
The effects of banning loss-leader pricing in
grocery retailing markets

[VERY PRELIMINARY. Please do not cite or circulate without permission.]

Jorge Florez-Acosta and Daniel Herrera-Araujo∗

This version: February 2022

Abstract

Currently, half of the states of the U.S. ban loss-leader pricing because it is considered predatory.
However, recent evidence challenges this view and suggests the ban may rather be inconvenient. We
examine the effects of banning loss-leader pricing in grocery retailing markets on supermarket pricing,
competition and welfare. To this end, we use scanner data on supermarket sales in the United States
and carry out two empirical exercises. First, we estimate the effects of the ban on supermarket chains’
prices by exploiting variation on both the policy across states and chains’ exposure to the ban across
supermarket chains. Our preliminary results suggest that prices significantly increase with exposure to the
ban at the chain level, implying that prices at stores located in ban-free states are also higher compared
to less exposed chains. Second, we are working on the development and estimation of structural models
of demand and supply of multiple products. In this iteration of the paper, we present our demand model
and discuss a challenge to identification that is common in the estimation of this type of models. We
propose a novel solution to this challenge and show, based on Monte Carlo simulations, that our solution
outperforms strategies used by previous literature.
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1 Introduction

Large supermarket chains often price some of their competitive products at or below cost in
order to attract consumers into the store and profit from their purchases of products with
positive markups. This practice, best known as loss-leader pricing, has been banned in a several
countries and half of the U.S. states because it raises concerns of predatory conduct among
competition authorities. However, anecdotal and economic evidence suggests that the use of
loss-leading need not be consistent with predatory conduct, as the main features of predation,
namely, losses due to below-cost prices, exclusion of competitors and the subsequent recoup stage
are hardly observed in markets where powerful firms use loss-leader pricing (see, for example,
Florez-Acosta and Herrera-Araujo (2020)). Recent theoretical literature provides formalization
of the alternative view of loss-leader pricing being not predatory and shows that such a practice
may even be welfare enhancing (Chen and Rey, 2012, 2019; Johnson, 2017). These results rise
new concerns about loss-leading bans as it may lead to higher prices in equilibrium and prevent
retail stores from decreasing the price of some of their products below certain threshold during
sales not to be accused of charging “too low” prices.

This paper examines the effects of banning loss-leader pricing in grocery retailing markets
on supermarket pricing, competition and consumer welfare. To this end, we use scanner data
on supermarket sales in the United States and carry out two empirical exercises. First, we
estimate the effects of the ban on supermarket chains’ prices by exploiting variation on both the
policy across states and chains’ exposure to the ban across supermarket chains. We complete this
exercise for several product categories that are widely used by supermarkets as either permanent
or temporary loss-leaders (e.g., milk, beer, tuna and oatmeal). Our preliminary results suggest
that prices significantly increase with exposure to the ban at the chain level, implying that prices
at stores located in ban-free states are also higher compared to less exposed chains. Second,
we estimate structural models of demand and supply of multiple products. On the demand
side, we build on (Florez-Acosta and Herrera-Araujo, 2020) and estimate a multiple-discrete
choice model in the context of competition between supermarkets that offer the same product
line to the same customers. Consumers can purchase bundles of products from either a single
store (one-stop shopping) or multiple stores (multistop shopping) during a given period and
incur shopping costs. On the supply side, we are currently working on a model of competition
between supermarket chains in a context of uniform pricing (see, DellaVigna and Gentzkow
(2019)); that is, stores that are owned by multi-state supermarket chains may not adjust their
prices in response to the local market conditions but rather as a function of a chain-wide objective
function.1

Our general empirical strategy combines two main features: on the supply side, we will focus
on states of the U.S. that meet two criteria: first, loss-leader pricing has not been banned, and
second, all of the chains present in those states are only present in no-ban states (to avoid the
spill-over effects of the ban due to a chain’s exposure to ban states). This will allow us to model

1We will introduce the supply side in the next iteration of our paper.
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the supply side as if supermarkets were totally free to set any price for their products. This
implies that the price of some products may lie below cost in equilibrium. On the demand side,
our strategy is to estimate a flexible model that allows for the choice of multiple products from
multiple stores using standard techniques from the discrete-choice literature. We specify the
utility of each product as a function of observed and unobserved product and store characteris-
tics, as well as parameters to be estimated. On every shopping occasion, each consumer faces
idiosyncratic shopping costs that increase with the number of supermarkets visited. In line with
previous literature, we define shopping costs as all of the consumer’s real or perceived costs of
using a supplier. These may include transportation costs and opportunity costs related to time
spent parking, selecting products in the store, and waiting in line at the checkout; they may
also account for the taste for shopping (Klemperer, 1992; Chen and Rey, 2012, 2019; Florez-
Acosta and Herrera-Araujo, 2020). Each consumer weighs up the extra benefits of dealing with
an additional store against the additional costs involved. If the benefits exceed the costs, the
individual will visit an additional supermarket. Otherwise, she will make all her purchases at
a single location. The total utility of a basket of products is the sum of the product-specific
utilities minus the shopping costs.

A common challenge to the estimation of demand for multiple products is the large size
of the set of products and stores available to consumers. Previous literature has dealt with
this shortcoming by following one of two approaches: first, reducing the set of alternatives by
arbitrarily selecting a subset of products (i.e., the “included products”) and leaving both the
remaining observed (i.e., the “excluded”) and the unobserved products as part of the outside
good (e.g., Florez-Acosta and Herrera-Araujo (2020)). Second, by aggregating up individual
products to the category or the macro category levels (e.g., Thomassen et al. (2017)). Either
approach may lead to bias in the demand estimates.

In this paper, we are interested in modeling the demand for multiple individual products (i.e.,
the former approach). In such a context, the source of the bias is as follows. When excluding an
arbitrary number of observed products, the resulting choice set (i.e., the set of all exclusive and
exhaustive alternatives) will consist of all of the possible combinations of included products and
stores only (and, probably, the outside good). However, this rules out the fact that one included
product can be purchased jointly with many other excluded products that are observed in the
data. Therefore, a choice set that is composed exclusively by combinations of included products
will not actually be exhaustive; as a consequence, the probability that a consumer chooses a given
product will be underestimated. Specially, this bias may affect the shopping costs estimates.
In fact, given that the shopping costs help rationalize the bundle composition (as it captures
complementarities between a priori unrelated products-stores), excluding the bundles consisting
of combinations of included and excluded implies that the researcher is not fuly accounting for
the cross-products and cross-stores complementarities generated by the opportunity costs of
shopping.

We develop a novel approach to deal with this shortcoming that allows us to work with a
reduced set of individual products and stores from the consumers’ full choice set and correct the
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bias that arises from excluding observed products and stores. We focus on the total probability
of purchasing a product, which is a function of the utility of both included and excluded prod-
ucts. Next, for each individual consumer observed in our data, we exploit their full purchase
history for a number of periods before a given purchase to compute two empirical probabilities:
the probability of choosing any excluded products conditional on choosing any included prod-
ucts; and, on the other hand, the probability of choosing any set of excluded products alone.
We plug these empirical probabilities into our total probability of choosing a given bundle of in-
cluded products, which nonparametrically accounts for the potential complementarities between
included and excluded products and, hence, correct the bias introduced by the restricted choice
set. Furthermore, the number of parameters to be estimated remains the same.

