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1 Introduction

Tail risks refer to the probability of extreme negative losses and play an important role

in the financial stability and resilience of the financial system (Adrian et al. (2019)).

There has been a growing interest in the study of tail risks as policymakers highlighted

how changes in financial conditions could shift the distribution of future GDP (Duprey

and Ueberfeldt (2020), Aikman et al. (2018), IMF (2017)), resulting in larger effects

for downside risk. Recent studies have highlighted that tail risks in the economy will

significantly impact the growth of real economic activity (Loria et al. (2019)) and can

endogenously generate persistent changes in beliefs and economic activity (Kozlowski

et al. (2019)). In this paper, we build on the vast literature studying Bayesian learning

in macroeconomics (Baley and Veldkamp (2021)) and study how Bayesian learning with

tail risks could impact the formation of macroeconomic expectations.

The expectations of individuals play a central role in the study of macroeconomics.

In particular, studies have shown that individuals systematically respond to information

given (Coibion and Gorodnichenko (2015)) and that there exists overreaction in macroe-

conomic expectations (Bordalo et al. (2020), Angeletos et al. (2020), Afrouzi et al. (2020)).

By incorporating tail risks in a Bayesian learning framework and studying how expecta-

tions of economic agents change in response to first and second moment shocks in our

model, we take a complementary approach to the existing work. In our model, we re-

tain “rational news” through Bayesian learning and abstract from any behavioral biases.

Relative to a model without tail risks, we find that individuals overreact under tail risk

and that uncertainty shocks lead to increased pessimism. Much work has been done

in examining the psychology of tail events (Barberis (2013)). Earlier studies have also

shown that overreaction in expectations and increased pessimism, due to first and second

moment shocks, can occur under additional behavioral assumption, such as diagnostic

expectations (Bordalo et al. (2020)) and loss aversion (Chatterjee and Milani (2020)).

The key contribution of this paper is to provide theoretical and empirical results that

highlight the relationship between tail risk and expectations of individuals without im-

posing additional restrictions. We rely primarily on imperfect information in the form

of a signal extraction problem in a Bayesian learning environment. Consequently, they

are portable and can be applied in other settings, such as the stock markets and credit

markets.

To study tail risk and expectations, we rely on noisy information models (Mackowiak

and Wiederholt (2009), Sims (2003)) when there is a constraint on information flows.

Just like the real world, economic agents cannot observe a hidden state, such as GDP

growth, perfectly. Instead, they observe an imperfect signal of the hidden state and form

expectations from a known distribution. In our model, we follow Gourio (2012) and use
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disaster risk (with time-varying risk premia) to incorporate tail risk. The presence of

disaster risk implies that the distribution of the hidden state can shift downwards with

some probability p. Disaster risk has been shown to account for puzzles in stock market

prices (Wachter (2013), Gabaix (2012), Barro (2006)), bond prices (Singleton (2021))

and exchange rate dynamics (Gabaix and Farhi (2016)). In estimating the time-varying

disaster probability, Barro and Liao (2021) show that the disaster probability is highly

correlated across different countries and is able to forecast economic growth. Recent

studies have also incorporated information frictions and investors’ learning in disaster

risk models to study asset prices (Ghaderi et al. (2021)). Here, we focus on the direct

interaction of first and second moments shock on expectations when there are information

frictions and disaster risks.

In our model, when forecasters observe a signal from the economy, they cannot tell if

the signal they received is due to variation in the noise of the signal, the actual distribution

itself or disaster risk. Consequently, they behave differently when faced with first and

second moment shocks. We have three main findings.

First, we show in our model that individuals overreact when there is a first mo-

ment shock, that is, individuals are excessively optimistic and pessimistic compared to a

Bayesian learning framework without tail risk. The underlying mechanisms for overreac-

tion with tail risks are as follows: When forecasters receive a bad signal, they cannot tell

if the bad signal is due to the disaster shock. As such, they overweigh the bad signal to

the disaster shock and become overly pessimistic. On the other hand, when forecasters

receive a favorable signal, they are confident of the absence of disaster risk. As such, they

underweigh the disaster shock and become overly optimistic.

Second, a positive shock to uncertainty (defined as the variance of noise in the signal)

leads to a decrease in posterior expectations (defined as expectations of the hidden state

conditional on signals received) in a model with tail risk. This implies more pessimistic

forecasts in an environment with higher uncertainty. When there is an increase in the

variance of noise in the signal, due to downside risk, forecasters perceive an increase in the

probability of a low hidden state, even though they receive a neutral signal. Consequently,

forecasters attribute a higher weight to disaster risk. Hence, this lowers their expectations

of the hidden state. In comparison, in the absence of tail risks, uncertainty shocks do not

influence posterior expectations as there is no disaster risk.

Third, the magnitude of overreaction under tail risk depends on the level of uncertainty

in the economy. Consider a positive shock to the hidden state. With high uncertainty

from the signal, the forecasters will still attribute a higher weight to the disaster risk un-

conditionally and lower their expectations. At the same time, the forecasters understand

that the probability of receiving a good signal, given that the actual hidden state is high,

increases due to higher uncertainty. Hence, forecasters become relatively more optimistic
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in an environment of high uncertainty compared to low uncertainty. As such, this gener-

ates larger optimistic overreaction behavior when uncertainty is high. In contrast, when

there is a negative shock to the hidden state, forecasters understand that the probability

of obtaining a bad signal, given that the actual hidden state is low, will increase. As

such, forecasters attribute an even higher weight to the disaster risk. This suggests that

bad shocks to the hidden state generate larger pessimistic overreaction behavior under a

high uncertainty environment.

We then take our model predictions to the data. We use a combination of data to

test our theoretical predictions. To measure posterior expectations, we use data from the

Federal Reserve Bank of Philadelphia’s Survey of Professional Forecasters (SPF) and the

University of Michigan’s Consumer Sentiment Index. We then use the VIX index traded

in the Chicago Board Options Exchange to measure uncertainty. To measure overreaction

behavior, we use data from the SPF and follow the approach in Bordalo et al. (2020) to

construct time-varying overreaction measures by regressing forecast errors on forecast

revisions across all forecasters at a time period.

In this paper, we identify tail risk episodes by following the approach of Adrian et al.

(2019) in studying the distribution of macroeconomic risk through quantile regressions.

This is done by estimating the distribution of annualized GDP growth and retrieving the

fitted values of quantiles. We then define tail risk as the difference between the median

and the 5th percentile of GDP 4 quarters ahead. Tail risk episodes are subsequently

defined as events when the measure of tail risk is greater than its 75th percentile.1

Our empirical findings are consistent with our theoretical results. Using an event study

approach and the constructed overreaction measures, we first show more overreaction

under tail risk episodes. We then show in a regression that an increase in uncertainty

is associated with a larger decrease in expectations when the economy exhibits tail risk.

Finally, we find that the magnitude of overreaction is higher when the level of uncertainty

in the economy is higher. Moreover, we did a series of robustness tests. For instance,

one might be concerned that our results are driven by recessions and not tail risk events.

To allay these concerns, we only consider tail risk episodes which do not coincide with

recessions and find similar results. We also provided alternative specifications, such as

focusing on OLS regressions (instead of event study) and using alternative definitions of

uncertainty, such as the macroeconomic uncertainty based on Jurado et al. (2015). Our

findings remain unchanged.

Our theoretical and empirical findings show that tail risks could potentially be a key

driver for overreaction behavior. There are several implications. First, we are able to

relate our findings to emerging literature of the drivers and implications of diagnostic

1Our results are robust if we consider other thresholds. This is shown in Section 4.3.
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expectations (Bianchi et al. (2021), Bordalo et al. (2018)). Leveraging on a psycholog-

ically founded non-Bayesian model of belief formation, diagnostic expectations is seen

to provide much tractability in explaining macroeconomic outcomes such as overreaction

in expectations. A back of envelope exercise shows that our tail risk model is able to

explain 14 to 40% of overreaction in the model with diagnostic expectations. In addition,

our results highlight the importance of tail risk in propagating macroeconomic stability.

As highlighted by Simsek (2021), changes in the beliefs of tail risks can explain asset

bubbles. In our model, we find that when there is a decrease in tail risk, uncertainty

shock leads to a smaller fall in expectations and individuals overreact less. This suggests

that macroprudential policies (Galati and Moessner (2013) and Claessens (2015)) that

reduce downside risk can dampen the effect of uncertainty shocks on the economy through

expectations and volatile macroeconomic moments caused by overreaction in individuals.

Related Literature. Our findings combine several strands of innovations in the research

of modern business cycles: tail risk, overreaction, and uncertainty. First, this paper di-

rectly contributes to the literature on tail risk. In asset pricing, tail risk has shown to have

strong predictive power for aggregate market returns (Kelly and Jiang (2014)) and gen-

erate higher aggregate risky premia (Ai and Bhandari (2021)). Several studies have also

embarked on a non-parametric approach to estimate the distribution faced by economic

agents. These studies show that the presence of tail risks generate pessimistic beliefs

which are persistent and stagnant, leading to slow recoveries from recessions (Kozlowski

et al. (2020)), large spikes in uncertainty (Orlik and Veldkamp (2014)), and increased

stock market volatility (Wachter and Zhu (2019)). Our paper contributes to the litera-

ture by showing that this behavior of persistent and stagnant pessimistic beliefs can be

attributed to the interaction between tail risks and uncertainty. In contrast to Orlik and

Veldkamp (2014), which study tail risks as a cause of uncertainty, we highlight the effect

of uncertainty on beliefs and expectations in the environment of tail risk.

