periods (Abadie, Diamond, and Hainmueller,
2010; Ferman, 2019; Abadie and L’hour, 2020). Therefore, several challenges
occur when applying the SDID estimator in short T panels. First, the unit
weight estimation causes additional variation which might outweigh any
additional balancing gains. Second, it is unclear how to conduct inference
in presence of estimated unit weights. Arkhangelsky et al. (2021) propose
a jackknife based variance estimator which leads to conservative standard
errors. However, this result requires that the weight estimation noise is
negligible, which only holds for large T .
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Other approaches such as Chan and Kwok (2021) and Gobillon and
Magnac (2016) rely on estimating the factor structure by methods of prin-
cipal components, which also requires large T . Avoiding the estimation of
the whole factor structure, Pesaran (2006) finds cross-sectional averages to
sufficiently proxy the factors in each period. In absence of covariates, this
approach could account for one common factor when T is small. When eval-
uating a one-time policy intervention, however, it is not required to control
for the factors in each period. Instead, it suffices to balance the differences
between the average pre-treatment and post-treatment factors.

The remainder of the paper is structured as follows. Section 2 covers the
Theory. Section 2.1 introduces the interactive fixed effects model and defines
the TWDID estimator. Section 2.2 shows the bias and variance reduction
properties. Section 2.3 covers inference. Section 3 illustrates the theoretical
results with simulations. Section 4 compares TWDID and DID estimation
in the study of Deschenes et al. (2017) on NOx emissions.

2 Theory

2.1 Setting

Consider a policy intervention starting in period t = T0 which affects units
i = N0+1, . . . , N that are part of a large sample i = 1, . . . , N0, N0+1, . . . , N
observed over a small number of periods t = 1, . . . , T0, T0 + 1, . . . , T . We
seek to estimate the average treatment effect in the post-treatment periods
t = T0 + 1, . . . , T on the outcome y. Let Di = I(i > N0) indicate whether
unit i is ever treated and let Nj = {i : Di = j}, j = 0, 1 be the sets of
untreated and treated units, respectively. Let κ = N0

N denote the share of
untreated units and π = T0

T the share of pre-treatment periods.
We use the interactive fixed model (Bai, 2009)

yit = βi + τDit + λ′ift + εit (1)

where Dit = I(i > N0, t > T0) is a dummy that is one for treated units in
periods after the treatment started and zero otherwise, τ is the homogeneous
treatment effect, βi unit fixed effects, ft and λi are r-dimensional vectors of
common factors and loadings, and εit is an idiosyncratic error component.

Unobserved factor structures λ′ift are present in many economic vari-
ables. Bai (2009) discusses, among others, the following examples. In mi-
croeconomics, λi can be thought of a vector of unobserved, time-invariant
characteristics of individual i. In contrast to the fixed effects βi, they have a
time-varying impact measured by ft on the outcome yit. In macroeconomics,
the factors ft are common shocks (e.g. technology or weather shocks) that
have an heterogeneous impact λi on unit i.

I make the following assumptions.
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Assumption 1 (Correlated loadings). E[λi|Di = 1] − E[λi|Di = 0] = ξλ <

∞ and var[λi] = Σλ,i with limn→∞
1
Nj

∑
i∈Nj Σλ,i = Σ

(j)
λ for j = 0, 1, both

positive definite r × r matrices.

Assumption 2 (Strict exogeneity). For every i, E[εi|βi, Di,λi,F ] = 0.
Moreover, E[εiε′i|Di] = Σε,i with limn→∞

1
Nj

∑
i∈Nj Σε,i = Σ

(j)
ε for j = 0, 1.

Positive definite T × T matrices.

Assumption 3 (Random sampling). (εi,λi) are independent over the cross
section. κ, π ∈ (0, 1) are both constant as N →∞ and T0 ≥ 2.

Assumption 1 is the central characteristic of the model. It allows the
loadings λi to differ systematically between treated and untreated units.
The loading imbalance ξλ measures how much more the treated units are on
average affected by the common factors ft. It also nests the two-way fixed
effects model as a special case for ξλ = 0 and Σ

(1)
λ = Σ

(0)
λ = 0, since then

λi = λ for all i. In that case the factor structure λ′ift reduces to a time
fixed effect γt = λ′ft.

Under Assumption 2, the treatment assignment is strictly exogeneous
once conditioned on the loadings, fixed effects and the factors. Moreover, I
allow for heteroskedasticity and arbitrary serial dependence of the idiosyn-
cratic errors. The common factors F = (f1, . . .fT )′ (T × r) are realizations
of an arbitrary deterministic or stochastic process. The number of factors
r is unknown and fixed. Without loss of generality I assume that F ′ι = 0.
All results hold conditional on F .