We test our approach by performing Monte Carlo simulations. We consider a setting with
three supermarkets each of which sells the same three products. We allow consumers to purchase
any combination of products-stores or to opt for the no purchase option. Our results show that
the uncorrected approach leads, in effect, to biased estimates; where the bigger bias is on the
coefficients related to the shopping costs. Once we introduce our bias correction, our results
show that our estimates consistently estimated.

This paper is structured as follows: the second section offers a review of the literature related
to our work. Next, we present an overview of our data and perform a set of reduced-form analyses
on the effects of banning loss-leading on average prices at the store and chain levels. Further,
in section four we present our model of demand give details on our empirical implementation
and estimation and show simulation results from Monte Carlo experiments. Finally, section five
concludes.

2 Related literature

This paper relates to several strands of literature. First, a literature, mainly theoretical, that pro-
vides explanations for why multiproduct firms charge low prices on some products and high prices
on other products (Holton, 1957; Gerstner and Hess, 1990; Lal and Matutes, 1994; Simester,
1995; Lazear, 1995; Verboven, 1999; Ellison, 2005; Gabaix and Laibson, 2006). Second, a strand
of literature that studies the economic effects of loss-leader pricing from a theoretical perspective.
Hess and Gerstner (1987) examine loss-leader pricing combined with rain checks and evaluate
the suitability of banning stock outs of advertised sale products. Chen and Rey (2012) study
competition between large multiproduct retailers and specicialized stores in a context of hetero-
geneous consumers that incur shopping costs; they show that loss leading is exploitative rather
than predatory. Johnson (2017) also shows that loss-leading can be nonpredatoy using a setting
in which large and small multiproduct retailers compete for one-stop shoppers that are uncertain
about which products they will buy in future visits to stores. Finally, Chen and Rey (2019)
study competition between equally sized multiproduct retailers in a context of heterogeneous
consumers that incur shopping costs and show that loss-leading strategies and cross-subsidies
are not predatory, and the latter might even be welfare enhancing.
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This paper also relates to the literature that provides empirical evidence on the existence
of loss-leader pricing on a number of retail markets such as the new car market (Verboven,
1999), the grocery retailing markets (Walters, 1988; Walters and MacKenzie, 1988; Chevalier,
Kashyap and Rossi, 2003), and the internet commerce (Ellison and Ellison, 2009). Moreover,
this paper relates to a literature that studies seasonal patterns of prices and price promotions
in the U.S. retailing sector (Warner and Barsky, 1995; Johansen, 2000; Chevalier, Kashyap and
Rossi, 2003; Gagnon and López-Salido, 2020) and a more recent literature that documents the
existence of uniform pricing in the U.S. retailing chain sector (DellaVigna and Gentzkow, 2019;
Hitsch, Hortaçsu and Lin, 2019), and the transmission of shocks (García-Lebergman, 2021).

Furthermore, this paper closely relates to a strand of literature investigating the effects of
below-cost pricing laws on gasoline prices. Anderson and Johnson (1999) uses weekly data on
gasoline prices from 42 major cities of the U.S. from March 1992 through December 1993, and
finds that average gasoline prices and retail margins were higher in cities in which below-cost
pricing restrictions apply. Skidmore, Peltier and Alm (2005) use monthly data from the 50
states of the U.S. from 1983 through 2002 and find the opposite result: average gasoline prices
are lower in states with below-cost pricing bans.2 Last, Peltier, Skidmore and Milne (2013)
extend the latter work by using monthly data on retail and wholesale gasoline prices. They find
that below-cost pricing laws stimulate the entry of more competitors and are associated with
a decrease in both average wholesale and retail prices. Our paper differs from this literature
mainly in two ways: first, our focus is the retailing of groceries rather than gasoline; and second,
our modeling and empirical strategies.

On the methodological dimension, this paper closely relates to the literature that estimates
demand for bundles of products. Hendel (1999) develops a multiple-discrete choice model to
explain how firms choose multiple alternative brands of personal computers. Further, Dubé
(2004) applies Hendel’s model to the case of carbonated soft drinks. Gentzkow (2007) develops
a framework in which similar products can be either substitutes or complements. Wildenbeest
(2011) sets out a search cost model in which consumers want to purchase a basket of products
in a single stop and care about the total price of the basket. This literature has grown rapidly in
recent years. Thomassen et al. (2017), Florez-Acosta and Herrera-Araujo (2020) and Leung and
Li (2021) develop demand models of multiproduct and multistore choice with shopping costs,
which endogenously capture complementarities between categories/products and helps explain
the composition of bundles.3 Iaria and Wang (2020), Ershov et al. (2021), and Wang (2021)

2Their intuition for this result is that such laws appear to favor the entry and permanence of smaller gasoline
suppliers as opposed to states without any restrictions in which the market tend to be concentrated by large,
vertically integrated firms.

3Thomassen et al. (2017) focus on competition between specialized stores and supermarkets and develop a
model of demand in which consumers make discrete-continuous choices over multiple macro-categories of groceries
from up to two stores in each period conditional on their idiosyncratic shopping costs. Similarly, Leung and Li
(2021) develop a model of demand for multiple categories of products (including both groceries and non-groceries)
and stores and allow for continuous choice of quantity and shopping trip costs. Alternatively, Florez-Acosta and
Herrera-Araujo (2020) focus on the role of shopping costs in predicting consumer substitution and shopping
patterns in a context of competition between supermarkets of similar size and product range; in their setting, the
number of stores visited by a consumer is endogenously determined by a stopping rule involving the extra utility
and extra costs involved in visiting an additional store.
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build on Gentzkow (2007) and develop frameworks to estimate demand for multiple products
with complementarity, each of them focuses on particular challenges that emerge in this context.4

Finally, this paper relates to a growing body of empirical literature that models consumer
choice problems explicitly accounting for consumer frictions, such as, search (e.g. Hortaçsu and
Syverson (2004); Hong and Shum (2006); Kim and Bronnenberg (2010); Wildenbeest (2011);
De los Santos, Hortaçsu and Wildenbeest (2012); Moraga-Gonzalez, Sandor and Wildenbeest
(2013); Koulayiev (2014); Honka (2014); Dubois and Perrone (2015)); switching (e.g., Shy
(2002); Viard (2007); Honka (2014)); and shopping costs (Brief (1967); Aguiar and Hurst (2007);
Thomassen et al. (2017); Florez-Acosta and Herrera-Araujo (2020); Leung and Li (2021); Dolfen
et al. (2022)).

3 Data, background and preliminary evidence

3.1 Overview of the data

This paper uses the Nielsen’s consumer panel and retail scanner data sets supplied by the Kilts
Center for Marketing at the University of Chicago Booth School of Business. The consumer
panel consists of homescan data that records grocery purchases and household information
of a representative sample of households from all states in the United States. On the other
hand, the retail data set is scanner data recorded by participating retail stores at the Universal
Product Code (UPC) level in a weekly frequency, including retail prices, volume sales, product
description, and store location (three first digits of zip code) of every UPC. The two data sets
can be merged using both the retailer code and the zip codes.

