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Abstract

An agenda-setter proposes a spatial policy to voters and can revise the ini-

tial proposal if it gets rejected. Voters can communicate with each other and

have distinct but correlated preferences, which the agenda-setter is uncertain

about. I investigate whether the ability to make a revised proposal is valuable

to the agenda-setter. When a single acceptance is required to pass a policy,

the equilibrium outcome is unique and has a screening structure. Because the

preferences of voters are single-peaked, the Coase conjecture is violated and the

ability to make a revised proposal is valuable. When two or more acceptances

are required to pass a policy, there is an interval of the agenda-setter’s equi-

librium expected payoffs. The endpoints have a screening structure, leading to

the same conclusions as in the case of a single acceptance. Interestingly, an

increase in the required quota q may allow the agenda-setter to extract more

surplus from voters. An application to spending referenda suggests that the

expected budget may increase in response to allowing the bureaucrat to make

a revised proposal and/or an increase in the number of voters whose acceptance

is required.
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1 Introduction

Motivation Many collective decision-making situations involve an agenda-setter

with the sole power to make proposals, a group of voters with a collective power

to veto proposals, and the possibility of a revised proposal if the initial proposal is

rejected. For example, about 750 school budget elections are conducted every year

in the State of New York. In every school district, officials put forward a budget

proposal and qualified voters decide in an election whether to pass it. Occasionally,

initial proposals are rejected, in which case a revised proposal is made and a second

election is held.1 If the revised budget is also defeated, the school district implements a

contingency plan which does not allow to increase spending compared to the previous

year.2 Other examples include: the nomination and confirmation of presidential

appointees in the United States; the decision-making in committees and boards; the

proposal of and voting on public spending measures.

When the agenda-setter is uncertain about the preferences of voters, she has an

opportunity to learn from rejected proposals and use this information when making

revised proposals. In light of the Coase (1972) conjecture, it is not clear if there is an

agenda-setting advantage in such a setting. Famously, the Coase conjecture claims

that a monopolist selling a durable good on a market would not be able to charge a

price above the cost of production because of the competition with the future self. The

Coase conjecture holds in veto bargaining over price (Fudenberg, Levine, and Tirole,

1985; Gul, Sonnenschein, and Wilson, 1986), but the examples of decision-making

situations given above do not fit this description. In these examples, the bargaining

is not over price but over policy, and the power to approve and veto proposals is

not individual but collective. When bargaining over policy, the agenda-setter and

voters can agree about the direction in which the status quo should be changed but

disagree about the magnitude of the change. And since the approval and veto power

is collective, the incentives of players can be influenced by the conflict of interest

between voters, the ability of voters to communicate with each other, and the voting

rule.

In this paper, I study a model of policy-making in which an agenda-setter makes

1Based on data from the New York State Education Department, in the five years from 2015 to
2019, the rate of rejection varied between 0.7% and 2.4%. There are five school districts in which
the initially proposed budgets were rejected on two occasions between 2015 and 2019.

2From 2015 to 2019, the rate of defeat of the revised budgets varied between 16.7% and 33.3%.
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a policy proposal that must be approved by voters and makes a revised proposal if

the initial proposal is rejected. I focus on situations in which the agenda-setter is

uncertain about the preferences of voters and learns from rejected proposals. Uncer-

tainty about the preferences of voters can explain why initial proposals are sometimes

rejected. I investigate how the voting rule affects equilibrium outcomes and whether

the ability to make a revised proposal is valuable to the agenda-setter. I also highlight

the role played by the conflict in preferences among voters and the ability of voters

to communicate with each other.

Model In the baseline model, described in Section 2, the agenda-setter and n voters

indexed by i bargain over a one-dimensional policy x ∈ R+. When n = 2, the voters

may represent two political parties or two groups of individual voters acting as voting

blocks. The policy space R+ may represent an ideological inclination of a nominee

for a federal court, an issue size of a bond offering, or a level of expenditure on a

public project (Romer and Rosenthal, 1979). The status quo policy, assumed to be

0, remains in effect until another policy passes. The agenda-setter has two attempts

at passing a policy proposal. In each of two periods, until some policy passes, the

agenda-setter makes a proposal, and voters cast their votes. If the proposed policy is

approved by the required number q of voters, it replaces the status quo and remains

in effect indefinitely. If the proposed policy is the first attempt to replace the status

quo and rejected, the agenda-setter makes a revised proposal.

Tensions in this model arise from the differences in goals, the asymmetric informa-

tion about the effects of policies, and impatience. The agenda-setter is risk-neutral

and maximizes the implemented policy. Voters have quadratic preferences with state-

dependent ideal policies that are strictly positive.3 Voters privately observe the state

of the world which can be either high h or low `. The agenda-setter is uninformed

about the state of the world. For each required number q of voters, the q-th highest

ideal policy is strictly positive in each state and is higher in state h compared to

state `. Finally, the agenda-setter and voters prefer earlier agreement and discount

future payoffs at a common discount rate δ < 1. This baseline model is tractable yet

sufficiently rich to provide insights into the effects of the voting rule on the incentives

of players and the implemented policies.

3These assumptions can be relaxed without affecting the qualitative results. For example, players
can have any (continuous) quasi-concave utility function that is single-peaked. The only restriction
is that the agenda-setter’s ideal policy is the largest among all players.
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By communication I mean the ability of voters to discuss their strategies with each

other coupled with the inability to write binding agreements. Non-binding commu-

nication among voters leads to an equilibrium refinement in the spirit of Bernheim,

Peleg, and Whinston (1987) called coalition-proofness, which requires that the equi-

librium strategies are robust to joint deviations by voters that are improving and

self-enforcing. This model-free approach to communication is analytically convenient

because it does not require a formal extension of the baseline model. Nonetheless,

coalition-proof equilibria can be shown to be outcome-equivalent to some equilibria in

a model with pre-vote (but post-proposal) round of simultaneous cheap-talk among

voters.

Questions (1) The ability to make a revised proposal if the initial proposal is

rejected captures the agenda-setter’s lack of commitment to a single proposal. This

lack of commitment has been long recognized as a potential detriment for the agenda-

setter and is a subject of the conjecture by Coase (1972) that the agenda-setting

advantage disappears when players become perfectly patient. The intuition behind

this conjecture, originally formulated for a durable-good monopolist but later shown

to hold in bilateral bargaining over price (Fudenberg et al., 1985), is that the veto

player evaluates the current proposals not with respect to the status quo but with

respect to the anticipated revisions. As a consequence, the agenda-setter competes

with the future self and this competition completely washes away the agenda-setting

advantage. Does the agenda-setter value the ability to make a revised proposal in

case the initial proposal is rejected?

There are two features of my model that make this question interesting. First, it

is not obvious that the Coase conjecture holds in bargaining over policy (as opposed

to bargaining over price). Since the ideal policies of voters are strictly positive, the

anticipated revisions can be worse for voters than the current proposals. In this

case, the agenda-setter does not compete with the future self and may preserve the

agenda-setting advantage. Second, the forces behind the Coase conjecture may be

weakened by a q-majority voting rule and the conflict of interest among voters. When

implementing a policy requires approval from more than a single voter (i.e., when the

required quota is q ≥ 2), the initial proposal can be rejected with multiple levels of

support. The agenda-setter’s belief, and therefore the revised proposal, can depend

on the level of support for the initial proposal. Therefore, the q-majority voting rule
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when q ≥ 2 allows greater flexibility in providing incentives for voters in the first

period compared to the case when q = 1.

(2) A variety of voting rules are used in practice, including majority rule used

for the confirmation of presidential appointees and unanimity rule used by corporate

boards for the approval of actions by the “unanimous written consent.” How does

an increase in the required quota q affect the implemented policies and the agenda-

setter’s expected payoff?

From the agenda-setter’s perspective, there is a tradeoff between the voting rules.

On the one hand, a smaller required quota allows the agenda-setter to target fewer

voters who are more aligned with the agenda-setter, while a larger required quota

forces the agenda-setter to secure approval from more voters. On the other hand, a

larger required quota moves the set of credible revised proposals towards the status-

quo policy since the agenda-setter always targets a voter with the q-th highest ideal

policy. Because of the single-peaked preferences of voters, this effect of a larger

required quota may allow the agenda-setter to extract more surplus from voters using

the initial proposal.

Main results First, I show that the Coase conjecture is violated (under some con-

ditions on the primitives of the model) when the bargaining is over a spatial policy.

When q = 1, there is a unique equilibrium path which has a screening structure. The

agenda-setter makes an initial proposal that can pass only when the ideal policies of

voters are high, i.e., in state h, and revises the initial proposal to be closer to the

status quo policy 0 if the initial proposal is rejected. The screening proposal makes a

voter with the highest ideal policy in state h, say voter j, indifferent between accepting

the initial proposal in the first period and the revised proposal in the second period.

When the revised proposal is closer to the status-quo policy 0 than the ideal policy of

voter j in state h (which happens when the difference in ideal policies between states

` and h is relatively large), the screening proposal converges (as players become ar-

bitrarily patient) to a policy that is symmetric to the revised proposal around that

ideal policy. This means that the agenda-setting advantage does not vanish thanks

to the single-peaked preferences of voters with strictly positive ideal policies.

When q ≥ 2, the flexibility in using revisions to provide incentives for voters

results in a multiplicity of equilibrium paths. The agenda-setter’s expected payoff

is no longer unique. Instead, there is an interval of expected payoffs that can be
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supported in equilibrium. Nonetheless, the endpoints of this interval correspond to

equilibrium paths that have a screening structure similar to the case q = 1. As a

result, the Coase conjecture can be violated because of the single-peaked preferences

of voters. The forces behind these violations of the Coase conjecture make the ability

to make a revised proposal valuable to the agenda-setter for any required quota q ∈ N .

Second, I show that increasing the number q of voters required to pass a policy

can raise the expected policy implemented in equilibrium and the agenda-setter’s

equilibrium expected payoff. The screening structure of equilibrium paths and single-

peaked preferences of players play a crucial role. In the second period, the agenda-

setter always makes a revised proposal that sets a voter with the q-th highest ideal

policy in either state ` or h (depending on the posterior belief) to the status-quo level

of payoff. Therefore, the required quota q affects the anticipated revised proposals

which serve as threats for rejecting the initial proposal. I provide conditions under

which an increase in the required quota q moves the anticipated revised proposal

closer to the status-quo policy 0 and further away from the ideal policy of a voter

targeted by the initial proposal, giving a higher expected payoff to the agenda-setter.

Implications/predictions The results in this paper suggest that the average size

of adopted policy can (all else being held constant) be higher in settings in which the

agenda-setter is allowed to make a revised proposal compared to settings in which the

agenda-setter is not. For example, one could expect higher average school budgets

in New York, where a second school budget election is held if the initial budget gets

rejected, than in New Jersey, where a contingency plan goes into effect if the proposed

budget gets rejected. The results also suggest that states that require a 60 percent

supermajority to pass school budgets, as some states do, may have higher average

school budgets than states that require a simple 50 percent majority.

Approach My analysis relies on a complete characterization of the implemented

policies and the agenda-setter’s expected payoffs under minimal assumptions on the

voting strategies of voters. I only assume that voters use weakly undominated voting

strategies. For instance, voting strategies are not necessarily symmetric and are not

required to be threshold in policy proposals.

I show that the equilibrium path is unique when q = 1, implying that the agenda-

setter’s expected payoff is also unique. When q ≥ 2, there is a multiplicity of equilib-
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rium paths, which results in a multiplicity of the agenda-setter’s expected payoffs. It

does not seem feasible to provide a complete characterization of equilibrium voting

strategies without additional restrictions. Instead, I provide a complete characteriza-

tion of the agenda-setter’s expected payoffs that can be supported in equilibrium. I

derive two bounds and show that any value outside these bounds cannot be supported

as the agenda-setter’s expected payoff in equilibrium no matter how the off-path be-

liefs are specified. In turn, I show that any value inside these bounds can be supported

as the agenda-setter’s expected payoff in equilibrium by explicitly constructing such

equilibrium. The main results in this paper are based on the comparison of the unique

expected payoff when q = 1, the payoff bounds when q ≥ 2, and the unique payoff

in the benchmark case when the agenda-setter can commit to a single proposal when

q ∈ N .

Because of the multiplicity of expected payoffs when the voting rule requires an

agreement of more than a single voter, q ≥ 2, the comparative statics with respect

to the required quota must rely on some form of equilibrium payoff selection. To

circumvent this problem, I provide the necessary and sufficient conditions for some

equilibrium payoff selection to be non-monotone decreasing in the required quota q

and for each equilibrium payoff selection to be non-monotone.

Outline I present the model in Section 2. I consider the case q = 1 in Section 3 and

the case q ≥ 2 in Section 4, which also contains the comparative statics with respect

to the required quota. Section 5 concludes.

Related literature

Repeated referenda. Thematically, this paper fits within the literature on repeated

referenda originated from Romer and Rosenthal (1979).4 The first paper to introduce

strategic voting in the model of repeated referenda was Morton (1988).5 More recent

work on repeated referenda includes Rosenthal and Zame (2019) and Chen (2020,

2022).

4Romer and Rosenthal (1979) builds on a single-period model of Romer and Rosenthal (1978).
Denzau and Mackay (1983) is another influential paper with an uniformed agenda-setter making a
single proposal to privately informed voters.

5Even though Morton (1988) considers strategic voters and discusses the potential conflict be-
tween the signaling and pivotal incentives, that paper eventually assumes that the pivotal incentives
dominate.
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Rosenthal and Zame (2019) evaluate the role of voter sophistication on the agenda-

setter’s ability to benefit from being able to make a revised proposal. In the most

interesting case of sophisticated voters, the analysis in Rosenthal and Zame (2019) is

limited to a single voter, making it closely related to the analysis of the q-majority

voting rule with q = 1 and the comparison with commitment benchmark in Section

3.

Chen (2020) studies whether the ability to make a revised proposal is valuable to

the agenda-setter and, in particular, focuses on the tradeoff between signaling and

pivotal incentives of voters. The model is similar to the one considered here and

features two periods and multiple privately informed voters with quadratic prefer-

ences. The key difference is that Chen (2020) assumes that the voting strategies in

the initial period are threshold in the ideal policies given that the initial proposal

is on path of play. In contrast, I only assume that the voting strategies are weakly

undominated. I provide a sharp characterization of the expected payoffs that the

agenda-setter can achieve in equilibrium, which allows me to perform an exhaustive

comparison of equilibrium outcomes with the commitment benchmark. My results

also complement Chen (2020) by showing how the following characteristics of the

environment affect the adopted policies: (i) the conflict in preferences among voters,

(ii) the voting rule, (iii) the prior belief about the state, and (iv) the ability of voters

to communicate with each other.

Both Rosenthal and Zame (2019) and Chen (2020) assume that players give equal

weight to both periods of policy-making, limiting the analysis of forces behind the

Coase conjecture. In contrast, I characterize the agenda-setter’s expected payoffs for

a given discount factor and then derive the limit of this set as players become perfectly

patient. As a result, I am able to show that the Coase conjecture may be violated in

bargaining over policy due to single-peaked preferences.

Chen (2022) compares a straw poll to a binding referendum under different voting

rules. Besides the differences in substantive question and explicit comparison of voting

rules, Chen (2022) uses an approach similar to Chen (2020) and focuses on the voting

strategies in the straw poll period that are threshold in ideal policies given that the

initial proposal is on the path of play. The approach to communication in Chen

(2022) is distinct from the one adopted here. Chen (2022) models communication

using a straw poll followed by a binding vote on a single proposal. In contrast, I

allow voters to discuss their strategies with each other and study equilibria that are
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robust to such communication.

Bargaining. This paper also contributes to the literature on bargaining with asym-

metric information and the Coase conjecture (Fudenberg, Levine, and Tirole, 1985;

Gul, Sonnenschein, and Wilson, 1986).6 The main features that differentiate this pa-

per from the literature on the Coase conjecture are: (i) the bargaining is over a spatial

policy and not over a distributive policy (price); and (ii) the approval and veto rights

are not individual but collective. I show that the Coase conjecture may be violated

in settings with single-peaked preferences. Using an alternative set of assumptions

on the ideal policies and the determination of status-quo payoffs, the methods used

in this paper can be applied to the analysis of price bargaining between an informed

seller and an informed “buyer” represented by n players with competing preferences,

for example, when n = 2 the “buyer” could represent a couple.

Signaling through voting. Since the voting record can influence the agenda-setter’s

beliefs and the revised proposal, in this paper voters face both pivotal and signaling

incentives when choosing how to vote on the initial proposal. Signaling incentives of

voters have been previously studied in a variety of contexts (Piketty (2000), Razin

(2003), Meirowitz (2005), Shotts (2006), Meirowitz and Tucker (2007), Meirowitz

and Shotts (2009), and McMurray (2017)). These papers focus on determining which

incentive, pivotal or signaling, drives the voting behavior in large elections. In my

model, voters also face the tradeoff between pivotal and signaling incentives, as cap-

tured by equation (3).

Endogenous proposals. This paper contributes to the literature that studies the role

of voting mechanisms in the presence of asymmetric information and agenda control

(Austen-Smith, 1987). Bond and Eraslan (2010) study the effect of the voting rule on

the efficiency of an adopted policy when the agenda-setter proposes the policy that is

voted on. Bouton, Llorente-Saguer, Macé, and Xefteris (2021) compare the efficiency

of “voting mechanisms” when the agenda-setter serves as a “gatekeeper” and decides

whether the vote takes place. Both papers focus on the aggregation of information

6Earlier work on the Coase conjecture includes Stokey (1981) and Bulow (1982). More recent
papers are (among others): Deneckere and Liang (2006), who assume that the seller is privately
informed about her cost; Ortner (2017) who allows the seller’s cost to stochastically evolve over
time; and Doval and Skreta (2020) who follow a mechanism design approach. In a setting with
spatial policies, Kartik, Kleiner, and Van Weelden (2021) derive conditions for interval delegation
to be an optimal mechanism without transfers from the agenda-setter’s perspective.
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dispersed among voters and allow the agenda-setter to be privately informed, but

assume that no revisions take place when a policy does not gather enough support.

In contrast, the central features of my analysis are the agenda-setter’s ability to revise

a rejected proposal and the associated changes in the incentives of players. Moreover,

both papers consider common value environments,7 while I emphasize the role of

heterogeneity in preferences among voters. Henry (2008) studies bargaining over a

distributive policy and shows that the agenda-setter may offer positive transfers to

more voters than the required quota. I focus on a one-dimensional policy space that

does not allow the agenda-setter to make targeted transfers to voters.

Sequential voting. Finally, this paper is related to the literature on the role of voting

rule in collective search (Albrecht, Anderson, and Vroman, 2010; Compte and Jehiel,

2010; Moldovanu and Shi, 2013), collective experimentation (Strulovici, 2010), and

sequential voting with private information (Ordeshook and Palfrey, 1988; Kleiner

and Moldovanu, 2017). In these papers, alternatives arrive exogenously until the

committee collectively decides to stop the search and accept the current proposal.

In contrast, I assume that the alternatives are endogenously selected by the agenda-

setter.

2 The model

The agenda-setter A and n voters indexed by i ∈ N = {1, . . . , n} bargain over a one-

dimensional policy x ∈ R+ using a q-majority voting rule with q ∈ N . The status-quo

policy is 0. Policy x may represent a level of public spending or an increase in capital

stock of a company. In every period t ∈ {1, 2} some policy xt ∈ R+ is implemented.

Policy xt is the status-quo policy 0 until another policy p ∈ R+ passes and gets

implemented in the remaining periods.