Assumption 3 imposes independence of the error component over the
cross section. It requires the number of treated and untreated units to grow
at the same rate. We need at least two pre-treatment periods.

I propose a restricted version of the Arkhangelsky et al. (2021) synthetic
DID estimator which uses only time weights and refer to it as the time-
weighted DID estimator. It is computed in two steps.

1. Obtain a T0 vector of time weights v̂ = (v̂1, . . . , v̂T0)′ using the de-
meaned outcomes ẏi,t = yi,t− 1

N0

∑N0
i=1 yi,t of the untreated units only.

Regress the average post-treatment outcome ¯̇yi,[1] on the pre-treatment
outcomes ẏi,[0] = (ẏi,1, . . . , ẏi,T0)′

v̂ = arg min
v∈V

N0∑
i=1

(¯̇yi,[1] − ẏ′i,[0]v)2 (2)

with V = {v ∈ RT0 : vt ≥ 0, ∑T0
t=1 vt = 1} the set of non-negative

weights that sum to one.
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2. Obtain the time-weighted DID estimator τ̂(v̂) as solution to the weighted
two-way fixed effect regression

min
τ,µ,γ

N∑
i=1

T∑
t=1

vt(yit − τDit − µi − γt)2 (3)

The resulting estimator is

τ̂(v) = ∆̄[1] −
T0∑
t=1

vt∆t (4)

with ∆t = ȳ
(1)
t −ȳ

(0)
t , ∆̄[1] = 1

T−T0

∑
t>T0 ∆t, ȳ(1)

t = 1
N1

∑N
i=N0+1 yit and

ȳ
(0)
t = 1

N0

∑N0
i=1 yit the treated and untreated units’ average outcome,

respectively.

The DID estimator is the special case of the TWDID estimator with
equal weights v̄ = ιT0

T0
. The synthetic DID estimator of Arkhangelsky et al.

(2021) uses both unit weights and time weights in product form ωivt in (3).
The treated units are weighted equally and the weights of the untreated units
are non-negative and sum to one. The estimator has the form of τ̂(v) with
simple averages over the control units ȳ(0)

t replaced by weighted averages∑
i∈N0 ωiyit. The control unit weights are estimated from the pre-treatment

data in the same manner as the pre-treatment time weights are estimated
from the control unit data. Unit weight estimation, however, requires an
additional penalty term to ensure uniqueness when N0 is large compared to
T0.

2.2 Bias and variance reduction through factor balancing

In the following part I will first consider the properties of τ̂(v) under fixed
weights to document the issue of factor imbalance. I then show how es-
timated time weights reduce the bias and the asymptotic variance of the
estimated treatment effect compared to the unweighted DID approach.

Consider the treatment effect estimate τ̂(v) for a given vector of weights
v. For equal weights v = v̄ this resembles the DID estimator.

Theorem 1. Suppose Assumptions 1-3 hold. Then for every v ∈ V,

1. E[τ̂(v)|F ] = τ + b(v) with bias b(v) = ξ′λξf (v) and the weighted factor
imbalance ξf (v) = f̄(1) − F ′v,

2. N var[τ̂(v)|F ] = ξf (v)′Σλξf (v)+Vε(v) =: Vτ̂ (v) with Σλ = var[λ̄(1)−
λ̄(0)], Vε(v) = var[∆̄ε,[1] −

∑
t≤T0 vt∆ε,t], ∆ε,t = ε̄

(1)
t − ε̄

(0)
t , and

3.
√
N(τ̂(v)− τ − b(v)) d−→ N[0, Vτ̂ (v)] as N →∞.
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The weighted factor imbalance ξf (v) will play an important role. It is
the difference between the average post-treatment factors and the weighted
average pre-treatment factors and affects the estimated treatment effect in
two ways. First, the combination of a non-zero loading imbalance ξλ and
factor imbalance ξf (v) leads to a first order bias term b(v). For example,
consider the case with one common factor ft, which affects treated units
are on average more than untreated units (ξλ > 0). If ft is on average in
the post-treatment periods higher than in the pre-treatment periods, τ̂(v)
will overestimate the treatment effect. Second, it increases the part of the
variance resulting from variation in the loadings. This holds irrespective
of whether the treatment assignment Di correlates with the loadings λi, as
long as they have within group variation Σλ > 0.

The properties of the DID estimator follow as the special case of equal
weights v = v̄. Researches typically refers to the common trend assumption
as condition for unbiasedness. In the current setting, a trend means a non-
zero factor imbalance ξf (v̄). The trends are common if the factors affect
treated and untreated units equally. Hence the DID estimator is unbiased
(b(v̄) = 0) if either the trends are common (ξλ = 0) or there are no trends
(ξf (v̄) = 0).