3.2 Background: loss-leader pricing in the U.S.

Most states of the United States impose restrictions on below-cost pricing either partially on
a subset of retail products (e.g., gasoline, cigarettes, milk and alcoholic beverages) or fully on
all kinds of retail products. Some of the state laws banning such practice date back from the
1930s. Figure 1 shows the states of the U.S. that currently have a total ban (in dark red), a
partial ban (in light red) and no ban (in pink) of loss-leader pricing. States with a total ban
include California, Wisconsin, Massachusetts and other 20 states. On the other hand, states
with a partial ban include Nevada, New York, Georgia and other 13 states. Table 1 shows the
products for which loss-leader pricing has been banned in states in which a partial ban applies.
These are mainly cigarettes (banned in 11 states), and gasoline (banned in 6 states). Finally,
only 10 states do not impose any restriction of this kind on the pricing of retail products; they
include Illinois, Michigan, Texas, Arizona and other 6 states.

4Iaria and Wang (2020) and Wang (2021) address the problem of identification of demand models for multiple
products when complementarity may emerge; the former provides conditions for identification and an MLE
estimator when transaction level (individual) data is available; the latter focuses on aggregate (product-level)
data and also provides conditions for identification of the demand parameters. Ershov et al. (2021) deals with
large choice sets, which is a common challenge in this literature, and propose an estimator based on aggregate
data at the product category level but exploiting micro moments from transaction level data
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Table 1: Products included in sales-below-cost ban in states with partial restrictions

Included products Number of states States

Gasoline 6 Missouri, New York, North Carolina, Georgia, Alabama, Florida.

Cigarettes 11 Washington, Nevada, South Dakota, Iowa, Indianna,
Ohio, New York, New Jersey, Delaware, Mississippi.

Milk 3 Nevada (dairy), Missouri, North Carolina.
Alcoholic beverages 2 Kansas, New Hampshire.

Source: Fleisher, Chris, “Loss-leaders: predatory or practical?”, American Economic Association,
https://www.aeaweb.org/research/loss-leading-bans-retail-competition.

3.3 Preliminary descriptive evidence

In this section, we explore whether the loss-leader ban that is in place in 26 states of the U.S.
affects supermarket prices both in the states where the ban applies and in states where the ban
does not apply. In effect, there is evidence that most retail chains in the U.S. set uniform prices
across stores (DellaVigna and Gentzkow, 2019), which suggests that if the ban policy has any
effect on prices, hence, a retail chain with stores in both ban and no ban states should take the
ban into account to set their optimal price for a product for all of its stores and to determine the
size of a discount for a promotion on a product to avoid being fined for setting too low prices in
ban states. In this iteration, we examine the prices of all of the UPCs reported by supermarkets
and recorded in the Nielsen’s retail scanner data for 2016, for six product categories: milk,
lager beer, light beer, ale beer, tuna and oatmeal. These product categories are widely used
by supermarkets as loss-leaders (see Chevalier, Kashyap and Rossi (2003)). We carry out these
analyses separately by product category.

Table 2 presents summary statistics of some observed characteristics of the supermarket
chains in our sample. The number of chains ranges from 74 to 77. In all cases, there is variation
both in the number of states where the chain has stores and in the state’s ban status–we refer
to a state where loss-leader pricing has been banned as “ban state”, while to a state where this
practice has not been banned as “no ban state”. In effect, the share of chains that are present in
only one state ranges from 31% to 37%; the share of chains with stores located in ban states only
ranges from 21% to 28%; the share of chains with stores located in no ban states only ranges
from 26% to 33%; and the share of chains with stores located in both ban and no ban states
range from 45% to 47%. Among multi state chains, the number of states where the average
chain owns stores ranges from 14 to 23. On average, between 34.04% and 47.66% of a chain’s
stores are located in ban states; the share of dollar sales in ban states ranges, on average, from
33.6% to 49.3%.

Previous theoretical literature on loss-leader pricing suggests that banning this practice can
lead to higher equilibrium prices. Further, the presence of multistate chains that charge uniform
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prices across stores suggests that stores that are owned by chains that are present both in ban
and in no ban states and that are located in no ban states may be indirectly affected by the
ban. To test this, we perform two empirical exercises. First, we regress category price indices at
the chain level on a measure of the exposure that a retail chain has to the ban policy based on
the share of volume sales of that chain in ban states relative to the their total volume sales in
all of the states in which that chain is present. And second, we regress a store-level price index
on the exposure measure for a sample of stores that are owned by chains present in both ban
and no ban states but that are located in no-ban states only (i.e., we exclude stores located in
ban states).

We follow Chevalier, Kashyap and Rossi (2003) and compute a store-level category price
index as the weighted average of the log of the price of all of the UPCs u, of a category c, sold
by store l, located in county, k, of state s, and owned by retail chain r, at week t. This index is
given by:

Pclrkst =
∑
u∈c

wuclrkst lnPuclrkst, (1)

where Puclrkst is the price of UPC u and wuclrkst is the dollar share of UPC u, in category c,
sold by store l, of retail chain r, located in county k, of state s, in week t.

Next, we compute a chain-level category price index as:

Pcrkst =
∑
l∈r

∑
u∈c

wuclrkst lnPuclrkst, (2)

We compute our exposure measure as the sum of volume sales of all products in a specific
category sold by all of the stores of a retail chain in all of the ban states where that chain is
present divided by the total volume sales of products in that category of that chain’s stores
across all of the states where they are present. That is:

Exposurecrt =
∑

u,l,k,s 1{ban state}(quclrkst)∑
u,l,k,s quclrkst

, (3)

where quclrkst is the total quantity of UPC u, of a category c, sold by store l, of retail chain r,
located in county k, of state s, in week t; and 1{ban state} is an indicator function that takes on
1 if state s bans loss-leader pricing and zero otherwise.

We first explore the potential effects of the ban on prices for our full sample of retail chains
(chains present in ban states only, chains present in no-ban states only, and chains present in
both ban and no-ban states). To do that, we regress our chain-level price index on our exposure
measure and a full set of fixed effects that control for time-varying observed and unobserved
chain characteristics, local market (county) structure and demographics, and state level business
cycles. Our specification is:

Pcrkst = β0 + β1Exposurecrt + ςrt + γk + ηst + εcrkst, (4)

where ςrt is chain-time fixed effects, γk is county fixed effects, ηst is state-time fixed effects, and
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εcrkst is a random shock.
Panel A of Table 4 displays estimates from separate regressions for our six product categories.

Results show that for milk and the three categories of beer, the average price of the category
tends to be higher the more exposed is the retail chain to states that ban loss-leader pricing.
This effect is not significant for tuna and oatmeal which are used as loss leaders during very
specific seasons of the year as opposed to milk and beer that are more persistently used as
loss-leaders throughout the year (see, Chevalier, Kashyap and Rossi (2003)).