Earlier studies have shown that economic policies are able to manage tail risk (Hattori

et al. (2016), Brunnermeier and Sannikov (2014)). In this paper, we seek to highlight the

importance of tail risks and expectations in economic policies. While central banks have

long weighed downside risks in managing the economy (Kilian and Manganelli (2008)),

recent work have underscored the importance of macroprudential policies to ensure sta-

bility in the economy. For instance, Aikman et al. (2019) documented that the negative

impact of the global financial crisis could have been reduced significantly by the use of

macroprudential policies. In addition, Cerutti et al. (2017) used a cross-country sam-

ple to show that macroprudential policies are effective in reducing credit growth, and

Claessens et al. (2013) used data from individual banks to show that macroprudential

policies reduce leverage and asset prices. Our paper adds to the literature by studying

the role of expectations, financial stability, and tail risk.
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Second, we contribute to the literature studying the behavior of overreaction. Among

others, it has been shown that individuals extrapolate their expectations in stock markets

(Greenwood and Shleifer (2014)), bank stocks (Baron and Xiong (2017)), house prices

(Kuchler and Zafar (2019)) and bond yields (Brooks et al. (2018)). To reconcile these

findings, many studies have departed from the assumption of rational expectations and

rationalized the results with different behavioral biases such as diagnostic expectations

(Bordalo et al. (2019)) and natural expectations (Fuster et al. (2010)). This provides a

more realistic account of the business cycle. For instance, diagnostic expectations have

shown to be able to account for credit cycle features, such as counter-cyclical credit

spreads (Bordalo et al. (2018)). Through diagnostic expectations, perceived productivity

distribution shifts to the left (right) when there is a bad (good) news shock, leading

to overreaction in macroeconomic expectations. In contrast, our paper does not rely on

behavioral biases to generate overreaction. Using Bayesian learning, our model shows that

tail risks with information frictions could be a potential cause of overreaction behavior in

individuals. In addition, we show different magnitudes of overreaction over the business

cycle. One possible reason is uncertainty.

Finally, we seek to contribute to the study of uncertainty in the macroeconomy. Since

Bloom (2009)’s seminal work, many studies have documented the importance of uncer-

tainty shocks in influencing business cycles, financial crisis and asset price fluctuations

(Bloom et al. (2018), Ordonez (2013), Pastor and Veronesi (2012)). Much work has also

shown that sentiments, defined as exogenous variation in expectations, have led to changes

in business cycle fluctuations and credit cycles (Angeletos and La’O (2013), Benhabib

et al. (2019), Bordalo et al. (2018)). Chatterjee and Milani (2020) used an asymmetric

loss function to highlight the role of perceived uncertainty shocks in affecting expectations

in business cycles.2 In contrast, we abstract from behavioral biases, such as loss aversion,

and show that actual uncertainty shocks can lead to a decrease in expectations under

tail risk. Also, unlike Bloom (2009), who relied on real frictions in generating effects of

uncertainty on output, we show that expectations can be an additional channel of the

propagation of uncertainty shocks to the economy. In doing so, we hope to shed light on

another dimension in the literature.

The remainder of the paper is organised as follows. Section 2 presents the model.

Section 3 presents the empirical results. Section 4 provides some policy and quantitative

implications, as well as robustness tests for our empirical results. Section 5 concludes.

All proofs are relegated to the online appendix.

2In Chatterjee and Milani (2020), an asymmetric loss function implies that individuals exhibit loss
aversion.
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2 Model

In forming their expectations, economic agents are subject to constraints in information

flows. For instance, in Lucas (1972)’s islands model, agents cannot observe all the prices

in the economy. In Kydland and Prescott (1982)’s business cycle model, agents cannot

distinguish between transitory and permanent productivity shocks. In this paper, we

incorporate tail risks in a Bayesian learning framework with information frictions and

use a signal extraction problem to show that tail risk matters.

We denote our main model as the tail risk model. In comparison, the model without

any tail risk is denoted as the benchmark model. We then incorporate first and second

moment shocks, and compare the dynamics of individual behavior between the tail risk

model and the benchmark model.

2.1 Set-up

Consider N forecasters. Each forecaster forms expectations of a hidden state Zt.
3 The

hidden state can be GDP growth, inflation rate, unemployment rate etc. All forecasters

face an identical process of Zt. Denote zt = logZt. There are two periods in the model.

1. Period 0. Each forecaster starts with a belief about the hidden state Zt. This is

denoted by the prior distribution of Zt: f(zt).

2. Period 1. Each forecaster then observes a signal szi,t. The signal szi,t is given by:

szi,t = zt + ei,t (1)

where ei,t ∼ N(0, σe2t ). The noise ei,t and signal szi,t are heterogeneous across each

forecaster. However, we assume that σet is common across forecasters as each fore-

caster faces the same level of uncertainty. This follows the process:

log σet = vt (2)

where vt ∼ N(0, σ2
v).

Based on their signals received, they update their beliefs about the hidden state Zt.

This is denoted by the posterior distribution of Zt: f(zt|szi,t).

3In standard real business cycle models, Zt refers to the total productivity process.
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We begin with some definitions:

Definition 1. Prior expectations are defined as the unconditional expected value of the

hidden state zt: Ei(zt). Posterior expectations are defined as the expected value of the

hidden state zt, conditional on realized signal szi,t: Ei(zt|szi,t).

Forecasters start with their prior expectations of zt, which is defined to be E(zt).

The prior expectations are derived from each forecaster’s prior beliefs of the distribution

f(zt). After each forecaster observes the signal szi,t, they will form expectations of zt

through Bayesian learning. They update their expectations to Ei(zt|szi,t) after observing

szi,t. This is derived from each forecaster’s posterior beliefs of the distribution f(zt|szi,t). As

signals are heterogeneous across each forecaster, updated expectations differ across each

forecaster. This captures the cross-sectional heterogeneity in forecasts. Prior expectations

do not differ across forecasters and do not depend on the signals received.4 In contrast,

posterior expectations depend on the signals received, and hence, they can differ across

forecasters.

Definition 2. Prior Uncertainty is defined as V ar(ei,t). Posterior Uncertainty is defined

as the variance of zt, conditional on realized signal szi,t: V ari(zt|szi,t).

Definition 2 states that prior uncertainty is defined as the unconditional variance of

the exogenous process of the noise in the signal.5 Posterior uncertainty is defined as the

variance of the productivity process, conditional on receiving the signal. In short, poste-

rior uncertainty captures the beliefs and perception of the hidden state for each forecaster

after receiving the signal. Also, an increase in prior uncertainty in the benchmark and tail

risk models leads to a rise in posterior uncertainty. This shows that the general definition

of uncertainty is consistent across prior and posterior uncertainty.

We now present the benchmark and tail risk model.

A. The Benchmark Model.

In the benchmark model, Zt follows the following process:

logZt = ut (3)

where ut ∼ N(0, σ2
z).

In the presence of information frictions, each forecaster i cannot observe Zt directly.

Instead, they observe an imperfect signal of the hidden state, denoted by szi,t. Hence, szi,t

4This holds in a static model where there is no persistence of the evolution of zt.
5The results of this paper also hold if prior uncertainty is defined as the variance of the actual hidden

state itself, V ar(zt). We assume our current definition of prior uncertainty for analytical tractability and
to keep the economic intuition simple.
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is given by

szi,t = ut + ei,t (4)

Before forecasters observe the signal, they believe that the prior distribution of zt in

the benchmark model is given by:

f(zt) = φ
( zt
σz

)
(5)

After observing the signal szi,t, forecasters generate a posterior distribution of zt, which

is given by:

f(zt|szi,t) ∝ f(szi,t|zt) · f(zt) = φ
(szi,t − zt

σet

)
· φ
( zt
σz

)
(6)

B. The Tail Risk Model.

We now turn to our tail risk model. Here, we follow Gourio (2012) and use disaster

risk to model tail risk. This builds on studies such as Kozlowski et al. (2019) which

associates tail risk with rare disasters. In particular, the hidden state follows the process:

logZt = −Itγ + ut (7)

where It is an indicator that equals 1 if the economy is in a disaster state, and equals 0

if the economy is not in a disaster state. Hence, It follows a Bernoulli distribution with

Pr(It = 1) = p. As such, logZt follows a normal distribution of mean 0 with probability

1− p, and a normal distribution of mean −γ with probability p. Consequently, the prior

distribution of the hidden state zt is given by:

f(zt) = (1− p)φ
( zt
σz

)
+ pφ

(zt + γ

σz

)
(8)

where φ(·) is the probability density function (PDF) of a standard normal distribution.

Unlike the benchmark model, the probability density function of zt is not a normal

distribution. It is now a mixture of normal distributions, in which the mean of one of

the normal distributions is lower than the other corresponding normal distribution by a

fixed amount γ due to the disaster risk.

We provide a concrete example in Figure 1 based on the parameter values used in

the signal extraction problem in Table 1. We want to highlight two parameters in this

example. First, we match the decline of the mean of the disaster state, γ, with the

decline in the mean of the GDP distribution (relative to its standard deviation) during
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a recession in tail risk episodes.6 Second, our choice of the probability of the disaster

state, p, matches the skewness of the GDP distribution in 2008Q4 generated by quantile

regressions.7

Figure 1 plots the corresponding distribution of prior beliefs for all forecasters, given

by the PDF of zt. As depicted in Figure 1, the prior distribution is not symmetric around

the mean and exhibits “tail risk”, where the left tail exhibits more mass than the right

tail. The behavior of tail risk has been emphasized in Kozlowski et al. (2019). This can

be due to the occurrence of extreme events that are rare and unusual. As such, business

cycle dynamics are asymmetric and left-skewed.