Now consider weights v̂ estimated from the control unit data as per (2).
As the number of control units N0 grows, they converge in probability to
the pseudo-true time weights v∗ which solve the population equivalent of
(2)

v∗ = arg min
v∈V

{
ξf (v)′Σ(0)

λ ξf (v) + V (0)
ε (v)

}
(5)

with V
(0)
ε (v) = var[ε̄(0)

[1] −
∑
t≤T0 vtε̄

(0)
t ]. The pseudo-true weights minimize

an expression close to the variance of τ̂(v) derived in Theorem 1. It is not
just influenced by the factor imbalance ξf (v), but also by the error vari-
ance V (0)

ε (v). As a consequence, the pseudo-true weights do generally not
balance the factors entirely. The following Theorem establishes asymptotic
normality around v∗.
Theorem 2. Suppose Assumptions 1-3 hold. Let T+ be the number of
strictly positive elements of v∗ with 1 ≤ T+ ≤ T0. As N0 →∞,

1. v̂ p−→ v∗

2.
√
N(v̂ − v∗) d−→ N[0, 1

κΣv̂] with rkΣv̂ = T+ − 1, (Σv̂)s,t = 0 if
min{v∗s , v∗t } = 0.

Appendix A.2 contains the proof.
Most importantly, the estimated weights v̂ and the treatment effect es-

timate τ̂(v) converge at the same rate 1√
N

. Using estimated weights, the
estimation error then becomes

τ̂(v̂)− τ − b(v∗) = ZN (v∗)− (F[0]ξλ)′(v̂ − v∗) +Op(
1
N

)
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with ZN (v∗) = τ̂(v∗) − τ − b(v∗) the estimation error under pseudo-true
weight and F[0] = (f1, . . . ,fT0)′ the (T0×r) matrix of pre-treatment factors.
This leads us to the following result

Theorem 3. Suppose Assumptions 1-3 hold. Then, as N →∞,

1. τ̂(v̂) p−→ τ + b(v∗)

2.
√
N(τ̂(v̂)− τ − b(v∗)) d−→ N[0, Vτ̂(v̂)]

with
Vτ̂(v̂) = Vτ̂ (v∗) + 1

κ
(F[0]ξλ)′Σv̂F[0]ξλ

The magnitude of the bias b(v∗) = ξ′λξf (v∗) depends on the remaining
factor imbalance under pseudo-true weights. The limit variance consists
of two parts. First, Vτ̂ (v∗) is the variance of the treatment effect estimator
under fixed, pseudo-true weights v∗. The second term comes from the weight
estimation noise and is only present if ξλ 6= 0. In this case τ̂(v̂) does not
have oracle properties as its asymptotic distribution differs from the one of
τ̂(v∗).

Comparing the DID estimator τ̂(v̄) to the time-weighted version τ̂(v̂)
leads to the following conclusions. The bias of the latter is smaller if
the pseudo-true weights decrease the factor imbalance compared to equal
weights. This is arguably the case in relevant scenarios, although technically
it is possible to make up cases in which it does not hold. Next, weighting
has a two-fold effect on the relative variance

Vτ̂(v̂)
Vτ̂ (v̄) = Vτ̂ (v∗)

Vτ̂ (v̄) +
F[0]ξ

′
λΣv̂F[0]ξλ

κVτ̂ (v̄)

First, v∗ minimizes the first term by construction. This comes at the cost of
weight estimation noise, hence the second term. The following corollary pro-
vides high-level sufficient conditions to assure that TWDID in fact reduces
bias and variance.

Corollary 1. Suppose Assumptions 1-3 hold. If Σ
(j)
λ ,Σ

(j)
ε , j = 0, 1 and F

are such that

1. ξ′λ (ξf (v̄)ξf (v̄)′ − ξf (v∗)ξf (v∗)′) ξλ > 0,

2. Vτ̂ (v∗)
Vτ̂ (v̄) < 1− F[0]ξ

′
λΣv̂F[0]ξλ
κVτ̂ (v̄)

then the TWDID estimator τ̂(v̂) has a smaller bias and a smaller variance
than the DID estimator τ̂(v̄).

The Monte Carlo simulations in Section 3 show that TWDID substan-
tially reduces bias and variance in a setting with one gaussian factor.
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2.3 Inference with two-step standard errors

I propose a consistent estimator of the limit variance derived in Theorem 3

V̂τ̂(v̂) = V̂τ̂ (v̂) + 1
κ

∆̇′[0]Σ̂v̂∆̇[0] (6)

which consists of two parts. The first part V̂τ̂ (v̂) is the cluster-covariance ro-
bust variance estimator of Arellano (1987) applied to the weighted data. It
consistently estimates the variance under pseudo-true weights Vτ̂ (v∗). The
second part accounts for the additional variance caused by the weight esti-
mation noise. It consist of the demeaned average pre-treatment differences
∆̇[0] = (∆1−∆̄[0], . . . ,∆T0−∆̄[0])′ with ∆̄[0] = 1

T0

∑
t≤T0 ∆t and a consistent

estimator Σ̂v of the weight variance. In the remainder of this section I will
explain how to construct the different components of V̂τ̂(v̂) and associated
confidence intervals in more detail.