In period t = 1, the agenda-setter makes a policy proposal p1. After voters

observe p1, they simultaneously cast their votes. The action set of each voter i is

Ai = {0, 1} with a generic element ai,1, where ai,1 = 0 if voter i rejects the initial

proposal and ai,1 = 1 if voter i accepts the initial proposal.8 Proposal p1 passes when

7More precisely, Bond and Eraslan (2010) assume that the preferences of voters are almost
perfectly aligned and Bouton, Llorente-Saguer, Macé, and Xefteris (2021) allow partisan voters
whose preferences do not depend on the underlying state of the world.

8This assumption rules out the possibility of abstention.

9



the required quota q of voters accepts it. In case p1 passes, it is implemented in both

periods, x1 = x2 = p1, and the game ends. In case p1 is rejected, the status quo is

implemented in the first period, x1 = 0, and the same process is repeated in period

t = 2 after the voting record is revealed.

The agenda-setter is maximizing the policy – the period utility of the agenda-setter

from implementing policy x ∈ R+ is uA(x) = x. Voters have quadratic preferences

over R+ with the ideal policies that depend on state ω ∈ Ω. The period utility of voter

i ∈ N from implementing policy x ∈ R+ in state ω ∈ Ω is ui(x;ω) = −
(

1
2
yωi − x

)2
,

where 1
2
yωi > 0 is the ideal policy of voter i in state ω. Future payoffs are discounted

at rate δ ∈ (0, 1), so the total payoffs of the agenda-setter and voter i ∈ N from a

policy sequence (x1, x2) ∈ R2
+ in state ω ∈ Ω are

UA(x1, x2) = (1− δ)uA(x1) + δuA(x2);

Ui(x1, x2;ω) = (1− δ)ui(x1;ω) + δui(x2;ω).

The information about the state ω ∈ Ω is asymmetric. There are two possible

states, Ω = {`, h}. Voters observe the state ω, but the agenda-setter does not. The

state is drawn and observed by voters at the beginning of the game.

For each q ∈ N , let q(·) : Ω→ N be a mapping from the state space Ω to the set

of players N such that player q(ω) has the q-th highest ideal policy in state ω, i.e.:

#{j ∈ N | yωq(ω) < yωj } < q(ω) ≤ #{j ∈ N | yωq(ω) ≤ yωj }.

Mapping q(·) defines a “synthetic voter” whose ideal policy is q-th highest in each

state ω ∈ Ω. I assume that every synthetic voter is monotone in the sense that for

each q ∈ N we have 0 < y`q(`) < yhq(h). Therefore, state ` can be interpreted as being

“low” and state h as being “high.”

Remark. A trivial case when every synthetic voter q(·) is monotone is when every

voter is monotone, that is, y`i < yhi for all i ∈ N . However, every synthetic voter

q(·) can be monotone even if some voter i is not. For example, let N = {1, 2} and

assume that y`1 = 1 < 4 = yh1 and y`2 = 3 6< 2 = yh2 . Voter 2 is not monotone yet both

y`1(`) = 3 < 4 = yh1(h) and y`2(`) = 1 < 2 = yh2(h) hold.
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2.1 Strategies and beliefs

Let ~t denote the public history up to period t ∈ {1, 2}, including the proposed policies

and the voting record, and ending right before the proposal in period t. Thus, the

public history in period t = 1 is empty, and the public history in period t = 2 consists

of the proposed policy and the choices of voters in the previous period.

Let H be the set of non-empty public histories at which the agenda-setter gets to

make a proposal. Public history ~ ∈ H captures all of the information available to

the agenda-setter when making a revised policy proposal in period 2. A (behavioral)

strategy of the agenda-setter is π = (π1, π2), where π1 ∈ ∆(R+) is her proposal

strategy in the first period and π2 : H → ∆(R+) is her proposal strategy in the

second period. In particular, π1 is the distribution of proposed policies in the first

period, and, for each public history ~ ∈ H, π~
2 is the distribution of proposed policies

in the second period.

In addition to a (possibly empty) public history ~t, each voter i ∈ N observes the

state ω before choosing whether to accept or reject a policy proposal. A (behavioral)

strategy of voter i ∈ N is αi = (αi,1, αi,2), where αi,1 : R+ × Ω → [0, 1] is the

acceptance strategy of voter i in the first period and αi,2 : R+ × Ω × H → [0, 1] is

the acceptance strategy of voter i in the second period. In particular, the probability

with which voter i in state ω ∈ Ω accepts proposal p1 ∈ R+ in the first period is

αωi,1(p1) ∈ [0, 1]. The probability with which voter i in state ω and history ~ accepts

proposal p2 in the second period is αωi,2(p2; ~).

The common prior belief over the state space Ω is µ̂(·) ∈ F , where F = ∆(Ω) is

the set of probability measures over Ω. To simplify notation, I often write µ̂ instead of

µ̂(h) and refer to µ̂ ∈ [0, 1] as a prior belief. The period-2 belief generally depends on

what has transpired in the game prior to the second period. LetM = {µ~(·)}~∈H be

a belief system, where µ~ ∈ F for each h∈̄H. For instance, µ~(·) is the agenda-setter’s

belief over Ω when the history is ~ ∈ H. Similar to the prior belief µ̂(·), I often write

µ~ instead of µ~(h) and refer to µ~ as a posterior belief in history ~.

2.2 Induced outcomes

Given a prior belief µ̂, each assessment (σ,M) induces a distribution Fσ,M over the

outcome space Ω×R+×R+. In turn, each state ω ∈ Ω induces a marginal distribution

F ω
σ,M over the space of policy sequences R+ × R+. Each player’s ex-ante expected
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payoff for a given assessment (σ,M) can be written as follows:

VA(σ,M) =

∫
{(1− δ)x1 + δx2} dFσ,M(ω, x1, x2)

=
∑
ω∈Ω

µ̂(ω)

{∫
{(1− δ)x1 + δx2} dF ω

σ,M(x1, x2)

}
Vi(σ,M) =

∫
{(1− δ)ui(x1;ω) + δui(x2;ω)} dFσ,M(ω, x1, x2)

=
∑
ω∈Ω

µ̂(ω)

{∫
{(1− δ)ui(x1;ω) + δui(x2;ω)} dF ω

σ,M(x1, x2)

}
, i ∈ N.

Given an assessment (σ,M), a policy sequence (x1, x2) ∈ R+ × R+ is on path if

there exists state ω ∈ Ω such that (x1, x2) is in the support of F ω
σ,M. The bargaining

protocol restricts the supports of marginal distributions F `
σ,M and F h

σ,M over R+×R+

that can be induced by assessment (σ,M). Consider a policy sequence (x1, x2). If

x1 > 0, then (x1, x2) can be on path only if x1 = x2 because x1 > 0 implies that x1 was

proposed in the first period, defeated the status-quo policy 0, and was implemented

in both periods. This fact reduces the number of cases one needs to consider when

analyzing policy sequences that are on path of play and therefore contribute to the

agenda-setter’s expected payoff VA(σ,M).

2.3 Equilibrium concept

The equilibrium concept is a coalition-proof Perfect Bayesian Equilibrium (coalition-

proof PBE). An assessment (σ,M) consisting of a (behavioral) strategy profile σ =

(π, α) and a belief system M is a PBE if the strategies of players are sequentially

rational, that is, players maximize their expected payoffs every time they move, and

the beliefs are consistent, that is, for each initial proposal p1 ∈ R+ the posterior belief

µ~ is derived from the prior µ̂ using the Bayesian rule on path of play induced by p1.

This definition implies that the agenda-setter cannot “signal” any information using

the initial proposal.9 In particular, this definition requires that players continue to

use the Bayesian rule even when the initial proposal is not on path of play, i.e., is

caused by an agenda-setter’s deviation.10

9This assumption is sometimes referred to as “not-signaling-what-you-don’t-know.”
10It follows that the concept of Perfect Bayesian Equilibrium used here can be more precisely

described as an almost PBE rather than a weak PBE in the terminology of Mailath (2019).
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In many settings, it is natural to assume that voters can discuss their strategies

with each other. Such communication can take many forms: voters participating

in public and private discussions, members of interest groups using media outlets

to further their agenda, and countless ways to interact using social media platforms.

Some sort of communication is particularly likely when voters have similar preferences

and information. Although voters may be able and willing to discuss their plans, it is

much less likely that they can write binding agreements specifying how they should

vote in every situation. To account for these possibilities, I assume that voters engage

into direct unmediated communication and consider a refinement of PBE inspired by

Bernheim, Peleg, and Whinston (1987).

Fix a coalition C ⊆ N and an assessment (σ,M), where σ = (π1, α1, π2, α2). A

period-1 voting strategy profile α̃1 = (α̃C , αN\C) is improving for C with respect to

(σ,M) if for each i ∈ C we have Vi(σ̃,M) > Vi(σ,M) where σ̃ = (π1, α̃1, π2, α2). An

existence of improving deviation for some set of voters C does not immediately imply

that the equilibrium under consideration is unreasonable. Since binding agreements

are generally not possible, an improving deviation upsets an equilibrium only if the

improving deviation itself is robust to further deviations by some members of C.

Fix a coalition C ⊆ N and an assessment (σ,M), where σ = (π1, α1, π2, α2). A

period-1 voting strategy profile α1 = (αi,1)i∈N is self-enforcing for C with respect to

(σ,M) if there does not exist a period-1 voting strategy profile α̃1 which is improving

for some C̃ ⊂ C with respect to (σ,M). Of course, when (σ,M) is an equilibrium,

the voting strategies in σ are self-enforcing for singletons with respect to (σ,M). In

other words, PBE requires (among other restrictions) that the equilibrium strategies

are robust to unilateral deviations by voters. Coalition-proofness places an additional

restriction on (σ,M) that the equilibrium strategies are robust to joint deviations by

voters that are self-enforcing.

A perfect Bayesian equilibrium (σ,M) is coalition-proof if there does not exist

α̃1 which is improving for some C ⊆ N with respect to (σ,M) and self-enforcing for

C with respect to (σ̃,M), where σ̃ = (π1, α̃1, π2, α2). Under the q-majority voting

rule with q = 1, coalition-proofness has no bite and therefore does not affect the set

of equilibria. When q ≥ 2, Examples 1 and 2 in Online Appendix B demonstrate

equilibria that do not pass the criteria of coalition-proofness.
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2.4 Coasian equilibria

The original Coase conjecture (Coase, 1972) states that a monopolist facing a down-

ward sloping demand curve for a durable good would not be able to price-discriminate

buyers.11 The argument goes like this. As long as there are consumers willing to pay

above the marginal cost, the monopolist would find it profitable to reduce the price

in order to reach some of them. Expecting a lower price, consumers would refuse to

buy at a higher price, effectively making the demand curve infinitely elastic. As a

result the monopolist would not be able to charge a price above the competitive level.

Bilateral models of bargaining usually focus on whether equilibria are not Coasian

in the sense that the limit of the agenda-setter’s expected payoff exceeds y`q(`), which

means that the agenda-setting advantage does not disappear as players become per-

fectly patient. I call such sequences of equilibria non-Coasian.12 Formally, fix a

required quota q ∈ N and let {δk}∞k=1 be a sequence of discount factors converging to

1. A corresponding sequence of equilibria {(σk,Mk)}∞k=1 is called:

(i) Coasian if the agenda-setter’s expected payoff converges to y`q(`);

(ii) non-Coasian if the agenda-setter’s expected payoff converges to v > y`q(`).

Theorems 3 and 7 provide the necessary and sufficient conditions for the existence of

Coasian equilibria in my model.

2.5 Equilibrium definition

Under the q-majority voting rule, a policy proposal pt passes in period t if and only

if at least q voters accept pt. The public belief µ~ in the second period generally

depends on the number and the identities of voters who rejected the initial proposal

p1. Accordingly, in the first period, voters must take into account the effect of their

vote on the public belief in the second period.

Each history ~ ∈ H can be described by an initial policy proposal p1 ∈ R+ and a

(possibly empty) coalition of players C who voted to accept it. For each κ ∈ N ∪{0},
11A textbook treatment of the Coase conjecture can be found in Fudenberg and Tirole (1991).
12In multilateral bargaining over spatial policy, there may exist equilibria in which the agenda-

setter’s expected payoff is below y`q(`) but such equilibria require that voters cannot communicate

with each other (see Example 2 with q = n = 2 in Online Appendix B). In such cases, the agenda-
setting advantage is actually a disadvantage. When this disadvantage does not disappear as players
become perfectly patient, I call such sequences of equilibria sub-Coasian.
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let Cκ be the collection of coalitions of size κ. The set of histories H can be written

as H = {~ = (p1, C) | p1 ∈ R+, C ∈
⋃q−1
κ=0 Cκ}. Given a period-1 strategy profile

σ1 ∈ Σ, we can use the Bayesian rule to obtain

µp1,C(h) =

(∏
i∈N\C(1− αhi,1(p1))

)(∏
j∈C α

h
j,1(p1)

)
µ̂(h)∑

ω=`,h

(∏
i∈N\C(1− αωi,1(p1))

)(∏
j∈C α

ω
j,1(p1)

)
µ̂(ω)

.

Let V q
i,2(ω;µ~) be the expected period-2 payoff of voter i in state ω if the period-2

belief is µ~:

V q
i,2(ω;µ~) =

∫
p2∈R+

{
max

ai,2∈{0,1}
U q
i,2(p2;ω, (ai,2, α−i,2))

}
dπ2(µ~)(p2), (1)

where U q
i,2 is the period-2 expected payoff of voter i and µ~ is the agenda-setter’s

period-2 belief.13

When voter i accepts an initial policy proposal p1, it passes only when at least

q− 1 other voters also accept p1. If less than q− 1 other voters accept p1 and the set

of voters who accept it is C, then the revised belief is µp1,C and a revised proposal is

made in the next period. Combining these possibilities, the expected payoff of voter

i from accepting policy p1 is

Ui,1(p1;ω, (ai,1, α−i,1)) =

= Prob

(
ai,1 +

∑
j 6=i

aj,1 ≥ q | ω, α−i,1

)
ui(p1;ω)

+ Prob

(
ai,1 +

∑
j 6=i

aj,1 < q | ω, α−i,1

)[
(1− δ)ui(0;ω) + δV q

i,2(ω;µp1,C)
]

= Prob

(
ai,1 +

∑
j 6=i

aj,1 ≥ q | ω, α−i,1

)[
−
(

1

2
yωi − p1

)2
]

+ Prob

(
ai,1 +

∑
j 6=i

aj,1 < q | ω, α−i,1

)[
(1− δ)

(
−1

4
(yωi )2

)
+ δV q

i,2(ω;µp1,C)

]
.

(2)

In equilibrium, voter i in state ω chooses an action with the highest expected

13The analysis of the second period is standard and presented in Online Appendix A.
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payoff. Consider the difference between the expected payoffs in (2) for ai,1 = 1 and

ai,1 = 0:

U q
i,1(p1;ω, (1, α−i,1))− U q

i,1(p1;ω, (0, α−i,1)) =

=
∑

C∈Cq−1

Prob

(∑
j 6=i

aj,2 = q − 1 | ω, α−i,2

)[
(yωi − p1)p1 − δV q

i,2(ω;µp1,C)− δ1

4
(yωi )2

]

+ 1(q ≥ 2)

q−2∑
κ=0

{∑
C∈Cκ

Prob

(∑
j 6=i

aj,2 = κ | ω, α−i,2

)[
δV q

i,2(ω;µp1,C+i)− δV q
i,2(ω;µp1,C)

]}
.

(3)

The first term in (3) captures the incentive of voter i arising from policy consid-

erations. In other words, it captures the tradeoff between implementing the initial

policy proposal p1 in period 1 and a revised policy proposal in period 2. This tradeoff

arises only when voter i is pivotal, i.e., exactly q− 1 other voters accept p1. The sec-

ond term in (3) captures the incentive of voter i arising from signaling considerations.

When the initial policy proposal p1 gets rejected, a revised proposal depends on the

agenda-setter’s posterior belief about the state. Therefore, voter i can use her vote

to influence the revised proposal through the posterior belief. The signaling incentive

is present only when less than q − 1 other voters accept p1.

Unless voter i believes that she is never pivotal or always pivotal, i.e., unless

we have
∑

C∈Cq−1
Prob

(∑
j 6=i aj,2 = q − 1 | ω, α−i,2

)
∈ {0, 1}, voter i must take into

account both policy and signaling considerations. Voter i’s period-1 acceptance prob-

ability αωi,1(p1) must satisfy

αωi,1(p1) =

1 if U q
i,1(p1;ω, (1, α−i,1)) > U q

i,1(p1;ω, (0, α−i,1)),

0 if U q
i,1(p1;ω, (1, α−i,1)) < U q

i,1(p1;ω, (0, α−i,1)).
(4)

A period-1 voting strategy profile α1 = (αi,1)i∈N must satisfy (4) in every PBE,

even when it is not coalition-proof; in a coalition-proof PBE, α1 must also be such

that there does not exist coalition C ⊆ N and strategy profile α̃1 = (α̃C , αN\C) which

is improving and self-enforcing.

From the agenda-setter’s perspective, each initial policy proposal p1 ∈ R+ is

associated with a collection of events. The probability that only voters in set C ⊆ N
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accept policy p1 is given by:

Ŵ (C, p1) =
∑
ω∈Ω

µ̂(ω)

(∏
i∈C

αωi,1(p1)

) ∏
i∈N\C

(1− αωi,1(p1))

 .

Therefore, the probability Ŵ q(p1) that policy p1 passes under the q-majority voting

rule can be written as:

Ŵ q(p1) =
n∑
κ=q

∑
C∈Cκ

Ŵ (C, p1).

The agenda-setter’s expected payoff from making an initial policy proposal p1 is

U q
A,1(p1) = Ŵ q(p1)p1 +

q−1∑
κ=0

∑
C∈Cκ

Ŵ (C, p1)δV q
A,2(µp1,C). (5)

In equilibrium, the agenda-setter proposes a policy that maximizes her expected pay-

off (5), that is, she solves the following problem:

max
p1∈R+

U q
A,1(p1); (6)

and she proposes policy p1 with positive probability only when p1 is a solution to (6):

π1(p1) > 0 implies p1 ∈ arg max
p′1∈R+

U q
A,1(p′1).

In the remainder of the paper, I characterize the coaltion-proof equilibria under

the q-majority voting rule and analyze their properties. I begin by considering case

q = 1 in Section 3 and move to case q ≥ 2 in Section 4.

3 “Bilateral” bargaining over policy (q = 1)

The case when a single acceptance is required to pass a policy proposal, q = 1, is

special because the agenda-setter makes the revised proposal only when the initial

proposal is rejected unanimously. This feature prevents the agenda-setter from using

revised proposals as punishments for deviations. Nonetheless, this case is important

for multiple reasons. First, Theorem 1 shows that the equilibrium predictions when

q = 1 are as if the the agenda-setter was engaged in bilateral bargaining with the
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synthetic voter 1(·), allowing me to discuss the differences between the bilateral bar-

gaining over a distributive policy (e.g., Fudenberg, Levine, and Tirole (1985)) and

bilateral bargaining over a spatial policy. In particular, I describe the possible viola-

tions of the Coase conjecture when the policy is spatial (Theorems 3 and 4). Second,

the characterization of the agenda-setter’s equilibrium expected payoffs when q ≥ 2

is closely related to the bilateral bargaining case, as shown in Section 4.14

3.1 Characterization: Unique equilibrium path

Lemma 1 asserts that for any prior belief µ̂, the policy space R+ can be partitioned into

up to four regions, each corresponding to a different probability that a policy passes

if proposed in the first period. Similar to the second period (see Online Appendix A),

the initial proposal p1 passes in both states if it is sufficiently small, p1 < y`1(`), and

gets rejected in both states if it is sufficiently large, p1 > yh1(h). Unlike in the second

period, the initial proposal p1 between y`1(`) and yh1(h) may also get rejected in both

states, reflecting the fact that voters take into account the possibility of revision.