A potential concern with this exercise may be related to the composition of our samples:
54% of chains, on average, are present either in ban states only (i.e., are fully exposed to the
ban policy) or in no ban states only (i.e., are not at all exposed to the ban policy); this may be
driving our results as fully exposed chains may charge, on average, higher prices than partially
and no exposed chains. In order to check this, we perform the same regression as in (4) but
excluding both fully exposed and unexposed chains. Panel B of Table 4 presents the results,
which are similar to those obtained with the full sample for each product category. In effect,
results indicate a similar positive and statistically significant relationship for the chain-level price
index of chains that are present in both ban and no ban states. Overall, our results suggest that
chains tend to charge higher prices on products that they more often use as loss-leaders as a
potential reaction to the ban policy. This is consistent with conventional wisdom according to
which too low prices on some specific categories (e.g., staples) are more likely to rise concerns
of unlawful conduct from competition authorities.

Concerning chains owning stores in both ban and no ban states, a natural question to ask is
whether their stores located in no ban states are affected by the policy of ban states, given that
uniform pricing appears to be a widespread practice among most retail chains in the U.S. (see
DellaVigna and Gentzkow (2019)). To check this, we regress a store-level price index computed
as in equation (1) on our chain-level exposure measure given by equation (3) for the subsample
of stores that are owned by these retail chains and are located in no ban states only; that is, we
restrict our attention to stores that are not directly exposed to the ban, but that are indirectly
exposed because the owning chain has stores in ban states also. We complete this exercise for
each of the categories listed above. Our specification is:

Pclrkst = λ0 + λ1Exposurecrt + ζlt + ςrt + ηst + ωclrkst, (5)

where ζlt are store-time fixed effects, ςrt are chain-time fixed effects, ηst is state-time fixed effects,
and ωclrkst is a random shock.

Table 5 presents the results. Similar to the regressions with the full sample of retail chains,
we find that average prices of a category at stores located in no ban states tend to be higher the
more exposed the owning chain is to states where a ban is in place. This effect is not statistically
significant for lager beer, tuna and oatmeal.

The persistent insignificant results for tuna and oatmeal from our previous regressions suggest
that the ban policy may not affect all of the products sold by a supermarket chain. This
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Table 4: Results from linear regressions of a category price index at the chain level

Variable Milk Lager beer Light beer Ale beer Tuna Oatmeal

Panel A. All retail chains

Exposure 10.20∗∗∗ 1.53∗ 1.15∗ 1.56∗∗ -0.96 0.57
(3.01) (0.79) (0.60) (0.60) (1.25) (0.74)

Constant 0.22 7.91∗∗∗ 8.61∗∗∗ 7.90∗∗∗ 1.40∗∗ 3.02∗∗∗
(1.36) (0.25) (0.19) (0.21) (0.56) (0.33)

Chain × Month FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes
State × Month FE Yes Yes Yes Yes Yes Yes

R-sq 0.20 0.19 0.19 0.18 0.24 0.17
Obs 446,323 289,742 292,436 258,450 399,381 416,363

Panel B. Retail chains with stores in both ban and no ban states

Exposure 10.18∗∗∗ 1.49∗ 1.10∗ 1.48∗∗∗ -0.96 0.58
(3.04) (0.79) (0.61) (0.61) (1.26) (0.74)

Constant -0.03 7.67∗∗∗ 8.33∗∗∗ 7.66∗∗∗ 1.27∗∗ 2.87∗∗∗
(1.37) (0.24) (0.19) (0.21) (0.57) (0.32)

Chain × Month FE Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes
State × Month FE Yes Yes Yes Yes Yes Yes

R-sq 0.17 0.17 0.17 0.16 0.19 0.15
Obs. 424,463 271,380 274,045 240,224 377,729 394,918

Notes: The table shows results from regressions of a category price index computed at the chain level on a measure
of exposure of the retail chain to states with a ban of loss-leader pricing. We compute exposure as the sum of volume
sales of all products in a specific category combined in a retail chain in all of the states where that chain is present
and a ban is in place on the total volume sales of products in that category of that chain’s stores across all of the
states where it is present. Columns present results from separate regressions for each product category. Panel A
presents regression results for a sample that includes all retail chains (chains present in ban states only, chains present
in no-ban states only, and chains present in both ban and no-ban states), whereas Panel B presents regression results
for a sample that includes chains present in both ban and no-ban states. Standard errors, given in parentheses, are
clustered at the retail chain level.∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
Source: Nielsen data. Authors’ calculations.

is consistent with conventional wisdom and previous evidence according to which tuna and
oatmeal are not often used as loss-leaders. However, supermarkets do use these two particular
product categories as loss-leaders during certain times of the year. In fact, Chevalier, Kashyap
and Rossi (2003) show that tuna and oatmeal experience price decreases during peak demand
periods (we refer to these categories as “seasonal” loss-leaders). In a context of loss-leading ban
in some states, a relevant question to ask is whether the prices of products that are used as
seasonal loss-leaders decrease in the same proportion, in a lower proportion or do not decrease
at all relative to the prices of the same products in no ban states.

To examine this question, we regress our chain-level category price index defined in equation
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Table 5: Results from linear regressions of a category price index at the store level

Variable Milk Lager beer Light beer Ale beer Tuna Oatmeal

Exposure 2.70∗∗∗ 0.24 0.25∗∗ 0.19∗∗ -0.24 0.64
(0.50) (0.18) (0.12) (0.09) (0.44) (0.39)

Constant 0.07 2.18∗∗∗ 2.34∗∗∗ 2.21∗∗∗ 0.30 0.60∗∗∗
(0.20) (0.05) (0.03) (0.03) (0.18) (0.16)

Store × Month FE Yes Yes Yes Yes Yes Yes
Chain × Month FE Yes Yes Yes Yes Yes Yes
State × Month FE Yes Yes Yes Yes Yes Yes

R-sq 0.965 0.861 0.887 0.802 0.798 0.688
Obs. 874,987 659,398 662,717 567,994 767,941 795,266

Notes: The table shows results from regressions of a category price index computed at the store level on a measure
of exposure of the retail chain to states with a ban of loss-leader pricing, using a sample of stores located in no ban
states that are owned by chains that have stores in ban states also. We compute exposure as the sum of volume sales
of all products in a specific category combined in a retail chain in all of the states where that chain is present and
a ban is in place on the total volume sales of products in that category of that chain’s stores across all of the states
where it is present. Columns present results from separate regressions for each product category. Standard errors,
given in parentheses, are clustered at the retail chain level. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
Source: Nielsen data. Authors’ calculations.

(2) on a dummy indicating the season of peak demand and its interaction with dummies indi-
cating if a chain is present in both ban and no ban states (which we term “Ban-Noban chain”)
or if the chain is present in ban states only (which we term “Ban-only chain”). Our specification
is:

Pcrkst = α0 + α1St + α2St × Chain_BNBr + α3St × Chain_Br + θr + φk + ξst + νcrkst, (6)

where St = 1 if peak demand season; St = 0 otherwise; Chain_BNBr = 1 if chain present in
both ban and no ban states, and Chain_BNBr = 0 otherwise; Chain_Br = 1 if chain present
in ban states only, and Chain_Br = 0 otherwise, θr are chain fixed effects, φk are county fixed
effects, ξst are state × time fixed effects; and νcrkst is a random shock.