Figure 1: Distribution of zt
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Notes: This figure presents the distribution of prior beliefs for all forecasters based on the parameters in
Table 1 for the tail risk model.

Signals observed by each forecaster i at each time period t under the tail risk model

can then be written as follows:

szi,t = −Itγ + ut + ei,t (9)

In the benchmark model, the signal is a sum of normal variables (Equation (4)).

Hence, the posterior beliefs of each forecaster can be written as a normal random variable.

However, in this case, the posterior distribution does not follow a normal distribution and

6The measure of tail risk used in this paper refers to the difference between the 5th percentile and the
median of the GDP distribution estimated by quantile regressions. The quantile regression is specified in
Section 3.1, Equation (28), where we regress average GDP growth four quarters ahead on current GDP
growth. Tail risk episodes are defined as the time period in which the measure of tail risk is greater than
its 75th percentile. This is specified in Section 3.1, Definition 5.

7We choose to match the skewness of the GDP distribution in 2008Q4, which has the largest tail risk
measure across the sample period from 1978 to 2016.
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Table 1: Parameters Used in the Signal Extraction Problem

Mean of Hidden State µz 0
SD of Hidden State σz 0.1
Autocorrelation of Hidden State ρz 0
Mean of Uncertainty Process µσ 0.1
Autocorrelation of Uncertainty Process ρσ 0
Probability of Disaster State p 0.143
Shift of mean in the Disaster State γ 0.335

Notes: This table shows the parameter values used for the cali-
bration of Figure 1.

can be written as:

f(zt|szi,t) ∝ f(szi,t|zt) · f(zt) = φ
(szi,t − zt

σet

)
·
[
(1− p)φ

( zt
σz

)
+ pφ

(zt + γ

σz

)]
(10)

In the next section, we analyze how expectations respond to first and second moment

shocks in the tail risk model compared to the benchmark model. We want to highlight

that we induce first and second moment shocks in our model while conditioning on the

absence of an actual disaster shock. This implies that the actual value of It will always be

equal to 0. However, from the lens of the forecaster, It takes a value of 1 with probability

p as the forecaster does not observe the actual occurance of a disaster shock.

2.2 Theoretical Results

In this section, we state the key propositions and the relevant results. All the proofs are

available in the Online Appendix.

Proposition 1. In the benchmark model, posterior expectations are given by:

E(zt|szi,t) = rtµz + (1− rt)szi,t (11)

In the tail risk model, posterior expectations are given by

E(zt|szi,t) = rtµz + (1− rt)szi,t −B(p, γ, σet , s
z
i,t) (12)

where µz = 0 and,

rt =
σet

2

σet
2 + σ2

z

(13)
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B(p, γ, σet , s
z
i,t) =

rtγpe
A12+A13

peA12+A13 + (1− p)eA22+A23
(14)

such that

A12 = −1

2

(µz − γ)2σe2t + σ2
zs
z2
i,t

σe2t σ
2
z

(15)

A13 =
1

2

(
rt(µz − γ) + (1− rt)szi,t

)2
σ2
z|si,t

(16)

A22 = −1

2

µ2
zσ

e2
t + σ2

zs
z2
i,t

σe2t σ
2
z

(17)

A23 =
1

2

(
rtµz + (1− rt)szi,t

)2
σ2
z|si,t

(18)

In the benchmark model, posterior expectations are a result of standard Bayesian

learning of normal random variables. However, in the tail risk model, posterior expecta-

tions include an additional term: B(p, γ, σet , s
z
i,t). Unsurprisingly, B(p, γ, σet , s

z
i,t) depends

on the parameters of tail risk p and γ. When p = 0 and γ = 0, then posterior expectations

in the tail risk model collapse to the posterior expectations in the benchmark model.

Suppose a rare disaster did not occur, and the forecaster receives a signal szi,t =

0. Even though Pr(zt = 0) is the local maximum, due to tail risk, the forecaster’s

prior expectation of the hidden state is less than 0. As such, the forecaster revises

his expectations downward. This implies that in the presence of tail risks, posterior

expectations exhibit downward bias (less than 0) compared to their counterpart in the

benchmark model (equal to 0). Our findings are consistent with Orlik and Veldkamp

(2014) who find that the presence of tail risks explains downward forecast bias present in

the data.

We now consider the median forecaster in our analysis.

Definition 3. A median forecaster receives a signal where ei,t = 0.

The cross-section heterogeneity in forecasts is driven by ei,t. Low (high) forecasts are

a consequence of receiving a low (high) value of ei,t. Since ei,t is a normal random variable

with zero mean, hence, the median forecaster receives a signal where ei,t = 0.
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2.2.1 Forecasters Overreact to First Moment Shocks

In this section, we analyze how posterior expectations change in response to a first mo-

ment shock. Recall that in the absence of any shock, the median forecaster will exhibit

downward forecast bias in the tail risk model compared to the baseline model. We ac-

count for the downward forecast bias by considering the change in expectations when

there is a shock to the hidden state in both the benchmark and tail risk models. This

implies that in the tail risk model:

E(∆zTRi,t |si,t) = (1− rt)(szi,t − µz)−B(p, γ, σet , s
z
i,t) +B(p, γ, σet , µz) (19)

The change in expectations in the benchmark model is given by:

E(∆zNi,t|si,t) = (1− rt)(szi,t − µz) (20)

Proposition 2. The median forecaster (ei,t = 0) overreacts to news, that is,

E(∆zTRi,t |si,t) > E(∆zNi,t|si,t), if ui,t > 0 (21)

E(∆zTRi,t |si,t) < E(∆zNi,t|si,t), if ui,t < 0 (22)

Consider a positive shock to the hidden state, zt. Proposition 2 shows that individuals

overreact to news under the model with tail risk. In Figure 2, we plot the dynamics of the

forecasts due to shocks to the hidden state and study the outcomes in both the benchmark

and tail risk models. Figures 2 (a) and 2 (b) examine the impact of a decrease and increase

of the hidden state, zt by one standard deviation, respectively. In Figure 2 (a), we find

that forecasts are overly pessimistic when there is a negative shock to the hidden state

(ui,t < 0). The posterior expectations in the tail risk model are systematically lower

than that of the benchmark model (no tail risk) for all levels of prior uncertainty. In

comparison, we find that forecast revisions are overly optimistic when there is a positive

shock to the hidden state (ui,t > 0) in Figure 2(b). Here, posterior expectations are

higher in the tail risk model than the benchmark model. Indeed, overreaction occurs

because
∂B(p, γ, σet , s

z
i,t)

∂szi,t
< 0 (23)

What drives overreaction? When there is a negative shock to the hidden state, the

median forecaster receives a bad signal in our model. The forecaster then mistakenly

attributes it to disaster risk in the model with tail risk. As such, the forecaster becomes

excessively pessimistic compared to the benchmark model. This leads to pessimistic

overreaction, which implies a larger decrease in expectations. Figure 3 plots the posterior

distributions for the benchmark model and the model with tail risk when there is a
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Figure 2: Overreaction and Posterior Expectations
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(a) Negative TFP shock
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(b) Positive TFP shock
Notes: This figure presents the impact of a negative and positive hidden state shock to posterior expec-
tations in panels (a) and (b) respectively. The vertical axis in both panels denote changes in posterior
expectations due to a hidden state shock. This results in overreaction behavior.

negative shock. The vertical lines are the conditional mean of the corresponding posterior

distributions. As highlighted earlier, the posterior distribution in the benchmark model

resembles a normal distribution. However, the posterior distribution with tail risk exhibits

significant mass on its left tail, as forecasters assign a higher probability to the presence

of a disaster. When we compare the peak of the distribution between the benchmark

model and the model with tail risk, Figure 3 shows that the posterior distribution with

tail risk is positioned slightly to the right of the posterior distribution of the benchmark

model. This should increase posterior expectations in the model with tail risk compared

to the benchmark model. However, this effect is dominated by the increased mass of the

left tail in the posterior distribution with tail risk. Hence, overall, forecasters are overly

pessimistic.

In the case of a positive shock to the hidden state, the median forecaster receives

a favorable signal. Due to the good signal, the forecaster is more optimistic about the

absence of a disaster shock. As such, the forecaster becomes excessively optimistic, as

compared to the benchmark model. This leads to optimistic overreaction, which implies a

larger increase in expectations. Figure 4 plots the posterior distributions in both models

when the forecaster encounters a positive hidden state shock. The posterior distribution

in the benchmark model shifts to the right of the unconditional mean at 0 and retains

its shape of a normal distribution. In the model with tail risk, the posterior distribution

exhibits a lesser left tail risk than the case with a negative hidden state shock, as shown

in Figure 3. Nonetheless, the increased mass in the left tail is still present due to the

possibility of disaster risk. However, the mass in the left tail is significantly reduced in the

case of a positive hidden state shock, and the posterior distribution resembles a normal

distribution. This implies that the median forecaster is relatively more confident about
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Figure 3: Overreaction with negative hidden state shock (Posterior Distributions)
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Notes: This figure presents the impact of a negative hidden state shock on the posterior distribution.

the absence of a disaster shock, given a favorable signal. Similar to the previous analysis

of a negative hidden state shock, the posterior distribution with tail risk is positioned to

the right of the posterior distribution of the benchmark model. This effect dominates the

left tail risk, and as such, forecasters are excessively optimistic in the case of a positive

hidden state shock.

Figure 4: Overreaction with positive hidden state shock (Posterior Distributions)
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Notes: This figure presents the impact of a positive hidden state shock on the posterior distribution.