No matter what the prior belief µ̂ is, we can identify proposals that pass only in

high state h. Define z1 as follows:

z1 = max{p1 ∈ R+ | (yh1(h) − p1)p1 ≥ δ(yh1(h) − y`1(`))y
`
1(`)}. (7)

By definition, policy z1 satisfies y`1(`) < z1 < yh1(h) and is the agenda-setter’s preferred

policy among those that are acceptable to voter 1(·) in state h whenever this voter

expects a revised proposal to be y`1(`). Each initial proposal p1 in (y`1(`), z
1) passes

with certainty in state h and gets rejected in state `. The prior belief µ̂ determines

what happens to an initial proposal p1 in (z1, yh1(h)). Define m1 =
y`
1(`)

yh
1(h)

. If the prior

belief that the state is h is sufficiently high, µ̂ > m1, then each initial proposal p1

in (z1, yh1(h)) passes in state h with probability α̂1 ∈ (0, 1) and gets rejected in state

`. Probability α̂1 is derived from a condition that the posterior belief that the state

is h equals m1 after an initial proposal gets rejected, α̂1 = µ̂−m1

µ̂(1−m1)
. And if the

prior belief that the state is h is sufficiently low, µ̂ ≤ m1, then each initial proposal

p1 ∈ (z1, yh1(h)) gets rejected in both states. Having defined z1 and α̂1, we can state

14In the special case when the voters with q highest ideal policies have identical preferences and
can communicate, the equilibrium predictions are exactly the same as when the agenda-setter is
engaged in bilateral bargaining with one of these voters (Theorem 6).
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the formal result.15

Lemma 1. Consider a q-majority voting rule with q = 1. In every PBE, the proba-

bility W 1(p1) that an initial proposal p1 ∈ R+ passes equals:

Ŵ 1(p1) =



1 if 0 < p1 < y`1(`),

µ̂ if y`1(`) < p1 < z1,

µ̂α̂1 if z1 < p1 < yh1(h) and µ̂ > m1,

0 if z1 < p1 < yh1(h) and µ̂ ≤ m1, or yh1(h) < p1.

(8)

Given the probabilities with which the initial proposals pass, we can find the

posterior belief after the initial proposal gets rejected and find the continuation payoffs

of the agenda-setter.16 When an initial proposal p1 ∈ (y`1(`), z
1) gets rejected, the

posterior belief µ~ assigns probability 1 to state ` and the agenda-setter’s continuation

payoff is y`1(`). If the prior belief that the state is h is sufficiently high, µ̂ > m1, then

when the initial proposal p1 ∈ (z1, yh1(h)) gets rejected, the posterior belief µ~ is such

that µ~ = m1 by the choice of α̂1 and the agenda-setter’s continuation payoff is y`1(`)

again. If the prior belief that the state is h is sufficiently low, µ̂ ≤ m1, then when

the initial proposal p1 ∈ (z1, yh1(h)) gets rejected, the posterior belief µ~ equals the

prior µ̂ and the agenda-setter’s continuation payoff is y`1(`) yet again. Finally, when

the initial proposal p1 > yh1(h) gets rejected, the posterior belief µ~ equals the prior µ̂

and the agenda-setter’s continuation payoffs is V 1
A,2(µ̂) = max{y`1(`), µ̂y

h
1(h)}. We can

write the the agenda-setter’s expected payoff as follows:

U1
A,1(p1) =



p1 if p1 < y`1(`),

µ̂p1 + (1− µ̂)δy`1(`) if y`1(`) < p1 < z1,

1(µ̂ ≤ m1)δy`1(`)

+ 1(µ̂ > m1)(µ̂α̂1p1 + (1− µ̂α̂1)δy`1(`))
if z1 < p1 < yh1(h),

δmax{y`1(`), µ̂y
h
1(h)} if yh1(h) < p1.

(9)

In equilibrium, the agenda-setter proposes a policy that maximizes her expected pay-

off (9).

15All proofs, except the proof of Theorem 5 in Appendix C, can be found in Appendix D.
16See Lemma A.3 in Online Appendix A.
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The existence of PBE places restrictions on the probabilities that the initial pro-

posals y`1(`), z
1, and yh1(h) pass if proposed.17 In the discussion that follows, I assume

that y`1(`) passes in both states, z1 passes with certainty in state h, and yh1(h) passes

in state h with probability α̂1.18 There are three initial proposals that the agenda-

setter can make in equilibrium, depending on the prior belief µ̂. Each of these initial

proposals gives rise to a distinct equilibrium outcome. Define the following belief

thresholds, the purpose of which will become apparent shortly:

m` =
(1− δ)y`1(`)

z1 − δy`1(`)

, (10)

mh =
m1(yh1(h) − δy`1(`))

yh1(h) − z1 +m1(z1 − δy`1(`))
. (11)

In the first possible equilibrium outcome, the initial proposal is y`1(`), which is made

when the agenda-setter is sufficiently pessimistic about the state being h, µ̂ < m`.

For y`1(`) to be the unique optimal proposal, we must have

y`1(`) > µ̂z1 + (1− µ̂)δy`1(`),

which is equivalent to µ̂ < m`. Note that the definition of z1 in (7) and the strict

concavity of (yh1(h)−p1)p1 in p1 imply z1 > (1−δ)yh1(h) +δy`1(`) and therefore m` < m1.

It follows that whenever µ̂ < m` we also have

y`1(`) > µ̂α̂1yh1(h) + (1− µ̂α̂1)δy`1(`),

because, on the one hand, the latter inequality is equivalent to µ̂ < m1(1−δ+1−m1)
1−δm1 and,

on the other hand, we have m1 < m1(1−δ+1−m1)
1−δm1 . The initial proposal y`1(`) passes in

both states, so the game effectively ends in the first period with certainty.

In the second possible equilibrium outcome, the initial proposal is z1, which is

made when the agenda-setter is moderately optimistic about the state being h, m` <

17See the analysis of the second period in Online Appendix A for a detailed discussion of the
associated issues.

18This assumption has no effect on the agenda-setter’s expected payoff but simplifies exposition.
The statement and proof of Theorem 1 are completely general.
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µ̂ < mh. For z1 to be the unique optimal proposal, we must have

µ̂z1 + (1− µ̂)δy`1(`) > y`1(`),

which is equivalent to µ̂ > m`. If the prior belief is not too high, µ̂ ≤ m1, then z1 is

indeed the unique optimal proposal in the first period. However, if µ̂ > m1, then for

z1 to be the unique optimal proposal, we must also have

µ̂z1 + δ(1− µ̂)y`1(`) > µ̂α̂1yh1(h) + (1− µ̂α̂1)δy`1(`),

which is equivalent to µ̂ < mh. Straightforward algebra shows that m1 < mh. The

initial proposal z1 passes in state h but gets rejected in state `, in which case the

posterior belief µ~ assigns probability 0 to state h and the revised proposal is y`1(`).

In the third (and final) possible equilibrium outcome, the initial proposal is yh1(h),

which is made when the agenda-setter is very optimistic about the state being h,

mh < µ̂. For yh1(h) to be the unique optimal proposal, we must have

µ̂α̂1yh1(h) + (1− µ̂α̂1)δy`1(`) > µ̂z1 + δ(1− µ̂)y`1(`),

which is equivalent to mh < µ̂. Inequalities m1 < mh and m` < mh imply m` < mh.

Therefore, we also have

µ̂α̂1yh1(h) + (1− µ̂α̂1)δy`1(`) > y`1(`).

The initial proposal yh1(h) passes in state h with probability α̂1 and gets rejected in

state `, in which case the posterior belief µ~ assigns probability m1 to state h and the

agenda-setter makes the proposal yh1(h) again in the second period.

Theorem 1. Under the q-majority voting rule with q = 1, there exists a unique PBE

path, such that:

(i) If µ̂ < m`, the initial proposal is y`1(`) which passes.

(ii) If m` < µ̂ < µh, the initial proposal is z1 > y`1(`) which passes in state h and

gets rejected in state `. The revised proposal is y`1(`) which passes.

(iii) If µ̂ > mh, the initial proposal is yh1(h) > z1 which gets rejected in state ` and

passes in state h with probability α̂1. The revised proposal is yh1(h) which gets
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rejected in state ` and passes in state h.

(iv) In case µ̂ = m`, the agenda-setter randomizes between y`1(`) and z1, and in case

µ̂ = mh, the agenda-setter randomizes between z1 and yh1(h). The rest of the

equilibrium path is described as in cases (i)-(iii).

0 y`1(`)

U1(h)(x1, x1;h)
U1(h)(0, x2;h)

x1, x2

1
2
yh1(h) yh1(h)z1

(a) Case yh1(h) ≤ 2y`1(`). Voter 1(h) is indifferent between policy z1 without delay and policy

y`1(`) with delay. Policy z1 converges to y`1(`) as δ → 1.

0

U1(h)(x1, x1;h)
U1(h)(0, x2;h)

y`1(`)

x1, x2

1
2
yh1(h) yh1(h)z1

(b) Case yh1(h) > 2y`1(`). Voter 1(h) is indifferent between policy z1 without delay and policy

y`1(`) with delay. Policy z1 converges to yh1(h) − y
`
1(`) as δ → 1.

Figure 1: The determination of policy z1 in Theorem 1. The ideal policy of voter 1(·)
in state ω ∈ Ω is 1

2
yω1(ω).

Remark. The unique equilibrium path described in Theorem 1 is analogous to

the one arising in bilateral bargaining over a distributive policy with two possible

valuations of the buyer, for example, the models in Chapter 10 of Fudenberg and

Tirole (1991) and Section 3 of Deneckere and Liang (2006).

Since there is a unique equilibrium path, we can define the agenda-setter’s ex-

pected payoff V 1
A,1 under the q-majority voting rule with q = 1 and derive its limit as

players become arbitrarily patient. The following result will allow me to compare the
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agenda-setter’s expected payoff with the Coasian bound y`1(`) and the commitment

benchmark derived in Appendix A.

Theorem 2. Under the q-majority voting rule with q = 1, as players become perfectly

patient, δ → 1, we have:

lim
δ→1

V 1
A,1 =



µ̂yh1(h)

if yh1(h) > 2y`1(`) and µ̂ > 1
2
,

or yh1(h) ≤ 2y`1(`) and µ̂ >
y`
1(`)

yh
1(h)

,

µ̂(yh1(h) − y`1(`)) + (1− µ̂)y`1(`) if yh1(h) > 2y`1(`) and µ̂ ≤ 1
2
,

y`1(`) if yh1(h) ≤ 2y`1(`) and µ̂ ≤
y`
1(`)

yh
1(h)

.

3.2 Coasian equilibria and the value of commitment

Theorem 2 implies that the limit of the agenda-setter’s expected payoff cannot be

smaller than the Coasian bound y`1(`) but can be larger, which implies that the Coase

conjecture can be violated. The first reason why the Coase conjecture can be violated

is because the agenda-setter may prefer to make the same proposal yh1(h) in both

periods, which happens when the prior belief that the state is h is sufficiently large,

µ̂ > mh. This violation is caused by the short bargaining horizon and the resulting

commitment power in the second period.19

The second (and more interesting) reason why the Coase conjecture can be vi-

olated is related to the single-peaked preferences of voters. If the ideal policies of

voter 1(·) in different states are sufficiently far apart, yh1(h) > 2y`1(`), then the threat of

proposing y`1(`) in the second period gives an incentive to voter 1(h) in state h to accept

policies that are preferred by the agenda-setter to y`1(`) even when players are per-

fectly patient. As a result, the initial policy proposal converges to yh1(h)− y`1(`) > y`1(`)

(compare Figures 1a and 1b). When the bargaining is over a distributive policy (Fu-

denberg, Levine, and Tirole, 1985), the revised proposal is always closer to the ideal

policy of the “voter” which is 0, and therefore such violation of the Coase conjecture

is not possible.20

19In the models of bilateral bargaining over a distributive policy, and specifically when the “gap”
assumption holds, the bargaining ends in finitely many periods and the final period effectively
features commitment. However, the bargaining horizon is determined endogenously. See Fudenberg,
Levine, and Tirole (1985) for details.

20However, the Coase conjecture can be violated in bilateral bargaining over price when the buyer’s
valuation and the seller’s cost are correlated, see Deneckere and Liang (2006).

23



The following result focuses on the violation of the Coase conjecture caused by the

single-peaked preferences of voter 1(·). I assume that the prior belief that the state

is h is such that µ̂ ≤
y`
1(`)

yh
1(h)

, which implies that the agenda-setter’s expected payoff

under the commitment benchmark equals the Coasian bound y`1(`). Nonetheless, even

in this case the agenda-setter can exploit the single-peaked preferences of voter 1(h)

and reduce this voter’s information rent.

Theorem 3. Consider a q-majority rule with q = 1 and suppose that the prior belief

that the state is h satisfies µ̂ ≤
y`
1(`)

yh
1(h)

. Then, every sequence of equilibria is non-

Coasian if the ideal policies of synthetic voter 1(·) are such that yh1(h) > 2y`1(`) and

Coasian otherwise.

Theorem 2 also implies that the ability to revise the initial proposal is valuable

to the agenda-setter. The following result provides the conditions when the ability

to revise the initial proposal is strictly valuable.

Theorem 4. Consider a q-majority rule with q = 1. When players become perfectly

patient, δ → 1, the agenda-setter’s expected payoff is weakly greater than the commit-

ment benchmark, and it is strictly greater if and only if yh1(h) > 2y`1(`) and µ̂ < 1
2
.

Not surprisingly, the key ingredient in this result is the single-peaked preferences

of voter 1(·); but unlike in Theorem 3, the agenda-setter sometimes can reduce voter

1(h)’s information rent even when the prior belief that the state is h if such that

µ̂ >
y`
1(`)

yh
1(h)

and the agenda-setter’s expected payoff under the commitment benchmark

is above the Coasian bound y`1(`).

There are at least two other papers that show that the agenda-setter may exploit a

sequence of elections to receive a higher expected payoff than the commitment bench-

marks. However, the forces behind the Coase conjecture (or its violation documented

in Theorems 3 and 4) are absent in both. In Romer and Rosenthal (1979), voters

are myopic and the ability to revise the initial proposal does not affect the voting

behavior. In Rosenthal and Zame (2019), players do not discount future payoffs so

the fundamental tradeoffs are different.
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4 “Multilateral” bargaining over policy (q ≥ 2)

In this section, I consider the case when more than a single acceptance is required to

pass a policy proposal, q ≥ 2. A notable distinction from the previous case q = 1 is

that the agenda-setter can make different revised proposals depending on the number

and identities of voters who accepted the initial proposal that got rejected. As a

result, there is a multiplicity of equilibrium outcomes. Theorem 5 shows that the set

of agenda-setter’s expected payoffs that can be supported in equilibrium is an interval.

The endpoints wq and wq of this interval are determined similarly to the agenda-

setter’s expected payoff V 1
A,1 from Theorem 2 and converge to it when the preferences

of voters {1(·), . . . , q(·)} become perfectly aligned (Theorem 6). Naturally, the Coase

conjecture can be violated for the same reason as before, namely, the single-peaked

preferences of voters (Theorems 7 and 8). The screening nature of the endpoints

wq and wq along with the possible violation of the Coase conjecture lead to another

unexpected result: the agenda-setter’s expected payoff can increase when the required

quota is increased from q ≥ 2 even though the agenda-setter must seek acceptance

from more voters (Theorem 9).

4.1 Characterization: Multiplicity of equilibrium paths

The following result provides a sharp characterization of the agenda-setter’s expected

payoffs that can be achieved in equilibrium when voters are allowed to communicate

with each other.

Theorem 5. Under the q-majority rule with q ≥ 2, the agenda-setter’s coalition-proof

equilibrium expected payoff equals v if and only if v ∈ [wq, wq].

As shown in Appendix B, the lower bound wq is equivalent to the agenda-setter’s

expected payoff when bargaining against a single voter q(·). However, the shape of

the limit set depends not only on the ideal policies of voter q(·) but also on the ideal

policies of voter 1(·). In part, the upper bound wq is the same as when bargaining

against a single voter with ideal policies y`q(`) and yh1(h) in states ` and h. These

observations suggest that when the preferences of voters 1(·) and q(·) coincide, the

agenda-setter’s expected payoff can be described as arising from bilateral bargaining

with any voter j(·) where j ∈ {1, . . . , q}. The following result focuses on the case

when players become perfectly patient.
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Theorem 6. Consider a q-majority voting rule with q ≥ 2 and suppose the preferences

of voters 1(·) through q(·) become perfectly aligned, maxω∈Ω{1(ω)− q(ω)} → 0. When

players become perfectly patient, δ → 1, the agenda-setter’s expected payoff is unique

and coincides with the case q = 1.

4.2 Coasian equilibria and the value of commitment

Similar to the case q = 1, the Coase conjecture may be violated for q ≥ 2 either

because of the agenda-setter’s ability to commit in the second period or the single-

peaked preferences of voters. Analogous to Theorem 3, the following result focuses

on the case when the prior belief that the state is h is such that µ̂ ≤
y`
q(`)

yh
q(h)

, which

implies that the agenda-setter’s expected payoff under the commitment benchmark

equals the Coasian bound y`q(`).

Theorem 7. Consider a q-majority voting rule with q ≥ 2 and suppose that the prior

belief that the state is h satisfies µ̂ ≤
y`
q(`)

yh
q(h)

. Then:

(i) When yhq(h) > 2y`q(`), every sequence of equilibria is non-Coasian.

(ii) When yhq(h) ≤ 2y`q(`), if either yh1(h)−y`q(`) ≥ yhq(h) or both y`q(`) < yh1(h)−y`q(`) < yhq(h)

and µ̂ ≤
y`
q(`)

2y`
q(`)
−yh

1(h)
+yh

q(h)

, almost every sequence of equilibria is non-Coasian.

(iii) Otherwise, every sequence of equilibria is Coasian.

Is the ability to commit to a single proposal valuable to the agenda-setter under

the q-majority voting rule with q ≥ 2? By comparing the commitment benchmark

V C
q = max{y`q(`), µ̂yhq(h)} derived in Appendix A with the limit of the lower bound wq

as players become perfectly patient derived in Appendix B (equation (B.7)), we can

see that every expected payoff under the unanimity rule when players are perfectly

patient is at least as high as V C
q .

Theorem 8. Consider the q-majority voting rule with q ≥ 2. When players become

perfectly patient, δ → 1:

(i) When both yhq(h) > 2y`q(`) and µ̂ ≤ 1
2
, the agenda-setter’s expected payoff is strictly

greater than the commitment benchmark in every equilibrium.
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(ii) When yhq(h) ≤ 2y`q(`) or µ̂ > 1
2
, if either yh1(h) − y`q(`) ≥ yhq(h) or both y`q < yh1(h) −

y`q(`) < yhq(h) and µ̂ ≤
y`
q(`)

2y`
q(`)
−yh

1(h)
+yh

q(h)

, the agenda-setter’s expected payoff is

strictly greater than the commitment benchmark in almost every equilibrium.