We complete this exercise separately for tuna and oatmeal. Table 6 presents the results. In
the case of tuna, our results show that its price decrease during lent, which is consistent with
Chevalier, Kashyap and Rossi (2003); however, chains that are present in both ban and no ban
states decrease their price by a lower amount compared to chains with stores in no ban states
only. This effect is not statistically significant for chains in ban states only. In the case of
oatmeal we find similar results for chains in both ban and no ban states, but find a statistically
significant result for chains in ban states only; overall, chains that are exposed to the ban policy
tend to barely decrease their oatmeal prices during demand peaks compared with chains in no
ban states. This evidence is in line with our previous results and suggest that some exposure
to the policy may prevent chains to decrease their prices of certain key products during peak
demand seasons potentially to avoid an investigation for selling products bellow cost.
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Table 6: Results from linear regressions of a category price index at the chain level

Variable Tuna Oatmeal

Lent -0.70∗∗∗ —
(0.20) —

Lent × Ban-Noban chain (=1 if yes) 0.43∗∗∗ —
(0.15) —

Lent × Ban-only chain (=1 if yes) 0.18 —
(0.21) —

Cold — -0.22∗∗∗
— (0.07)

Cold × Ban-Noban chain (=1 if yes) — 0.21∗∗∗
— (0.07)

Cold × Ban-only chain (=1 if yes) — 0.18∗∗
— (0.08)

Constant 1.00∗∗∗ 3.28∗∗∗
(0.02) (0.01)

Chain FE Yes Yes
County FE Yes Yes
State × Month FE Yes Yes

R-sq 0.241 0.165
Obs. 399,381 416,363

Notes: The table shows results from regressions of a category price index computed at the retail chain
level on a dummy indicating the season of peak demand and its interaction with dummies indicating
if a chain is present in both ban and no ban states (i.e., “Ban-Noban chain”) or if the chain is present
in ban states only (i.e., “Ban-only chain”). The two columns correspond to separate regressions: the
first column uses data for tuna, and the second column uses data for oatmeal. Standard errors, given in
parentheses, are clustered at the retail chain level. ∗∗∗ p < 0.01; ∗∗ p < 0.05; ∗ p < 0.1.
Source: Nielsen data. Authors’ calculations.

4 A structural analysis of the effects of banning loss-leader pric-
ing

4.1 The model

Our demand model is based on Florez-Acosta and Herrera-Araujo (2020). In each choice occa-
sion, consumers can purchase baskets of products from either one or multiple stores, conditional
on their idiosyncratic shopping costs.

4.1.1 Consumer choice model

There are I consumers in the market indexed by i = 1, . . . , I with idiosyncratic valuations of
K grocery products indexed by k = 1, . . . ,K. Suppose there are three store chains in the
market indexed by r ∈ {A,B,C} that supply the same products to all consumers.5 We observe

5Assuming that all consumers have access to the same product range may appear unreasonable. However, this
helps us to reduce dimensionality issues in the estimation of the model. An extension of the model would be to
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consumers making choices of products and stores on many time periods, indexed by t = 1, . . . , T .
Customer i purchasing product k from store r in period t derives a net utility of vikrt, which is
a function of the price of the product and other characteristics.6

Consumers have unit demand for each product class and can purchase one, two or three
products in the same period. Let B be the set of all exclusive and exhaustive baskets. Baskets
with multiple products may be purchased from a single store (one-stop shopping) or from mul-
tiple stores (multistop shopping). A consumer favors multistop shopping if her shopping costs
are sufficiently small, otherwise she will optimally make her purchases from a single store.

In the formulation of the model, we focus on the fixed component of the total shopping costs
that may account for the consumer’s taste for shopping. From now on, we will refer to this fixed
cost as “shopping costs” and denote it as si. Transport costs, which are an important component
of the total cost of shopping, are accounted for by including the distance to stores as an additive
term to the utility function of a basket of products (see below). Accordingly, shopping costs
are assumed to be independent of store characteristics (e.g., size, facilities, location) and time
invariant. Furthermore, we assume that si is randomly drawn from a continuous distribution
function G(·) and positive density g(·) everywhere. Finally, we assume that consumers are well
informed regarding prices and product characteristics. Therefore, consumers do not need to
engage in a costly search to gather information about prices and product quality.

Consumer i is supposed to exhibit optimal shopping behavior. This implies that she makes
an optimal choice involving two elements: whether to be a one- or multistop shopper, and which
stores to visit for each of the products she wants to buy. Roughly speaking, the choice set of
consumer i will be restricted by the number of stores she can visit given her shopping costs, so
that her choice will consist of selecting the mix of products and stores that maximize the overall
value of the desired basket. In line with this, a three-stop shopper who can visit all stores and
wants the three products will select the best product–store combination from the alternatives
existing in the market within each category. A two-stop shopper will select the mix of two stores
maximizing the utility of the desired basket from all possible product–store combinations. Her
final basket will consist of the best of the two alternatives in each product category. Finally, a
one-stop shopper will choose the store offering the largest overall value for the whole basket of
products.

Formally, let Dir denote the distance traveled by consumer i from her household location to
store r’s location, for all r ∈ {A,B,C}, and τ denote a parameter that captures the consumer’s
valuation of the physical and perceived costs of traveling that distance. We define the utility
net of transport costs of a shopper who is able to visit only one of the three stores in the market

relax this assumption and allow for heterogeneous choice sets.
6For now, we do not specify a functional form for the product-level utility, as it is not necessary for setting

out the model. We will assume a parametric specification at the empirical implementation stage in Section 4.2.
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as follows:7

v1
it = max

{
K∑

k=1
vikAt − τDiA,

K∑
k=1

vikBt − τDiB,
K∑

k=1
vikCt − τDiC

}
. (7)

Similarly, the net utility of a two-stop shopper is given by:

v2
it = max

{
K∑

k=1
max{vikAt, vikBt} − τ(DiA +DiB) ,

K∑
k=1

max{vikAt, vikCt} − τ(DiA +DiC),

K∑
k=1

max{vikBt, vikCt} − τ(DiB +DiC)
}
.

(8)

Finally, the net utility of a consumer who is able to visit all of the stores is given by:

v3
it =

K∑
k=1

max {vikAt, vikBt, vikCt} −
∑

r∈{A,B,C}
τDir. (9)

Note that the expressions in (7), (8), and (9) are particular cases of a more general utility
function, in which—conditional on shopping costs—an n-stop shopper selects the subset of stores
that maximizes the overall utility of her desired basket. For a one-stop shopper, these subsets
are singletons, for a two-stop shopper they contain two elements, and for a three-stop shopper
each subset of stores contains precisely the number of stores in the market, which is why she
does not need to maximize over subsets of supermarkets.8

To determine the number of stops to be made, consumer i weighs the extra utility of under-
taking n-stop shopping with the extra costs involved, taking into account the fact that the total
cost of shopping increases with the number of stores visited. Let δ2

it ≡ v2
it−v1

it and δ3
it ≡ v3

it−v2
it

be the incremental utilities that consumer i derives from visiting, respectively, two stores rather
than one and three stores rather than two. Florez-Acosta and Herrera-Araujo (2020) show that
consumer i will choose the mix of stores that maximizes her utility conditional on the extra
shopping cost being at most the extra utility obtained from visiting additional stores. Hence,
the highest possible shopping costs for any consumer able to undertake multistop shopping at
either two or three stores, respectively, in equilibrium are given by the following critical cutoff
points:

s2
it = δ2

it, for two-stop shopping, and (10)

s3
it = δ3

it, for three-stop shopping.

