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Abstract

What shapes aggregate job polarization? The literature has emphasized the role of routine-
biased technological change (RBTC). Through the lens of general equilibrium model that ex-
plicitly accounts for firm heterogeneity, I show that labor supply factors are relatively more
important than RBTC in explaining job polarization. RBTC induces substitution of routine
occupations within firms, which decreases the share of routine occupations in the aggregate.
However, in contrast to a representative firm framework, it also increases the productivity of
large routine intensive firms, which increases their aggregate employment share. Counterfac-
tual experiments using the estimated model show that the net effect is to decrease the aggregate
share of routine occupations by 2.34 pp, approximately 21.7% of the total decline. Substitution
channel decreases the aggregate employment share of routine occupations by 5.77 pp while
the productivity channel increases it by 3.38 pp. I find that the shift in the educational compo-
sition of the labor force and shifts in worker preferences explain the rest of the decline in the
aggregate employment share of routine occupations.
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1 Introduction

The employment share of routine occupations - those focused on performing procedural, repeti-
tive tasks - declined by 10.9 percentage points (pp) between 1994 and 2015 in France. A similar
trend has been documented across many industrialized countries, including the US, and in many
cases it began much earlier than 1994.1 The literature has emphasized that this phenomenon of
job polarization - wherein the aggregate employment share of routine occupations declined, while
it increased for non-routine occupations - is driven by routine-biased technological change. The
main idea behind this hypothesis is simple: as information and communication technology be-
comes more productive in performing repetitive tasks, it replaces workers in routine occupations
who previously performed these functions in the economy and raises the demand for workers in
non-routine occupations who perform tasks that are complementary to routine-intensive tasks.

In this paper, I argue that routine-biased technological change (RBTC) has important macroe-
conomic implications, especially for aggregate welfare, but it is not the main driver of job polar-
ization. I find that changes in the educational composition of the labor force and shifts in worker
preferences play a relatively more important role in explaining aggregate job polarization. I show
this to be the case for France, a country that has rapidly polarized starting from the mid-1990’s.

I analyse the role of RBTC in a general equilibrium model that accounts for both firm and
worker heterogeneity. Using this framework, I find that RBTC affects the aggregate employment
share of routine occupations through two opposing channels. On the one hand, RBTC induces
within-firm substitution of routine occupations by non-routine occupations. As a result, on aver-
age, firms shift the optimal occupational mix they employ over time away from routine occupa-
tions. This substitution channel, conventionally emphasized in the literature, reduces the share of
routine occupations in the aggregate. On the other hand, however, RBTC has important effects
on the firm-size distribution as it affects the productivity of routine and non-routine intensive
firms disproportionately. Routine intensive firms, who also happen to be the largest firms in the
economy in terms of the number of workers they employ, see substantial improvements in their
productivity due to RBTC. As a consequence, they capture an even bigger share of aggregate em-
ployment over time. This productivity channel, through its impact on routine intensive firms, raises
the share of routine occupations in the aggregate. A key contribution of this paper is to demon-
strate that the productivity-enhancing channel is quantitatively important and partially offsets
the decline in the aggregate share of routine occupations induced by the substitution channel. An
important implication of this result is that it is not innocuous to abstract from firm heterogeneity
while analysing the role of RBTC on aggregate job polarization.

I begin by documenting new empirical evidence on the firm-level mechanisms driving ag-
gregate job polarization. While job polarization has been previously documented for France by
Harrigan et al. (2016) and Albertini et al. (2017), surprisingly little is known about the distribution

1For further evidence on job polarization, see Goos and Manning (2007) for UK, Goos et al. (2009) for 16 European
countries and Acemoglu and Autor (2011) for the US. See Bárány and Siegel (2018) for evidence that job polarization
began as early as the 1950’s in the US.
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of occupational composition within and between firms, and how this has changed over time.2

Using French administrative data, I provide answers to these questions. I decompose whether
aggregate job polarization is driven by changes in the occupational composition within firms or
due to changes in employment growth between firms or due to entry and exit of firms. I find
that within- and between-firm changes are quantitatively important in explaining aggregate job
polarization; entry and exit of firms play a relatively small role in driving aggregate polarization.