The first part of the estimated variance, V̂τ̂ (v̂), is obtained in the fol-
lowing way. First estimate the time weights v̂. Next, weigh only the pre-
treatment outcomes and call them ỹit = T0v̂tyit for t ≤ T0 and ỹit = yit for
t > T0. Run a two-way fixed effects regression of the weighted outcomes
ỹit on the treatment indicator Dit, which yields τ̂(v̂). Applying the Arel-
lano (1987) cluster-covariance estimator1 on the weighted data then provides
V̂τ̂ (v̂). The following Theorem ensures consistency. Its details are explained
in the Appendix.

Theorem 4. Suppose Assumptions 1-3 hold. Then for any v ∈ V

V̂τ̂ (v) p−→ Vτ̂ (v)

as N →∞. Moreover,
V̂τ̂ (v̂) p−→ Vτ̂ (v∗)

with v̂ the estimated weights as per (2) and v∗ their probability limit as
defined in (5).

Next, I will explain why ∆̇′[0]Σ̂v̂∆̇[0] provides an adequate estimator of
(F[0]ξλ)′Σv̂F[0]ξλ. First, the demeaned average pre-treatment differences
become

∆̇[0] = F[0]ξλ +Op(
1√
N

)

implying that they consistently estimate F[0]ξλ as N → ∞. The estimator
of the weight variance Σ̂v can be explained as follows. Let v̂ be the T0
vector of estimated weights as per (2). As Theorem 3 establishes, only the
non-zero weights matter for the limiting weight variance Σv̂. We can write

1Often referred to as clustering the standard errors on the unit (or individual) level,
for instance in Bertrand, Duflo, and Mullainathan (2004)
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the non-zero weights as an unrestricted least-squares estimate and thus use
least-squares type of standard errors to estimate its variance.

Let v̂[+] be the T+ vector which just contains the positive weights. Be-
cause the weights sum to one, I can write

v̂[+] = e1 +Rv̂−1

with e1 the T+-dimensional unit vector, R =
(
−ι′T+−1
IT+−1

)
a T+ × T+ − 1

matrix and v̂−1 the last T+ − 1 elements of v̂[+]. The latter can be written
as the unrestricted least-squares estimate

v̂−1 = (Ỹ ′[0]Ỹ[0])−1Ỹ ′[0]ỹ[1]

with Ỹ[0] = Ẏ
(0)

[+] R, ỹ[1] = ẏ
(0)
[1] − Ẏ

(0)
[+] e1 and Ẏ

(0)
[+] the N0 × T+ matrix

of demeaned outcomes of the control units in the remaining pre-treatment
periods. Its variance can be estimated by

Σ̂v̂−1 = QN (v̂)(Ỹ ′[0]Ỹ[0])−1

withQN (v̂) the mean sum of squared residuals of the time weight estimation.
Finally, the estimator of the weight covariance matrix is

Σ̂v,[+] = QN (v̂)R(Ỹ ′[0]Ỹ[0])−1R′ (7)

which follows from var[v̂[+]] = R var[v̂−1]R′.
Inference can be based on the t-statistic following

P

∣∣∣∣∣∣ τ̂(v̂)− τ0 − b(v∗)√
V̂τ̂(v̂)/N

∣∣∣∣∣∣ > q1−α/2

 p−→ α

with τ0 the treatment effect under the null, α the intended size and q1−α/2
the 1 − α/2 quantile of the standard normal distribution. Without any
further restrictions, the resulting confidence interval[

τ̂(v̂)± q1−α/2

√
V̂τ̂(v̂)/N

]
will be centered around τ0 + b(v∗). Yet it is more reliable and shorter
compared to an unweighted DID approach.

3 Monte Carlo Experiments

3.1 Implementation

In each Monte Carlo replication r = 1, . . . , R I generate data from

y
(r)
it = τDit + λ

(r)
i f

(r)
t + ε

(r)
it
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with f
(r)
t ∼ N [0, σ2

f ] and ε
(r)
it ∼ N [0, 1] for i = 1, . . . , N and t = 1, . . . , T ,

all mutually independent. The loadings are λ
(r)
i = ξλ√

N
Di + ν

(r)
i with

ν
(r)
i ∼ N[0, 1]. The true treatment effect is τ = 0. The number of units

is N = 100 of which half are treated (κ = N0
N = 0.5) and there is one treated

period T = T0 + 1. I vary the number of pre-treatment periods T0 ∈ {6, 30}
and the loading imbalance ξλ ∈ {2, 5} along a grid of factor standard devi-
ations σf ∈ {0, 0.1, . . . , 2}. For each combination of parameters and sample
size I conduct R = 10, 000 replications. In each replication I compute the
pseudo-true time weights v∗ as of (5), the estimated time weights as of (2),
the DID estimator τ̂did = τ̂(v̄), the TWDID estimator τ̂twdid = τ̂(v̂) and
the corresponding variance estimators V̂did, V̂twdid. I compare the following
Monte Carlo statistics to assess the performance of the point estimators and
inference.

