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Abstract

This paper considers bootstrap versions of a Hausman-type test statistic for econo-

metric models with endogenous regressors whose coefficients are allowed to vary over time

both deterministically or stochastically. I compare the finite sample performance of the

asymptotic and the bootstrap version of the test by means of Monte Carlo simulations.

The bootstrap test statistic appears to have proper size and higher power. More impor-

tantly, it is shown that the size and the power of the bootstrap test, are invariant to the

choice of the bandwidth parameters and the number of instruments.

Keywords: Instrumental variables, Time-varying parameters, Endogeneity, Hausman

test, Non-parametric methods, Bootstrap

1. Introduction

Instrumental variable (IV) regressions are fundamental in applied economic research. By

construction, IV methods exploit the variation in the endogenous variables caused by shifts

in the instrumental variable. Should one use these estimators to alleviate bias in case of

endogeneity or use standard estimators that, although biased under endogeneity, they are

more efficient if there is no endogeneity? Clearly, a Hausman (1978) exogeneity test which

compares a standard estimator, like the LS, with those that account for endogeneity can

address the issue.

A usual assumption often made in the IV literature is that both the entertained model and

the parameters remain constant over time. In turn, this implies that the relationship between

the endogenous variables and the instruments remains unchanged as well. This assumption,
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although crucial, still remains highly susceptible to criticism. Zhang et al., 2008 argue that

the conflicting conclusions about the importance of key variables in the determination of

inflation based on a New Keynesian Phillips Curve(NKPC) may be due to neglected parameter

variation.

A recent strand of literature also considers the possibility of a time-varying endogeneity

status of a variable. Giraitis et al. (2020)(GKM), building upon the seminal works by Chen

(2015) and Giraitis et al. (2014)(GKY), proposed a non-parametric, kernel-based, estimation

and inferential theory for time-varying IV regression allowing for both deterministic and ran-

dom coefficients. In their article, GKM introduced time-varying types of Hausman exogeneity

tests allowing for possible changes in the endogeneity status of the variables. Although the fi-

nite sample bias of the estimators is found to be small, the time-varying Hausman tests appear

to experience size distortions and have low power. More importantly, these size distortions

are quite sensitive to the choice of the bandwidth parameter and the number of instruments.

In this paper, I consider a bootstrap version of the time-varying Hausman exogeneity test,

which compares time-varying OLS and IV estimators. The ability of bootstrapping procedures

to approximate the small sample distribution is well known in the literature(see for instance

Beran and Ducharme (1991)) and Hall (1992)). In a related study, fu Wong (1996) finds that

the bootstrap-based Hausman test can provide substantial refinements over the asymptotic

test. As shown in the Monte Carlo simulations section, bootstrap appears to deal with the

size distortions in an effective manner and most importantly, render test statistic insensitive

to the choices of the bandwidth parameter and the number of instruments. To the best of

my knowledge, this is the first paper to use bootstrap in time-varying instrumental variable

estimation to address the issue of bandwidth selection for hypothesis testing.

Finally, I employ a time-varying IV estimation of a Phillips curve for the USA to illustrate

both the qualitative and quantitative differences of the two versions of the test in an empirical

application. Considerable attention has been focused on studying the NKPC as it is used to

identify the forward-looking components of inflation and the trade-off between inflation and

unemployment over the cycle. Following GKM, unemployment is used as a forcing variable for

inflation. The time-varying bootstrap version of the Hausman test seems to be less sensitive

to the choice of the bandwidth parameter than the asymptotic test, while also suggesting time

endogeneity of unemployment for a longer period of time around 2000 when compared to the

asymptotic test.

The paper is organized as follows: In Section 2, I briefly present an overview of the prob-
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lem addressed by GKM and review the time-varying Hausman test proposed. In Section 3,

I discuss the bootstrap approach in this context. Section 4 examines the behaviour of the

test statistic by means of Monte Carlo simulations. Section 5 presents the empirical applica-

tion. Finally, some concluding remarks and some directions on further research are given in

Section 6.

2. Theory

Giraitis et al. (2014) introduced a non-parametric time-varying OLS estimation method that

is based on a kernel generalisation of a rolling window. (GKM) expanded the results in the IV

context with either deterministic or random coefficients, and derived a time-varying version

of the Hausman exogeneity test comparing the time-varying OLS and IV estimators, allowing

for a shift in endogeneity status over time.

To fix ideas, I consider the following regression model for a univariate series, yt:

yt = x
′
tβt + ut (1)

xt = Ψ
′
tzt + vt (2)

where xt = (x1,t, ...., xp,t)
′

is a p× 1 vector of random variables, βt = (β1,t, ..., βp,t)
′

is a p× 1

parameter vector and ut is random noise. In (2) , zt = (z1,t, ..., zn,t)
′

is a n × 1 vector of

random variables, Ψ
′
t = (ψlk,t) is a p× n parameter matrix and vt = (v1,t, ...., vp,t)

′
is a p× 1

noise vector.

Assume that endogenous variables xt are correlated with ut but there exist some exogenous

instruments zt such that:

E[ztut] = 0, E[ztv
′
t] = 0, t ≥ 1 (3)

GKM introduced a kernel type estimator for βt

β̃1,t = (

T∑
j=1

bH,|j−t|Ψ̂
′
jzjx

′
j)
−1(

T∑
j=1

bH,|j−t|Ψ̂
′
jzjyj) (4)

where bH,|j−t| = K( |j−t|H ) are the kernel weights with bandwidth parameter H and Ψ̂j is the

kernel OLS estimator

Ψ̂t = (

T∑
j=1

bL,|j−t|zjz
′
j)
−1(

T∑
j=1

bL,|j−t|zjx
′
j) (5)
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which is a consistent estimate of Ψj .