(iii) Otherwise, the agenda-setter’s expected payoff equals the commitment bench-

mark in every equilibrium.

These results imply that in settings with single-peaked preferences, such as ref-

erenda on public spending, allowing the agenda-setter to maker a revised proposal

on average leads to a higher level of implemented policy. Intuitively, the anticipated

revised proposal serves as a threat for voters when the state is high, allowing the

agenda-setter to limit the information rent that the voters can receive. Single-peaked

preferences of voters play a crucial role, because the anticipated revised proposal is a

threat only when it is smaller than the ideal level of spending of the target voter.

4.3 An increase in the required quota

A variety of required quotas are used in practice, ranging from a simple majority,

q = n
2
, to unanimity (q = n). Some of the more prominent examples include: voting

by a supermajority in United Nations Security Council, voting by a qualified majority

in the Council of the European Union, and voting by a supermajority in the United

States Congress required in some circumstances (overriding a presidential veto, rati-

fying a treaty, removing a federal official from office, etc.). Occasionally, reforms to

change the required quotas are proposed and even succeed, as was the case in the

United States Senate when the required number of votes to end the debate by invok-

ing cloture was reduced from 2
3

to 3
5

in 1970 and to 1
2

on certain issues in 2013 and

2017.

Because of the multiplicity of the expected payoffs that can be supported in equi-

librium, the comparative statics with respect to quota q must rely on equilibrium

selection except in extreme cases. A mapping φ(·) : {2, . . . , n} → R+ is an equilibrium

payoff selection if for each q ∈ {2, . . . , n} we have limδ→1wq ≤ φ(q) ≤ limδ→1wq. An

equilibrium payoff selection φ(·) is monotone if it is weakly decreasing on {2, . . . , n}.
The following result provides conditions for the existence of a non-monotone equi-

librium payoff selection or, in other words, for an existence of q ∈ {2, . . . , n − 1}
such that the agenda-setter’s expected payoff under the larger quota q + 1 is strictly
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greater than the expected payoff under the smaller quota q. The question boils down

to finding q such that wq+1 > wq.

Theorem 9. There exists an equilibrium payoff selection φ(·) that is non-monotone

if and only if there exists q ∈ {2, . . . , n− 1} such that yh1(h) > 2y`(q+1)(`) and one of the

following conditions holds:

(i) max
{

1
2
,
y`
q(`)

yh
q(h)

}
< µ̂ <

y`
(q+1)(`)

2y`
(q+1)(`)

−y∗+yh
q(h)

;

(ii) yhq(h) ≤ 2y`q(`) and
y`
q(`)
−y`

(q+1)(`)

y∗−2y`
(q+1)(`)

< µ̂ ≤ min
{
y`
q(`)

yh
q(h)

,
y`
(q+1)(`)

2y`
(q+1)(`)

−y∗+yh
(q+1)(h)

}
;

(iii) yhq(h) > 2y`q(`) and
y`
q(`)
−y`

(q+1)(`)

y∗−2y`
(q+1)(`)

−yh
q(h)

+2y`
q(`)

< µ̂ ≤ min
{

1
2
,

y`
(q+1)(`)

2y`
(q+1)(`)

−y∗+yh
(q+1)(h)

}
,

where y∗ = min{yh1(h), y
`
(q+1)(`) + yh(q+1)(h)}.

Theorem 9 implies that in settings with single-peaked preferences, e.g., public

spending referenda, a higher required quota can be associated with a higher (on

average) implemented policy. This result is surprising because a higher required

quota gives collective veto power to smaller coalitions of voters and thus implies that

the policies that pass give at least the status-quo level of payoff to a larger number of

voters. The screening structure of equilibrium paths reconciles these facts. Intuitively,

an increase in required quota lowers the anticipated revised proposals, allowing the

agenda-setter to limit the information rent that the voters can receive when the state

is high.

It is worth nothing that in some cases almost every equilibrium payoff selection

is non-monotone. Figure 2b provides an example in which not only the upper bound

wq+1 of the agenda-setter’s expected payoff when the quota is q+ 1 is strictly greater

than the lower bound wq when the quota is q, but also the lower bound wq+1 when

the quota is q + 1 equals the upper bound wq when the quota is q. The example

in Figure 2b is especially interesting because the agenda-setter’s expected payoff is

unique and equals the commitment benchmark when the quota is q, but any expected

payoff between the commitment and full information benchmarks can be supported

in a coalition-proof PBE when the quota is q + 1.

Theorem 9 also implies that every equilibrium payoff selection is monotone when

for each q ∈ {2, . . . , n − 1} either yh1(h) ≤ 2y`(q+1)(`) or the conditions (i)-(iii) are

violated. Intuitively, this is the case when “voters heterogeneity,” by which I mean the
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(a) There exists a non-monotone equilibrium
payoff selection when the prior belief µ̂ is not
too extreme.
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v
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y`2(`)

yh2(h)

0 y`
3(`)

yh
3(h)

y`
2(`)

yh
2(h)

1

(b) Almost every equilibrium payoff selection
is non-monotone for µ̂ ≥ m2.

Figure 2: The limit sets of the agenda-setter’s expected payoffs under the q-majority
voting rule. There are n = 3 voters, limit sets for q = 2 and q = 3 are depicted. For
any q ≥ 2, Gq is a graph of the correspondence that maps the prior belief µ̂ to the
interval [wq, wq].

differences between the ideal policies of synthetic voters in a given state, is sufficiently

greater than “state heterogeneity,” by which I mean the differences between the ideal

policies of each synthetic voter in separate states.

The following corollary to Theorems 6 and 9 provides a comparison of the agenda-

setter’s expected payoffs in the “bilateral” and “multilateral” cases. It turns out that

the agenda-setter cannot have a greater expected payoff when the required quota is

q ≥ 2 than when q = 1. For instance, with only two voters the agenda-setter would

always prefer the majority rule to the unanimity rule.21

Corollary 1. The agenda-setters expected payoff under the q-majority voting rule

with q = 1 cannot be smaller than under the q-majority voting rule with q ≥ 2.

21This is not necessarily true when voters cannot communicate with each other, see Online Ap-
pendix C.
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5 Conclusion

In this paper, I have analyzed a model of bargaining of over a spatial policy between an

agenda-setter and n voters in which the agenda-setter is uncertain the preferences of

voters. I provided a full characterization of the agenda-setter’s equilibrium expected

payoffs under the q-majority voting rule with 1 ≤ q ≤ n assuming that voters use

weakly undominated voting strategies and can communicate with each other. Using

this characterization, I demonstrated that the Coase conjecture can be violated owing

to the single-peaked preferences of voters. As a consequence, the ability to make a

revised proposal can be strictly valuable to the agenda-setter. I also showed that the

agenda-setter’s expected payoff can increase in response to an increase in the required

number q of voters whose approval is required to pass a policy.

There are multiple avenues for future work on multilateral models of bargaining

over spatial policy. It would be interesting to see if the results in this paper are robust

to the assumption that voters observe the state without noise.22 The analysis can be

easily extended to any finite number of periods and states and to the case when the

utilities of voters are not quadratic.23 The techniques in this paper can also be used

to analyze a model in which the agenda-setter’s utility is state-dependent (Deneckere

and Liang, 2006). A vital but more challenging extension is to allow players with

private information make proposals.24
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Appendix A: Benchmarks

I consider two versions of the model that serve as useful benchmarks for the discussion

of main results. For a given required quota q ∈ N and state ω ∈ Ω, voter i is the

target voter in state ω if the ideal policy of voter i is q-th highest in state ω. Note

that the identity of the target voter generally depends on the required quota q and

state ω. For a given quota q ∈ N , the identity of the target voter in each state is

given by the synthetic-voter mapping q(·) defined in Section 2.

A.1 Complete information

Which policies are proposed and implemented when the agenda-setter knows the

preferences of voters? Since the proposal power is concentrated at the hands of the

agenda-setter, when the required quota is q ∈ N and the state is ω ∈ Ω we are

effectively looking at the ultimatum bargaining game between the agenda-setter and

the target voter, namely, synthetic voter q(ω). By a standard argument, in any

equilibrium with weakly undominated voting strategies each voter i ∈ N in state ω

accepts proposal p1 ∈ R+ if and only if p1 ≤ yωi . In turn, the agenda-setter makes

proposal yωq(ω) and this proposal passes.

Benchmark 1 (Full information). For a given quota q, when the information is

complete, the agenda-setter’s expected payoff equals

V F
q = µ̂yhq(h) + (1− µ̂)y`q(`).
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The full-information benchmark provides an upper bound for the agenda-setter’s

expected payoff. In Appendix B, I show that the agenda-setter can approximate

this upper bound V F
q under some conditions. Note that this benchmark is the worst

outcome for a target voter because she receives her status-quo payoff in every state.

Under informational asymmetry, the target voter receives an information rent in state

h in most equilibria.

A.2 Commitment (take-it-or-leave-it offer)

Which policies are proposed when the agenda-setter commits to make a single pro-

posal? The incentives of players in this benchmark are exactly the same as in the

second (last) period of the baseline model. Therefore, the analysis in Online Ap-

pendix A continues to hold after replacing the posterior belief µ~ with the prior belief

µ̂. When voting strategies are weakly undominated, voter i ∈ N in state ω ∈ Ω ac-

cepts proposal p1 if and only if p1 ≤ yωi . However, the agenda-setter does not observe

the state ω and therefore cannot use it to tailor the proposal to the target voter. The

agenda-setter can either propose y`q(`), which passes in both states, or propose yhq(h),

which passes only in state h.

Benchmark 2 (Commitment). For a given quota q, when there is a single offer, the

agenda-setter’s expected payoff equals

V C
q = max{y`q(`), µ̂yhq(h)}.

The commitment benchmark allows us to find out whether the ability to make a

revised proposal is beneficial to the agenda-setter.

Appendix B: Payoff bounds

In this section, I derive the bounds of the agenda-setter’s expected payoffs in coalition-

proof equilibria and the limits of these bounds as players become perfectly patient.

For each q ∈ N and ω ∈ Ω, let:

Gq = {p1 ∈ R+ | (yhj − p1)p1 ≥ δ(yhj − y`q(`))y`q(`) for at least 1 voter},

Lωq = {p1 ∈ R+ | (yhj − p1)p1 ≤ δ(yhj − yωq(ω))y
ω
q(ω) for at least n− q + 1 voter(s)}.
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Define p∗q = min{yhq(h),maxGq} and p`q = minL`q, and notice that we have p`q ≤ p∗q ≤
yhq(h). In addition, define phq = minLhq∩[yhq(h),∞) if q < n+1

2
and phq = maxLhq∩[0, yhq(h)]

if q ≥ n+1
2

. Finally, let mq =
y`
q(`)

yh
q(h)

and α̂q = µ̂−mq
µ̂(1−mq) . The bounds for the agenda-

setter’s expected payoff in coalition-proof equilibria are given by:

wq = max{y`q(`), µ̂p∗q + δ(1− µ̂)y`q(`),1(µ̂ > mq)(µ̂α̂
qyhq(h) + δ(1− µ̂α̂q)y`q(`)),

1(phq ≤ y`q(`) ≤ y`(n−q+1)(`))(δµ̂y
h
q(h) + (1− µ̂)y`q(`))}, (B.1)

wq = max{y`q(`), δµ̂yhq(h),1(µ̂ > mq)(µ̂α̂
qyhq(h) + (1− µ̂α̂q)δy`q(`)),

1(µ̂ ≤ mq)(µ̂p
`
q + δ(1− µ̂)y`q(`)),

1(µ̂ > mq)1(y`q(`) < min{p`q, phq})(µ̂phq + δ(1− µ̂)y`q(`))}. (B.2)

I derive the limits of policies p∗q and pωq for ω ∈ Ω as players become perfectly

patient. Consider p∗q first. Notice that y`q ∈ Gq (for instance, let j = q(h)) and, for

each p1 > y`q, (yhj − p1)p1 < δ(yhj − y`q(`))y`q(`) implies that (yhi(h) − p1)p1 < δ(yhi(h) −
y`q(`))y

`
q(`) for all i(h) ≥ j. If follow that p∗h equals either yhq(h) or the largest root

of the quadratic equation (p1)2 − yh1(h)p1 + δ(yh1(h) − y`q(`))y`q(`), whichever is smaller.

The roots are 1
2
(yh1(h) + [(yh1(h))

2 − 4δ(yh1(h) − y`q(`))y
`
q(`)]

1
2 ) and 1

2
(yh1(h) − [(yh1(h))

2 −
4δ(yh1(h)− y`q(`))y`q(`)]

1
2 ). As δ → 1, the limit of the expression under the radical equals

(yh1(h)− 2y`q(`))
2, so the limit of the largest root equals 1

2
(yh1(h)− (yh1(h)− 2y`q(`))) = y`q(`)

if yh1(h) ≤ 2y`q(`) and equals 1
2
(yh1(h) + (yh1(h) − 2y`q(`))) = yh1(h) − y`q(`) if yh1(h) > 2y`q(`).

Thus, we have:

lim
δ→1

p∗q =

y`q(`) if yh1(h) ≤ 2y`q(`),

min{yh1(h) − y`q(`), yhq(h)} if yh1(h) > 2y`q(`);
. (B.3)

Next, consider p`q. Notice that y`q(`) 6∈ L`q and yhq(h) ∈ L`q (for instance, look at voters

in {1(h), . . . , q(h)}) and, for each p1 > y`, we have (yhj − p1)p1 > δ(yhj − y`q(`))y`q(`)
implies that (yhi(h)− p1)p1 > δ(yhi(h)− y`q(`))y`q(`) for all i(h) < j. If follow that p`h is the

largest root of the quadratic equation (p1)2− yhq(h)p1 + δ(yhq(h)− y`q(`))y`q(`). Proceeding

as above, we obtain:

lim
δ→1

p`q =

y`q(`) if yhq(h) ≤ 2y`q(`),

yhq(h) − y`q(`) if yhq(h) > 2y`q(`).
(B.4)
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Finally, consider phq . If q < n+1
2

, which is equivalent to yhq(h) > yh(n−q+1)(h), p
h
q

converges to yh(n−q+1)(h) from above when players become perfectly patient. And if

q ≥ n+1
2

, phq is the smallest root of the quadratic equation (p1)2 − yh(n−q+1)(h)p1 +

δ(yh(n−q+1)(h) − yhq(h))y
h
q(h). Proceeding as above, we obtain:

lim
δ→1

phq =


yh(n−q+1)(h) if yhq(h) > yh(n−q+1)(h),

yh(n−q+1)(h) − yhq(h) if yhq(h) ≤ yh(n−q+1)(h) < 2yhq(h),

yhq(h) if 2yhq(h) ≤ yh(n−q+1)(h).

(B.5)

Now, I derive the limits of upper and lower bounds in (B.1) and (B.2) as players

become perfectly patient. Consider the upper bound wq. Notice that yh(n−q+1)(h) −
yhq(h) ≥ y`q(`) implies yh1(h)−yhq(h) ≥ y`q(`) and the reverse implication holds after reversing

the inequalities. Therefore, the agenda-setter’s expected payoff can approximate the

full information benchmark V F
q = µ̂yhq(h) +(1− µ̂)y`q(`) if and only if yh1(h)−yhq(h) ≥ y`q(`)

which implies limδ→1 p
∗
q = yhq(h). If yh1(h) − yhq(h) < y`q(`), the limit of wq is at least

µ̂ limδ→1 p
∗
q + (1 − µ̂)y`q(`) ≥ y`q(`), where the inequality holds since limδ→1 p

∗
q ≥ y`.

Moreover, µ̂ limδ→1 p
∗
q + (1 − µ̂)y`q(`) equals y`q(`) when yh1(h) ≤ 2y`q(`) and µ̂(yh1(h) −

y`q(`)) + (1 − µ̂)y`q(`) when yh1(h) > 2y`q(`). Finally, it is straightforward to verify that

µ̂α̂qyhq(h) + (1− µ̂α̂q)y`q(`) = µ̂yhq(h) and check that µ̂yhq(h) > µ̂ limδ→1 p
∗
q + (1− µ̂)y`q(`) if

and only if µ̂ > m∗q ≥
y`
q(`)

yh
q(h)

where m∗q =
y`
q(`)

yh
q(h)
−limδ→1 p∗q+y`

q(`)

. Therefore, we have:

lim
δ→1

wq =



µ̂yhq(h) + (1− µ̂)y`q(`) if yh1(h) − y`q(`) ≥ yhq(h),

µ̂yhq(h)

if y`q(`) < yh1(h) − y`q(`) < yhq(h) and µ̂ > m∗q,

or yh1(h) − y`q(`) ≤ y`q(`) and µ̂ > mq,

µ̂(yh1(h) − y`q(`)) + (1− µ̂)y`q(`) if y`q(`) < yh1(h) − y`q(`) < yhq(h) and µ̂ ≤ m∗q,

y`q(`) if yh1(h) − y`q(`) ≤ y`q(`) and µ̂ ≤ mq.

(B.6)

Next, consider the lower bound wq. When the prior belief is low, µ̂ ≤
y`
q(`)

yh
q(h)

, we have

y`q(`) ≥ µ̂yhq(h). In addition, µ̂ limδ→1 p
`
q + (1− µ̂)y`q(`) = y`q(`) when yhq(h) ≤ 2y`q(`). When

yhq(h) > 2y`q(`), we have limδ→1 p
`
q = yhq(h) − y`q(`) and µ̂ limδ→1 p

`
q + (1 − µ̂)y`q(`) > y`q(`)

since µ̂ < 1
2
. When the prior belief is high, µ̂ >

y`
q(`)

yh
q(h)

, we have µ̂yhq(h) > y`q(`). It

is straightforward to verify that µ̂α̂qyhq(h) + (1 − µ̂α̂q)y`q(`) = µ̂yhq(h). Finally, we have
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µ̂yhq(h) > µ̂ limδ→1 p
`
q+(1−µ̂)y`q(`) = y`q(`) when yhq(h) ≤ 2y`q(`) and µ̂yhq(h) > µ̂ limδ→1 p

`
q+

(1 − µ̂)y`q(`) = µ̂(yhq(h) − y`q(`)) + (1 − µ̂)y`q(`) when yhq(h) > 2y`q(`) if and only if µ̂ > 1
2
.

Letting pq = limδ→1 min{p`q, phq} and mh
q =

y`
q(`)

yh
q(h)
−pq+y`

q(`)

, we obtain:

lim
δ→1

wq =



y`q(`) if yhq(h) − y`q(`) ≤ y`q(`) and µ̂ ≤ mq,

µ̂(yhq(h) − y`q(`)) + (1− µ̂)y`q(`) if yhq(h) − y`q(`) > y`q(`) and µ̂ ≤ mq,

µ̂pq + (1− µ̂)y`q(`) if yh1(h) − y`q(`) > y`q(`) and
y`
q(`)

yh
q(h)

< µ̂ ≤ mh
q ,

µ̂yhq(h)

if yhq(h) − y`q(`) ≤ y`q(`) and µ̂ > mq,

or yhq(h) − y`q(`) > y`q(`) and µ̂ > mh
q .

(B.7)

These limits are used in Figure 2 to plot the limit set of the agenda-setter’s

expected payoffs and in the proofs of Theorems 6, 7, 8, and 9.

Appendix C: Proof of Theorem 5

Proof of Theorem 5.

Step 1: The agenda-setter’s expected payoff cannot be smaller than wq in any

coalition-proof PBE.