Our findings are consistent with the evidence of overreaction in the literature. The

main difference between our model and that of the literature is that we retain “rational

news” in the form of Bayesian learning and generate overreaction in expectations by
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incorporating tail risks. We do not rely on behavioral biases or other type of expectations

(such as diagnostic expectations) to generate such an effect. Since our model with tail

risk in a Bayesian learning environment can generate overreaction in expectations, it is

hence possible to map our model into the framework of other expectation channels such

as diagnostic expectations (Bordalo et al. (2020)). This suggests that a framework with

tail risks will be able to generate more volatile credit cycles due to overreaction behavior.

We further discuss this in Chapter 4.2.

So far, we have only considered the median forecaster. The effects of overreaction

will vary when we consider heterogeneous signals and forecasters. When the noise of

the signal is positive (ei,t > 0), forecasters will be even more optimistic when there is a

positive shock to the hidden state. In contrast, when the noise of the signal is negative

(ei,t < 0), and when there is a positive shock to the hidden state, the possibility of

overreaction depends on the magnitude of ei,t and ut. More precisely, overreaction and

excessive optimism will only occur if ei,t + ut > 0. Moreover, since ei,t < 0 works against

the effects of the positive hidden state shock, the magnitude of the overreaction will be

lower.

When there is a negative shock to the hidden state, coupled with a favorable signal

ei,t > 0, forecasters will be less pessimistic. In this case, whether there will be overreaction

or underreaction depends on the magnitudes of ei,t > 0 and ut < 0 as they work in

opposite directions. If ei,t +ut < 0, then forecasters will still overreact and be excessively

pessimistic. However, if ei,t + ut > 0, then forecasters will be optimistic even if there is a

negative shock to the hidden state.

2.2.2 Second Moment Shocks Lead to More Pessimism

After studying the impact of a first moment shock, we turn to the impact of second

moment shocks.

Proposition 3. Consider a median forecaster. In the tail risk model, an increase in

prior uncertainty decreases posterior expectations, that is,

∂E(zt|szi,t)
∂σet

= −
∂B(p, γ, σet , s

z
i,t)

∂σet
< 0 (24)

Proposition 3 shows that an increase in uncertainty, denoted by σet , decreases posterior

expectations and consequently, forecasts. This has been highlighted by Chatterjee and

Milani (2020) whichi rely on an asymmetric loss function to generate an adverse effect of

uncertainty shocks on expectations. Nonetheless, Chatterjee and Milani (2020) did not

find evidence favoring an asymmetric loss function for real GDP. In our model with tail

risks, we do not rely on such an assumption. The presence of tail risks, as documented in
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Adrian et al. (2019), can generate a negative effect of uncertainty shocks on expectations.

In the tail risk model, when forecasters observe a signal of the hidden state, they

cannot tell whether the realized signal is due to variation in the signal’s noise or the

hidden state itself. As forecasters cannot differentiate between the noise of the signal and

the hidden state, they also cannot differentiate if the realized signal is due to disaster

risk, or a first moment shock.

When there is an increase in prior uncertainty, the variance of noise in the signal

increases. Forecasters understand that the probability of receiving the current signal

given that the actual value of zt is low, that is, Pr(szi,t = µz|zLi,t) increases. Hence, since

f(zt|szi,t) ∝ f(szi,t|zt) ·f(zt), this implies that forecasters perceive that the probability of a

actual low hidden state, given the realized signal, will be higher. As such, forecasters at-

tribute a higher weight to disaster risk and think that the distribution of the hidden state

might have shifted leftwards. This lowers their forecasts of the hidden state, conditional

on receiving the signal.

Figure 5: Relationship between uncertainty shocks and posterior expectations for median
forecaster
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Notes: This figure presents the posterior distribution of the forecaster’s beliefs about the hidden state
with low and high uncertainty by decreasing (increasing) the standard deviation by half its original
value.

To study how changes in uncertainty impact the posterior distribution, we decrease

(increase) the standard deviation by half its original value to simulate low (high) uncer-

tainty respectively. This is shown in Figure 5. Figure 5 plots the posterior distribution

of the forecaster’s beliefs about the hidden state and compares the posterior distribution

between low and high uncertainty. The corresponding vertical line shows the mean of the

distribution. As shown in Figure 5, the posterior distribution with low uncertainty resem-

bles a normal distribution. In contrast, the posterior distribution with high uncertainty
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exhibits left tail risk, which is closer to the shape of the prior distribution.

Unlike the model with tail risk, an increase in σet does not affect posterior expectations

in the benchmark model. This is evident in Equation (11) as B(p, γ, σet , s
z
i,t) = 0 in the

benchmark model. Intuitively, after receiving the signal, the median forecaster realizes

that an increase in prior uncertainty increases the probability that the actual hidden state

zt can be high or low equally due to the symmetry of the normal prior distribution. Even

though this increases posterior uncertainty, it has no effect on posterior expectations as

the increase in optimism and pessimism exactly cancel each other out.

Corollary 1. A forecaster who receives relatively bad (good) news receive a signal with

ei,t < 0, (ei,t > 0). An increase in prior uncertainty decreases posterior expectations to

a larger (smaller) extent for a forecaster that receives relatively bad (good) news. Mathe-

matically, ∣∣∣∣∂B(p, γ, σet , s
z
i,t)

∂σet

∣∣∣∣
ei,t<0

>

∣∣∣∣∂B(p, γ, σet , s
z
i,t)

∂σet

∣∣∣∣
ei,t>0

(25)

A natural question is whether the magnitude of the decrease in posterior expectations

due to a positive uncertainty shock differs over forecasters with different news flows.

Corollary 1 shows that if a forecaster receives a bad signal, the forecaster decreases the

forecasts more when prior uncertainty rises.8 The opposite holds for a forecaster who

receives a good signal.

When the forecaster receives a bad signal (ei,t < 0), the forecaster attributes an even

higher weight to the disaster risk. Hence, posterior expectations decrease by a larger

extent for a given increase in prior uncertainty. In the contrary, when the forecaster

receives a good signal (ei,t > 0), due to the increase in prior uncertainty, the forecaster

still attributes a higher weight to the disaster risk unconditionally. However, the forecaster

realizes that the probability of obtaining a good signal given a high hidden state (Pr(szi,t >

µz|zHi,t)) increases. Therefore, forecasters who receive a good signal are relatively more

optimistic than forecasters who receive a neutral or bad signal. Figure B.1 in the Online

Appendix shows the responses of posterior expectations to prior uncertainty in the case

of forecasters who receive heterogeneous signals.9

8In Corollary 1, when there is a signal with non-zero noise, we account for the effects of prior uncer-
tainty shocks on forecasts under the benchmark model and isolate the effect of prior uncertainty shocks
on forecasts that is due to tail risk.

9In Figure B.1, when there is a signal with non-zero noise, we account for the effects of prior uncer-
tainty shocks on forecasts under the benchmark model and isolate the effect of prior uncertainty shocks
on forecasts that is due to tail risk.
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2.2.3 First and Second Moment Shocks and Larger Overreaction

Proposition 4. The magnitude of overreaction depends on prior uncertainty σet , that is

∂|E(∆zTRi,t |si,t)− E(∆zNi,t|si,t)|
∂σet

=
∂|B(p, γ, σet , s

z
i,t)−B(p, γ, σet , µz)|
∂σet

> 0 (26)

Proposition 4 states that individuals overreact more when prior uncertainty is higher.

Consider a positive shock to ut. Under high prior uncertainty, the forecaster will still

attribute a higher weight to the disaster risk unconditionally. Therefore, this will lead

to lower posterior expectations. However, at the same time, when the forecaster receives

a good signal, the probability of obtaining a good signal given that the actual value of

productivity is high (Pr(szi,t > µz|zHi,t)), increases due to higher prior uncertainty. Hence,

forecasters become relatively more optimistic in the case of high prior uncertainty com-

pared to the case of low prior uncertainty. This generates larger optimistic overreaction

behavior in the case of high prior uncertainty.

In contrast, consider a negative shock to the hidden state. When prior uncertainty

is high, forecasters understand that the probability of obtaining a bad signal given that

actual productivity is low (Pr(szi,t < µz|zLi,t)), will be relatively higher. Hence, forecast-

ers become more pessimistic and attribute an even higher weight to the disaster risk.

Therefore, under high prior uncertainty, bad shocks to the hidden state generate larger

pessimistic overreaction than lower prior uncertainty.

These findings are also evident in Figure 2. In Figure 2(a), in which we consider

a negative shock to ut, the percentage difference in posterior expectations between the

benchmark model and the model with tail risk is more considerable when the level of

prior uncertainty increases. Figure 2(b) illustrates the same observation in the case of a

positive shock to the hidden state.

Proposition 4 implies time-varying overreaction coefficients. This is consistent with

the findings of Bordalo et al. (2020), in which there is larger magnitudes of overreaction in

high levels of prior uncertainty. Consequently, Proposition 4 can also explain overreaction

cycles, in which following periods of large magnitudes of overreaction, forecasters exhibit

lower magnitudes of overreaction. Our explanation hinges on the combination of sizeable

prior uncertainty shocks and shocks to the hidden state, which generates large magnitudes

of overreaction at that particular point in time. This is followed by relatively lower

uncertainty and hence lower magnitudes of overreaction. This is also consistent with

Orlik and Veldkamp (2014), which highlight that the magnitude of uncertainty shocks

tends to spike up at a point in time before returning to lower levels.
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3 Empirical Findings

Having established our theoretical results, we now turn to our empirical analysis. After

we identify tail risk episodes, we use a combination of regression analysis and event studies

to test our theoretical findings.