Note the different bandwidth parameters L and H used in (5) and (4) respectively. The

kernel weights are of the form:

bH,|j−t| = K(
|j − t|
H

) (6)

where H →∞, H = o(T ) is the bandwidth parameter and K(x), x ∈ (0, α) is a non-negative

continuous function with a finite or infinite support such that for some C > 0 and ν > 3,

K(x) ≤ C(1 + xν)−1, |(d/dx)K(x)| ≤ C(1 + xν)−1, x ∈ (0, α) (7)

I also consider the OLS estimator

β̂t = (

T∑
j=1

bH,|j−t|xjx
′
j)
−1(

T∑
j=1

bH,|j−t|xjyj) (8)

under the assumption of exogenous regressors.

Under assumptions (1)-(5) in Giraitis et al. (2020), GKM proposed a time-varying version

of the Hausman exogeneity test, which compares the time-varying IV and OLS estimators

defined above, allowing for changes in the endogeneity status over time. The test statistic

takes the form of
K2
t

K2,t
V

′
T,tΣ̂

−1
v̂v̂,tVT,tσ̂

−2
û,t (9)

where Σ̂v̂v̂,t := K−1t
∑T

j=1 bH,|j−t|v̂j v̂
′
j , σ̂

2
û,t := K−1t

∑T
j=1 bH,|j−t|û

2
j based on residuals ûj =

yj − x
′
j β̃1,j and v̂j = xj − Ψ̂

′
jzj which can be used to test the null hypothesis H0 : E[vtut] = 0

that xj is exogenous at time t. Under the null, the statistic is asymptotically distributed as

χ2
p.

As shown in GKM, size distortions of the test statistic in (9) can be substantial even

for large sample sizes. These size distortions seem to be quite sensitive to the choice of the

bandwidth parameters h1 and h2 and also on the number of instruments. In the next section, I

present an overview of the bootstrap approaches used and discuss a number of issues regarding

their implementation.

3. The Bootstrap

Originally proposed by Efron (1979), bootstrap constitutes a major tool in the hands of

statisticians for approximating the sampling distribution and variance of complicated statis-
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tics. Also, as pointed out by Politis (2003), Beran and Ducharme (1991) among many, boot-

strap tests can often provide significant refinements to asymptotic tests. However, bootstrap

involves a number of choices to be made ex ante by the researcher.

The first issue that needs to be addressed is the resampling of x and z. Here, I do not make

any assumption regarding the parametric model for x and z and hence I use nonparametric

bootstrap. Depending on the presence of dependence between these variables one might

want to resample blocks of rows of data from (xt, zt) using block bootstrap1 as proposed by

Kunsch (1989). Resampling blocks of rows instead of resampling each variable independently

is performed so as to retain the dependency between these variables. A well known difficulty

of the block bootstrap is that the block size b needs to be determined in advance by the

practitioner.

The choice of the block size is critical for the performance of the bootstrap. If the block

size chosen is too small then the dependency among the blocks is broken and hence it cannot

be expected that the bootstrap samples will mimic closely the original data. If, on the other

hand, the block size is chosen to be too large, the bootstrap samples are no longer random

enough. However, only in few cases literature provides guidance regarding the selection of

the block size (c.f Bühlmann and Künsch (1999), Lahiri (1999) and Hall et al. (1995) just to

name a few). In most of the cases, simple rules specifying the rate at which b should increase

with sample size are provided for specific applications. Usually those include b = O(T 1/3) or

b = O(T 1/2). In my case, there is no simple rule guiding my choice of the block size and so

different values for b are examined.

Another important issue, in testing for exogeneity, is the mode of resampling so that the

null distribution is imposed, as discussed in Kapetanios (2010). This is especially important

if, for example, the whole distribution is bootstrapped and used instead of the asymptotic χ2

approximation. In particular, not imposing the null can lead to an inconsistent test since, in

the case of the Hausman test, endogeneity prevails in the bootstrapped samples and hence

the bootstrap test statistics will be unbounded asymptotically.

Then, the practitioner needs to resample yt using parametric bootstrap. This, of course

requires to choose whether to use OLS estimates or 2SLS estimates. In my paper, I use2

OLS estimates as suggested by Kapetanios (2010) and resample the OLS residuals ût. For

each bootstrap sample I must impose the null E?(x?tu
?
t ) = 0 where E? is conditional on

1Alternatively, one could use variants of the MBB as in Politis and Romano, 1991 who propose the Circular
Bootstrap to deal with the end effects. This path was also explored. See the robustness analysis in Appendix A.

2A preliminary analysis suggested that similar results are obtained using either OLS or IV estimator. Results
are available upon request from the author.
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the realized sample. I suggest two alternatives for that. The first alternative is the wild

bootstrap as proposed by Wu (1986)(see also Goncalves and Kilian (2004) for an application

in time series). The wild bootstrap uses a transformation of the residuals to construct the

bootstrap error term u?t = ηtût where ηt is a random variable with mean 0 and variance 1.

Different distributions have been proposed for ηt including those of Rademacher as suggested

by Davidson and Flachaire (2008) and Mammen as proposed by Mammen (1993). Using wild

bootstrap guarantees that the null is imposed as I now have E?(x?tu
?
t ) = E?(x?t ûtηt) = 0.

The Wild bootstrap algorithm used, stems from Kapetanios (2010) and the algorithm is the

following:

Step 1. Estimate (1) by OLS and obtain the residuals and the estimates of û and β̂t respec-

tively.

Step 2. Resample blocks of rows of (zt, xt) using a block bootstrap approach to produce

bootstrap samples of size T, for the regressors, as suggested by Kunsch (1989).