1. I measure the magnitude of the bias term b(v) = ξλξf (v) in terms of
its standard deviation sd[b(v)], with v = v̄ for the DID and v = v∗

for TWDID.

2. Then I look at the simulated conditional standard deviation sd[τ̂(v)|F ]
of the point estimates. I compute it as the Monte Carlo standard
deviation of the bias corrected estimator τ̂(v)− b(v).

3. Finally, I consider the feasible t-statistics of both estimation approaches

tdid = τ̂did − τ0√
V̂did/N

, ttwdid = τ̂twdid − τ0√
V̂twdid/N

I compute the true rejection frequency under τ0 = 0 using critical
values from the standard normal distribution.

3.2 Results

The simulation results confirm the bias and variance reduction properties of
TWDID compared to DID. The top panel of Figure 1 plots the magnitude
of the bias against the strength of the factors. The bias of DID increases
as the factors become stronger. The bias of TWDID is about 50% lower.
This effect is stronger in a setting with a higher loading imbalance (left vs.
right). The bottom panel shows the the conditional standard deviation,
which is independent of the loading imbalance and instead driven by the
loading variation. For sufficiently strong factors, the TWDID estimator has
a substantially lower standard deviation. For weak factors, however, there
is not much to be gained and the weight estimation noise leads to a slightly
larger standard deviation.

Consider now inference based on the t-statistics tdid and ttwdid. Figure 2
shows the rejection frequency of the standard t-test under the null of no
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Figure 1: Magnitude of the conditional bias term b(v∗) = ξλξf (v∗) (top)
and simulated conditional standard deviation sd[τ̂(v)] (bottom) of the DID
and TWDID estimator, depending on the factor standard deviation σf .
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Figure 2: Simulated rejection frequency based on the feasible t-statistic tdid
and ttwdid depending on the factor strength σf . The standard errors of the
TWDID estimator have been adjusted for weight estimation uncertainty.

treatment effect H0 : τ = 0. If the loading imbalance is sufficiently small
(left), the remaining bias of the TWDID estimator is negligible as the test
remains size-correct when the factors become stronger. The larger bias of
the DID estimator leads its test statistic to be distorted. For large loading
imbalances (right), the bias becomes so large that both tests are distorted.
Yet this distortion is less severe for TWDID than it is for DID.

4 The effect of the NOx Budget Trading Program
revisited

I revisit Deschenes et al. (2017) studying the effect of the NOx Budget
Trading Program (NBP) 2003-2008 on NOx emissions. It entailed a cap
and trade program to reduce NOx emissions from power plants. It was only
active in the summer months May - September in the years 2003-2008 in 19
states in the US. In 2003 the program was active only in a subset of the 19
treated states. States not adjacent to the NBP states remain as non-treated
states (22 in total).

Data on NOx emissions is available on county level for N = 2539 counties
from 1997-2007. We observe N1 = 1, 354 counties in the treated states
and N0 = 1, 185 in the untreated states. Per county and year we observe
data for the seasons summer and winter, where summer is defined as May -
September.
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4.1 Econometric Specification

Consider the interactive fixed effect model

yist = τDist + µit + νis + λ′ifst + ε̃ist

with Dist = I(i ∈ N1, t > T0, s = 1) an indicator whether NBP is operating
in county i in season s = 0, 1 (winter, summer) of year t. µit, νis are county-
year and county-season fixed effects, respectively. fst are season-year specific
common shocks that affect the emissions of county i with intensity λi. ε̃ist is
an idiosyncratic error term. The special case λi = λ resembles the additive
fixed effect model that Deschenes et al. (2017) assume. In that case the
factor structure reduces to a season-year fixed effect.

To identify τ , eliminate µit by taking the difference between summer and
winter observations

y̌it := yi1t − yi0t = τDit + βi + λ′if̌t + εit

with βi = νi1 − νi0, f̌t = f1t − f0t and εit = ε̃i1t − ε̃i0t. A key assumption
hidden in this specification is that the program does not affect emissions in
the winter months in the treated years. The identifying assumption is that
there exists a vector of weights v0 such that

1
T1

∑
t>T0

f̌t =
∑
t≤T0

v0,tf̌t

That is, the average post-treatment factor can be written as a weighted
average of pre-treatment factors.