3.1 Data

The key insight of this paper requires data of expectations, uncertainty, measures of

overreaction behavior, and tail risk. We consider the following data relating to the U.S

economy from 1978 to 2016. To ensure consistency across the different data sets, we use

quarterly data.

First, we use the University of Michigan’s Consumer Sentiment Index, denoted as

sentiments in this section, to measure expectations. The Consumer Sentiment Index

is derived from asking consumers in the survey whether they are better or worse off

financially and their perception of the economy in the future. The index is then calculated

by aggregating across consumers at each point in time. The University of Michigan’s

Consumer Sentiment Index is a prominent indicator in public discourse (Dominitz and

Manski (2003)) and is a leading indicator of consumption growth (Souleles (2004)).

For uncertainty, we use the VIX index. The VIX index is an implied stock market

volatility index traded in the Chicago Board Options Exchange. It is a leading barometer

of economic uncertainty (Kozeniauskas et al. (2018)). For robustness, we include other

measures of uncertainty such as Jurado et al. (2015) which make use of econometric

methods to measure the conditional volatility of the purely unforecastable component of

the future value of the series.

To measure overreaction behavior and expectations, we use the Survey of Professional

Forecasters (SPF) run by the Federal Reserve Bank of Philadelphia. It is conducted

quarterly, with around 40 professional forecasters being surveyed at each point in time.

The forecasters report their forecasts for the current and next four quarters for several

macroeconomic outcomes. These include GDP, price indices, consumption, investment,

unemployment, government consumption, housing, and financial variables such as govern-

ment bonds and corporate AAA bonds (See Table 2 for the complete list). In this paper,

we follow Bordalo et al. (2020) and run the following regression for each macroeconomic

outcome in the survey.

xt+h − xij,t+h|t = βi0 + βi1FR
i
j,t,h + εij,t,h (27)

where xij,t+h|t denote individual j’s forecast of macroeconomic variable i at time t
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about the future value xt+h of a variable. Individual forecast revisions are denoted by

FRi
j,t,h = (xj,t+h|t − xij,t+h|t−1). Bordalo et al. (2020) pool forecasters and estimate a

common coefficient β1. If β1 < 0, this implies that the average forecaster overreacts as

upward forecast revisions predict lower realizations relative to the forecasts. Similarly,

if β1 > 0, this implies that the average forecaster underreacts to his own information

and upward forecast revisions predict higher realizations relative to the forecasts. In this

paper, we run the same regression for each quarter and each macroeconomic variable

while pooling all forecasters. Hence, we extract βi1,t where t refers to each quarter and i

denotes each macroeconomic variable.

Table 2 provides summary statistics of the overreaction coefficients derived from the

regression in Equation (27). We consider 15 macroeconomic variables from the SPF. We

find that the measures of overreaction constructed are mostly negative across all variables

and time, suggesting the presence of overreaction behavior among individuals. 10

Table 2: Descriptive Statistics of Overreaction Coefficients

Obs. Mean St. Dev. Min. Median. Max.
Variable: (1) (2) (3) (4) (5) (6)
Real GDP 39 -0.42 0.22 -1.00 -0.42 0.21
Nominal GDP 39 -0.44 0.34 -1.80 -0.44 0.42
Industrial Production 39 -0.45 0.28 -1.11 -0.45 0.17
Real Consumption 36 -0.46 0.27 -1.25 -0.43 -0.03
GDP Price Index Inflation 39 -0.44 0.13 -0.74 -0.42 -0.21
Consumer Price Index 36 -0.52 0.28 -1.38 -0.47 0.02
Real Nonresidential Investment 39 -0.41 0.25 -0.80 -0.44 0.20
Real Residential Investment 39 -0.22 0.32 -1.03 -0.25 0.87
Real Federal Government 36 -0.51 0.26 -1.10 -0.50 0.20

Consumption
Real State and Local Government 36 -0.43 0.21 -0.79 -0.40 0.03

Consumption
Housing start 36 -0.56 0.29 -1.28 -0.56 -0.08
Unemployment 36 -0.21 0.38 -1.04 -0.22 1.04
Three-month Treasury Rate 25 -0.39 0.23 -0.83 -0.38 0.08
Ten-year Treasury Rate 36 -0.40 0.24 -0.78 -0.36 0.24
AAA Corporate Bond Rate 36 -0.54 0.22 -1.03 -0.55 0.04

Notes: Columns (1) to (6) show the summary statistics for overreaction coefficients. Each overreaction
coefficient at time t for variable i is obtained from running the regression of Equation (27) across all
forecasters.

Finally, we obtain GDP data from the US Bureau of Economic Analysis to construct

measures of tail risk. In order to identify tail risks, we follow Adrian et al. (2019) and

estimate the distribution of GDP growth semi-parametrically by running quantile regres-

10Note that we are unable to retrieve some of the overreaction coefficients as some observations of
forecasts are missing.
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sions. We run the following quantile regression.

Q̂yt+h|xt(τ |xt) = xtβ̂
Q
τ (28)

where xt refers to the annualized growth rate of GDP at time t, yt+h the annualized

average growth rate of GDP four quarters ahead and τ refers to the percentile of the

distribution.

We then extract measures of skewness in the quantile regression. In particular, we

extract Q̂τ=0.50 − Q̂τ=0.05 and Q̂τ=0.95 − Q̂τ=0.50 to measure the left tail mass and right

tail mass of the GDP growth distribution respectively. Table 3 shows summary statistics

of these measures.

Table 3: Descriptive Statistics of Tail Risks

Obs. Mean St. Dev. 75th 90th
Variable: (1) (2) (3) (4) (5)

Q̂τ=0.50 − Q̂τ=0.05 156 3.27 0.31 3.43 3.63

Q̂τ=0.95 − Q̂τ=0.50 156 1.89 0.09 1.94 1.99

Notes: Columns (1) to (5) show statistics for the corresponding vari-
ables. Q̂τ refers to the estimated value of average real GDP at quan-
tile τ from the regression in Equation (28).

We observe that in general, Q̂τ=0.50−Q̂τ=0.05 > Q̂τ=0.95−Q̂τ=0.50, which shows that the

GDP distribution is highly skewed with fatter tails to the left of the distribution. Also,

right tail measures are fairly stable with a low standard deviation and interquartile range.

In contrast, left tail measures are highly volatile, suggesting time-varying downside tail

risks. These facts are consistent with Adrian et al. (2019). In this paper, we define tail

risk as the left tail measure calculated from quantile regressions. This is similar to the

concept of growth-at-risk that has been adopted in recent papers that study GDP tail

risks (Adrian et al. (Forthcoming), Duprey and Ueberfeldt (2020)).

Definition 4. Tail risk is defined as the difference between the median and the 5th per-

centile of GDP 4 quarters ahead, that is Q̂yt+h|xt(τ = 0.50|xt)− Q̂yt+h|xt(τ = 0.05|xt).

We then define tail risk episodes as the time period in which tail risk is greater than

its 75th percentile. Empirical results remain robust if we consider other thresholds.

Definition 5. Tail risk episode is defined as the time period in which tail risk is greater

than its 75th percentile.

We would like to highlight two points with regard to tail risks.

First, even though the measure of tail risk used in this paper is a measure of skewness,

skewness of the GDP growth distribution does not imply tail risk. To give a concrete
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example, we highlight two time periods: 2005Q1 and 2008Q4. By fitting different values

of percentiles (with a grid interval of five percentiles) with our quantile regression, we can

estimate the GDP growth distribution at each point in time. Figure 6 plots the estimated

GDP growth distribution in 2005Q1 and 2008Q4. Based on our definition, 2008Q4 is in

a period with tail risk episode, while 2005Q1 is not.

Although both distributions exhibit a left tail which implies negative skewness, the

distribution in 2005Q1 is closer to a normal distribution.11 When we consider the GDP

growth distribution in 2008Q4, the distribution display fatter left tails. In particular,

as the distribution flattens to the left of its peak, the probability density function rises

up again as the values of GDP growth rates diminish. This resembles the theoretical

distribution depicted in Figure 1 of the paper. Comparing between other periods of tail

risk and non-tail risk episodes yield distributions similar to the ones depicted in Figure

6.

Figure 6: GDP Distributions

GDP Growth Distribution in 2005Q1 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

5

10

15

GDP Growth Distribution in 2008Q4

-3 -2 -1 0 1 2

0

5

10

15

Notes: This figure shows the estimated GDP growth distribution in 2005Q1 and 2008Q4.

Second, we would like to distinguish between tail risk episodes and recessions as the

former may not imply the latter. Figure 7 plots tail risk episodes across time. The

red shaded bars denote tail risk episodes when the economy is in a recession, while the

grey shaded bars denote tail risk episodes when the economy is not in a recession.12 We

find that tail risk episodes can happen even under normal times. Intuitively, even when

the economy is not in a crisis, the probability of an occurrence of rare events can be

11GDP growth distributions during normal times exhibit a left tail as summary statistics of GDP
growth show that its distribution is left-skewed, even in normal times.

12We use the NBER recession indicators to denote that the economy is in a recession.
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higher than usual. For instance, after the Great Financial Crisis in 2008, policymakers

are persistently pessimistic about the economy as fears of an additional crisis after 2008

continue to emerge. Tail risk episodes can also happen before a crisis (such as before the

1990 recessions).

Figure 7: Tail Risk Episodes

Notes: This figure highlights tail risk episodes (including those that coincide with recessions).