Motivated by these facts, I construct a static, general equilibrium model to rationalize the em-
pirical evidence and to quantify the role of RBTC shocks in explaining them. Given the impor-
tance of between-firm effects in explaining job polarization, I depart from a representative-firm
framework and explicitly account for firm heterogeneity in the model. A firm produces its out-
put by combining abstract, routine and manual occupations. These occupations are imperfectly
substitutable in the production technology of the firm. RBTC is modelled as a shift in the rel-
ative distribution of firm and occupation-specific factor-augmenting productivity over time. On
the other side of the market, there are two types of workers, high and low-skilled, who endoge-
nously sort themselves into one of three occupations. In equilibrium, aggregate job polarization
and changes within- and between-firm are explained by the interaction of two forces: non-neutral
technological change that makes workers in routine occupations relatively more productive; and
supply shocks that change the educational composition of the labor force and the disutility cost of
working in routine occupations over time.

Equipped with the model I estimate the key structural parameters from the data. Estimat-
ing production function parameters from a cross-section is challenging due to endogeneity issues:
firms choose their optimal labor demand conditional on their knowledge of technology shocks
that are unobserved by the econometrician. Similar issues make it challenging to identify supply-
side parameters. In general, estimating the slope of the demand and the supply curve requires at
least two instruments. However, in specific cases, economic theory provides sufficient restrictions
on demand and supply equations such that the two slopes can be identified by a single instru-
ment. I rely on the insights developed in a recent paper by Zoutman et al. (2018) and instrument
wages in the model by employer’s payroll taxes to estimate the key elasticity parameters of the
model. Following the literature, I use a nested-CES specification to model the firm’s production
technology. The estimate for the elasticity of substitution between abstract and routine occupa-
tions is 1.75 and for the composite of abstract and routine occupations with manual occupations is
2.64.3 Conditional on model primitives, theory provides a direct link between quantities observed
in the data and unobserved technology shocks. Having estimated the structural parameters, I
infer technological change through the lens of my model.

Finally, I perform counterfactual exercises to quantify the importance of RBTC in explaining

2A notable exception is Cortes and Salvatori (2019).
3This is high compared to the values found in the literature. To the best of my knowledge, the only other estimate of

the elasticity of substitution in the literature is by Goos et al. (2014), who find a value between 0.53 and 0.80 depending
on their specification. They estimate it with 21 occupations (compared to three in this model) in a partial equilibrium
framework. The key results of the paper do not change if I use the estimated values from Goos et al. (2014).
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the observed facts. To do so, I hold supply and occupation-specific tax parameters fixed to their
level in 1994 and let RBTC shocks evolve as they do in the data. Given that occupational choice is
endogenous in the model, if RBTC is the key driver of aggregate job polarization then this counter-
factual should be able to explain the changes in the employment shares as observed in the data. I
find that the share of routine occupations decreased by 2.34 pp compared to 10.9 pp decline in the
data. This result is driven by the counteracting effects of the substitution and productivity chan-
nels mentioned at the beginning of this section. Quantitatively, the substitution channels accounts
for 5.77 pp decline in the aggregate share of routine occupations. The productivity channel, on the
other hand, increases the share of routine occupations by 3.38 pp.

Changes in the educational composition of the labor force explain an additional 3.05 pp decline
in the share of routine occupations. In the case of France, like in other industrialized countries, the
share of college-educated workers increased substantially over time. As this share increased, there
were increasingly more workers who had a comparative advantage in performing non-repetitive
tasks that required problem-solving, persuasion and managerial skills. Workers equipped with
such skills sorted into abstract (non-routine cognitive) occupations, which required a high-level of
analytical aptitude and paid higher wages on average. Changes in occupation-specific tax rates’
play a relatively small role in explaining the changes in the employment share of routine occupa-
tions.