4.2 Evidence for common factors

I first obtain evidence against λi = λ by considering how the difference in
average NOx emissions ∆t = ¯̌y(1)

t − ¯̌y(0)
t has evolved prior to the intervention.

We can write

∆t = β̄(1) − β̄(0) + ξ′λft + τ I(t > T0) +Op(
1√
N

)

where ξλ = 0 under the equal loading assumption. Then, for large N , ∆t

should be constant prior to the treatment. However, Figure 3 does show
variation of ∆t in periods t ≤ T0.

4.3 Estimation Results

I estimate τ with a time weighted DID regression as defined in (4). Let τ̂(v)
be the point estimate for a given T0 vector of time weights v ∈ V. I compare
three sets of weights v. First, I use equal weights v̄, which return the DID

13
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Figure 3: Difference in average NOx emissions ¯̌y(1)
t − ¯̌y(0)

t

estimator used by Deschenes et al. (2017). Second, for the TWDID estimator
I use estimated weights v̂ obtained from the restricted regression (2) of
pre-treatment emissions on the average post-treatment emission. Third, I
consider the TWDID estimator using unrestricted weights v̂u, where the only
difference to v̂ is that I allow the weights to be non-negative. I obtain the
standard errors For the DID estimator I use the cluster-covariance matrix
estimator. I obtain the standard errors of the TWDID estimators with the
two-step procedure discussed in Section 2.3, which accounts for the presence
of estimated weigths. I omit the year 2003 from the estimation to circumvent
issues related to the staggered implementation.

The estimated time weights are plotted in Figure 4. The last two pre-
treatment periods receive almost all the weight, indicating that the com-
mon factors of the NOx emissions were in these two years closest to their
post-treatment average. The bottom panel of Figure 4 shows the resulting
treatment effect estimates and their 95% confidence intervals. All estimators
suggest a significant negative effect of the NBP program on NOx emissions.
Time weighting leads, in absolute terms, to a slightly lower point estimate
(DID: -0.36 vs TWDID: -0.34). The standard errors of both TWDID es-
timates (0.050) are about 10% lower compared to DID (0.056), and the
resulting confidence intervals are more narrow. This results is in line with
the variance reduction property of TWDID estimation.

5 Conclusion

This paper proposes a time-weighted difference-in-difference (TWDID) es-
timation approach that is robust against interactive fixed effects in short
T panels. It covers settings with few time periods, many cross-sectional
units and sharp treatment timing. Using time weights estimated from the

14
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Figure 4: Top: Average NOx emissions NBP-Participating States vs. the
Control States 1997 - 2008. Middle: estimated time weights as of (2). Bot-
tom: Point estimates and confidence intervals of DID and TWDID estima-
tion.
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untreated units, the TWDID estimator offers both a lower bias and a lower
variance than the unweighted DID estimator. Moreover, I show how to
adjust the standard errors to cover the additional weight estimation uncer-
tainty. I revisit a study on the effect of a cap-and-trade program on NOx
emissions. Using TWDID reduces the standard errors of the estimated av-
erage treatment effect by 10% compared to a conventional DID approach.
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A Proofs of Theorems

A.1 Proof of Theorem 1

Again some notation. Let b be a T -vector with elements bt = 1
T1
I(t >

T0) − 1
T0
I(t ≤ T0). Υ is a T × T diagonal matrix with the scaled time

weights on the diagonal (Υ)t,t = T0vtI(t ≤ T0) + I(t > T0). So b′Υx =
1
T1

∑
t>T0 −

∑
t≤T0 vtxt for any T vector x. Let ν̄λ = λ̄(1) − λ̄(0) − ξλ and

ZN (v) = b′Υ(ε̄(1) − ε̄(0)) = 1
T1

∑
t>T0

(ε̄(1)
t − ε̄

(0)
t )− (ε̄(1)

[0] − ε̄
(0)
[0] )′v

First write
τ̂(v)− τ = ξ′λξf (v) + ν̄ ′λξf (v) + ZN (v)

from which we arrive at the following asymptotic results.

Lemma 1. For any fixed v ∈ V

1.
√
NZN (v) d−→ N[0, Vε(v)]

2.
√
N(λ̄(1) − λ̄(0) − ξλ) d−→ N[0,Σλ]

with Vε(v) = b′ΥΣεΥb, Σε = Σ
(0)
ε
κ + Σ

(1)
ε

1−κ and Σλ = Σ
(0)
λ
κ + Σλ(1)

1−κ

The first two assertions of Theorem 2 follow with

Vτ̂ (v) = ξf (v)′Σλξf (v) + Vε(v)

A.2 Proof of Theorem 2

The estimated time weights v̂ as defined in (2) can be rewritten as

v̂ = arg min
v∈V

QN (v), QN (v) = (ẏ0,T − Ẏ0,pv)′(ẏ0,T − Ẏ0,pv)

with y0,t = (y1t, . . . , yN0t) the vector of the untreated units’ outcomes in
the period t, Y0,p = [y0,1, . . . ,y0,T0 ] the N0 × T0 matrix of the untreated
units’ pre-treatment outcomes and V the set of T0 vectors with non-zero
elements that sum to one. We notice that v̂ always exists, and is unique if
Ẏ0,p = [ẏp,1, . . . , ẏp,N0 ]′ has full column rank.