Step 3. The wild bootstrap is applied to OLS residuals ût by premultiplying them with ηt

so that I have u? = ηtût,where {η}Tt=1 is an i.i.d standard normal distribution, inde-

pendent of all other random processes. A bootstrap sample of {u?}Tt=1 is obtained.

Step 4. Use β̂,(z?t , x
?
t ) and {u?}Tt=1 in (1) to obtain bootstrap samples of size T for yt and

denote them y?t .

Step 5. Use (z?t , x
?
t , y

?
t ) to obtain OLS and IV estimates given by (8) and (4) respectively,

and calculate the Hausman test for the bootstrap sample.

Step 6. Repeat 2-5 B times to obtain B bootstrap tests.

The second alternative is to resample OLS residual itself. By virtue of OLS, the residuals

are guaranteed to be orthogonal to the covariates even in case of endogeneity. Once the

bootstrap error term has been generated, (1) can be used to construct y?t . The Residual

Bootstrap3 is similar to that of fu Wong (1996) and the algorithm employed is the following:

Step 1. Estimate (1) using OLS. Coefficients β̂t and residuals ût = yt − β̂txt are obtained.

Step 2. Recenter the residuals by ûnew = ût − ¯̂u where ¯̂u = 1
T

∑T
t=1 ût and obtain

y?t = β̂txt + û?new

3Henceforth, RB.
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by resampling with replacement from ûnew to produce a bootstrap sample of size T,

for the dependent variable y?t . By resampling in this way, any links between ut and

(zt, xt) are broken while the relationship between zt and xt is maintained. Note that

the mean adjustment is necessary, since there is no guarantee that the mean of the

bootstrap samples is zero.

Step 3. The bootstrap sample is then used to estimate the model by OLS and 2SLS and

produce a bootstrap test statistic for the exogeneity test.

Step 4. Repeat steps 2-3 B times to produce B bootstrap test statistics.

Finally, an issue that needs to be addressed, is the number of bootstrap replications. Hall

(1992) proposed to choose B, the number of bootstrap repetitions such that ν/(B+1) = 1−α

for a positive integer ν. This implies in turn that α is a rational such that α = α1/α2

for positive integers α1 and α2 with no common integer divisors. Then B = α2h − 1 and

ν = (α2 − α1)/h for positive integer h4. As Davidson and MacKinnon (2000) showed, using

B = 399 is about the minimum for a test that guarantees a loss of power less than 1% at 0.05

level.

4. Simulation Results

In this Section, Monte Carlo experiments are carried out to investigate the finite-sample

performance of the time-varying local Hausman test proposed by GKM and the bootstrap

version of it. In all simulations5, in this section, I use 5000 Monte Carlo replications and 999

bootstrap replications. The experiments found in this section are the same as those employed

in GKM.

As data generating process (DGP) under the exactly identified case, I consider the follow-

ing model:

yt = βtxt + ut (10)

xt = ψtzt + vt (11)

for t = 1, ...., T . Following GKM, correlation between ut and vt is introduced by specifying

4For instance, for α = 0.05 I have α1 = 1, α2 = 20,B = 20h − 1 and ν = 19h for a positive integer h. So
B = 19, 39, 59, .... etc.

5All simulations were performed using an Apple M1 with a 8 GB unified memory. The code was written
and executed in JuliaPro-1.5.3
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them as

ut = se1,t + (1− s)e2,t vt = se1,t + (1− s)e3,t (12)

where s = 0, 0.2, 0.5, 0.8, 0.9 and {e1,t} ,{e2,t} and {e3,t} are mutually independent NIID(0, 1)

sequences.

The parameters βt = T−1/2ξ1,t, ψt = T−1/2ξ2,t ,t = 1, ...., T are generated as two inde-

pendent rescaled random walks, such that ξl,t − ξl,t−1 ∼ N(0, 1) for l = 1, 2 that are also

independent of {ψt},{ut} and {vt}. This implies that both the structural and the reduced

form regressions have time-varying coefficients. Exogeneity of xt is implied by s = 0, while

for s = 0.2, 0.5, 0.8, 0.9, xt is endogenous. The magnitude of s hence, provides a means for

controlling the extent of endogeneity.

I cxamine two estimators of βt using the notation of GKM: the time-varying β̂t(OLS) and

the time-varying β̂1,t(IV). These are computed using the Gaussian kernel6 K(x) = exp(−x2/2)

with a variety of bandwidth values H for estimation of βt and L for ψt. Specifically, I set

H = T h1 and L = T h2 with h1, h2 = 0.4 and 0.5 as in GKM7. Results for values of 0.7 are also

reported in the Appendix A. Lower values for the bandwidth increase robustness of estimates

to parameter changes but decrease efficiency. Further, I consider three sample sizes of length

100 + T with T ∈ {100, 200, 400}. The first 100 observations are then discarded in order to

eliminate initial value effects and only the remaining T observations are used. I now discuss

the bootstrap implementation that is employed in the rest of the section.

I consider two different bootstrap procedures. In the first one, which I call RB as an

abbreviation for bootstrap based on residuals, I use a standard model bootstrap together with

the OLS estimates where residuals are resampled with replacement in a similar manner as in

fu Wong (1996) to obtain y?t . No resampling of (xt, zt) is taking place in this procedure. The

second bootstrap method uses block resampling of rows of (xt, zt) where I examine multiple

values for the block size b, that are proportional or multiples to the sample size T. This

method is combined with wild bootstrap to obtain bootstrap replications of y?t under the null.

In this case, I construct bootstrap error term u?t = ηtût where ηt is an i.i.d standard Normal8

distributed sequence as suggested in Kapetanios (2010).