Finally, shifts in worker preferences lead to a decline of 5.60 pp in the share of routine occu-
pations. Through the lens of the model, these shifts in worker preferences capture changes in
occupation-specific non-pecuniary factors such as disutility costs. Such a shift induces workers,
especially those that are low-skilled, to switch from routine occupations to non-routine manual
occupations that require situational adaptability, visual and language recognition and in-person
interactions. However, these preference parameters might also capture forces that have occurred
in the French economy that I do not directly account for in my model which affect worker’s oc-
cupational choice and employment during the time period under study. Potentially relevant fac-
tors that I have abstracted from include changes in policy affecting the incentive to participate in
the labor market, offshoring, changes in the minimum wage and changes in occupation-specific
monopsony power. In my view, the generality of the model provides a useful template for future
quantitative research in evaluating the role of RBTC and other factors in contributing to the labor
market outcomes discussed in the paper.

Relation to Literature. This paper contributes to two strands of the literature. The first strand
of the literature documents aggregate job polarization and highlights the role of RBTC in driving
this phenomenon. Autor et al. (2003) showed that ICT raises demand for non-routine cognitive
tasks, reduces it for routine tasks and has very little impact on manual tasks. Autor et al. (2006)
and Goos and Manning (2007) subsequently documented, in line with the predictions of RBTC
hypothesis, high employment growth in low-paying service and high-paying professional and
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managerial jobs, and a decline in the number of jobs in the middle of the income distribution.4

Goos et al. (2014) showed that job polarization is pervasive across European economies and has
within-industry and between-industry components that are both important. They develop a par-
tial equilibrium model to explain these facts and showed that RBTC is relatively more important
compared to offshoring in explaining job polarization and changes within- and between-industry.5

In contrast to this strand of the literature, using administrative firm-employee-level data, I
show that aggregate job polarization is not exclusively a within-industry, within-firm phenomenon;
changes in employment growth between firms (within-industries) is an important channel in un-
derstanding aggregate job polarization. An implication of this empirical finding is that models
that rely on within-firm substitution of routine occupations by non-routine occupations to explain
job polarization are missing out on an important margin of firm adjustment to biased technological
change, their size. Moreover, by not explicitly accounting for firm heterogeneity in their analysis,
these papers apportioned a larger role to RBTC compared to labor supply shifts in explaining
aggregate job polarization.

Closer to this paper, a more recent strand of the literature has focused on accounting for firm
heterogeneity in their analysis of aggregate job polarization. Notably, Heyman (2016) and Harri-
gan et al. (2016), using Swedish and French administrative data, respectively, perform a similar de-
composition as in this paper and highlight the importance of within- and between-firm changes in
explaining aggregate job polarization.6 In a reduced-form setting, they analyze how the observed
patterns of changes within firms and between firms are related to prominent explanations for job
polarization such as routine-biased technological change, offshoring and trade. Heyman (2016)
finds that the degree of routineness is the most important explanation for the within-firm patterns
observed in the data. Accounting for endogeneity issues in firm-level regressions, an issue not
directly addressed in Heyman (2016), Harrigan et al. (2016) reach similar conclusion. They find
that those firms that had a higher employment share of techies - engineers and technicians with
skills and experience in sciences, technology, engineering and math (STEM) - in 2002 saw greater
within-firm polarization and grew faster, from 2002 to 2007.

In this paper, I expand their analysis to a longer time frame and find that their conclusion
concerning the importance of within- and between-firm changes in explaining aggregate job po-
larization remains intact.7 However, in contrast to the reduced-form approach adopted by this
strand of the literature, given the emphasis of this paper to disentangle the effects of technology
shocks and labor labor supply shocks in explaining job polarization, I use a more structural ap-
proach. I construct a general equilibrium model where job polarization can be driven either due
technological change, as emphasized by these two papers, or due to compositional changes of the

4Asplund et al. (2011) used administrative micro-data for Finland, Norway and Sweden and documented job po-
larization for these countries. Adermon and Gustavsson (2015) used Swedish administrative data to document job
polarization in Sweden.