Since the agenda-setter cannot do worse than cause delay without revising the

prior belief µ̂, her expected payoff cannot be smaller than δmax{y`q(`), µ̂yhq(h)}. More-

over, the agenda-setter’s expected payoff cannot be smaller than y`q(`), because in

every coalition-proof PBE there exists a sequence of initial proposals converging to

y`q(`) such that the limit of the agenda-setter’s expected payoff is at least y`. To show

this, fix a coalition-proof PBE and suppose there exists ε > 0 such that each initial

proposal p1 ∈ (y`q(`) − ε, y`q(`)) gets rejected in state ω = ` with a positive probabil-

ity. The revised proposal is either y`q(`), which passes, or yhq(h), which gets rejected.

Since for p1 sufficiently close to y`q(`) we have (y`q(`) − p1)p1 > δ(y`q(`) − y`q(`))y`q(`) and

p1 > δy`q(`), a deviation by voters in N `
q to pass p1 is improving and self-enforcing.

Now, let the state be ω = h and consider a sequence of proposals converging to y`q(`)
from below such that each proposal along the sequence passes with certainty in state

ω = `. If δ < mq, a similar argument implies that each initial proposal sufficiently far

into the sequence passes with certainty in state ω = h. And if δ ≥ mq, the agenda-

setter’s expected payoff is bounded below by a convex combination of y`q(`) and δyhq(h),
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which is weakly greater than y`q(`).

To show that the agenda-setter’s expected payoff is at least µ̂p`q + (1 − µ̂)δy`q(`)
when µ̂ ≤ mq, first note that p`q > y`q(`) since y`q(`) 6∈ L`q. Therefore, each initial

proposal close to p`q gets rejected with certainty in state ω = `. I will show that there

exists a sequence of initial proposals converging to p`q from below such that every

proposal in this sequence passes with certainty in state h. Suppose there exists ε > 0

such that each initial proposal p1 ∈ (phq −ε, phq ) gets rejected with positive probability

in state h. Fix p1 ∈ (p`q − ε, p`q). Since µ̂ ≤ mq, the revised proposal is y`q(`), and

(yhq(h)− p1)p1 > δ(yhq(h)− y`q(`))y`q(`) implies that the joint deviation by voters in Nh
q to

pass p1 is profitable and self-enforcing.

When µ̂ > mq, each policy p1 ∈ (yhq(h) − ε, yhq(h)), where ε > 0 is sufficiently small,

gets rejected with certainty in state ` and passes with probability α̂q in state h.

By the definition of α̂q, the agenda-setter’s posterior belief is mq if p1 gets rejected.

Unless voter q(h) is indifferent between accepting and rejecting p1, there exists a

profitable and self-enforcing deviation either to veto p1 by voters in N \ Nh
q or pass

it by voters in Nh
q . It follows that the agenda-setter’s expected payoff is at least

µ̂α̂qyhq(h) + (1− µ̂α̂q)δy`q(`).
Finally, suppose µ̂ > mq and y`q(`) < min{p`q, phq}. Each policy p1 ∈ (min{p`q, phq}−

ε,min{p`q, phq}) is rejected with certainty in state ` when ε > 0 is sufficiently small.

Suppose p1 is rejected with positive probability in state h. If the revised proposal

is mixed, p1 must pass with probability αh and make voter q(h) indifferent between

accepting and rejecting p1. This case has been considered above. If the revised

proposal is y`q(`) or yhq(h), there exists a profitable and self-enforcing deviation to pass

p1 by the definition of pωq , ω ∈ Ω. In this case, the agenda-setter’s expected payoff is

at least µ̂pq + δ(1− µ̂)y`q(`).

Step 2: The agenda-setter’s expected payoff v cannot be greater than wq in any

coalition-proof PBE.

Fix a required quota q ≥ 2 and an equilibrium (σ,M). Since any n− q+ 1 voters

have collective power to veto any policy, then a policy that passes in state ` cannot

exceed y`q(`), and a policy that passes in state h cannot exceed yhq(h).

Suppose that the agenda-setter’s expected payoff VA(σ,M) is above wq. This

implies that there exists a policy p1 ∈ supp π1 such that η(p1) > wq where η(p1) =∑
ω∈Ω µ̂(ω)[

∫
{(1 − δ)x1 + δx2}dF p1,ω

σ,M(x1, x2)]. There are three cases, each resulting

in a contradiction.
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Suppose suppF p1,`
σ,M = suppF p1,h

σ,M. Then, (1 − δ)x1 + δx2 ≤ y`q(`) for all (x1, x2) in

these supports and η(p1) ≤ y`q(`).

Suppose there exists (x1, x2) ∈ suppF p1,h
σ,M such that (x1, x2) 6∈ suppF p1,`

σ,M. If p1 = 0,

η(p1) ≤ µ̂δyhq(h). If p1 > 0, then p1 gets rejected in state ` with certainty. Rejection of

p1 leads to a revised proposal that is either y`q(`) or yhq(h). If the revised proposal is y`q(`),

then we must have p1 ≤ p∗q, otherwise there is a joint deviation by all voters in state

h to reject p1 that is improving and self-enforcing. This gives us (1− δ)x1 + δx2 ≤ p∗q

and therefore η(p1) ≤ µ̂p∗q + (1 − µ̂)δy`q(`). If the revised proposal is yhq(h), then p1

cannot be accepted with certainty in state h and the prior belief must be sufficiently

high, µ̂ > mq. The highest initial proposal that can win in state h is yhq(h) and

this initial proposal must win with probability α̂q which makes the agenda-setter

indifferent between revised proposals yhq(h) and y`q(`). This gives us η(p1) ≤ µ̂α̂qyhq(h) +

(1− µ̂α̂q)δy`q(`) when µ̂ > mq.

Suppose there exists (x1, x2) ∈ suppF p1,`
σ,M such that (x1, x2) 6∈ suppF p1,h

σ,M. If p1 = 0,

then η(p1) ≤ (1 − µ̂)δy`q(`). If p1 > 0, then p1 ≤ y`q(`) and is rejected in state h

with certainty. Rejection of p1 leads to a revised proposal that is either y`q(`) or

yhq(h). If the revised proposal is yhq(h), we must have phq ≤ p1, otherwise there exists

an improving and self-enforcing deviation by q voters to pass p1 in state h. This

inequality implies pqq ≤ y`q(`), which, in turn, implies y`q(`) ≤ y`(n−q+1)(`). It follows that

(1−δ)x1 +δx2 ≤ y`q(`) and (1−δ)x̃1 +δx̃2 ≤ δyhq(h) for all (x̃1, x̃2) ∈ Fp1,hσ,M and therefore

η(p1) ≤ µ̂δyhq(h) + (1− µ̂)y`q(`) when phq ≤ y`q(`) ≤ y`(n−q+1)(`).

Step 3: For each v ∈ [wq, wq], there exists a coalition-proof PBE such that the

agenda-setter’s expected payoff equals v.

For each ω ∈ Ω, define zω = min{p1 ∈ R+ | (yh(n−q+1)(h) − p1)p1 ≥ δ(yh(n−q+1)(h) −
yωq(ω))y

ω
q(ω)}. If yh(n−q+1)(h) ≤ yωq(ω), then zω = 0; and if yh(n−q+1)(h) > yωq(ω), then the

inequality is strict for p1 = δyωq(ω). Therefore, zω < δyωq(ω). This definition implies that

for all p1 ∈ [zω, yωq(ω)] we have (y − p1)p1 ≥ δ(y − yωq(ω))y
ω
q(ω) whenever y ≤ yh(n−q+1)(h).

Fix v ∈ [wq, wq] and let z = min{p∗q,
v−δ(1−µ̂)y`

q(`)

µ̂
} and β = min{1,

v−δµ̂yh
q(h)

(1−µ̂)y`
q(`)

}.
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Define σ1 = (π1, (αi,1)i∈N) as follows. For all p1 ∈ R+ let:

αi,1(p1; `) =



1

if i ∈ N `
q , p1 ∈ [z`, y`q(`)), and µ̂ ≤ mq,

or i ∈ N `
q , p1 ∈ [zh, y`q(`)), and µ̂ > mq,

or i ∈ N `
q , p1 = y`q(`) and 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`)) = 0,

or i ∈ N `
q \ {q(`)}, p1 = y`q(`) and 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`)) = 1,

or i ∈ Nh
q \ {q(h)}, p1 ∈ (z, yhq(h)] and µ̂ > mq,

β if i = q(`), p1 = y`q(`) and 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`)) = 1,

0 otherwise,

αi,1(p1;h) =



1

if i ∈ N \Nh
n−q+1, p1 ∈ [z`, y`q(`)), and µ̂ ≤ mq,

or i ∈ N \Nh
n−q+1, p1 ∈ [zh, y`q(`)), and µ̂ > mq,

or i ∈ Nh
q and p1 ∈ (y`q(`), z],

or i ∈ Nh
q , p1 = y`q(`) and 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`)) = 0,

or i ∈ N `
q \ {q(`)}, p1 = y`q(`) and 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`)) = 1,

or i ∈ Nh
q \ {q(h)}, p1 ∈ (z, yhq(h)] and µ̂ > mq,

α̂q if i = q(h), p1 ∈ (z, yhq(h)] and µ̂ > mq,

0 otherwise,

supp π1 = arg max
p1∈[z,z+1]

G(p1), where G : {y`q(`), z, yhq(h), y
h
q(h) + 1} → R+ is defined as

G(y`q(`)) = 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`))(δµ̂y
h
q(h) + (1− µ̂)βy`q(`))

+ (1− 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`)))y
`
q(`),

G(z) = µ̂z + δ(1− µ̂)y`q(`),

G(yhq(h)) = 1(µ̂ > mq)µ̂α̂
qyhq(h) + δ(1− µ̂α̂q)y`q(`),

G(yhq(h) + 1) = δmax{µ̂yhq(h), y
`
q(`)}.

Define M = {µ~}~∈H as follows. Let µ~ be such that:

µ~ =


0 if C ∈ C0,

1 if C ∈ C1,

µ̂ otherwise,

where collections C0 and C1 of coalitions depend on the initial proposal p1 and the

prior belief µ̂. If both p1 ∈ [z`, y`q(`)) and µ̂ ≤ mq, or both p1 ∈ [zh, y`q(`)) and µ̂ > mq,
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or both p1 = y`q(`) and 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`)) = 0, then:

C0 = {C ⊆ N | yhj − yhq(h) > y`q(`) for j = min{(N \Nh
n−q+1) ∩ C}},

C1 = {C ⊆ N | yhj − yhq(h) ≤ y`q(`) for j = min{(N \Nh
n−q+1) ∩ C}}.

If p1 = y`q(`) and 1(phq ≤ y`q(`) ≤ y`(n−q+1)(`)) = 1, then:

C0 = {C ⊆ N | yhj − yhq(h) > y`q(`) for j = min{(N `
q \ {q(`)}) ∩ C}},

C0 = {C ⊆ N | yhj − yhq(h) ≤ y`q(`) for j = min{(N `
q \ {q(`)}) ∩ C}}.

If p1 ∈ (y`q(`), z], then:

C0 = {C ⊆ N | C = N or yhj − yhq(h) > y`q(`) for j = min{Nh
q ∩ C}},

C0 = {C ⊆ N | yhj − yhq(h) ≤ y`q(`) for j = min{Nh
q ∩ C}}.

If both p1 = (z, yhq(h)] and µ̂ ≤ mq, then C0 = C1 = ∅, and if both p1 = (z, yhq(h)] and

µ̂ > mq, then:

C0 = {C ⊆ N | yhj − yhq(h) > y`q(`) for j = min{(Nh
q \ {q(h)}) ∩ C}},

C0 = {C ⊆ N | yhj − yhq(h) ≤ y`q(`) for j = min{(Nh
q \ {q(h)}) ∩ C}}.

The conditional probability that policy p1 ∈ R+ passes if proposed in the first

period is depicted in Figure 3. I will verify that (σI ,M) is a coalition-proof PBE and

induces the agenda-setter’s expected payoff v.

Step 3a. In this step, I prove that the agenda-setter’s proposal strategy π1 is

sequentially rational. Notice that there are only a few candidate policies for the

agenda-setter’s initial proposal. The agenda-setter can: propose y`q(`) and receive an

expected payoff y`q(`) (when phq ≤ yhq(h) ≤ yh(n−q+1)(h) does not hold) or δµ̂yhq(h) + (1 −
µ̂)βy`q(`) (when phq ≤ yhq(h) ≤ yh(n−q+1)(h) holds), propose z and receive µ̂z+δ(1− µ̂)y`q(`),

propose yhq(h) and receive µ̂α̂qyhq(h) + δ(1 − µ̂α̂q)y`q(`) (when µ̂ > mq), or propose any

policy not in [z`, yhq(h)], say yhq(h) + 1, and receive δmax{y`q(`), µ̂yhq(h)}.
Since v ≥ wq, we have v ≥ µ̂p`q + δ(1 − µ̂)y`q(`). If also v ≤ µ̂p∗q + (1 − µ̂)δy`q(`),

then v = µ̂z + δ(1− µ̂)y`q(`) by the definition of z and making an initial proposal z is

optimal for the agenda-setter. Proposing y`q(`) is not optimal when yh1(h) − yhq(h) < B1
q
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since v ≥ wq ≥ y`q(`). When yh1(h) − yhq(h) ≥ B1
q , if proposing y`q(`) is optimal, then the

definition of β implies that the agenda-setter is indifferent between proposing p∗q and

y`q(`). Finally, proposing yhq(h) + 1 is not optimal since v ≥ wq ≥ δmax{y`q(`), µ̂yhq(h)}.
Consider the complementary case v > µ̂p∗q + (1 − µ̂)δy`q(`), which implies z = p∗q.

If v = y`q(`) then either δyhq(h) ≥ y`q(`) which implies that proposing y`q(`) is optimal and

v = δµ̂yhq(h)+(1−µ̂)βy`q(`) = y`q(`), or δyhq(h) < y`q(`) which implies that yh1(h)−yhq(h) < B1
q ,

proposing y`q(`) is optimal, and v = y`q(`). If v = δµ̂yhq(h), then β = 0 and making an

initial proposal yhq(h) + 1 is optimal. If v = µ̂α̂qyhq(h) + δ(1 − µ̂α̂q)y`q(`), then making

an initial proposal yhq(h) is optimal because δµ̂yh + q(h) + (1 − µ̂)βy`q(`) > v implies
v−δµ̂yh

q(h)

(1−µ̂)y`
q(`)

< β which is a contradiction. Finally, if v > max{y`q(`), δµ̂yhq(h), µ̂α̂
qyhq(h) +

δ(1 − µ̂α̂q)y`q(`), µ̂p+ + δ(1 − µ̂)y`q(`)}, making an initial proposal y`q(`) is optimal and

gives the agendas-setter an expected payoff v = δµ̂yhq(h) + (1− µ̂)βy`q(`).

p1

ω

h

`

0 z` y`q(`) z

min{p`q, phq}
pq+ yhq(h)

(a) µ̂ ≤ mq, 1(phq ≤ y`q(`) ≤ y
`
(n−q+1)(`)) = 0

p1

ω

h

`

0 zh y`q(`) z

min{p`q, phq}
pq+ yhq(h)

α̂q

β

0

(b) µ̂ > mq, 1(phq ≤ y`q(`) ≤ y
`
(n−q+1)(`)) = 1

Figure 3: Probability that p1 ∈ R+ passes, conditional on state ω ∈ Ω, if proposed
given assessment (σ,M). This probability equals 1 in shaded regions and 0 unless
specified otherwise.

Step 3b. In this step, I prove that the voting strategy profile σ1 = (σ1,i)i∈N is

sequentially rational and there does not exist an improving and self-enforcing joint

deviation.

Assume ω = `. Suppose p1 ∈ [z, y`q(`)]. On path, voters in N `
q accept p1 and

voters in N \ N `
q reject it. Consider a deviation by some coalition C̃ ⊆ N , where

C̃ can be a singleton. If the initial proposal p1 still passes, the deviation is not

improving. Suppose that p1 gets rejected, which implies that N `
q ∩ C̃ is non-empty.

Let j = min{N `
q ∩ C̃}. If y`j − y`q(`) ≤ yhq(h), the revised proposal is yhq(h) which gets

rejected. Since p1 ≤ y`q(`), the deviation does not increase voter j’s expected payoff.

If y`j − y`q(`) > yhq(h), the revised proposal is y`q(`) which passes. Since y`j ≤ y`1(`), the
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definition of z implies that (y`j − p1)p1 ≥ δ(y`j − y`q(`))y`q(`) for all p1 ∈ [z, y`q(`)], and

therefore the deviation does not increase voter j’s expected payoff.

Continue assuming ω = ` and suppose p1 ∈ (y`, z]. On path, voters in N reject

p1 and the revised proposal is y`q(`). Consider a deviation by some coalition C̃ ⊆ N .

The deviation is not improving if p1 passes because n− q players in {q(`)}∪ (N \N `
q )

prefer y`q(`) after delay to p1 without delay. Suppose p1 gets rejected, which implies

that N `
q ∩ C is non-empty. The deviation is not improving if the revised proposal is

y`q(`), so suppose the revised proposal is yhq(h) which gets rejected. The deviation is

not improving since every voter in N `
q prefers y`q(`) to the status-quo policy 0.

Continue assuming ω = ` and suppose p1 6∈ [z, z]. On path, voters in N reject p1

and the revised proposal is y`q(`) since µ̂ ≤
y`
q(`)

yh
q(h)

. The analysis above continues to hold.

Assume ω = h and suppose p1 ∈ [z, y`q(`)]. On path, voters in Nh
q accept p1

and voters in N \ Nh
q reject it. Consider a deviation by some coalition C̃ ⊆ N . If

the initial proposal p1 still passes, the deviation is not improving. Suppose that p1

gets rejected, which implies that Nh
q ∩ C̃ is non-empty. Let j = min{Nh

q ∩ C̃}. If

yhj − yhq(h) ≤ yhq(h), the revised proposal is yhq(h) which passes. The definition of z

implies that (yhj − p1)p1 > δ(yhj − y`q(`))y`q(`). In turn, yhj − yhq(h) ≤ yhq(h) implies that

(yhj − y`q(`))y`q(`) ≥ (yhj − yhq(h))y
h
q(h). Therefore, the deviation does not increase voter

j’s expected payoff.

Continue assuming ω = h and suppose p1 ∈ (y`, z]. On path, voters in Nh
q accept

p1 and voters in N \Nh
q reject it. Consider a deviation by some coalition C̃ ⊆ N . If

the initial proposal p1 still passes, the deviation is not improving. Suppose that p1

gets rejected, which implies that Nh
q ∩ C̃ is non-empty. Let j = min{Nh

q ∩ C̃}. Since

µ̂ ≤
y`
q(`)

yh
q(h)

, the revised proposal is y`q(`) which passes. If the deviation increases voter

j’s expected payoff, then (yhj − p1)p1 < δ(yhj − y`q(`))y`q(`). But this inequality implies

(yh1(h) − p1)p1 < δ(yh1(h) − y`q(`))y`q(`) and therefore z > p∗q, which is a contradiction. It

follows that the deviation does not increase voter j’s expected payoff.