6Similar results were obtained using both the Epanechnikov kernel K(x) = 0.75(1 − x2) for |x| < 1 and
the exponential kernel K(x) = exp(−cxα) where c > 0 and α > 0.

7Other combinations of values for the bandwidth parameters produced similar evidence and are available
upon request from the author.

8The Rademacher latice distribution was also used as an alternative to the standard Normal but provided
similar results.
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To evaluate the performance of the test statistic, I examine the rejection frequencies of the

local time varying Hausman test at 5% significance level and for t = T/2 . These frequencies

are reported in Table 1-Table 3.

Table 1 shows the rejection frequencies for the local Hausman test for T = 100. The

asymptotic test appears to exhibit considerable size distortions for all bandwidth parameters

and also low power. On the other hand, bootstrap procedures seem to outperform the asymp-

totic test both in terms of size and power irrespectively of the bandwidth parameter chosen.

The size is close to the nominal 5% while the power is at least 38.5% larger than the power

of the asymptotic test statistic.
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Table 1: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model
(10)-(12).

T=100

s h1 h2 Asymptotic RB b = 2 b = 4 b = 6 b = 8

0 0.4 0.4 0.024 0.047 0.060 0.057 0.054 0.054

0.4 0.5 0.029 0.047 0.052 0.052 0.050 0.049

0.5 0.4 0.034 0.048 0.056 0.057 0.055 0.053

0.5 0.5 0.033 0.047 0.056 0.056 0.053 0.055

0.2 0.4 0.4 0.032 0.049 0.060 0.058 0.058 0.059

0.4 0.5 0.039 0.048 0.056 0.054 0.053 0.053

0.5 0.4 0.040 0.054 0.064 0.064 0.064 0.063

0.5 0.5 0.042 0.055 0.060 0.059 0.058 0.059

0.5 0.4 0.4 0.305 0.362 0.376 0.373 0.368 0.369

0.4 0.5 0.306 0.358 0.353 0.347 0.344 0.338

0.5 0.4 0.452 0.506 0.528 0.527 0.526 0.524

0.5 0.5 0.452 0.509 0.524 0.518 0.513 0.516

0.8 0.4 0.4 0.705 0.846 0.805 0.801 0.798 0.797

0.4 0.5 0.687 0.814 0.771 0.764 0.763 0.761

0.5 0.4 0.804 0.909 0.881 0.877 0.876 0.875

0.5 0.5 0.785 0.899 0.875 0.873 0.870 0.870

0.9 0.4 0.4 0.705 0.867 0.810 0.805 0.803 0.803

0.4 0.5 0.684 0.821 0.772 0.766 0.764 0.763

0.5 0.4 0.807 0.919 0.883 0.880 0.879 0.877

0.5 0.5 0.786 0.907 0.877 0.875 0.870 0.869

Table 2 presents the rejection frequencies for the local Hausman test for T = 200. The size

of the bootstrap test is close to the nominal level irrespective of the bandwidth parameters.

In terms of power, there is at least a 10.5% increase through the use of bootstrap. This

is especially the case for small values of s where the power refinements through the use of

10



bootstrap account for at least a 41% gain.

Table 2: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model
(10)-(12).

T=200

s h1 h2 Asymptotic RB b = 4 b = 6 b = 8 b = 16

0 0.4 0.4 0.025 0.054 0.062 0.061 0.061 0.057

0.4 0.5 0.029 0.050 0.053 0.050 0.051 0.048

0.5 0.4 0.033 0.054 0.066 0.064 0.065 0.061

0.5 0.5 0.031 0.053 0.062 0.063 0.063 0.060

0.2 0.4 0.4 0.032 0.053 0.069 0.066 0.066 0.063

0.4 0.5 0.037 0.056 0.059 0.058 0.055 0.052

0.5 0.4 0.043 0.062 0.072 0.070 0.068 0.064

0.5 0.5 0.042 0.059 0.070 0.066 0.068 0.063

0.5 0.4 0.4 0.369 0.443 0.460 0.457 0.455 0.449

0.4 0.5 0.368 0.435 0.424 0.419 0.415 0.410

0.5 0.4 0.551 0.609 0.626 0.625 0.626 0.617

0.5 0.5 0.542 0.607 0.621 0.619 0.619 0.613

0.8 0.4 0.4 0.721 0.850 0.805 0.804 0.803 0.801

0.4 0.5 0.701 0.811 0.770 0.765 0.764 0.758

0.5 0.4 0.823 0.921 0.887 0.883 0.883 0.880

0.5 0.5 0.804 0.911 0.876 0.873 0.873 0.868

0.9 0.4 0.4 0.713 0.869 0.810 0.808 0.805 0.801

0.4 0.5 0.683 0.810 0.769 0.763 0.760 0.758

0.5 0.4 0.822 0.930 0.890 0.887 0.885 0.882

0.5 0.5 0.792 0.912 0.875 0.872 0.869 0.867

Similar results are obtained from Table 3 for T = 400. The power is at least 9.8% larger

than the power of the asymptotic test. Overall, residual bootstrap seems to outperform the

asymptotic test statistic in terms of power while retaining size close to nominal.
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The Block bootstrap underperforms both the Asymptotic and the RB test for all sample

sizes and all bandwidth parameters independently of the block size chosen. Its size varies

substantially from 0.048 to 0.066 along different values of block size. Likewise, its power

ranges from 0.051 to 0.078 and 0.338 to 0.693 for s = 0.2 and s = 0.5 respectively.

Table 3: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model
(10)-(12).