Table 4 shows summary statistics for all variables involved and compares the whole

sample and tail risk episodes. The measures of VIX and sentiments do not exhibit much

variation compared to GDP and the constructed overreaction measure. When comparing

the whole sample and tail risk episodes, we expect tail risk episodes to be associated with

poorer economic performance. Table 4 shows that about a third of the sample constitutes

tail risk episodes. In the sample of tail risk episodes, the average value of VIX is larger,

consistent with counter-cyclical uncertainty. In addition, the average values of GDP and

the sentiment index are lower in tail risk episodes, as expected. Also, Table 4 shows that

the mean of the overreaction coefficient is lower during tail risk episodes, which suggests

larger magnitudes of overreaction in times of distress.

3.2 Empirical Analysis

In this section, we provide empirical support for the predictions in our model.

3.2.1 Overreaction in tail risk events

To test Proposition 2, in which forecasters overreact under tail risk events, we rely on

event study methodologies by studying how the overreaction coefficients βit behave around
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Table 4: Summary Statistics

Variable: Obs. Mean St. Dev. Min. Median. Max.
(Whole Sample) (1) (2) (3) (4) (5) (6)
log V IXt 156 1.28 0.12 1.04 1.28 1.77
logSENTt 156 1.93 0.07 1.74 1.95 2.04
GDPt 156 2.75 3.07 -8.40 3.00 16.40
Overreaction Coefficient 2168 -0.42 0.37 -2.03 -0.42 1.67
Variable: Obs. Mean St. Dev. Min. Median. Max.
(Tail Risk Episodes Only) (1) (2) (3) (4) (5) (6)
log V IXt 46 1.31 0.14 1.08 1.30 1.77
logSENTt 46 1.88 0.07 1.74 1.87 2.04
GDPt 46 -0.55 2.44 -8.40 0.50 1.50
Overreaction Coefficient 551 -0.46 0.36 -2.03 -0.45 0.77

Notes: Columns (1) to (6) show statistics for the corresponding variables. Each overreaction
coefficient at time t for variable i is obtained from running the regression of Equation (27)
across all forecasters. Tail Risk Episodes occur when the tail risk measure exceeds its 75th
percentile.

tail risk episodes. Here, we define each event as episodes of tail risk and conduct event

studies using βit independently across the 15 macroeconomic variables. We first retrieve

the implied βit denoted by β̂it under normal times by running the following regression:

βit = α + γ × Controls + error (29)

To ensure that our results are not driven by recessions, crises, or any other aspects of

the business cycle, we control for macroeconomic variables such as GDP growth, inflation,

and unemployment. We then retrieve β̂it , which is the overreaction coefficient implied by

normal times. We proceed to construct abnormal returns defined as the difference between

the actual value of βit and β̂it

ARi
t = βit − β̂it (30)

where ARi
t denote the abnormal returns for macroeconomic variable i at time t, which

is filtered after controlling for major macroeconomic variables which may drive our event

study results. We then pool ARi
t across all the variables in the SPF to obtain ARt.

Figure 8 plots ARt over the period from 1978 to 2016. As shown in Figure 8, there

is suggestive evidence that abnormal returns tend to spike downwards during tail risk

episodes. We proceed to analyze the behavior of ARt during periods around tail risk

episodes. We consider the event window three periods before and after tail risk episodes

and conduct event study analysis. In particular, we pool and average estimates of ARt

in each period during the event window.
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Figure 8: Abnormal Returns over the Business Cycle

Notes: This figure presents the abnormal returns over the time period 1978 to 2016.

Figure 9 plots the abnormal returns during the event window. We consider all abnor-

mal returns around all tail risk episodes, in which period t refers to the tail risk episode,

t−i refers to i periods before the tail risk episode and t+i refers to i periods after the tail

risk episode. As shown in Figure 9, there is a sharp decline in abnormal returns at time

t. This implies that the overreaction coefficient βt is more negative during the tail risk

episodes at time t. Figure 10 plots abnormal returns at different recession periods since

tail risk episodes are correlated with the occurrence of recessions. In all recessions dated

1980, 1990, 2001, and 2008, we find that the abnormal returns exhibit sharp declines,

consistent with Figure 9.

Figure 9: Event Study Abnormal Returns.

Notes: This figure presents the abnormal returns before and after the tail risk episodes (t=0). t− i refers
to i periods before the tail risk episode and t+ i refers to i periods after the tail risk episode. The dotted
lines denote 95 percent confidence interval bands.

When we consider tail risk episodes that are not driven by major recessions, we find
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Figure 10: Event Study of Recession Episodes

(a) 1980 (b) 1990

(c) 2001 (d) 2008

Notes: This figure presents the abnormal returns at different time periods. The shaded grey area
represents tail risk episodes. The dotted lines denote 95 percent confidence interval bands.

a similar pattern. Even though the abnormal returns average to 0, the mean of the

overreaction coefficient βt remains negative outside tail risk episodes. This does not

mean that tail risks are a necessary ingredient to overreaction, but rather, a sufficient

condition for overreaction to occur. When overreaction occurs even outside of tail risk

episodes, we attribute this to other factors such as diagnostic expectations as in Bordalo

et al. (2020).

3.2.2 Expectations and Uncertainty Shocks

We now examine Proposition 3 which highlight that an increase in uncertainty decreases

expectations in the event of tail risks. To test this prediction, we run the following

regression.

Yt|t+1 = α0 + α1TRt + α2 log V IXt + α3 log V IXt × TRt + vt (31)

where Yt|t+1 refers to median forecasts of GDP growth from the SPF, log V IXt refers to

the logarithm of the VIX index, GDPt refers to GDP growth rate and TRt is a dummy
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variable equal to 1 in a tail risk episode. For the dependent variable, we also consider the

University of Michigan’s Sentiment index (denoted by logSt) in place of Yt|t+1. To allay

concerns that our result is driven by periods of recession rather than episodes of tail risk,

we further control for the interaction between recession episodes and uncertainty. Our

key focus is on α3. If α3 is negative, there will be lower expectations when there is high

uncertainty in tail risk events. The results of Equation (31) are presented in Table 5.

Table 5: Regression Results between Expectations and Uncertainty
Dependent Variable: Yt+1|t Yt+1|t Yt+1|t logSt logSt logSt

(1) (2) (3) (4) (5) (6)
log V IXt -5.30*** -0.923 -0.857 -0.106** 0.034 0.043

(1.71) (1.13) (1.55) (0.045) (0.041) (0.042)
TRt 12.38*** 5.12 0.305*** 0.222

(3.85) (3.44) (0.071) (0.138)
log V IXt × TRt -10.19*** -4.27* -0.279*** -0.204*

(2.96) (2.58) (0.058) (0.115)
RECt 15.33*** -0.208

(4.77) (0.204)
log V IXt ×RECt -11.71*** 0.108*

(3.43) (0.156)
Observations 156 156 156 156 156 156
R2 0.08 0.17 0.32 0.04 0.25 0.41

Notes: Newey-West standard errors with a lag length of 4 quarters are in parenthesis. *, ** and ***
denotes significance level at 10%, 5% and 1% respectively. RECt is a recession dummy equal to 1 if the
economy is in a NBER-dated recession.

Columns 1 and 4 show that an increase in the VIX Index by 1 percent relates to a

decrease in the median forecasts of GDP growth by 5.3 percent (significant at 1%) and

a decrease in sentiments by 0.1 percent (significant at 5%) respectively. Hence, there

is a negative relationship between uncertainty and expectations. Nonetheless, Columns

2 and 5 find that the relationship between expectations and uncertainty is no longer

statistically significant after we account for tail risk episodes. This is consistent with

Proposition 3, in which uncertainty shocks do not influence expectations outside of tail

risk events. Moreover, Columns 2 and 5 show that an increase in the VIX Index by 1

percent during tail risk events corresponds to a decrease in the median forecasts of GDP

growth by 10.2 percent (significant at 1%) and a decrease in sentiments by 0.28 percent

(significant at 1%) respectively.

We also find that our findings are robust to recessionary events. Columns 3 and 6 show

that after we account for recessions, an increase in the VIX Index by 1 percent during tail

risk events relates to a decrease in the median forecasts of GDP growth by 4.3 percent

(significant at 10%) and a decrease in sentiments by 0.2 percent (significant at 10%)

respectively. This implies that the transmission of uncertainty shocks to expectations

depends on tail risk episodes and not due to the recessionary effects. Consequently, we

find that tail risk episodes explain the transmission of uncertainty shocks to expectations.

28



Our findings have business cycle implications. In Bloom (2009), uncertainty shocks

depress output because of real frictions such as non-convex adjustment costs. This works

through the channel of real options effect. Firms adopt the “wait and see” approach

during periods of high uncertainty. As such, they act cautiously and pause investment.

In this paper, we find that uncertainty shocks can cause a fall in output through ex-

pectations. Increases in uncertainty decrease expectations, and as such, since economic

agents’ actions take into account their expectations of the future, this decreases economic

activity.

3.2.3 Overreaction and Uncertainty Shocks

Lastly, to test Proposition 4, we examine how the magnitude of overreaction changes

with uncertainty. Proposition 4 states that when uncertainty is higher, the magnitude

of overreaction will be higher. This implies that the overreaction coefficient βt should be

larger in absolute terms during high periods of uncertainty. Hence, calculated abnormal

returns should be larger in absolute terms during high periods of uncertainty. Here, we

categorize periods of high (low) uncertainty as the event in which values of the VIX

index are above (below) the median. We then conduct separate and independent event

studies for the periods of high and low uncertainty, while keeping the same methodology

in deriving the normal returns.

Figure 11: Event Study Abnormal Returns (Comparing Uncertainty)

(a) Abnormal Returns (By Uncertainty) (b) Difference in Abnormal Returns

Notes: This figure presents the abnormal returns before and after the tail risk episodes (t=0). t− i refers
to i periods before the tail risk episode and t+ i refers to i periods after the tail risk episode. The dotted
lines denote 95 percent confidence interval bands.