7Note that the utilities below depend on the vector of all prices of products sold by the three stores in the
market, which we denote by pt. However, we omit this for the sake of simplicity in the presentation of the model.

8A general expression of the utility and choices of an n-stop shopper is derived by Florez-Acosta and Herrera-
Araujo (2020).
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Note that these cutoff points depend on the period of purchase, t. The derived cutoffs for the
distribution of shopping costs in (10) indicate that for given shopping costs, consumers only care
about the marginal utility of visiting an additional store in making their final decision on how
many stores to visit. Moreover, one-, two- and three-stop shopping patterns arise in equilibrium
and will be defined over the entire support of G(·) (see Figure 2).

Figure 2: One-, two-, and three-stop shopping
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it

One-stop
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4.1.2 Aggregate demand

Let B2,B3 ∈ B be subsets of baskets involving two- and three-stop shopping, respectively. The
aggregate demand for product k supplied by store r is given by:

qkrt (pt) =
[
G(v1

it(pt))−G
(
s2

it (pt)
)]
P 1

irt(·)

+
[
G
(
s2

it (pt)
)
−G

(
s3

it (pt)
)] ∏
{b∈B2 | kr∈ b}

P 2
irt(·)

+G
(
s3

it (pt)
) ∏
{b∈B3 | kr∈ b}

P 3
irt(·),

(11)

where pt is the (K ∗3)×1 vector of prices of the products sold by the three stores in the market,
P 1

irt is the probability that a one-stop shopper decides to shop at store r, P 2
irt is the probability

that a two-stop shopper chooses store r as one of the two stores that she will visit, and P 3
irt is

the probability that a three-stop shopper decides to select basket b including product kr. All of
these probabilities are known by shoppers, and are functions of observable characteristics and
parameters. However, for the sake of simplicity we do not specify this dependence at this stage.
We defer these details to the empirical section below.

The own- and cross-price elasticities of demand are given by the standard formula ηkrht =
∂qkrt
∂pjht

pjht

qkrt
for all j ∈ {1, . . . ,K}, h ∈ {A,B,C}. It is important to note that a price change may

affect not only the market shares per type of shopper but also the shopping cost cutoff values
given that they depend on utilities. As a consequence, the distribution of shoppers between
one-, two-, and three-stop shopping groups changes. In fact, an increase in product k’s price at
store r reduces the indirect utility of consumer i visiting store r. Therefore, she may consider
making fewer stops and purchasing a substitute for this product from a rival store, say h, as the
gain in utility from visiting an additional store may not be sufficient to offset the extra shopping
cost.
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4.1.3 Supply

[To be completed.]

4.2 Empirical implementation

4.2.1 Product-level demand

We empirically specify the product-level utility as a function of observed and unobserved product
and store characteristics, and time fixed effects. We allow consumer heterogeneity to enter the
model through the price coefficient, which is a function of observed and unobserved household
characteristics. Formally, let the utility of consumer i from purchasing product k from store r
at time t be given by:

vikrt = −αipkrt + xkrβ + ξkr + φt, (12)

where pkrt is the price of product k at store r, xkr is a vector of observed product-store charac-
teristics, ξkr captures the mean valuation of unobserved product-store characteristics, which we
capture by including product-store dummy variables, and φt are time fixed-effects. Finally, αi

is an individual-specific coefficient that captures the marginal utility of price and β is a vector
of parameters common to all households.

4.2.2 Basket-level demand

In line with our modeling framework, we empirically define the utility that a n-stop shopper
(n ∈ {1, 2, 3}) derives from purchasing a basket b ∈ B as:

uibt =
∑
kr∈b

vikrt − τDir − sinb + εibt,

= vibt − sinb + εibt, (13)

where vibt is the overall utility of basket b net of transport costs as defined by equations (7)
through (9) above, nb is the number of stores visited to purchase basket b, si is the individual
shopping cost, and εibt is an idiosyncratic basket-level shock to utility. We allow price dis-utility,
αi, and shopping costs, si, to vary across households, but not across time.

Note that equation (13), along with equations (12), fully specify the utilities of one- and mul-
tistop shoppers as a function of price, product characteristics, distance to stores, and individual
shopping costs. Thus, our utility accounts for both the vertical and horizontal dimensions of
consumers’ valuations of products. The vertical component is captured by product-store char-
acteristics, while the horizontal component is captured by distance, which varies across store
formats and zip codes, and shopping costs. Finally, we normalize the utility of the "no purchase
option" to zero. Thus, it is modeled as a function of an individual random shock to utility,
uiOt = εiOt.

A consumer who wishes to buy a basket b at time t faces a choice set B of mutually exclusive
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and exhaustive alternatives consisting of combinations of products and stores. The basket she
chooses is such that she obtains the highest possible utility net of shopping costs. This is, for
all b′ ∈ B, consumer i chooses basket b at time t if:

uibt > uib′t, ∀ b′ 6= b.

Let θ = (α′,β′, s′, τ)′ be a vector containing the parameters to be estimated, where α =
(α1, . . . , αI)′ and s = (s1, . . . , sI)′ denote the vector of individual preference parameters. We do
not place any restriction on the joint distribution. We follow Dubois, O’Connell and Griffith
(2020) and use the large T dimension of our panel to recover estimates of individual specific pa-
rameters (α, s), while the large I dimension of our panel allows us to identify nonparametrically
the joint probability distribution function f(αi, si) using the empirical probability distribution
function of estimated (α, s).

We assume that the random shocks to utility, εibt, are distributed i.i.d. type I extreme value.
Integrating over εibt yields the closed-form choice probability of basket b, at time t, as a function
of the characteristics of products and supermarkets:

Pibt(X,pt;θ) = exp(vibt − sinb)
1 +

∑
b′∈B exp(vib′t − sinb′)

, (14)

where X is the matrix of characteristics of all of the products, pt is the vector of prices of all
of the products and nb and nb′ correspond to the number of supermarkets visited to purchase
baskets b and b′, respectively.

4.2.3 Restricting to the researcher’s choice set

A typical consumer purchases many different products and visits more than one store per month.
Estimating a demand model with the full choice entails a dimensionality problem.9 To keep the
problem involving multiproduct and multistore choices tractable, restrictions need to be imposed
on the consumers’ choice set used for demand estimation.

Assume that the researcher considers only a subset of products and stores, and includes
them in a list l. Let Bl denote the set of baskets composed exclusively of listed products and
listed stores. Next, denote Bnl the set of baskets composed of exclusively non-listed products
and non-listed stores. Its complement set, Bc

nl, contains the set of baskets composed exclusively
of listed products and listed stores, Bl, as well as the set of all baskets composed of at least
one non-listed product-store with a listed product-store, which is characterised by the cartesian
product Bl × Bnl. The set of baskets B can characterized by Bl ∪ Bnl ∪ Bl × Bnl.