T=400

s h1 h2 Asymptotic RB b = 6 b = 8 b = 16 b = 32

0 0.4 0.4 0.023 0.046 0.058 0.059 0.054 0.052

0.4 0.5 0.028 0.047 0.053 0.052 0.048 0.050

0.5 0.4 0.028 0.050 0.062 0.064 0.060 0.055

0.5 0.5 0.028 0.051 0.063 0.063 0.059 0.056

0.2 0.4 0.4 0.029 0.055 0.071 0.071 0.063 0.061

0.4 0.5 0.035 0.056 0.062 0.060 0.051 0.053

0.5 0.4 0.041 0.060 0.078 0.076 0.075 0.067

0.5 0.5 0.041 0.062 0.078 0.078 0.073 0.069

0.5 0.4 0.4 0.433 0.500 0.522 0.521 0.515 0.509

0.4 0.5 0.425 0.494 0.478 0.476 0.460 0.465

0.5 0.4 0.622 0.678 0.693 0.689 0.687 0.676

0.5 0.5 0.615 0.672 0.688 0.684 0.681 0.679

0.8 0.4 0.4 0.729 0.857 0.812 0.808 0.804 0.796

0.4 0.5 0.701 0.815 0.771 0.766 0.762 0.760

0.5 0.4 0.832 0.929 0.893 0.891 0.885 0.876

0.5 0.5 0.810 0.918 0.876 0.877 0.870 0.867

0.9 0.4 0.4 0.725 0.879 0.818 0.814 0.807 0.800

0.4 0.5 0.694 0.814 0.769 0.766 0.757 0.758

0.5 0.4 0.835 0.941 0.896 0.896 0.885 0.878

0.5 0.5 0.809 0.929 0.878 0.877 0.871 0.864
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I also examine the overidentified case as in GKM, where I have

yt = βtxt + ut (13)

xt = ψ1,tz1,t + ψ2,tz2,t + vt (14)

for t = 1, ..., T where (ψ1,t) and (z1,t) have the same specification as (ψt) and (zt) from above,

(ψ2,t) = T−1/2ξ3,t for t = 1, ..., T is generated again as an independent random walk such that

ξ3,t − ξ3,t−1 ∼ NIID(0, 1) and (z2,t) is a sequence of standard normal i.i.d random variables.

Using (13)-(14) I now report the rejection frequencies in Table 4-Table 6. Table 4 reports

the rejection frequencies for the local Hausman test for T = 100. The size of the asymptotic

test is close to the nominal value alghough it varies more than the RB. Note for h1 = 0.5 and

h2 = 0.4 the size of the asymptotic test is 0.069 while for the RB it is close to nominal. In

terms of power, the asymptotic test and RB are quite close in the case of weak endogeneity

while for strong endogeneity, RB has higher power.
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Table 4: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model
(13)-(14).

T=100

s h1 h2 Asymptotic RB b = 2 b = 4 b = 6 b = 8

0 0.4 0.4 0.055 0.052 0.073 0.074 0.076 0.073

0.4 0.5 0.051 0.052 0.071 0.070 0.067 0.067

0.5 0.4 0.069 0.056 0.085 0.085 0.084 0.084

0.5 0.5 0.056 0.047 0.069 0.069 0.071 0.069

0.2 0.4 0.4 0.065 0.058 0.079 0.081 0.080 0.079

0.4 0.5 0.061 0.058 0.074 0.072 0.072 0.070

0.5 0.4 0.084 0.062 0.095 0.094 0.094 0.094

0.5 0.5 0.069 0.059 0.075 0.077 0.077 0.076

0.5 0.4 0.4 0.379 0.391 0.410 0.410 0.408 0.410

0.4 0.5 0.386 0.414 0.399 0.398 0.395 0.395

0.5 0.4 0.535 0.525 0.555 0.555 0.557 0.555

0.5 0.5 0.542 0.556 0.562 0.559 0.560 0.563

0.8 0.4 0.4 0.889 0.929 0.914 0.914 0.912 0.912

0.4 0.5 0.896 0.944 0.923 0.920 0.919 0.918

0.5 0.4 0.944 0.953 0.957 0.957 0.956 0.957

0.5 0.5 0.950 0.968 0.965 0.964 0.964 0.963

0.9 0.4 0.4 0.907 0.951 0.935 0.934 0.932 0.934

0.4 0.5 0.906 0.958 0.936 0.935 0.933 0.933

0.5 0.4 0.956 0.968 0.968 0.968 0.967 0.968

0.5 0.5 0.958 0.976 0.972 0.972 0.971 0.972

Table 5 shows the rejection frequencies for T = 200. Again similar results to T = 100

are obtained. The asymptotic test varies substantially in terms of size ranging from 0.047 to

0.067 for different values of the bandwidth parameter while the size of the RB has smaller

variation ranging from 0.053 to 0.060. The power of the asymptotic test is close to the power
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of the RB with RB having larger power than asymptotic as s increases.

Table 5: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model
(13)-(14).