Continue assuming ω = h and suppose p1 6∈ [z, z]. On path, voters in N reject

p1 and the revised proposal is y`q(`) since µ̂ ≤
y`
q(`)

yh
q(h)

. Consider a deviation by some

coalition C̃ ⊆ N . If the initial proposal p1 still gets rejected, the deviation is not

improving. Suppose that p1 passes. If the deviation is improving and p1 < z, we

must have (yhj − p1)p1 > δ(yhj − y`q(`))y`q(`) for at least q voters. And since z < δy`q(`),

in particular we must have (yh(n−q+1)(h) − p1)p1 > δ(yh(n−q+1)(h) − y`q(`))y`q(`). But this
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inequality contradicts the definition of z. If p1 > z, the definition of p`q and z ≥ p`q

imply (yhq(h)−p1) < δ(yhq(h)−y`q(`))y`q(`) and thus also (yhj(h)−p1) < δ(yhj(h)−y`q(`))y`q(`) for

all j ∈ q + 1, . . . , n. Therefore, the deviation cannot be improving for any coalition

C̃ of at least q voters. �

Appendix D: Remaining proofs

Proof of Lemma 1. Under the q-majority voting rule with q = 1, there is no sig-

naling incentive and (4) simplifies to

αωi,1(p1) =

1 if (yωi − p1)p1 > δ(V q
i,2(ω;µp1,∅) + 1

4
(yωi )2),

0 if (yωi − p1)p1 < δ(V q
i,2(ω;µp1,∅) + 1

4
(yωi )2).

(D.1)

Let us begin by making (D.1) more amenable to analysis. First, consider term

V q
i,2(ω;µp1,∅) defined in (1). For each revised policy p2, we can write

max
ai,2∈{0,1}

U q
i,2(p2;ω, (ai,2, α−i,2)) =

= −1

4
(yωi )2 + max

{
(yωi − p2)p2,

(
1−

∏
j 6=i

(1− αωj,2)(p2)

)
(yωi − p2)p2

}
. (D.2)

For each proposal p1, define

Yi(p1;ω) =

∫
R+

max

{
(yωi − p2)p2,

(
1−

∏
j 6=i

(1− αωj,2)(p2)

)
(yωi − p2)p2

}
dπ2(µp1,∅)(p2).

(D.3)

Then, using (D.1), (D.2), and (D.3), voter i in state ω votes to accept p1 if

(yωi − p1)p1 > δYi(p1;ω) (D.4)

and votes to reject p1 if this inequality is reversed.

I prove each line in (8) separately. The first line follows from Steps 1 and 2 below.

The second through fifth lines are verified using Step 3 in combination with Steps 4

through 7.

Step 1: Each proposal 0 < p1 < y`1(`) passes with certainty in state `. If αi,1(p1; `) =

1 for some i 6= 1(`), then there is nothing to prove, so suppose that αi,1(p1; `) < 1 for
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all i 6= 1(`). Then, voter 1(`) in state ` must accept policy p1 because (y`1(`)− p1)p1 >

0 ≥ δY1(`)(p1; `), there the second inequality follows from part (ii) of Lemma A.3.

Step 2: Each proposal 0 < p1 < y`1(`) passes with certainty in state h. Suppose

αi,1(p1;h) < 1 for all i 6= 1(h), because otherwise there is nothing to prove. If

also α1(h),1(p1;h) < 1, then Step 1 implies that when p1 gets rejected, the posterior

belief µp1 assigns probability 1 to state h. This implies Y1(h)(p1;h) = 0 and therefore

(yh1(h) − p1)p1 > 0 = δY1(h)(p1;h), which contradicts α1(h),1(p1;h) < 1.

Step 3: Each proposal p1 > y`1(`) gets rejected with certainty in state `. In state `,

each voter i ∈ N strictly prefers to reject policy p1 because (y`i−p1)p1 < 0 ≤ δYi(p1; `),

where the second inequality follows from Lemma A.1 and part (ii) of Lemma A.3.

Step 4: Each proposal y`1(`) < p1 < z1 passes with certainty in state h. Suppose

αi,1(p1;h) < 1 for all i 6= 1(h). By (D.3) and part (ii) of Lemma A.3, we have

Y1(h)(p1;h) ≤ (yh1(h) − y`1(`))y
`
1(`). Then, the definition of z1 implies (yh1(h) − z1)z1 >

δ(yh1(h) − y`1(`))y
`
1(`) ≥ δY1(h)(p1;h) and thus α1(h),1(p1;h) = 1.

Step 5: If µ̂ > m1, each proposal z1 < p1 < yh1(h) passes with probability α̂1 in state

h. First, note that we can let αi,1(p1;h) = 0 for all i 6= 1(h) without loss of generality

since we are only interested in the probability that p1 passes.

Next, I show that α1(h),1(p1;h) ∈ (0, 1). If α1(h),1(p1;h) = 1, then when p1 gets

rejected, the posterior belief µp1 assigns probability 1 to state ` and the agenda-setter

makes proposal y`1(`) in the second period, implying Y1(h)(p1;h) = (yh1(h) − y`1(`))y
`
1(`).

But the definition (7) of z1 implies that (yh1(h)−p1)p1 < δY1(h)(p1;h), which contradicts

α1(h),1(p1;h) = 1. If α1(h),1(p1;h) = 0, then the posterior µp1 equals the prior µ̂ and

the agenda-setter makes proposal yh1(h) in the second period, implying Y1(h)(p1;h) = 0.

But (yh1(h) − p1)p1 > 0 = δY1(h)(p1;h), which contradicts α1(h),1(p1;h) = 0.

It follows that voter 1(h) must be indifferent, i.e., (yh1(h) − p1)p1 = δY1(h)(p1;h).

Let γ(p1) be the probability that the agenda-setter makes proposal y`1(`) in the second

period. Then, we can write Y1(`)(p1, h) = γ(p1)(yh1(h) − y`1(`))y
`
1(`) and (yh1(h) − p1)p1 =

δγ(p1)(yh1(h)− y`1(`))y
`
1(`). Since p1 ∈ (z1, yh1(h)), it must be the case that γ(p1) ∈ (0, 1),

implying that the posterior belief µ~ must make the agenda-setter indifferent between

proposing y`1(`) and yh1(h) in the second period, i.e., µ~ = m1. Therefore, we must have

α1(h),1(p1;h) = α̂1.

Step 6: If µ̂ ≤ m1, each proposal z1 < p1 < yh1(h) passes with certainty in state h.

Since z1 ≥ y`1(`), Step 3 implies that p1 gets rejected with certainty in state `. Consider

state h. Since µ̂ ≤ m1, αi,1(p1;h) > 0 for any i ∈ N implies that the agenda-setter
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proposes y`1(`) when p1 gets rejected. Therefore, Y1(h)(p1;h) = (yh1(h) − y`1(`))y
`
1(`) > 0

since yh1(h) > y`1(`), and Yi(p1;h) = (yhi −y`1(`)))y
`
1(`), since α1(h),2(y`1(`);h) = 1 by Lemma

A.1. By the definition of z1 in (7), all voters strictly prefer to reject p1, in particular,

(yhi − p1)p1 < δYi(p1;h), which contradicts αi,1(p1;h) > 0.

Step 7: Each proposal p1 > yh1(h) gets rejected with certainty in state h. Trivial. �

Proof of Theorem 1. The proof relies on the expressions in (8) and (9). Denote

R1 = {p1 | p1 < y`1(`)}, R2 = {p1 | y`1(`) < p1 < z1}, R3 = {p1 | z1 < p1 < yh1(h)},
and R4 = {p1 | yh1(h) < p1}. Using (9), we have

sup
p1∈R

UA,1(p1) =



y`1(`) if R = R1,

µ̂z1 + (1− µ̂)δy`1(`) if R = R2,

1(µ̂ ≤ m1)δy`1(`)

+ 1(µ̂ > m1)(µ̂α̂1yh1(h) + (1− µ̂α̂1)δy`1(`))
if R = R3,

δmax{y`1(`), µ̂y
h
1(b)} if R = R4.

(i) Let µ̂ < m` where m` is defined in (10). Then, supR1 UA,1 = y`1(`) > supR2 UA,1.

Since m` < m1, then µ̂ < m1 and thus y`1(`) > supR3 UA,1 = supR4 UA,1 = δy`1(`).

These inequalities imply that for any p1 ∈ R+, there exists p̃1 < y`1(`) such that

UA,1(p̃1) > UA,1(p1). For an equilibrium to exist, we must have UA,1(y`1(`)) =

supp1∈R1 UA,1(p1) and therefore W 1(y`1(`)) = 1.

(ii) Let m` < µ̂ ≤ m1. Then, supR2 UA,1 = µ̂z1 +(1− µ̂)δy`1(`) > supR1 UA,1 = y`1(`) >

supR3 UA,1 = supR4 UA,1 = δy`1(`) = µ̂yh1(h). Just like in part (i), we must have

UA,1(z1) = supp1∈R2 UA,1(p1) and therefore W 1(z1) = µ̂.

Now, let m1 < µ̂ < mh where mh is defined in (11). Then, supR2 UA,1 =

µ̂z1 + (1− µ̂)δy`1(`) > supR3 UA,1 = µ̂α̂1yh1(h) + (1− µ̂α̂1)δy`1(`). Since m1 < µ̂ and

m` < mR, also supR2 UA,1 = µ̂z1 + (1− µ̂)δy`1(`) > supR1 UA,1 = y`1(`). And since

m1 < µ̂, also supR2 UA,1 = µ̂z1 + (1 − µ̂)δy`1(`) > supR4 UA,1 = δµ̂yh1(h). Again,

we must have UA,1(z1) = supp1∈R2 UA,1(p1) and therefore W 1(z1) = µ̂.

(iii) Let mh < µ̂. Since m1 < mh, we have supR3 UA,1 = µ̂α̂1yh1(h) + (1− µ̂α̂1)δy`1(`) >

supR2 UA,1 = µ̂z1 + (1 − µ̂)δy`1(`) > supR4 UA,1 = δµ̂yh1(h). And since m` < mh,

also supR3 UA,1 = µ̂α̂1yh1(h) +(1− µ̂α̂1)δy`1(`) > supR2 UA,1 = µ̂z1 +(1− µ̂)δy`1(`) >
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supR1 UA,1 = y`1(`). We must have UA,1(yh1(h)) = supp1∈R3 UA,1(p1) and therefore

W 1(z1) = µ̂α̂1.

(iv) Let µ̂ = m`. Then, supR1 UA,1 = supR2 UA,1. For an equilibrium to exist, we

must have either UA,1(y`1(`)) = supp1∈R1 UA,1(p1) or UA,1(z1) = supp1∈R2 UA,1(p1)

or both. Therefore, we must have either W 1(y`1(`)) = 1 or W 1(z1) = µ̂ or both.

(v) This case is analogous to (iv).

�

Proof of Theorem 2. Theorem 1 implies that the agenda-setter’s expected payoff

can be written as follows:

V 1
A,1 =


y`1(`) if µ̂ ≤ m`,

µ̂z1 + (1− µ̂)δy`1(`) if m` < µ̂ ≤ mh,

µ̂α̂1yh1(h) + (1− µ̂α̂1)δy`1(`) if mh < µ̂.

(D.5)

We need to derive the limits of policy z1 and belief thresholds m` and mh as the

discount factor δ converges to 1. We have:

(A) if yh1(h) ≤ 2y`q(`), then (z1, m`, mh) converges to

(
y`1(`),

2y`
1(`)
−yh

1(h)

y`
1(`)

,
y`
1(`)

yh
1(h)

)
;

(B) if yh1(h) > 2y`1(`), then (z1, m`, mh) converges to
(
yh1(h) − y`1(`), 0, 1

2

)
.

By (7), policy z1 is the largest root of quadratic equation (p1)2 − yh1(h)p1 + δ(yh1(h) −
y`1(`))y

`
1(`). The roots are 1

2
(yh1(h) + [(yh1(h))

2 − 4δ(yh1(h) − y`1(`))y
`
1(`)]

1
2 ) and 1

2
(yh1(h) −

[(yh1(h))
2−4δ(yh1(h)−y`1(`))y

`
1(`)]

1
2 ). As δ goes to 1, the limit of the expression under the

radical equals (yh1(h)− 2y`1(`))
2, so the limit of the largest root equals 1

2
(yh1(h)− (yh1(h)−

2y`1(`))) = y`1(`) if yh1(h) ≤ 2y`1(`) and equals 1
2
(yh1(h) + (yh1(h) − 2y`1(`))) = yh1(h) − y`1(`) if

yh1(h) > 2y`1(`), giving us the limits of z1.

By definition (10), we have m` =
y`
1(`)

(1−δ)
z1−δy`

1(`)

. From above, if yh1(h) > 2y`1(`), we have

limδ→1 z
1 = yh1(h) − y`1(`), which implies limδ→1m

` = 0. If yh1(h) ≤ 2y`1(`), we have

limδ→1 z
1 = y`1(`) and taking the limit of m` as δ goes to 1 results in 0

0
indeterminacy.

Applying the L’Hôpital’s rule, we obtain limδ→1m
` =

2y`
1(`)
−yh

1(h)

y`
1(`)

. This gives us the

limits of m`. The limits of mh follow directly from its definition (11) and the limits

of z1.
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We are ready to prove Theorem 3. First, let yh1(h) ≤ 2y`1(`). By part (A), policy z1

converges to y`1(`) and threshold mh converges to
y`
1(`)

yh
1(h)

. By (D.5), the agenda-setter’s

expected payoff converges to y`1(`) when µ̂ ≤
y`
1(`)

yh
1(h)

and µ̂yh1(h) > y`1(`) when µ̂ >
y`
1(`)

yh
1(h)

.

Second, let yh1(h) > 2y`1(`). By part (B), policy z1 converges to yh1(h) − y`1(`) and

thresholds m` and mh converge to 0 and 1
2
. By (D.5), the agenda-setter’s expected

payoff converges to µ̂(yh1(h)−y`1(`))+(1−µ̂)y`1(`) > y`1(`) when µ̂ ≤ 1
2

and to µ̂yh1(h) > y`1(`)

when µ̂ > 1
2
. �

Proof of Theorem 3. This follows directly from Theorem 2. �

Theorem 4 (Formal statement). We have:

(i) If yh1(h) ≤ 2y`1(`), then limδ→1 V
1
A,1 = V C

1 for all µ̂ ∈ (0, 1).

(ii) If yh1(h) > 2y`1(`), then limδ→1 V
1
A,1 = V C

1 when µ̂ ≥ 1
2

and limδ→1 V
1
A,1 > V C

1 when

µ̂ < 1
2
.

Proof of Theorem 4. Benchmark 2 implies that V C
1 = max{y`1(`), µ̂y

h
1(h)}.

(i) Let yh1(h) ≤ 2y`1(`). The conclusion follows directly from Theorem 2 and Bench-

mark 2.

(ii) Let yh1(h) > 2y`1(`), which is equivalent to m1 =
y`
1(`)

yh
1(h)

< 1
2
. Let µ̂ ≥ 1

2
. Since

m1 < 1
2
, Benchmark 2 implies V C

1 = µ̂yh1(h). At the same time, Theorem 2

implies limδ→1 V
1
A,1 = µ̂yh1(b). Next, let µ̂ < 1

2
. If also µ̂ ≤ m1, then V C

1 = y`1(`)

and limδ→1 V
1
A,1 = µ̂(yh1(h) − y`1(`)) + µ̂y`1(`) > y`1(`). And if µ̂ ∈ (m1, 1

2
), then

V C
1 = µ̂yh1(h) and limδ→1 V

1
A,1 = µ̂(yh1(h) − y`1(`)) + µ̂y`1(`) > µ̂yh1(h).

�

Theorem 6 (Formal statement).

Fix the preferences of voter 1(·). Letting ∆q = max
ω∈Ω
{1(ω)− q(ω)}, we have lim

∆q→0
δ→1

wq =

lim
∆q→0
δ→1

wq = lim
δ→1

V 1
A,1.

Proof of Theorem 6. The limit of V 1
A,1 is derived in Theorem 2. The limits of wq

and wq are given in (B.6) and (B.7) and clearly continuous at ∆q = 0. Plugging

q(ω) = 1(ω) for ω ∈ Ω into (B.6) and (B.7), we immediately reach the required

conclusion. �
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Proof of Theorem 7. We have wq ≥ y`q(`) by the definition in (B.2). The condition

in part (i) is equivalent to limδ→1wq > y`q(`) and follows from (B.7). The conditions

in part (ii) are equivalent to limδ→1wq = y`q(`) < limδ→1wq and follow from (B.6)

and (B.7). The remaining case is when limδ→1wq = y`q(`) = limδ→1wq, giving us part

(iii). �

Proof of Theorem 8. The conditions in part (i) are equivalent to limδ→1wq > V C
q .

The conditions in part (ii) are equivalent to limδ→1wq = V C
q < limδ→1wq. The

remaining case is when limδ→1wq = V C
q = limδ→1wq. �

Proof of Theorem 9. Note that wq < wq+1 cannot hold when either wq+1 =

y`(q+1)(`) or wq+1 = µ̂yh(q+1)(h). The conditions follows directly from the comparison

of (B.6) for q + 1 and (B.7) for q. Case (i) corresponds to limδ→1wq = µ̂yhq(h), case

(ii) to limδ→1wq = y`q(`), and case (iii) to limδ→1wq = µ̂(yhq(h) − y`q(`)) + (1 − µ̂)y`q(`).

The value of y∗ distinguishes between limδ→1wq+1 = µ̂yh(q+1)(h) + (1− µ̂)y`(q+1)(`) and

limδ→1wq+1 = µ̂(yh1(h) − y`(q+1)(`)) + (1− µ̂)y`(q+1)(`). �
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Online Appendix A: Second period: Equilibrium def-

inition and properties

The analysis of the second period is fairly simple but contains a number of insights

that can help better understand the proposal and voting behavior in the first period.

I show that irrespective of the voting rule, provided that voters use undominated

strategies, they vote to accept policies that give them a higher period utility than the

status quo and reject policies that give them a lower period utility than the status

quo. Facing such behavior, the agenda-setter chooses between a “risky” proposal yhq(h)

that sets the target voter q(·) to the status-quo payoff in state h and a “guaranteed”

proposal y`q(`) that sets the target voter to the status-quo payoff in state `.

Fix a public history ~ ∈ H and voter i ∈ N in state ω ∈ Ω. Under a q-majority

voting rule, the status-quo policy 0 remains in effect when less than q voters accept

a revised proposal p2 ∈ R+, and p2 passes when at least q voters accept it. Given a

period-2 voting profile a2 ∈ {0, 1}n, the period-2 payoff of voter i in state ω is given

by

Ui,2(p2;ω, a2) =

ui(p2;ω) if ai,2 +
∑

j 6=i aj,2 ≥ q,

ui(0;ω) if ai,2 +
∑

j 6=i aj,2 < q.

For each period-2 voting strategy profile α−i,2 ∈ Σ−i of voters other than i, we can

write the period-2 expected payoff of voter i in state ω as follows:

Ui,2(p2;ω, (ai,2, α−i,2)) = ui(p2;ω)Prob

(
ai,2 +

∑
j 6=i

aj,2 ≥ q

)

+ ui(0;ω)Prob

(
ai,2 +

∑
j 6=i

aj,2 < q

)
, ai,2 = 0, 1.

Let Aωq (α−i,2(p2)) be the probability that voter i is pivotal for p2 in state ω:

Aωq (α−i,2(p2)) = Prob

(∑
j 6=i

aj,2 = q − 1 | α−i,2(p2)

)
.