Consider a basket bI that contains a combination of listed products and listed stores such
9Here we assume that all purchases and visits to stores are observed. Under this setting, an approach to deal

with large choice sets is proposed by McFadden (1978)’s and consists on estimating MNL models from subsets
of the observed large choice sets. Although, our approach consists on restricting the researcher’s choice set, our
approach differs substantially from McFadden’s approach is so that we exploit the information from the entire
choice set. Moreover, our approach allows for unobserved heterogeneity, while McFadden (1978)’s approach does
not.
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that bI ⊆ Bl. The probability of purchasing a basket containing bI is given by the sum over the
choice probabilities over all baskets containing bI , which yields:

QibI t(X,p;θ) = PibI t +
∑

h∈bI×Bnl

Piht =
exp(vibI t − nbIsi) +

∑
h∈bI×Bnl

exp(viht − nhsi)
1 +

∑
j∈B exp(vijt − njsi)

, (15)

where nbI (nh, nj or ng) is the number of stops needed to purchase all of the goods in the basket
bI (h, j, or g). We re-express the denominator in terms of baskets of non-listed product-stores
and its complement set:

QibI t(X,p;θ) =
exp(vibI t − nbIsi) +

∑
h∈bI×Bnl

exp(viht − nhsi)
1 +

∑
j∈Bnl

exp(vijt − njsi) +
∑

g∈Bc
nl

exp(vigt − ngsi)
. (16)

Next, as the first term in the numerator is contained in the second term, we factor the numerator
by the first term yielding:

QibI t(X,p;θ) =
exp(vibI t − nbIsi)

[
1 +

∑
k∈Bnl

exp(vikt − n(k,bI)si)
]

1 +
∑

j∈Bnl
exp(vijt − njsi) +

∑
g∈Bc

nl
exp(vigt − ngsi)

, (17)

where n(k,bI) denotes the number of additional stops needed to purchase the non-listed goods
conditional on purchasing bI . For any basket g ⊆ Bl, we define Γ2igt as:

Γ2igt = 1 +
∑

k∈Bnl

exp(vikt − n(k,g)si),

where n(k,g) denotes the number of additional stops needed to purchase the additional goods
conditional on purchasing basket g. Using this expression, we re-express the denominator as
follows:

QibI t(X,p;θ) = exp(vibI t − nbIsi)Γ2ibI t

1 +
∑

j∈Bnl
exp(vijt − njsi) +

∑
g∈Bl

exp(vigt − ngsi)Γ2igt
. (18)

Next, by denoting the first two elements of the numerator of equation (18) as:

Γ1it = 1 +
∑

j∈Bnl

exp(vijt − njsi),

we can re-expressed (18) as:

QibI t(X,p;θ) = exp(vibI t − nbIsi)Γ2ibI t

Γ1it +
∑

g∈Bl
exp(vigt − ngsi)Γ2igt

. (19)

Taking Γ1it as common factor in the denominator and then re-arranging the terms to be included
within the exponential, we obtain that the probability of purchasing a basket containing bI is
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given by:

QibI t(X,p;θ) = exp(vibI t − nbIsi − ln(Γ1it) + ln(Γ2ibI t))
1 +

∑
g∈Bl

exp(vigt − ngsi − ln(Γ1it) + ln(Γ2igt))
. (20)

A simple example. To better understand the relationship between Γ1it and Γ2ibI t, consider
the following example. Let a set of choices consisting of three product-store goods A, B, and C
and the "no purchase option". Assume that all baskets made of combinations of products A and
B make the set Bl, while the set Bnl contains the purchase of only product C. The term Γ1it,
equals:

Γ1it = 1 + exp(vict − nlsi), (21)

while the second term, Γ2ibI t, for any bI ⊆ Bl, equals:

Γ2ibI t = 1 + exp(vict − n(k,bI)si). (22)

The main difference between Γ1it and Γ2it comes from the term nl and n(k,bI). If the good C
is located in the same store as A (or B), then Γ1it 6= Γ2ibI t, otherwise if the good is located
on a different store than A or B then Γ1it = Γ2ibI t. This captures the idea that, unless the
utility of the bundle is super-modular (or sub-modular) with respect to utilities of the single
product-stores the two terms, Γ1it and Γ2ibI t, will cancel themselves out.

Extension to multiple units. Consider now a choice set consisting of three product-store
goods A, B, and C and the "no purchase option". The maximum number of units that each
individual may purchase of each good is given by M. Assuming that all combinations of products
A and B make the set Bl. The probability of observing the purchase of product-store good A is
given by:

Qiat(X,p;θ) = exp(ṽiat − si − ln(Γ1it) + ln(Γ2iat))
1 +

∑
g∈Bl

exp(ṽigt − ngsi − ln(Γ1it) + ln(Γ2igt))
, (23)

where,

∆ikt = 1 +
M∑

m=1
exp(m× vikt), ṽiat = viat + ln(∆iat)− τDia, and

ṽigt =
∑
k∈g

vikt + ln(∆ikt)− τDik.

This implies that focusing on a single purchase of product-store goods given that individuals by
more than one unit may bias the results by ln(∆ikt). Provided that the maximum number of
units that the consumer can purchase per product-store good is known, then it is possible to
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include ln(∆ikt) in the estimation.

4.3 Estimation approach

Individual full purchase history (FPH). We assume that individuals’ choice sets are po-
tentially heterogeneous across i’s but stable over the choice situations. For each individual in
our data, we assume that its choice set is composed of the collection of all the alternatives that
individual i is observed to choose in any of the T situations. The choice set is composed of
the individual’s full purchase history (Crawford, Griffith and Iaria, 2020). That is, we identify
consumers that never purchase particular products over the long time dimension of our data as
having zero probability of purchasing those products (Dubois, O’Connell and Griffith, 2020).
Let each individual FPH choice set be denoted by Bi. To remain consistent with our previous
notation, we denote Bli (Bnli) the set of all possible products-store combinations with the sub-
set considered by the researcher (the complementary set). The choice probability for basket bI

equals the sum over the choice probabilities over all baskets containing bI , which yields:

QibI t(X,p;θ) = exp(vibI t − nbIsi − ln(Γ1it) + ln(Γ2ibI t))
1 +

∑
j∈Bli

exp(vijt − njsi − ln(Γ1it) + ln(Γ2ijt))
, (24)

where Γ1it and Γ2ibI t are defined over Bnli.

Estimation. To estimate the parameters of our model, we use the data set described in Section
3. Given that we allow for random coefficients of price and shopping costs, our choice probabil-
ities do not have a closed-form solution. Thus, we use simulated methods to estimate them. In
our data, we observe consumers choosing a basket of products (which may be the outside option)
at each period t during a number of T periods. Let H index the set of all possible sequences
of choices our data takes; that is, all basket sequences at all choice occasions during our period
of observation. The probability of observing consumer i making a sequence of choices h ∈ H is
given by:

Pih(X,p;θ) =
T∏

t=1
QibI t(X,pt;θ). (25)

Let h be the vector of observed choices of each consumer, a natural way to estimate θ would
be to maximize the log-likelihood function:

L(X,h;θ) =
∑

i

lnPih(X,p;θ). (26)

Adjusting by the researcher’s choice set. Let Piot denote individual’s i probability of no
purchase at week t, and PibI t denote the probability that only the goods within basket bI are
purchased by individual i. We can re-express Γ1it as

Γ1it = 1 +
∑

j∈Bnli

exp(vijt − njsi) = Qiot

Piot
,
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and, Γ2ibI t as

Γ2ibI t = 1 +
∑

k∈Bnli

exp(vikt − n(k,bI)si) = QibI t

PibI t

.