T=200

s h1 h2 Asymptotic RB b = 2 b = 4 b = 6 b = 8

0 0.4 0.4 0.049 0.055 0.075 0.075 0.074 0.075

0.4 0.5 0.047 0.053 0.064 0.064 0.064 0.063

0.5 0.4 0.067 0.060 0.087 0.088 0.089 0.088

0.5 0.5 0.054 0.057 0.074 0.074 0.074 0.071

0.2 0.4 0.4 0.053 0.055 0.078 0.077 0.075 0.074

0.4 0.5 0.052 0.056 0.064 0.061 0.062 0.061

0.5 0.4 0.078 0.065 0.095 0.095 0.096 0.094

0.5 0.5 0.064 0.063 0.079 0.079 0.079 0.078

0.5 0.4 0.4 0.474 0.500 0.522 0.521 0.518 0.517

0.4 0.5 0.476 0.517 0.503 0.499 0.498 0.493

0.5 0.4 0.666 0.672 0.696 0.694 0.698 0.693

0.5 0.5 0.675 0.700 0.704 0.700 0.700 0.699

0.8 0.4 0.4 0.927 0.963 0.952 0.951 0.950 0.949

0.4 0.5 0.920 0.960 0.943 0.942 0.940 0.938

0.5 0.4 0.970 0.986 0.982 0.982 0.981 0.980

0.5 0.5 0.967 0.988 0.982 0.981 0.981 0.981

0.9 0.4 0.4 0.930 0.975 0.958 0.959 0.956 0.955

0.4 0.5 0.920 0.966 0.947 0.946 0.944 0.944

0.5 0.4 0.975 0.992 0.985 0.984 0.984 0.982

0.5 0.5 0.970 0.990 0.984 0.983 0.982 0.981

Finally, in Table 6 I present the results for T = 400. The asymptotic test has small size

distortions while the size of the RB is close to the nominal value. On the other hand, the

block bootstrap’s size depends somewhat on what block size is. In terms of power, asymptotic
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bootstrap and residual bootstrap’s performance is quite close for low values of s while the

difference increases for larger values of s in favour of the RB. As expected, the size distortions

of the asymptotic test decrease with sample size. Overall, RB retains the proper size across all

sample sizes, bandwidth parameter values and number of instruments whilst also outperforms

the asymptotic test in terms of power.
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Table 6: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model
(13)-(14).

T=400

s h1 h2 Asymptotic RB b = 2 b = 4 b = 6 b = 8

0 0.4 0.4 0.042 0.048 0.066 0.066 0.065 0.060

0.4 0.5 0.045 0.051 0.061 0.061 0.059 0.057

0.5 0.4 0.049 0.052 0.075 0.072 0.073 0.069

0.5 0.5 0.046 0.052 0.061 0.062 0.062 0.064

0.2 0.4 0.4 0.049 0.056 0.077 0.075 0.074 0.071

0.4 0.5 0.053 0.059 0.064 0.064 0.061 0.062

0.5 0.4 0.065 0.059 0.085 0.084 0.084 0.080

0.5 0.5 0.060 0.062 0.073 0.075 0.075 0.075

0.5 0.4 0.4 0.601 0.629 0.661 0.661 0.659 0.649

0.4 0.5 0.607 0.644 0.636 0.633 0.626 0.631

0.5 0.4 0.815 0.825 0.847 0.847 0.843 0.837

0.5 0.5 0.819 0.839 0.848 0.848 0.845 0.843

0.8 0.4 0.4 0.935 0.973 0.957 0.957 0.956 0.954

0.4 0.5 0.925 0.965 0.945 0.944 0.942 0.944

0.5 0.4 0.981 0.993 0.990 0.989 0.988 0.987

0.5 0.5 0.972 0.990 0.982 0.982 0.981 0.980

0.9 0.4 0.4 0.936 0.979 0.960 0.960 0.960 0.957

0.4 0.5 0.920 0.969 0.945 0.944 0.942 0.942

0.5 0.4 0.978 0.992 0.985 0.986 0.984 0.982

0.5 0.5 0.972 0.991 0.982 0.981 0.981 0.979

5. Empirical Application

In this section, I follow GKM and employ the local Hausman exogeneity test in a time varying

version of the traditional Phillips curve. The goal here is to compare the asymptotic test with
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its bootstrap counterpart and see whether different results are obtained.

The original article9 by GKM does not mention the dataset used and hence I consider

data obtained from y. Louis FRED. Inflation πt is computed as 100 times the seasonal log

difference of the CPIAUCSL variable and the variable UNRATE is used for unemployment

ut. The sample period ranges from 1959:1 to 2021:12 to include COVID-19 pandemic. The

model used is

∆πt = ct + γt∆πt−1 + αt∆ut + et (15)

where change in inflation is the dependent variable and change in unemployment together with

one lag of the change in inflation are the independent variables. A Gaussian kernel is employed

with bandwidth parameters H = L = T 0.7 since for these values the asymptotic Hausman

test is shown to suffer the most in terms of size and power compared to its bootstrap version.

It is worth noting that for my sample, there appears to be significant serial correlation and

hence results should be viewed cautious because neither asymptotic test nor the bootstrap

test allow for serial correlation.

Figure 1 shows the time varying OLS and IV coefficient estimates of αt and γt with their

associated 90% confidence intervals, respectively. The time-varying IV estimator is quite

different from the time-varying OLS for the parameter α untill 2000 while for the remaining,

the two overlap. The average values over time of α̂ and α̃ are about −0.157 and −0.649 which

are comparable to the full sample constant parameters OLS and 2SLS values, −0.109 and

0.127 respectively.

The lower panel of Figure 1 graphs γ̂t and γ̃t with the associated 90% confidence intervals.

The two estimators provide similar results and the two lines seem almost indistinguishable.

The average value over time for γ̂t is 0.356 while the full sample constant parameter OLS

value amounts to 0.376.

9Following the suggestion by Lucchetti and Valentini (2021).
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Figure 1: Empirical results for model (15).The two panels graph the OLS and IV coefficient
estimates for αt and γt respectively using H = L = T 0.7.

Figure 2 presents the p-values of the asymptotic time-varying Hausman test and its boot-

strap version. The upper panel shows the empirical p-values of the two tests for H = L = T 0.7.

For most of the sample, the two tests seem to provide the same results while for the period

around 2000 the two tests show conflicting results. Specifically, the bootstrap version of the

Hausman test rejects the null of exogeneity at 10% significance level while the asymptotic

does not reject.