In equilibrium, each voter in each state chooses an action with the highest expected

payoff. The difference between the period-2 expected payoffs of voter i in state ω from
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accepting and rejecting a revised proposal p2 equals

Ui,2(p2;ω, (1, α−i,2))− Ui,2(p2;ω, (0, α−i,2)) = Aωq (α−i,2(p2))

(
−
(

1

2
yωi − p2

)2

+
1

4
(yωi )2

)
= Aωq (α−i,2(p2))(yωi − p2)p2. (A.1)

Voter i in state ω accepts a revised proposal p2 if this difference is strictly positive,

and rejects p2 if the difference is strictly negative. In case (A.1) equals zero, voter

i is indifferent between accepting and rejecting p2. The indifference captured by

Aωq (α−i,2(p2))(yωi − p2)p2 = 0 can be of two kinds. When Aωq (α−i,2(p2)) > 0, the

indifference is driven by the policy effects of the revised proposal p2 and the status-

quo policy 0. And when Aωq (α−i,2(p2)) = 0, the indifference is driven by the inability

of voter i in state ω to affect an outcome of the vote, i.e., she is not pivotal. Whenever

Aωq (α−i,2(p2)) = 0, I require that voter i in state ω accepts p2 if it gives her a higher

period payoff than the status-quo policy 0. In other words, I assume that voters

use weakly undominated voting strategies. Therefore, we can write the equilibrium

conditions on the period-2 voting strategy of voter i in state ω as follows:

αi,2(p2;ω) =

1 if (yωi − p2)p2 > 0,

0 if (yωi − p2)p2 < 0.
(A.2)

The optimal voting strategy in (A.2) allows us to draw some conclusions about

the voting behavior in the second period. Notice that the expression (yωi − p2)p2 is

symmetric in p2 around 1
2
yωi . Therefore, (A.2) implies that voter i in state ω accepts

a revised proposal p2 if it is closer to voter i’s ideal policy 1
2
yωi than the status-quo

policy 0, and rejects p2 if it is more distant from i’s ideal policy than the status-quo

policy.

Lemma A.1. Consider a q-majority voting rule. Fix a period-2 policy proposal p2 ∈
R+ and voter i ∈ N in state ω ∈ Ω. Then, voter i accepts p2 if 0 < p2 < yωi and

rejects it if p2 > yωi .

Under a q-majority voting rule, for a revised proposal p2 to pass at least q voters

must accept it. Recall that q(ω) ∈ N is a voter with q-th highest ideal policy in state

ω ∈ Ω. Lemma A.1 implies that when a revised proposal p2 is made, it passes if

0 < p2 < yωq(ω) and the status-quo policy 0 remains in effect if p2 > yωq(ω).
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Lemma A.2. Consider a q-majority voting rule. Fix a period-2 policy proposal p2 ∈
R+ and state ω ∈ Ω. If policy p2 is proposed in period 2, then p2 passes if 0 < p2 <

yωq(ω) and gets rejected if p2 > yωq(ω).

Lemma A.2 does not say what happens when proposal p2 coincides with the status-

quo policy 0 or the policy yωq(ω) which gives the target vote in state ω the same payoff

as the status quo. We will return to this question after we characterize an optimal

period-2 proposal strategy of the agenda-setter.

Given Lemma A.2, to compute her expected payoff from making a revised proposal

p2, the agenda-setter needs to have a belief over the state space Ω. For any history

~ ∈ H, the agenda-setter’s belief is µ~ ∈ F . Given ~, for any revised proposal p2 ∈ R+

the agenda-setter assigns probability W q(µ~, p2) that p2 passes under the q-majority

voting rule. Using Lemma A.2, we can write the probability W q(µ~, p2) that proposal

p2 passes given belief µ~ as follows:

W q(µ~, p2) =


1 if 0 < p2 < y`q(`),

µ~ if y`q(`) < p2 < yhq(h),

0 if yhq(h) < p2.

(A.3)

This expression is easy to understand. State ` is interpreted as low because the

ideal policy of the target voter q(ω) in state ` is lower than in state h. This is captured

by the assumption that y`q(`) < yhq(h). So, whenever policy p2 is acceptable to voter

q(`) in low state `, 0 < p2 < y`q(`), it is also acceptable to voter q(h) in high state h,

meaning that policy p2 passes in every state, that is, W q(µ~, p2) = 1. Similarly, if

policy p2 is not acceptable to voter q(h) in high state h, p2 > yhq(h), then it is also not

acceptable to voter q(`) in low state `, meaning that policy p2 gets rejected in every

state, that is, W q(µ~, p2) = 0. Finally, if policy p2 is acceptable to voter q(h) in high

state h but not in low state `, y`q(`) < p2 < yhq(h) , then policy p2 passes only in state

h, that is W q(µ~, p2) = µ~.

Recall that the agenda-setter’s period payoff from implementing a policy x ∈ R+

is uA(x) = x. Therefore, the agenda-setter receives payoff p2 if policy p2 passes, and

the status-quo payoff 0 if policy p2 gets rejected. We can write the period-2 expected

payoff of the agenda-setter as follows:

U q
A,2(µ~)(p2) = W q(µ~, p2)p2, p2 ∈ R+. (A.4)
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In equilibrium, the agenda-setter proposes a policy that maximizes her expected

payoff (A.4). The agenda-setter solves the following problem:

max
p2∈R+

U q
A,2(µ~)(p2); (A.5)

and she proposes policy p2 with positive probability only when p2 is a solution to

(A.5):

πq2(µ~)(p2) > 0 implies p2 ∈ arg max
p′2∈R+

U q
A,2(µ~)(p′2). (A.6)

Using (A.3), we can write down the expected period-2 payoff of the agenda setter

given in (A.4) as follows:

U q
A,2(µ~)(p2) =


p2 if 0 ≤ p2 < y`q(`),

µ~p2 if y`q(`) < p2 < yhq(h),

0 if yhq(h) < p2.

Let mq denote the belief that the state is h which makes the agenda-setter indiffer-

ent between the period-2 proposals y`q(`) and yhq(h) assuming that these proposals are

certain to win in corresponding states, mq =
y`
q(`)

yh
q(h)

.

Figure 4 depicts U q
A,2(µ~)(·) in the special case when y`q(`) = µ~yhq(h). Generally,

y`q(`) is greater or smaller than µ~yhq(h), depending in the agenda-setter’s belief µ~

and the ideal policies of the target voter q(·) in different states. The agenda-setter

proposes policy y`q(`) when she is pessimistic, that is µ~ < mq, and proposes policy

yhq(h) when she is optimistic, µ~ > mq. Since y`q(`) passes in both states, the agenda-

setter’s expected payoff equals y`q(`) when µ~ < mq. And since yh passes only in state

h, the agenda-setter’s expected payoff equals µ~yhq(h) when µ~ > mq.

So far we could not say anything about the equilibrium actions of voters when

they are indifferent between accepting and rejecting policy p2, but now we can. Since

the proposal policy of the agenda-setter must be optimal, (A.6) requires that U q
A,2(µ~)

has a maximum on R+. From figure (4), it is clear that a maximum does not exist if

both U q
A,2(µ~)y`q(`) and U q

A,2(µ~)yhq(h) are smaller than y`q(`).

This issue is familiar from the models of bilateral bargaining, in which proposals

must be accepted in equilibrium whenever the veto player is indifferent between ac-

cepting and rejecting. Here, a similar requirement must hold in equilibrium. First,
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p2

U q
A,2(µ~)(·)

0 y`q(`) yhq(h)

µ~y`q(`)

y`q(`) = µ~yhq(h)

slope = 1

slope = µ~

Figure 4: The expected period-2 payoff of the agenda-setter when voters have the
same information. The depicted case, µ~ = mq, is knife-edge but important in certain
equilibria.

consider proposal y`q(`). Since this proposal is smaller than (yh + b), the target voter

q(·) accepts y`q(`) in the high state h but is indifferent in the low state `. Therefore,

depending in the probability with which the target voter q(·) in state ` accepts p2, the

expected payoff of the agenda-setter varies between µ~y`q(`), which corresponds to the

probability that the target voter q(·) in state ` rejects proposal yhq(h), and y`q(`), which

corresponds to the probability that the target voter q(·) in state ` accepts proposal

yhq(h). Second, consider proposal yhq(h), which turns out to be a mirror case. The target

voter q(·) rejects this proposal in low state ` but is indifferent in high state h, and

therefore the expected payoff of the agenda-setter varies between 0 and µ~yhq(h) as the

probability that the target voter q(·) in state h accepts proposal yhq(h) varies between

1 and 0. Overall, in equilibrium the target voter q(·) must either accept y`q(`) in state

` or accept yhq(h) in state h, or both.

There are two important takeaways that we can draw about the equilibrium strat-

egy profile in the second period. First, there may be a multiplicity of PBE arising

from our inability to pin down the acceptance strategies of voters. Second, there is

only a handful of proposals that the agenda-setter may conceivably make, although

she may be indifferent between multiple proposals. The proof of Lemma A.3 relies on

the same arguments as given above for the knife-edge case and is therefore omitted.

Lemma A.3. Consider a q-majority voting rule. In every PBE, if the agenda-setter’s
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belief is µ~ ∈ F , then:

(i) the agenda-setter’s expected payoff in the second period equals

V q
A,2(µ~) =

y`q(`) if µ~ ≤ mq,

µ~yhq(h) if µ~ > mq;

(ii) the agenda-setter’s proposal strategy π2(µ~) is such that

π2(µ~)(p2) =

1 if µ~ < mq and p2 = y`q(`), or µ~ > mq and p2 = yhq(h),

0 if p2 6= y`q(`) and p2 6= yhq(h).

The predictions from the analysis of the second period are analogous to the a

single-period model in Romer and Rosenthal (1978, 1979). Even though voters are

strategic in my model, the assumption that voters use weakly undominated voting

strategies implies that the voting strategies are sincere in the second period. Romer

and Rosenthal show that when the status-quo policy is located to the left of the fixed

q-th ideal policy, the agenda-setter’s expected payoff increases as the status-quo policy

decreases. It is trivial to check that for a given posterior belief µ~, the agenda-setter’s

expected payoff V q
A,2 increases when the ideal policies of voter q(·) increase.
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Online Appendix B: Increasing sequence of propos-

als under unanimity rule

B.1 Example 1: Reverse screening

p1

ω

h

`

0 y`

(a) Period 1 symmetric voting strategy.

Accept Reject

p1

µ~

1

µ̂

0 y`

(b) Posterior belief that the state is h follow-
ing a split vote.

Figure 5: Period 1 voting strategies and
posterior beliefs.

This is an example of a “reverse screen-

ing” equilibrium in which the agenda-

setter becomes more optimistic after an

initial proposal gets rejected.

Voter i ∈ {L,R} in state ω ∈ Ω ac-

cepts a revised policy p2 ∈ R+ if and only

if p2 ≤ yωi . The agenda-setter proposes

policy yh if the belief is µ̂~ ≥ mL and pol-

icy y` otherwise. It follows from Lemma

A.1 and Lemma A.3 that these period-2

strategies are sequentially rational.

In period 1, voters use threshold

strategies: in state ` both voters accept

policy p1 iff p1 ≤ y` and in state h both

voters reject every policy. If an initial

proposal p1 ≤ y` is rejected by both vot-

ers, the revised belief µ~ assigns proba-

bility 1 to state h. If an initial proposal

p1 > y` is rejected by both voters, the

revised belief µ~ is the same as the prior

belief µ̂. At every other history ~ with

p1 ≤ y`, the revised belief µ~ assigns probability 1 to state h, and at every other

history ~ with p1 > y`, the revised belief µ~ is the same as the prior belief µ̂. The

agenda-setter makes an initial proposal y`.

The voting strategies in period 1 are sequentially rational. In state h, unilateral

deviations do not affect the agenda-setter’s belief and therefore lead to the same

revised proposal. Likewise, for any proposal p1 > y` in state ` unilateral deviations

do not affect the posterior belief. At the same time, in state ` both voters prefer any

policy p1 ≤ y` to the breakdown in negotiations caused by a unilateral deviation from
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voting to accept p1. For the initial proposal, the agenda-setter can either propose

p1 ≤ y`, which has an expected payoff (1 − µ̂)p1 + δµ̂yh, or p1 > y` which has an

expected payoff max{δy`, δµ̂yh}. It is easy to see that y` is an optimal proposal.

In this example, the agenda-setter starts with a prior belief µ̂ and makes a policy

proposal y`. This proposal passes only if the state is `, so the agenda-setter concludes

that the state must be h when y` gets rejected. Since the agenda-setter (correctly)

believes that the state is h, she makes a revised proposal yh which passes in period 2.

This equilibrium can be interpreted as a reverse-screening because the initial proposal

screens out (the less desirable) state ` , contrary to the usual screening that screens

out (the more desirable) state h.

Another implication of the freedom to choose off-path beliefs following deviations

by voters is the existence of equilibria in which the agenda-setter’s expected payoff is

below y`d.

B.2 Example 2

This is an example of an equilibrium in which the agenda-setter’s expected payoff is

strictly below y`L. Let µ̂ ≤ y`

yh
and let p0 be any policy such that yh + b− y` < p0 < y`

and p0 ≥ δy`.25

Voter i ∈ {L,R} in state ω ∈ Ω accepts a revised policy p2 ∈ R+ if and only if

p2 ≤ yωi . The agenda-setter proposes policy yh if the belief is µ̂~ ≥ mL and policy y`

otherwise. It follows from Lemma A.1 and Lemma A.3 that these period-2 strategies

are sequentially rational.

In period 1, voters use the following strategies: in state ` both voters reject every

policy and in state h both voters accept policy p1 iff p1 ∈ [yh + b− y`, p0]. If an initial

proposal p1 ∈ [yh + b− y`, p0] is rejected by both voters, the revised belief µ~ assigns

probability 0 to state h. If an initial proposal p1 6∈ [yh + b − y`, p0] is rejected by

both voters, the revised belief µ~ is the same as the prior µ̂. The revised beliefs after

split votes on p1 6∈ [yh + b − y`, p0] remain the same as the prior belief. The revised

beliefs after split votes on p1 ∈ [yh + b − y`, p0] are tailored: if voter R rejects p1

then the revised belief assigns probability 0 to state h, and if voter L rejects p1 then

the revised belief assigns probability 1 to state h. The agenda-setter makes an initial

proposal p0.

25One possible vector of values is: µ̂ = 3
4 , p0 = 5

2 , y` = 3, yh = 4, b = 1, and δ = 5
6 .
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p1

ω

h

`

0 y`yh + b− y` p0

(a) Period 1 symmetric voting strategy.

Accept Reject

p1

µ~

1

µ̂

0 y`p0yh + b− y`

L rejects p1

R rejects p1

(b) Posterior belief that the state is h follow-
ing a split vote.

Figure 6: Period 1 voting strategies and
posterior beliefs in Example 2.

The voting strategies in period 1 are

sequentially rational. For p1 6∈ [yh + b−
y`, p0], unilateral deviations do not affect

the agenda-setter’s belief and therefore

lead to the same revised proposal. For

p1 ∈ [yh + b − y`, p0], consider state `

first. Whether or not voter L deviates,

the agenda-setter believes that the state

is `. If voter R deviates, then the agenda-

setter believes that the state is h lead-

ing to a breakdown of negotiations; but

voter R in state ` prefers policy y` to

the status-quo policy 0. Consider state

h next. If voter L deviates, then the

revised proposal is yh and voter L gets

the status-quo payoff; but voter L prefers

any policy smaller than yh to the status-

quo payoff. If voter R deviates, then the

revised proposal is y`. The assumption

yh + b − y` < p0 < y` guarantees that

voter R prefers p1 to a period of delay followed by policy y`. For the initial proposal,

the agenda-setter can either propose p1 ∈ [yh+b−y`, p0], which has an expected payoff

µ̂p1 +δ(1−µ̂)y`, or p1 6∈ [yh+b−y`, p0] which has an expected payoff max{δy`, δµ̂yh}.
By the choice of µ̂, we have max{δy`, δµ̂yh} = δy`. And since p0 ≥ δy`, we can see

that p0 is an optimal proposal.

In Example 2, the agenda-setter’s expected payoff is µ̂p0 + δ(1 − µ̂)y` which is

strictly smaller than y` by the choice of p0. It is worth noting that since δy` ≤
p0 < y` policy p0 converges to y` as players become perfectly patient. Therefore, the

agenda-setter’s expected payoff converges (from below) to y`. Theorem C.2 shows

that there does not exist a sequence of PBE in which the agenda-setter’s expected

payoff converges to a value strictly below y`.
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B.3 Coalition-proofness

Example 1 (continued). The PBE in Example 1 is not coalition-proof if b < y`.

Consider the following joint deviation: in state h both voters accept proposal p1 = y`.

This deviation is improving and self-enforcing. In particular, voter R in state h prefers

policy y` to a period of delay followed by policy yh provided that b < y`.

Example 2 (continued). The PBE in Example 2 is not coalition-proof. Consider

the following joint deviation: in state ` both voters accept proposal p1 = p0. This

deviation is improving and self-enforcing. In particular, voter R in state ` prefers

policy p0 to a period of delay followed by policy y` under the maintained assumption

that δy` ≤ p0 < y`.
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Online Appendix C: Absence of communication

In this section, I show that under the unanimity rule there is a severe multiplicity of

equilibrium paths. The set of agenda-setter’s expected payoffs that can be supported

in equilibrium is a closed interval. Coasian equilibria exist only when the agenda-

setter is pessimistic about the state. There always exist non-Coasian equilibria and

never exist sub-Coasian equilibria. As a consequence, the agenda-setter always values

the ability to make a revised proposal under the q-majority voting rule.

C.1 Characterization: Payoff bounds

The freedom to choose off-path beliefs leads to a continuum of possible equilibrium

outcomes, some of which may feature rather surprising dynamics. In particular, under

the q-majority voting rule with q ≥ 2, the sequence of policy proposals on equilibrium

path may be increasing (see Online Appendix B). As Theorem 1 suggests, this is not

possible when bargaining the is “bilateral,” that is, q = 1.

I begin by characterizing the ex ante expected payoffs which cannot be supported

in any PBE. Define vq as follows:

vq = max{y`q(`), µ̂yhq(h) + δ(1− µ̂)y`q(`), δµ̂y
h
q(h) + (1− µ̂)y`q(`)}. (C.1)

Lemma C.1. Under the q-majority voting rule with q ≥ 2, in every PBE the agenda-

setter’s ex ante expected payoff is at most vq.

Under the q-majority voting rule, sufficiently large groups of voters have power to

veto any policy. If policy p1 passes in state ω, then this policy must be at least as

good as the status-quo policy 0 for at least q voters. It follows that the agenda-setter’s

expected payoff is bounded above by µ̂yhq(h) + (1− µ̂)y`q(`), which is the expectation of

yωq(ω) under the prior belief µ̂. Lemma C.1 provides an upper bound vq that is strictly

smaller than µ̂yhq(h) + (1− µ̂)y`q(`). Since the agenda-setter does not observe the state,

there must be a period of delay if distinct policies are implemented in distinct states.

Theorem C.1 shows that vq is a tight upper bound, meaning that there exists an

equilibrium in which the agenda-setter’s expected payoff equals vq.

To complete the characterization of the ex ante expected payoffs which cannot be
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supported in any PBE, define vq as follows:

vq = max{δy`q(`), δµ̂yhq(h)}. (C.2)

Intuitively, the agenda-setter cannot do worse than cause a period of delay without

learning anything and therefore can guarantee an expected payoff which is at least

δmax{y`q(`), µ̂yhq(h)}.

Lemma C.2. Under the q-majority voting rule with q ≥ 2, in every PBE the agenda-

setter’s ex ante expected payoff is at least vq.

It turns out that every value between vq and vq can be supported in equilibrium as

the agenda-setter’s ex ante expected payoff. Theorem C.1 provides a sharp character-

ization of the agenda-setter’s expected payoffs that can be supported in equilibrium.