Consistency follows from two key arguments. First, the objective func-
tion uniformly convergence to its population equivalent Q∞(v) = V

(0)
f (v) +

Vε(v)
sup
v∈V
|QN (v)−Q∞(v)| p−→ 0

Second, v∗ as defined in (5) is the uniquely identifiable minimizer of Q∞(v).
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To obtain asymptotic normality, suppose first that v∗ lies in the interior
of V, i.e. the non-negativity constraints are not binding in the limit. With-
out the non-negativity constraint we can rewrite the estimation as an uncon-
strained minimization and obtain an explicit solution. To do so, we trans-
form the condition∑t vt = 1 into v1 = 1−ι′T0−1v−1 with v−1 = (v2, . . . , vT0),

so v = e1 + Rv−1 with R =
(
−ι′T0−1
IT0−1

)
. The minimization problem then

becomes
min

v−1∈RT0−1
(ỹ(1) − Ỹpv−1)′(ỹ(1) − Ỹpv−1)

with ỹ(1) = ȳ(1) − y1 and Ỹp = YpR. The solution is

v̂−1 = (Ỹ ′p Ỹp)−1Ỹ ′p ỹ(1)

and the corresponding T0 vector of time weights will be v̂ = (1−∑T0
t=2 v̂t, v̂

′
−1)′.

That is a least-squares regression with the first regressor subtracted. By the
same argument we can write v∗ = e1 + Rv∗−1. The idea is to first show
asymptotic normality for the last T0 − 1 weights,√

N0(v̂−1 − v∗−1) d−→ N [0,Σv̂−1 ]

which is easy to obtain because v̂−1 is an unrestricted least squares estima-
tor. Because of the sum-to-1 condition it will immediately follow for the full
vector √

N0(v̂ − v∗) =
√
N0R(v̂ − v∗) d−→ N [0,Σv̂]

with Σv̂ = RΣv̂−1R
′. Note that both Σv̂−1 and Σv̂ have rank T0 − 1.

In absence of heteroskedasticity we suggest using the simple least squares
variance estimator

Σ̂v̂−1 = QN (v̂)(R′Y ′pYpR)−1

.
Suppose now that v∗ lies on the boundary of V. That is, at least one

element is exactly zero and v∗ is sparse. In general, asymptotic normality of
extremum estimators can break down near the boundary of the parameter
space (Ketz, 2018). In this special case, however, the part of v̂ belonging to
the non-zero elements of v∗ will still be asymptotically normal.

Formally, suppose without loss of generality that the first k elements
(0 < k < T0 − 1) of v∗ are zero and write v = (v′k,v′−k)′.
Lemma 2. I conjecture: v̂k = Op(N−q) with q > 0.5

The idea is that v̂k converges to zero so quickly that the asymptotic
distribution is the same as if we had just set v̂k = 0 in the first place. But this
means that the first k periods are irrelevant and we have reduced the exercise
to T0 − k pre-treatment periods, for which the pseudo-true weights v∗−k are
not sparse. Then we can apply the results from the previous paragraph to
get asymptotic normality for the non-zero elements.
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A.3 Proof of Theorem 3

Let GN = (ν̄ ′λξf (v∗) + ZN (v∗), (v̂ − v∗)′)′.

Lemma 3. 1. (F ′(0)ν̄λ)′(v̂ − v∗) = Op( 1
N )

2. (ε̄(1)
(0) − ε̄

(0)
(0))
′(v̂ − v∗) = Op( 1

N )

3.
√
NGN

d−→ N[0,ΣG]
with

ΣG =
(
Vτ̂

1√
κ
C ′

1√
κ
C 1

κΣv̂

)

Adding and subtracting τ̂(v∗) we get

τ̂(v̂)− τ − b(v∗) = (1,−(F(0)ξλ)′)GN +Op(
1
N

)

and thus assertions 1 and 2 of Theorem 3 follow with

Vτ̂(v̂) = Vτ̂ + 1
κ

(F(0)ξλ)′Σv̂F(0)ξλ −
2√
κ

(F(0)ξλ)′C

Consistency of V̂τ̂(v̂) follows from the fact that V̂τ̂ (v̂) p−→ Vτ̂ (v∗) and ∆̇(0)
p−→

F(0)ξλ. So far V̂τ̂(v̂) ignores the covariance term C. In simulations C is neg-
ligible as long as v̂ is estimated using demeaned observations.