Turning now to the bandwidth parameter values of H = L = T 0.5 the lower panel of

Figure 2 shows the p-values of the asymptotic test and its bootstrap counterpart. Given the

Monte Carlo simulations in Section 4, these values were the values for which the asymptotic

Hausman test experienced the smallest distortions in terms of size and power and hence can

serve as a benchmark to compare the differences found in the two tests.

The two versions of the test in Figure 2 seem to be quite similar for most parts, except for

the period around 2002 to 2006 where the bootstrap version of the test points out to rejecting

the null while the asymptotic test shows exogeneity of the regressor. This finding is consistent
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with the Monte Carlo simulations considered in Section 4, since bootstrap test rejects the null

more often that the asymptotic test.

Figure 2: Empirical results for model (15).The two panels graph the empirical p-values of the
aymptotic and bootstrap Hausman tests using H = L = T 0.7 and H = L = T 0.5 respectively.

Next, a forward looking (New-Keynesian) Phillips curve is also considered, as found in

GKM and along the lines of Gaĺı and Gertler, 1999. The New-Keynesian Phillips curve is

given by:

∆πt = ct + ρt∆π
e
t+1 + γt∆πt−1 + αt∆ut + vt (16)

or written differently

∆πt = ct + ρt∆πt+1 + γt∆πt−1 + αt∆ut + εt (17)

where εt = ρt(∆π
e
t+1 − ∆πt+1) + vt, ∆πet+1 is the optimal one-step ahead forecast of ∆πt+1

made in period t, and vt is an i.i.d error which is uncorrelated with all leads and lags with

the forecast error (∆πet+1−∆πt+1). Obviously ∆πt+1 is correlated with the error term εt and

hence a time-varying IV estimator is employed. I repeat the same experiment as above, using
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four lags of the change in unemployment and inflation as instruments, a Gaussian kernel and

H = L = 0.7.

Figure 3: Empirical results for model (17).The three panels graph the OLS and IV coefficient
estimates for αt, γt and ρt respectively using H = L = T 0.7.

Figure 3 reports the coefficient estimates for this model. The upper panel of Figure 3

shows the coefficient estimates of α̂t and α̃t. The coefficient is close to 0 when estimated by

time-varying OLS and never significant. Similarly, the time-varying IV estimator provides

estimates close to 0 except for a small period around ’60s.

The middle panel of Figure 3 depicts the estimates of γ̂t and γ̃t. They both seem to

perform quite similarly as the two lines seem almost identical. The lower panel graphs the

results for ρ̂t and ρ̃t. The two lines appear to be deviating only for a short period around the

’2000s.

Finally, the upper panel of Figure 4 graphs the p-values of the time-varying Hausman test

and its bootstrap version for H = L = T 0.7. The asymptotic test provides lower p-values for

the first half of the sample than the bootstrap test. Interestingly, the bootstrap test rejects

the null of exogeneity around the ’2000s while the asymptotic does not.
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The lower panel of Figure 4 now depicts the p-values for the two tests for H = L = T 0.5.

The two lines seem almost exact for most of the period except for ’2000s where again the

bootstrap rejects the exogeneity for a small period while the asymptotic does not.

Figure 4: Empirical p-values of the time-varying Hausman test for model (17) and its boot-
strap version for H = L = T 0.7 and H = L = T 0.5 respectively.

In summary, both the asymptotic and the time-varying boostrap version of the Hausman

exogeneity test appear to perform quite similarly for most parts of the sample. However, con-

trary to the asymptotic test, its bootstrap version points out to endogeneity of unemployment

for a short period around ’2000s. In light of the results obtained in Section 4, this is consistent

with my findings that the bootstrap test rejects the null more often than the asymptotic.

6. Conclusion

A usual assumption made when carrying out IV estimation is that the model, and hence

the parameter vector, does not change through time. This in turn, also implies that the

endogeneity status of the variable remains constant through time. This assumption, although
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crucial is often highly susceptible. A new strand of literature lead primarily by Giraitis et al.

(2020) has proposed a non-parametric IV estimation based on kernels, and allowing for both

deterministic or random coefficients. Consequently, a time-varying Hausman exogeneity test

has been developed to test for a possible switching endogeneity status at a specific point.

However, this test appears to experience size distortions and have low power.

In this paper, I propose to bootstrap this test. The performance of the bootstrapped test

is evaluated through Monte Carlo simulations. As it is shown, bootstrap provides considerable

refinements over the asymptotic test statistic with higher power, and size close to nominal.

More importantly, the size and power of the bootstraped test are invariant to the choice of

the bandwidth parameters and the number of instruments.

Revisiting the empirical application by GKM, I estimate a Phillips curve for the USA,

using unemployment as the forcing variable for inflation, and examine whether similar results

are obtained using the asymptotic test and its bootstrap counterpart. The two tests seem to

perform quite similarly for most parts except for a period around 2000 where the bootstrap

test points out to endogeneity of unemployment. These results seem consistent with the Monte

Carlo simulations, since the bootstrap test rejects the null more often that the asymptotic.

I finish with some open questions for further research. First, this article has focused only

on the case of the local Hausman exogeneity test, but the seminal paper by Giraitis et al.

(2020) also proposes a Global Hausman test for testing for possible endogeneity in a specified

interval. Preliminary analysis suggests that bootstrap refinements could be obtained also in

the case of the Global Hausman test. Second, in this article I have addressed the issue of

bootstrapping the local Hausman test so that its size and power does not depend on the

bandwidth parameter and the number of instruments used. However, one could also select

the bandwidth parameter using some form of calibration as in Shao and Politis (2012) and

examine whether similar results are obtained.