Given that it is not possible to observe Γ1it for an individual i on each period t, we approximate
Γ1it using the ratio between each individuals observed probabilities Qiot and Piot averaged over
periods for each consumer yielding Γ1i = Qio/P io. We approximate the second term using
the ratio between each individuals observed probabilities of purchasing any of the baskets that
contain listed product and stores averaged over periods, QibI , with the observed probability of
purchasing any of the baskets composed exclusively of listed products averaged over periods P ibI

yielding Γ2i = QibI/P ibI .

4.4 Monte Carlo simulations

The full choice set. Our demand model allows shoppers to buy several different products
in the same week, and assumes that shoppers are making a series of multiple-discrete decisions
regarding which products to buy as part of a desired basket of products from a set of mutually
exclusive and exhaustive alternatives. We consider a simple model with a full choice set contain-
ing three product categories, three stores and a no purchase option. Any combination between
the different products and stores is allowed. We assume that household purchase one unit per
period of each product, which limits the choice set to 512 (= 29) alternatives. We simulate the
choices for 80 consumers.

The restricted choice sets. For illustration purposes, we consider two scenarios. The first
scenario sets an empirical choice set of 16 baskets composed from all combinations of four listed
product-store goods (= 24) and a ‘new’ outside option. The four goods are described in Table
7. The ‘new’ outside option is defined as all baskets not including any of the listed products
along with the no purchase occasion. To separately identify the shopping costs, we include
product-stores from two different stores. We proceed with our estimation and report results in
Panel A of Table 7.

As the researchers choice set can be set arbitrarily small, in the second scenario we restrict
the choice set to one product-store choice, a singleton basket, and a ’new’ outside option (i.e., not
purchasing the sole listed good). To identify all product-store preferences in a single estimation,
we constructed 9 of such restricted choice set (i.e, one for each of the products-store goods) and
stack them together. Finally, to separately identify the shopping costs from the product-store
preferences, we stack the choice set of first scenario to the second. For each individual, each
choice occasion consists of 9 × 2 + 16 observations. We jointly estimate the preferences and
report results in Panel B of Table 7.

Shopping period and adjustments. We assume that each shopping period a household
makes the decision to purchase or not grocery products. We set the number of periods to 208
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(= 4×52), which is consistent with the number of periods in our Nielsen consumer panel data set.
To compute the empirical adjustments to correct for the restricted choice set, we approximate
Γ1it using the ratio between each individuals observed probabilities Qiot and Piot averaged over
the 208 periods for each consumer yielding Γ1i = (1 − QibI )/P io. We approximate the second
term using the ratio between each individuals observed probabilities of purchasing any of the
baskets that contain included product and stores averaged over periods, QibI , with the observed
probability of purchasing any of the included baskets (and only those baskets) averaged over all
208 periods P ibI yielding Γ2i = QibI/P ibI .

Parameter values. The first column of Table 7 reports on the parameter values underlying
the true preferences. The product-store preferences are all positive and range between 0.5 and
3. Shopping costs and prices dis-utility are assumed to have a mean value of 3. For each, we
assume that the individual heterogeneity follows a normal distribution with a mean value of zero,
and a standard deviation of 2. We assume both distributions are independent and identically
distributed both within individuals and across individuals. Once an individual’s realization is
drawn it does not change between periods.

Results. Table 7 reports on the average coefficients and the 5th and 95th percentile (in brackets)
from 50 Monte Carlo Simulations for each of the two scenarios considered. The first column
reports on the true parameter values used to simulate individual choices for each of the 80
consumers. Panel A reports on results from restricting the choice sets to product 1 and 3 from
store 1, and product 1 and 3 from store 2, while Panel B reports on the results for all products.
Estimates for mean product preferences in panel A are for both standard and adjusted models
are similar. The confidence intervals for the standard model, however, does not contain the true
model parameters for 2 out of 4 parameters, while adjusted model’s confidence intervals always
contains them. A similar finding is reported in Panel B where 7 out of 9 confidence intervals
from the standard model do not contain the true parameters, while with the adjusted model all
of them are held within its confidence intervals.

For both panel A and panel B, the mean shopping costs and its standard deviation are always
underestimated in the standard model and the true parameter values are not contained in the
confidence intervals. The adjusted model’s shopping costs and standard deviation, however, are
correctly estimated and the true values are always contained within the confidence intervals. The
price dis-utility coefficient and its standard deviation are correctly estimated by both standard
and adjusted models.

5 Conclusions

[To be completed]
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Table 7: Estimates for the utility parameters and shopping costsa

Panel A Panel B
True model Standard Corrected Standard Corrected

Mean preferences

product 1 - store 1 3 3.09 3.05 2.68 3.06
[3.01 , 3.24] [2.97 , 3.20] [2.58 , 2.80] [2.96, 3.19]

product 2 - store 1 2 2.30 1.89
[2.19 , 2.43] [1.68 , 2.06]

product 3 - store 1 1 1.07 1.05 1.10 1.08
[1.01 , 1.12] [0.98 , 1.10] [1.05 , 1.20] [0.99 , 1.17]

product 1 - store 2 1 0.87 0.91 0.63 1.03
[0.79 , 0.96] [0.83 , 1.01] [0.53 , 0.75] [0.93 , 1.12]

product 2 - store 2 0.5 0.32 0.63
[0.18 , 0.42] [0.48 , 0.77]

product 3 - store 2 2 1.72 1.79 1.30 1.86
[1.64 , 1.81] [1.71 , 1.88] [1.22 , 1.40] [1.77 , 2.01]

product 1 - store 3 1 0.40 0.86
[0.32 , 0.52] [0.75 , 1.01]

product 2 - store 3 1 0.48 0.97
[0.35 , 0.62] [0.68 , 1.15]

product 3 - store 3 0.5 0.03 0.46
[-0.09 , 0.15] [0.37 , 0.58]

Shopping costs

mean 3 2.32 2.81 1.70 2.95
[2.13 , 2.64] [2.61 , 3.17] [1.45 , 1.94] [2.70 , 3.25]

standard deviation 1 0.88 1.05 0.83 1.06
[0.75 , 1.01] [0.86 , 1.23] [0.63 , 1.02] [0.88 , 1.22]

Price disutility

mean 4 4.16 4.15 4.09 4.11
[3.67 , 4.67] [3.67 , 4.66] [3.60 , 4.46] [3.62 , 4.48]

standard deviation 2 1.96 1.95 1.92 1.92
[1.51 , 2.31] [1.50 , 2.30] [1.63 , 2.24] [1.63 , 2.24]

Notes: Results are based on 50 simulations from 80 consumers, each with 208 choice occasions. Full
choice set includes 512 baskets, while the IFPH includes on average 20 baskets. Shopping costs and price
dis-utility unobserved heterogeneity follow a normal distribution. Brackets represent the 95% confidence
intervals.
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