A.4 Proof of Theorem 4

Let ẏi = yi − 1
N

∑N
i=1 yi denote the T -vector of cross-sectionally demeaned

outcomes, ÿi = MT ẏi is the vector of double demeaned outcomes with
MT = IT −

ιT ι
′
T

T .
I now derive probability limit of V̂ (v) for some fixed v ∈ V. First note

that the denominator reduces to 1
N

∑N
i=1 D̈

′
iD̈i = TkNkT (1−kN )(1−kT ) =:

QN . Hence we only need to consider the numerator.

ˆ̈ui,v = ÿi,v − D̈iτ̂(v)
ÿi,v = MTΥẏi = τMTΥḊi + üi,v
üi,v = MT (Fvλ̇i + ε̇i,v)

with Fv = ΥF and ε̇i,v = Υε̇i. Note that ΥḊi = Ḋi because (Υ)t,t 6= 1
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only if Dit = 0. Substitute ˆ̈ui,v = üi,v − (τ̂ − τ)D̈i to get

1
N

N∑
i=1
D̈′i ˆ̈ui,v ˆ̈u′i,vD̈i = 1

N

N∑
i=1
D̈′iüi,vü

′
i,vD̈i

− 2(τ̂(v)− τ) 1
N

N∑
i=1
D̈′iüi,vD̈

′
iD̈i

+ (τ̂(v)− τ)2 1
N

N∑
i=1
D̈′iD̈iD̈

′
iD̈i

The following lemma ensures that the latter two terms converge to zero
given consistency of τ̂(v).

Lemma 4. We have these convergence results as N →∞

• 1
N

∑N
i=1 D̈

′
iüi,vD̈

′
iD̈i

p−→ c1 <∞

• 1
N

∑N
i=1 D̈

′
iD̈iD̈

′
iD̈i

p−→ c2 <∞

• 1
N

∑N
i=1 D̈

′
iFvλ̇iε̇

′
i,vD̈i

p−→ 0

Use D̈′iüi,v = Ḋ′iM
′
TMT u̇i,v = D̈′iu̇i,v, u̇i,v = Fvλ̇i + ε̇i,v to get

1
N

N∑
i=1
D̈′iu̇i,vu̇

′
i,vD̈i = 1

N

N∑
i=1
D̈′iΥF λ̇iλ̇

′
iF
′ΥD̈i + 1

N

N∑
i=1
D̈′iε̇i,vε̇

′
i,vD̈i (8)

+ 2
N

N∑
i=1
D̈′iFvλ̇iε̇

′
i,vD̈i

where the last term converges to zero by independence of F and εi. Consider
the first part of (8).

Then we can write D̈i = QNb( 1
1−kN I(i > N0) − 1

kN
I(i ≤ N0)). Also,

b′ΥF = f̄(1)−F ′pv. Let Σ(0)
λ := 1

N0

∑N0
i=1 λ̇iλ̇

′
i and Σ(1)

λ := 1
N1

∑N
i=N0+1 λ̇iλ̇

′
i.

Then, all together we get

1
N

N∑
i=1
D̈′iΥF λ̇iλ̇

′
iF
′ΥD̈i = Q2

N

Nk2
N

N0∑
i=1
b′ΥF λ̇iλ̇

′
iF
′Υb

+ Q2
N

N(1− kN )2

N∑
i=N0

b′ΥF λ̇iλ̇
′
iF
′Υb

= Q2
N

[
(f̄(1) − F ′pv)′

(
Σ(0)
λ

kN
+ Σ(1)

λ

1− kN

)
(f̄(1) − F ′pv)

]
Consider now the second part of (8). First, observe that

1
N

∑N
i=1 D̈

′
iε̇i,v

QN
= b′Υ∆ε = 1

T1

∑
t>T0

∆ε,t −
∑
t≤T0

vt∆ε,t
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with ∆ε = ε̄(1) − ε̄(0). We should therefore have that

1
N

∑N
i=1 D̈

′
iε̇i,vε̇

′
i,vD̈i

Q2
N

p−→
var[ 1√

N

∑N
i=1 D̈

′
iε̇i,v]

Q2
N

= N var[b′Υ∆ε].

Moreover, by independence of the units we have N var[∆ε] = N var[ε̄(1)] +
N var[ε̄(0)] = Ω

kN (1−kN ) and thus

Vε(v) = b′ΥΩΥb

kN (1− kN ) =
σ̄(0),v + σ̄(1) − 2σ̄(0,1),v

kN (1− kN )

with σ̄(0),v = v′Ω(0)v, σ̄(1) = 1
T 2

1
ι′T1

Ω(1)ιT1 and σ̄(0,1),v = 1
T1
v′Ω(0,1)ιT1 .
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