Appendices

A. Appendix

In Appendix A, I assess the robustness of the results with respect to a number of different

attributes of the experiments employed in the paper.
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A.1 Robustness Analysis

i) Number of Monte Carlo Simulations

Figure 5 shows the results for the size of the asymptotic and bootstrap versions of the

test for (10)-(12), T = 100 and h1 = h2 = 0.4 across different number of Monte Carlo

simulations. Convergence is attained at 5000 simulations.

Figure 5: Coverage-size convergence for bootstrap and asymptotic versions of the Hausman
test for model (10)-(12), T = 100 and h1 = h2 = 0.4.
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ii) Bootstrap Alternatives

Although in this article I employ the MBB and the RB, I also consider aanother alter-

native. To begin, by employing the MBB I implicitly assume that the size of each block

is equal and fixed to b and that the sample size of each replication is equal to T which

requires some sort of trimming in case T/b is not an integer and hence I have ignored

any end effects. For example, because there is no data after {yT , xT } the moving blocks

method does not define a block of length b beginning at the end points. Politis and

Romano (1991) proposed the Circular Bootstrap to ”wrap” the data around in a circle

so that {y1, x1} follows directly after {yT , xT }. This path has also been explored in a

preliminary analysis but provided similar results to MBB.

iii) Further Monte Carlo results for higher values of the bandwidth parameters H and L are

provided here.
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Table 7: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model
(10)-(12).

T=100

s h1 h2 Asymptotic Residual b=2 b=4 b=6 b=8

0 0.4 0.7 0.043 0.045 0.050 0.048 0.048 0.046

0.5 0.7 0.041 0.048 0.051 0.048 0.048 0.046

0.7 0.4 0.074 0.067 0.101 0.098 0.099 0.097

0.7 0.5 0.070 0.065 0.094 0.093 0.092 0.094

0.7 0.7 0.052 0.057 0.061 0.063 0.062 0.061

0.2 0.4 0.7 0.048 0.051 0.051 0.049 0.047 0.047

0.5 0.7 0.053 0.056 0.055 0.054 0.055 0.052

0.7 0.4 0.094 0.080 0.118 0.118 0.117 0.115

0.7 0.5 0.087 0.076 0.108 0.109 0.105 0.106

0.7 0.7 0.068 0.069 0.078 0.076 0.077 0.076

0.5 0.4 0.7 0.281 0.348 0.277 0.273 0.268 0.265

0.5 0.7 0.408 0.481 0.415 0.406 0.401 0.400

0.7 0.4 0.704 0.739 0.758 0.754 0.755 0.755

0.7 0.5 0.692 0.734 0.749 0.747 0.749 0.747

0.7 0.7 0.639 0.708 0.691 0.688 0.687 0.683

0.8 0.4 0.7 0.642 0.768 0.666 0.659 0.653 0.647

0.5 0.7 0.720 0.832 0.761 0.754 0.748 0.745

0.7 0.4 0.942 0.969 0.969 0.969 0.968 0.967

0.7 0.5 0.928 0.967 0.965 0.964 0.963 0.962

0.7 0.7 0.868 0.951 0.933 0.932 0.932 0.929

0.9 0.4 0.7 0.642 0.769 0.675 0.666 0.661 0.656

0.5 0.7 0.720 0.834 0.767 0.762 0.755 0.754

0.7 0.4 0.946 0.975 0.972 0.972 0.971 0.971

0.7 0.5 0.931 0.972 0.966 0.966 0.965 0.965

0.7 0.7 0.869 0.958 0.934 0.933 0.933 0.930
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Table 8: Rejection frequencies for the local Hausman test at t = T/2 and for α = 0.05. Model
(10)-(12).

T=200

s h1 h2 Asymptotic Residual b=4 b=6 b=8 b=16

0 0.4 0.7 0.042 0.048 0.050 0.046 0.044 0.043

0.5 0.7 0.043 0.050 0.051 0.048 0.049 0.044

0.7 0.4 0.100 0.080 0.124 0.123 0.122 0.114

0.7 0.5 0.098 0.081 0.120 0.118 0.118 0.114

0.7 0.7 0.072 0.074 0.088 0.085 0.084 0.082

0.2 0.4 0.7 0.050 0.054 0.051 0.050 0.049 0.045

0.5 0.7 0.054 0.057 0.058 0.054 0.053 0.050

0.7 0.4 0.135 0.105 0.154 0.152 0.151 0.144

0.7 0.5 0.131 0.105 0.150 0.147 0.147 0.139

0.7 0.7 0.100 0.093 0.110 0.108 0.105 0.102

0.5 0.4 0.7 0.325 0.427 0.326 0.315 0.313 0.299

0.5 0.7 0.493 0.581 0.503 0.497 0.489 0.469

0.7 0.4 0.815 0.835 0.853 0.852 0.851 0.846

0.7 0.5 0.806 0.836 0.851 0.849 0.848 0.843

0.7 0.7 0.748 0.806 0.800 0.799 0.794 0.789

0.8 0.4 0.7 0.651 0.776 0.692 0.684 0.679 0.669

0.5 0.7 0.734 0.844 0.787 0.783 0.778 0.767

0.7 0.4 0.975 0.985 0.988 0.988 0.987 0.987

0.7 0.5 0.967 0.984 0.985 0.985 0.985 0.983

0.7 0.7 0.913 0.965 0.957 0.955 0.953 0.949

0.9 0.4 0.7 0.639 0.768 0.685 0.678 0.673 0.659

0.5 0.7 0.725 0.843 0.785 0.778 0.778 0.767

0.7 0.4 0.979 0.987 0.990 0.989 0.988 0.987

0.7 0.5 0.968 0.985 0.984 0.984 0.983 0.982

0.7 0.7 0.911 0.967 0.955 0.953 0.953 0.949
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