Figure 11 compares the abnormal returns between different event studies for different

magnitudes of uncertainty. t = 0 refers to the tail risk event, while t − i and t + i

refers to i periods before and after the tail risk event respectively. In Figure 11 (a),

the abnormal return in blue refers to the analysis conducted considering periods of low
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uncertainty, while the abnormal return in red refers to analysis conducted only considering

periods of high uncertainty. As shown in Figure 11 (a), the decline in abnormal returns is

more pronounced during periods of high uncertainty. This implies that the overreaction

coefficients are larger in absolute terms when the level of uncertainty is high. We then

compare the difference in abnormal returns between high and low uncertainty in Figure 11

(b). Here, we find that the difference is negative and statistically significant only during

the tail risk event. This suggests that uncertainty plays an important role in the behavior

of economic agents during episodes of tail risk. This is consistent with Proposition 4 in

our model.

4 Discussion and Robustness

This section discusses the implications of our findings and presents the robustness checks

of our empirical results. First, we relate our results to the literature of diagnostic expec-

tations. Second, we provide some policy implications based on our results. Finally, we

conducted additional robustness tests.

4.1 Relation to Diagnostic Expectations

Our paper speaks directly to diagnostic expectations, a psychologically micro-founded

approach that exploits behavioral biases to reconcile empirical findings of overreaction

behavior in individuals. By incorporating Kahneman and Tversky (1972) representative-

ness heuristic into a signal extraction problem, diagnostic expectations depart from ratio-

nal expectations as individuals follow the “kernel of truth”. Each forecaster overweighs

the probability of the hidden state that are representative of recent news. Denoting be-

liefs formed from diagnostic expectations to be Eθ
t (zt+1) and beliefs formed from rational

expectations as Et(zt+1), Bordalo et al. (2020) show that

Eθ
t (zt+1) = Et(zt+1) + θt[Et(zt+1)− Et−1(zt+1)] (32)

where θt ≥ 0 is the diagnosticity parameter that measures the extent of overreaction to

news. We denote θt to be time-varying in this paper as we consider different magnitudes

of overreaction over time. In Bordalo et al. (2020), θ is estimated to be ≈ 0.5. To

benchmark our tail risk model with diagnostic expectations, we conduct a back of envelope

exercise by mapping the magnitude of overreaction in our model to θ. Since ρz = 0,

Et−1(zt+1) = µz = 0 and

Et(zt+1) = (1− rt)szi,t (33)
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where rt =
σet

2

σet
2+σ2

z
. Then it is straightforward to show that

θt =
B(p, γ, σet , µz)−B(p, γ, σet , s

z
i,t)

(1− rt)(szi,t)
(34)

Using parameter values in Table 1 and a noise to signal ratio of 1.5, a positive one

standard deviation shock to the hidden state corresponds to an implied θt value of 0.07.13

In contrast, a negative one standard deviation shock to the hidden state corresponds to

an implied value of 0.20.

Figure 12 plots the implied diagnosticity parameter θt which varies with the noise

to signal ratio, in which the noise to signal ratio is defined as σet /σz. Since Proposition

4 states that the magnitude of overreaction increases with prior uncertainty, it is not

a surprise that the implied diagnositicity parameter increases with the noise to signal

ratio. From Proposition 4, we show that the numerator of Equation (34) increases with

prior uncertainty, that is, the level of overreaction is positively associated with prior

uncertainty. As prior uncertainty increases, Bayesian learning implies that individuals

will choose to rely less on the signal. This is evident in the denominator, which falls as

the noise to signal ratio increases. Hence, the effects of uncertainty in the noise of the

signal unambiguously lead to an increase in the diagnosticity parameter.

Figure 12: Implied θ Varying with Noise to Signal Ratio
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(a) 1 SD Positive Shock
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(b) 1 SD Negative Shock

Notes: This figure presents the relationship of the implied θt value with the noise to signal ratio based
on 1 SD of positive shock (Panel A) and 1 SD of negative shock (Panel B).

From Figure 12, we see that the noise to signal ratio needs to be sufficiently large

to generate an implied θ of 0.5 that is highlighted in Bordalo et al. (2020). When we

consider a one standard deviation positive shock to the hidden state, the noise to signal

13We consider a noise to signal ratio of 1.5 as this is equivalent to the average estimated noise to signal

ratio in Bordalo et al. (2020). Noise to signal ratio is defined as
σet
σz

.
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ratio needs to exceed 3 in order to generate an implied θ of 0.5. In contrast, under a one

standard deviation negative shock to the hidden state, the noise to signal ratio needs to

exceed 2.2 in order to generate an implied θ of 0.5. In the case of ρz = 0, the coefficient

βi1 in equation (27) satisfies

βi1 =
θ(1 + θ)

(1 + θ)2
(35)

In this case, our average implied value of θ = 0.14 corresponds to an implied value of

βi1 = 0.12. This is consistent with the empirical counterpart shown in Figure 9, where

βi1 is lower by about 0.09 units in a tail risk episode. This accounts for about 20 % in

variation of βi1 since the average value of βi1 is -0.42 (Table 4, Top Panel, Column 2).

Since the implied values of θ in our tail risk model ranges from 0.07 to 0.20, our tail

risk model can explain about 14 to 40 % of overreaction that is estimated in Bordalo

et al. (2020). We view our work as a complementary explanation to overreaction behav-

ior observed in individuals and leave it for future work to understand other drivers of

diagnostic expectations.

4.2 Policy Implications

Since tail risk has an impact on expectations, policies that can manage tail risk will be

able to affect expectations. Consequently, policies that can reduce p, the probability of

the occurrence of a disaster in our model can reduce the magnitude of overreaction. This

reduces the mass of the left tail, and thus tail risk. When p = 0, the asymmetric mass of

the left tail disappears, and as such, the economy exhibits no tail risk. We consider the

effects of a reduction in p on the transmission of uncertainty shocks to expectations, and

the magnitude of overreaction.

Figure 13 (a) illustrates the effects of a reduction in p on the transmission of uncer-

tainty shocks to expectations. When a decrease in tail risk is captured by a decrease of

p from 0.2 to 0.1, a given sized positive uncertainty shock leads to a lower decrease in

posterior expectations. Moreover, under a perfect scenario of no tail risk, in which p is

equal to 0, uncertainty shocks do not affect posterior expectations. Given that uncer-

tainty is counter-cyclical and exhibits large fluctuations in recessions, macroprudential

policies that reduce downside risk can dampen the effect of uncertainty shocks on the

economy through expectations.

Figure 13 (b) shows the effect of a reduction in downside risk on the magnitude of

overreaction. In this exercise, we use Equation (34) to quantify the extent of overreaction.

The implied θ increases with the probability of disaster risk. Moreover, when there

is no downside risk (p = 0), our model implies that there will be no overreaction in
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Figure 13: Effects of a reduction in p
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Notes: This figure shows how changing the probability of disaster (p) will impact the relationship between
posterior expectations and uncertainty (Panel A) and implied θ (Panel B).

expectations. However, as our model explains only 14 to 40 % of overreaction behavior in

the data, as such, even though in a perfect setting where macroprudential policies reduces

p down to zero, we expect that overreaction will still be present in agents’ expectations due

to other factors such as behavioral biases. This is not to say that macroprudential policies

will be ineffective. Our model predicts that the magnitudes of overreaction behavior will

decrease with macroprudential policies that reduce downside risk. A reduction in the

magnitude of overreaction behavior leads to less volatile macroeconomic moments.

4.3 Robustness

For robustness, we conducted additional tests. First, we seek to allay concerns that the

threshold of the tail risk episodes could drive our results. Our main analysis identified tail

risk episodes as the time period in which tail risk exceeds its 75th percentile (Definition 5).

It is possible that changes in the thresholds for the tail risk episodes could impact our main

results. We address this concern by varying the tail risk episodes across all thresholds from

50th to 90th percentile. Our main results remain unchanged. For instance, the regression

coefficient α3 in equation (31) remains economically and statistically significant. Figure

B.2 in the online appendix plots regression coefficient α3 in equation (30) when the

measure of tail risk exceeds different thresholds. The coefficients are all negative and

statistically significant at the 5 % level, and are all similar in magnitude.

We also consider different thresholds for our event study analysis. The results continue

to show overreaction in tail risk episodes. Nonetheless, it is worth noting that when

we consider higher thresholds, there will be larger magnitudes of overreaction. This is

expected as when the tail risk measures exceed a higher threshold, this captures tail risk
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episodes that contain greater tail risk. We provide an example in the online appendix.

Figure B.3 (a) considers tail risk episodes in which the tail risk measures exceed the 90th

percentile, while Figure B.3 (b) highlights tail risk episodes in which the measures of tail

risk exceed the 50th percentile. It is evident that there is a larger overreaction when the

tail risk measures exceed the 90th percentile in Figure B.3 (a) compared to that of the

50th percentile in Figure B.3 (b). Greater tail risk leads to larger overreaction, as implied

by our model.

To further support our event study analysis, we exploit the panel data and conduct

the following OLS regression to examine whether there is overreaction.

βi,t = δ0 + δ1TRt + X′i,tΓ + λi + εi,t (36)

where βi,t denotes the overreaction coefficient, TRt is a dummy equal to 1 in tail risk

episodes, X′i,t is a vector of controls used in the event study, and λi is the variable-

specific fixed effect. Our variable of concern is δ1. Should δ1 be negative, there will be

larger magnitudes of overreaction in tail risk episodes.