Theorem C.1. Under the q-majority voting rule with q ≥ 2, the agenda-setter’s ex

ante expected payoff equals v in some PBE if and only if v ∈ [vq, vq].

The proof of Theorem C.1 uses a constructive argument. For each v ∈ [vq, vq],

I define an assessment (σ,M) and then prove it to be an equilibrium that induces

an agenda-setter’s ex-ante expected payoff that equals v. The proof of Theorem C.1

also reveals that not every agenda-setter’s expected payoff can be supported using

threshold voting strategies. Overall, there are three classes of equilibrium strategies

and belief systems that are sufficient for the construction. These classes are defined

in Section C.4. The equilibrium outcomes associated with each class are:

(I) The initial proposal p1 is strictly greater than y`q(`) and passes only in state h.

If it gets rejected, then the agenda-setter is certain that the state is ` and offers

y`q(`) in the second period. This equilibrium outcome is similar to the screening

equilibrium in Theorem 1.

(II) The initial proposal p1 is strictly smaller than y`q(`) and passes only in state `. If

it gets rejected, then the agenda-setter is certain that the state is h and offers

yhq(h) in the second period. This equilibrium outcome is similar to the reverse

screening equilibrium in the Online Appendix B.

(III) The initial proposal p1 is greater than 0 and is only accepted in state h. If it

gets rejected, then the agenda-setter is certain that the state is ` and offers y`q(`)
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Figure 7: The limit set of the agenda-setter’s expected payoffs under the q-majority
voting rule and the benchmarks as players become perfectly patient.

in the second period. This equilibrium outcome is similar to class (I) except

the initial proposal p1 can be smaller than y`q(`) yet get rejected in state `.

C.2 Coasian equilibria and the value of commitment

Since vq converges to the expected value of yωq(ω) as the discount factor δ converges to

1,

lim
δ→1

vq = µ̂yhq(h) + (1− µ̂)y`q(`) = V F
q , (C.3)

the statement of Theorem C.1 implies that we can always construct a non-Coasian

sequence of equilibria in which the limit of the agenda-setter’s expected payoff exceeds

y`q(`). The limit of vq as the discount factor δ converges to 1 is given by

lim
δ→1

vq = max{y`q(`), µ̂yhq(h)} = V C
q , (C.4)

and Theorem C.1 implies that we cannot construct a sub-Coasian sequence of equi-

libria in which the limit of the agenda-setter’s expected payoff is below y`q(`). Figure 7

shows the graph of correspondence that maps the prior belief µ̂ to set [limδ→1 vq, limδ→1 vq].

Analogous to Theorem 3, the following result focuses on the case when the prior

belief that the state is h is such that µ̂ ≤
y`
q(`)

yh
q(h)

, which implies that the agenda-setter’s

expected payoff under the commitment benchmark equals the Coasian bound y`q(`).

Theorem C.2. Suppose that the prior belief that the state is h satisfies µ̂ ≤
y`
q(`)

yh
q(h)

.

Then, under the q-majority voting rule with q ≥ 2, almost every sequence of equilibria

is non-Coasian.
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Is the ability to commit to a single proposal valuable to the agenda-setter under

the unanimity rule? By comparing the expected payoff V C
q = max{y`q(`), µ̂yhq(h)} for

the commitment benchmark derived in Appendix A with the limit of the lower bound

vq as players become perfectly patient given in (C.4), we can see that every expected

payoff under the unanimity rule when players are perfectly patient is at least as high

as V C
q .

Theorem C.3. When players become perfectly patient, the agenda-setter’s expected

payoff under the q-majority voting rule with q ≥ 2 is weakly greater than under the

commitment benchmark, and it is strictly greater in almost every equilibrium.

Remark. While the above result holds in the limit as δ → 1, for any δ < 1 we can

construct a PBE in which the agenda-setters expected payoff equals δmax{y`q(`), µ̂yhq(h)}
which is strictly smaller than the commitment benchmark V C

q .

C.3 An increase in required quota q

In this section, I consider the effects of an increase in the number of voters required

to pass a policy, i.e., quota q. I focus on cases when the agenda-setter’s expected

payoffs are characterized by Theorem C.1. The effect of an increase in required quota

from q = 1 to q ≥ 2 is a corollary to Theorem 5 in Section 4. The main result is

Theorem C.4 which provides conditions for the existence of equilibria such that the

agenda-setter’s expected payoff increases in response to an increase in required quota

q.

Because of the multiplicity of the expected payoffs that can be supported in equi-

librium, the comparative statics with respect to quota q has to rely on equilibrium

selection except in extreme cases. A mapping φ(·) : {2, . . . , n} → R+ is an equilibrium

payoff selection if for each q ∈ {2, . . . , n} we have limδ→1 vq ≤ φ(q) ≤ limδ→1 vq. An

equilibrium payoff selection φ(·) is monotone if it is weakly decreasing on {2, . . . , n}.
The following result provides conditions for the existence of a non-monotone equi-

librium payoff selection or, in other words, for an existence of q ∈ {2, . . . , n − 1}
such that the agenda-setter’s expected payoff under the larger quota q + 1 is strictly

greater than the expected payoff under the smaller quota q. The argument relies on

the comparison of bounds vq+1 and vq given in Theorem C.1.
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Theorem C.4. There exists an equilibrium payoff selection φ(·) that is non-monotone

if and only if there exists q ∈ {2, . . . , n− 1} such that one of the following conditions

hold:

(i)
y`q(`) − y`(q+1)(`)

yh(q+1)(h) − y`(q+1)(`)

< µ̂ ≤
y`q(`)

yhq(h)

;

(ii)
y`q(`)

yhq(h)

≤ µ̂ <
y`(q+1)(`)

yhq(h) −
(
yh(q+1)(h) − y`(q+1)(`)

) .

Theorem C.4 also implies that when the conditions (i) and (ii) are violated for

each q ∈ {2, . . . , n − 1}, then any equilibrium payoff selection is monotone. To

illustrate, consider a special case when the ideal policies of all synthetic voters are

equally spaced in state ` and a change in state from ` to h shifts the ideal policies

of all synthetic voters by an equal amount. More precisely, assume that y`1(`) = bv,

y`q(`) = n−q+1
n

bv for q = 2, . . . , n, and yhq(h) − y`q(`) = bs for q ∈ N . I refer to bv as

“voter heterogeneity” and to bs as “state heterogeneity.” Theorem C.4 implies that

any equilibrium payoff selection is monotone when

1

n
bv >

n− 2

n− 1
bs, (C.5)

that is, when voter heterogeneity is sufficiently large relative to state heterogeneity

(see Figure 8).

C.4 Proofs

Proof of Lemma C.1. Fix a required quota q ≥ 2 and an equilibrium (σ,M).

Since any n − q + 1 voters have collective power to veto any policy, then a policy

that passes in state ` cannot exceed y`q(`), and a policy that passes in state h cannot

exceed yhq(h).

Suppose that the agenda-setter’s expected payoff VA(σ,M) is above vq. This

implies that there exists a policy p1 ∈ supp π1 such that η(p1) > vq where η(p1) =∑
ω∈Ω µ̂(ω)[

∫
{(1− δ)x1 + δx2} dF p1,ω

σ,M(x1, x2)]. There are three cases, each resulting

in a contradiction.

Suppose suppF p1,`
σ,M = suppF p1,h

σ,M. Then, (1 − δ)x1 + δx2 ≤ y`q(`) for all (x1, x2) in

these supports and η(p1) ≤ y`q(`).
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1
n
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(a) Parameters are 1
nbv = bs = 2. Any equi-

librium payoff selection is monotone.

µ̂

v

y`3(`)

y`2(`)

yh3(h)

yh2(h)

0 y`
3(`)

yh
3(h)

y`
2(`)

yh
2(h)

1

1
n
bv

bs

(b) Parameters are 1
nbv = 1 and bs =

5. There exists a non-monotone equilibrium
payoff selection.

Figure 8: The limit sets of the agenda-setter’s expected payoffs under the q-majority
voting rule. There are n = 3 voters, limit sets for q = 2 and q = 3 are depicted.

Suppose there exists (x1, x2) ∈ suppF p1,h
σ,M such that (x1, x2) 6∈ suppF p1,`

σ,M. If p1 = 0,

then (1−δ)x1 +δx2 ≤ δyhq(h) and for all (x̃1, x̃2) ∈ suppF p1,`
σ,M we have (1−δ)x̃1 +δx̃2 ≤

δy`q(`); therefore, η(p1) ≤ µ̂δyhq(h) + (1− µ̂)δy`q(`). If p1 > 0, then (1− δ)x1 + δx2 ≤ yh

and for all (x̃1, x̃2) ∈ suppF p1,`
σ,M we have (1 − δ)x̃1 + δx̃2 ≤ δy`q(`); therefore, η(p1) ≤

µ̂yhq(h) + (1− µ̂)δy`q(`).

Suppose there exists (x1, x2) ∈ suppF p1,`
σ,M such that (x1, x2) 6∈ suppF p1,h

σ,M. If p1 = 0,

then (1− δ)x1 + δx2 ≤ δy` and for all (x̃1, x̃2) ∈ suppF p1,h
σ,M we have (1− δ)x̃1 + δx̃2 ≤

δyhq(h); therefore, η(p1) ≤ µ̂δyhq(h) + (1− µ̂)δy`q(`). If p1 > 0, then (1− δ)x1 + δx2 ≤ y`

and for all (x̃1, x̃2) ∈ suppF p1,h
σ,M we have (1 − δ)x̃1 + δx̃2 ≤ δyhq(h); therefore, η(p1) ≤

µ̂δyhq(h) + (1− µ̂)y`q(`). �

Proof of Lemma C.2. Fix an equilibrium (σ,M) and suppose that the agenda-

setter’s expected payoff VA(σ,M) is below vq. This implies that for each policy

p1 ∈ R+ we have

η(p1) =
∑
ω∈Ω

µ̂(ω)

{∫
{(1− δ)x1 + δx2} dF p1,ω

σ,M(x1, x2)

}
< vq

where v = max{δy`q(`), δµ̂yhq(h)}.
Pick any p1 > yhq(h) and let (x1, x2) ∈ supp F p1,ω

σ,M for some ω ∈ Ω. Then, x1 = 0
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since player L strictly prefers to veto p1 in every state. Since proposal p1 is defeated in

every state, it induces (together with the prior µ̂ and the period-1 voting strategies of

voters) a distribution G of posterior beliefs. Given every belief µ~ in the support of G,

the agenda-setter maximizes her expected payoff in the second period. Ex ante, the

agenda-setter cannot do worse using experiment G than using her prior belief µ̂, so the

agenda-setter’s expected payoff in the second period is at least max{y`q(`), µ̂yhq(h)}. �

There are two classes of period-1 strategies and belief systems that are used in

the proof of Theorem C.1. Each class depends on a parameter z ∈ R+, although this

dependence is suppressed in the notation. For each state ω ∈ Ω and q ∈ {2, . . . , n},
let Nω

q be the set of players with q highest ideal policies in state ω. For each ~ ∈ H,

write ~ = (p1, C) where p1 is the initial proposal and C is the set of voters who

rejected it

For z > δy`q(`) and small ε > 0, define σI1 = (πI1 , (α
I
i,1)i∈N) as follows. For all

p1 ∈ R+ let:

αIi,1(p1; `) = 0, i ∈ N, αIi,1(p1;h) = 0, i 6∈ Nh
q ,

αIi,1(p1;h) =

1 if p1 ∈ [z − ε, z],

0 if p1 6∈ [z − ε, z],
i ∈ Nh

q ,

supp πI1 = arg max
p1∈[z,z+1]

GI(p1), where GI : {z, z + 1} → R+ is defined as

GI(z) = µ̂z + δ(1− µ̂)y`q(`), GI(z + 1) = vq.

DefineMI = {µ~}~∈H as follows. If p1 6∈ [z − ε, z], let µ~ = µ̂ for any C ⊆ N . And if

p1 ∈ [z − ε, z], let µ~ be such that µ~ =


0 if C ∈ C0,

1 if C ∈ C1,

µ̂ otherwise,

where

C0 =


C ⊆ N

∣∣∣∣∣∣∣∣∣∣∣

C = N,

or Nh
q ∩ C = {j}, and yhj − yhq(h) > y`q(`),

or N `
q ∩ C = {j}, and y`j − y`q(`) > yhq(h),

or N `
q \ C = {j}, and y`j − y`q(`) > yhq(h),


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C1 =

C ⊆ N

∣∣∣∣∣∣∣∣
Nh
q ∩ C = {j}, and yhj − yhq(h) ≤ y`q(`),

or N `
q ∩ C = {j}, and y`j − y`q(`) ≤ yhq(h),

or N `
q \ C = {j}, and y`j − y`q(`) ≤ yhq(h).



p1

ω

h

`

0 y`q(`) zz − ε
p1

µ~

1

µ̂

0 y`q(`) z − ε z

yhj(h) − yhq(h) ≤ y`q(`)

yhj(h) − yhq(h) > y`q(`)

Figure 9: Depiction of (σI ,MI). Only the posterior beliefs following a unilateral
deviation by some player j ∈ Nh

q are shown. Here, ε > 0 is small and either z > y`q(`)
or z ∈ (δy`q(`), y

`
q(`)].

For z < y`q(`), define σII1 = (πII1 , (α
II
i,1)i∈N) as follows. For all p1 ∈ R+ let:

αIIi,1(p1;h) = 0, i ∈ N, αIIi,1(p1; `) = 0 i 6∈ N `
h,

αIIi,1(p1; `) =

1 if p1 ≤ z,

0 if p1 > z,
i ∈ N `

q ,

supp πII1 = arg max
p1∈[z,z+1]

GII(p1), where GII : {z, z + 1} → R+ is defined as

GII(z) = (1− µ̂)z + δµ̂yhq(h), GII(z + 1) = vq.

Define MII = {µ~}~∈H by letting µ~ =

µ̂ if p1 > z,

1 if p1 ≤ z.

Proof of Theorem C.1. By Lemma C.1 and Lemma C.2, if v is the agenda-setter’s

expected payoff then v ∈ [vq, vq]. For the other direction, fix v ∈ [vq, vq]. I will

construct an equilibrium (σ,M) such that VA(σ,M) = v.

The period-2 strategy profile used in the construction does not depend on v.

Define σ2 = (π2, (αi,2)i∈N) as follows:

αi,2(p2;ω) =

1 if (yωi − p2)p2 ≥ 0,

0 if (yωi − p2)p2 < 0,
p2 ∈ R+, ω ∈ Ω, i ∈ N ; (C.6)
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p1

ω

h

`

0 y`q(`)z
p1

µ~

1

µ̂

0 z y`q(`)

Figure 10: Depiction of (σII ,MII). Only the posterior beliefs following a unilateral
deviation by some player j ∈ Nh

q are shown. Here, z < y`q(`).

π2(µ~)(p2) =


1 if µ~ < mq and p2 = y`q(`),

1 if µ~ ≥ mq and p2 = yhq(h),

0 if p2 6= y`q(`) and p2 6= yhq(h),

µ~ ∈ F . (C.7)

The period-1 strategy profile and the belief system depend on v ∈ [vq, vq] and belong

to one of two classes defined above.

If v ≥ (1− µ̂)y`q(`) + δµ̂yhq(h), let σ = (σI1 , σ2) with z =
v−δ(1−µ̂)y`

q(`)

µ̂
and M =MI .

Since v ≥ (1 − µ̂)y`q(`) + δµ̂yhq(h) we have z > δy`q(`), so the strategy profile σI is

well-defined.

Period-1 voting strategies are sequentially rational. When p1 6∈ [z−ε, z], unilateral

deviations from unanimously rejecting p1 do not change the posterior belief.

Suppose p1 ∈ [z − ε, z] and the state is `. On path, we have C = N , µ~ = 0,

and the revised proposal is y`q(`) which passes. A unilateral deviation by voter j 6∈ N `
q

does not affect the posterior belief. Consider a unilateral deviation by voter j ∈ N `
q .

If y`j − y`q(`) > yhq(h), then the posterior belief remains µ̂~ = 0. And if y`j − y`q(`) ≤ yhq(h),

the posterior belief is µ~ = 1, implying that the revised proposal is yhq(h) which gets

rejected since the state is `. But any voter j ∈ N `
q prefers y`q(`) to the status-quo 0.

Suppose p1 ∈ [z − ε, z] and the state is h. On path, we have C = N \ Nh
q so

p1 passes. A unilateral deviation by voter j 6∈ Nh
q does not affect this outcome.

Consider a unilateral deviation by voter j ∈ Nh
q . If yhj − yhq(h) > y`q(`), then the

posterior belief is µ̂~ = 0, implying that the revised proposal is y`q(`) which passes.

Since δy`q(`) < p1 ≤ yhq(h) for small ε > 0 and yhj − yhq(h) > y`q(`), such deviation cannot

increase the expected payoff of voter j. If yhj − yhq(h) ≤ y`q(`), then the posterior belief

is µ~ = 1, implying that the revised proposal is yhq(h) which passes since the state is h.

Since δy`q(`) < p1 ≤ yhq(h) for small ε > 0 and yhj − yhq(h) ≤ y`q(`), such deviation cannot
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increase the expected payoff of voter j.

The period-1 proposal z is optimal because the value of function GI at z =
v−δ(1−µ̂)y`

q(`)

µ̂
equals v ≥ vq. The agenda-setter’s expected payoff from making pro-

posal z equals µ̂z + (1− µ̂)δy`q(`) = v.

If v < (1−µ̂)y`q(`) +δµ̂yhq(h), let σ = (σII1 , σ2) with z = v−δµ̂yh
1−µ̂ andM =MII . Since

v < (1− µ̂)y`q(`) + δµ̂yhq(h) we have z < y`q(`), so the strategy profile σII is well-defined.

Period-1 voting strategies are sequentially rational. When p1 > z, unilateral

deviations by voters in Nω
q , ω ∈ Ω, from rejecting p1 do not affect the posterior belief.

Suppose p1 ≤ z and the state is h. On path, we have C = N , µ~ = 1, and the

revised proposal is yhq(h) which passes since the state is h. A unilateral deviation by

any voter i ∈ N does not affect the posterior belief.

Suppose p1 ≤ z and the state is `. On path, we have C = N \ N `
q so p1 passes.

A unilateral deviation by voter j 6∈ N `
q does not affect this outcome. A unilateral

deviation by voter j ∈ N `
q induces a posterior belief µ~ = 1, implying that the revised

proposal is yhq(h) which gets rejected since the state is `. But since z < y`q(`), any voter

j ∈ N `
q prefers p1 ≤ z to the status-quo 0.

The period-1 proposal z is optimal because the value of function GII at z =
v−δµ̂yh

q(h)

1−µ̂ equals v ≥ vq. The agenda-setter’s expected payoff from making proposal z

equals (1− µ̂)z + δµ̂yhq(h) = v. �

Proof of Theorem C.2. Theorem C.1 and the limits of vq and vq in (C.3) and

(C.4) imply that max{y`q(`), µ̂yhq(h)} ≤ v ≤ µ̂yhq(h) + (1 − µ̂)y`q(`) if and only if v is the

limit agenda-setter’s expected payoff along a sequence of equilibria as players become

perfectly patient. Moreover, we have max{y`q(`), µ̂yhq(h)} = y`q(`) < µ̂yhq(h) + (1− µ̂)y`q(`)

when 0 < µ̂ ≤
y`
q(`)

yh
q(h)

. �

Proof of Theorem C.3. Follows immediately from Benchmark 2 and the limit of

vq given in (C.4). �
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