Next, we run the following OLS regression to examine the role of uncertainty:

βi,t = δ0 + δ1TRt + δ2 log V IXt + δ3TRt × log V IXt + X′i,tΓ + λi + εi,t (37)

where the variables are similar to that of Equation (36). Here we include an additional

variable, log V IXt, which relates to the logarithm of the VIX index. Our variable of

concern is δ3, which highlights that the magnitude of overreaction in tail risk episodes

will depend on the level of uncertainty in the economy.

Table 6 presents the results. Based on the results of Equation (36), we find that

during tail risk episodes, the overreaction coefficients are lower by 0.068 (statistically

significant at 1 % level). This suggests that the magnitude of overreaction is larger in tail

risk episodes. Based on the results of Equation (36), we find that a percentage increase

in the VIX index during tail risk episodes corresponds to a decrease in the overreaction

coefficients by 0.364 (statistically significant at 1 % level). This provides evidence of

larger magnitudes of overreaction when there is high uncertainty in tail risk episodes.

We want to highlight that our estimates in the regression imply that the relationship

between overreaction and tail risk episodes is weaker than estimates in the event study ap-

proach. This is because we control for first and second-moment shocks (such as GDP and

VIX) outside of tail risk episodes by extracting the abnormal returns of the overreaction

coefficient in the event study approach. Consequently, we allow first and second-moment

shocks to be present during tail risk episodes in our event study. In contrast, the OLS

panel regressions imply that we eliminate all first and second moment shocks in both
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Table 6: Regression Results between Overreaction and Tail Risk Episodes

Dependent Variable: βi,t βi,t
(1) (2)

TRt -0.068*** 0.387**
(0.026) (0.171)

log V IXt -0.194** 0.141
(0.083) (0.086)

log V IXt × TRt -0.364***
(0.137)

Variable-specific Fixed Effects Yes Yes
Controls Yes Yes
Observations 2000 2000
Adjusted R2 0.077 0.080

Notes: Robust standard errors are in parenthesis. *, ** and ***
denotes significance level at 10%, 5% and 1% respectively.

tail risk and non-tail risk episodes by controlling for macroeconomic variables that might

drive tail risk. Naturally, our theoretical model implies that the estimates of overreaction

in tail risk episodes will be lower. We view the OLS approach as setting a lower bound

(in absolute terms) on the magnitude of overreaction in tail risk episodes.

Next, to ensure that our event study results rely on tail risk episodes and not reces-

sionary events, we focus on non-recession episodes. We obtain similar findings with our

main results. Based on the event study when there are no recessions during tail risk

events, Figure B.4 in the online appendix continues to provide evidence of overreaction

behavior. In addition, Figure B.5 in the online appendix plots abnormal returns during

different non-recessionary time periods. These provide further evidence that overreaction

is driven by tail risk episodes and not economic crisis per se.

We also show that our findings are robust to our choice of data. Here, we move away

from VIX and consider an alternative measure of macroeconomic uncertainty based on

Jurado et al. (2015), which is constructed using a set of predictors in a factor augmented

vector autoregression.14 Table B.1 shows the regression in Equation (31), where we test

whether uncertainty shocks lead to a decrease in expectations during tail risk episodes.

The coefficient of the interaction term between uncertainty and tail risk episodes α3

remains economically and statistically significant. This suggests that our evidence is

robust to the use of VIX (a measure of financial uncertainty) or a broad-based measure

of macroeconomic uncertainty (Jurado et al. (2015)).

14Since uncertainty is only relevant for Proposition 3 and 4, we do not conduct robustness exercises
related to alternative uncertainty measures for Proposition 2.
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5 Conclusion

In conclusion, we find that tail risk matters for expectations. By incorporating tail risks

in a Bayesian learning framework with information frictions, we have three main findings.

First, we show that individuals overreact under tail risk, that is, individuals are excessively

optimistic and pessimistic compared to a Bayesian learning framework without tail risk.

We also show that our model can explain part of behavioral approaches such as diagnostic

expectations. Hence, we view our work as a complementary explanation to overreaction

observed in individuals. Since overreaction implies more volatile business cycles and

expectations, we highlight that we can dampen overreaction behavior by reducing tail

risk.

Second, under tail risk, uncertainty shocks lead to a decrease in expectations, which

implies more pessimistic forecasts. In comparison, uncertainty shocks do not influence

expectations in the absence of tail risks. Since economic agents rely on their expectations

in making decisions, changes in expectations due to uncertainty shocks could potentially

lead to suboptimal actions in economic agents. Our finding sheds light on an additional

channel in which uncertainty shocks are transmitted to the economy.

Third, we find that the magnitude of overreaction under tail risk depends on the level

of uncertainty in the economy. In particular, we attempt to explain overreaction cycles,

in which large magnitudes of overreaction are followed by overreaction that is smaller

in magnitude. Our explanation hinges on large surges in uncertainty during tail risk

episodes, which leads to an increase in overreaction.

Our theoretical and empirical findings have implications for policymakers. We high-

light the importance of reducing tail risks in managing expectations and show that tail

risks can partially explain behavioral biases, such as overreaction and extrapolative be-

havior. We could study how augmenting tail risk in theoretical models can explain

behavioral puzzles in macroeconomics for future work. This will tighten the relationship

between rational learning and behavioral biases. Also, more work can be done to evaluate

the effect of macroprudential policies that reduce tail risk and uncertainty through the

expectations channel. We leave this for future work.
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A Proofs of Propositions

Proposition 1. In the baseline model, posterior expectations are given by:

E(zt|szi,t) = rtµz + (1− rt)szi,t (38)

In the extended model, posterior expectations are given by

E(zt|szi,t) = rtµz + (1− rt)szi,t −B(p, γ, σet , s
z
i,t) (39)

rt =
σet

2

σet
2 + σ2

z

(40)

B(p, γ, σet , s
z
i,t) =

rtγpe
A12+A13

peA12+A13 + (1− p)eA22+A23
(41)

Proof.

f(zt|szi,t) =
f(szi,t|zt)f(zt)∫
f(szi,t|zt)f(zt)dz

(42)
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e
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2
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)2
]
· 1√
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σz
)2 + (1− p)e−

1
2
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·
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)2e
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2
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(
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.

Denote

A1 = peA11+A12+A13 (44)

A2 = (1− p)eA21+A22+A23 (45)

where
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Integrating (38) and (39), we obtain∫
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Substituting (46), (47) and (48) into (36),
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Proposition 2. After accounting for the effects of uncertainty shocks on E(zi,t|si,t), the

median forecaster (ei,t = 0) overreacts to news, that is,

E(zTRi,t |si,t) > E(zNi,t|si,t), if ui,t > 0 (57)

E(zTRi,t |si,t) < E(zNi,t|si,t), if ui,t < 0 (58)
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Proposition 3. Consider a median forecaster. An increase in prior uncertainty decreases

posterior expectations, that is,
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Differentiating C with respect to σe2t ,
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Sufficient condition: µz ≤ 0. In the case of a median forecaster, szi,t = µz ≤ 0.

Then ∂C
∂σe2t

< 0 =⇒ ∂B(p,γ,σet ,s
z
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Corollary 1. Under the condition 1−p
p
eC − 1 > 0, a forecaster who receives relatively bad

(good) news receive a signal with ei,t < 0, (ei,t > 0). An increase in prior uncertainty

decreases posterior expectations by more (by less) for a forecaster that receives relatively

bad (good) news. Mathematically,∣∣∣∣∂B(p, γ, σet , s
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Proposition 4. Under the condition 1−p
p
eC − 1 > 0, the magnitude of overreaction

increases in prior uncertainty σet , that is
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Consequently,

B(p, γ, σet , 0)−B(p, γ, σet , s
z
i,t) is increasing in σet if szi,t > 0.

B(p, γ, σet , 0)−B(p, γ, σet , s
z
i,t) is decreasing in σet if szi,t < 0.
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B Additional Figures and Tables

Figure B.1: Relationship between uncertainty shocks and posterior expectations based
on type of signal
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Notes: This figure presents the relationship between uncertainty shocks and posterior expectations based
on type of signal by increasing (decreasing) the signal by 1 unit.
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Figure B.2: Robustness Test for Tail Risk Episodes Threshold

Notes: This figure presents the 95 percent confidence interval bands of the estimates of α3 used in
Equation (31) with different tail risk episodes threshold.
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Figure B.3: Robustness Test for Event Study Abnormal Returns

(a) Tail Risk Threshold: > 90th Percentile(b) Tail Risk Threshold: > 50th Percentile

Notes: This figure presents the robustness test for the event study abnormal returns by varying the tail
risk threshold to 90th percentile (Panel a) and 50th percentile (Panel b)
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Figure B.4: Event Study Abnormal Returns during Non-Recession Periods

Notes: This figure presents the robustness test for the event study abnormal returns by focusing on tail
risk episodes that do not coincide with recessions.
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Figure B.5: Event Study of Non-Recession Episodes

(a) 1979 (b) 1995

(c) 2006 (d) 2011

Notes: This figure presents the abnormal returns at different time periods. The shaded grey area
represents tail risk episodes. The dotted lines denote 95 percent confidence interval bands.
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Table B.1: Regression Results between Sentiments and Uncertainty

Dependent Variable: logSt logSt
(1) (2)

logUNCt -0.746** 0.462***
(0.059) (0.013)

TRt -0.077***
(0.028)

logUNCt × TRt -0.277**
(0.141)

Observations 156 156
R2 0.91 0.91

Notes: Newey-West standard errors with a lag length
of 4 quarters are in parenthesis. *, ** and *** denotes
significance level at 10%, 5% and 1% respectively. Un-
certainty measures are from Jurado et al. (2015).
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