5To measure RBTC and offshoring, they rely on the extent to which an occupation consists of repetitive tasks and
the extent to which it can be offshored. They collect this information from DOT.

6Unlike this paper, Harrigan et al. (2016) do not aggregate occupations into three groups.
7Harrigan et al. (2016) focus on the period between 1994 and 2007 while Heyman (2016) focuses on 1997 and 2013.
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labor force that increases the supply of high-skilled workers in the economy. The key advantage of
my approach is that it allows me to quantify the importance of each of these drivers in explaining
aggregate job polarization and its split into within-firm and between-firm components.

Methodologically speaking, this paper is most closely related to Bárány and Siegel (2020). The
key motivation of their paper is to study drivers of employment reallocation across sectors and
occupations. They adopt a general equilibrium model and infer occupation-sector specific pro-
ductivity using the production side of their model. I adopt a similar strategy in this paper and use
the relative first order conditions and labor demand equations to infer RBTC shocks. However,
there are two differences between their work and this paper. While Bárány and Siegel (2020) are
interested in quantifying the importance of neutral-, sector-, and occupation-specific technolog-
ical change in explaining employment reallocation across sectors, I am interested in quantifying
the importance of RBTC and supply shocks in explaining job polarization. Second, unlike Bárány
and Siegel (2020), who calibrate the elasticity of substitution parameters, I estimate them using an
instrumental variable approach. In this paper, I show how one can use the aggregate variation
over time in payroll tax rates as instruments to identify both supply and demand elasticities.

Outline. The remainder of the paper is structured as follows. Section 2 presents the data and em-
pirical analysis. Section 3 builds a general equilibrium model to rationalize the facts and quantify
the importance of RBTC and supply shocks in explaining job polarization. Section 4 lays out the
estimation strategy followed by results of the counterfactual exercises in Section 5. The last section
concludes. Additional details are found in the Appendix.

2 Empirical evidence

In this section, I begin by providing further information concerning the administrative data used
in the paper. I then proceed to document facts pertaining to aggregate job polarization and
changes in the wage structure in France.

Data description. I consider the period between 1994 and 2015 and use two sources of French ad-
ministrative data: the DADS Postes and FICUS/FARE.8 Additionally, I also use information from
the French Labor Force Survey (Enquête Emploi) to collect information on the educational composi-
tion of the workforce by occupation and labour force participation. The worker-level information
is obtained from DADS Postes. It reports information on wages, hours worked and occupation for
the universe of workers and allows me to identify the firm at which each individual worker is em-
ployed. Consequently, I am able to observe the entire workforce of a given firm between 1994 and
2015. No individual characteristics of workers, such as the level of education, worker identifier
or labor market experience is available in the DADS Postes. There is no additional information

8DADS stands for Déclaration Annuelle des Données Sociales in French. DADS Postes is restricted data set and it is
administered by the French National Statistical Institute (INSEE)
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concerning the firm beyond the firm identifier and firm-level aggregates pertaining to firm size
and average wages. I merge DADS Postes with FICUS/FARE (using the unique firm identifier
"SIREN" in both datasets) which contains balance sheet data of firms. From it, I extract measures
of total employment, value-added and industry affiliation of firms. I keep all workers between the
age of 18 and 65 and include all firms that hire at least one worker in each of the three occupations:
abstract, routine and manual. Further details on classifying occupations into abstract, routine and
manual groups are provided in Appendix A.

Aggregate job polarization in France. In Table 1, I document the level of the employment share
of the three occupations and its change over time for France and the US. I find that routine em-
ployment constitutes the bulk of aggregate employment in both the countries. In 1994, 64% of
aggregate employment was routine employment in France while in the US it was 54%.

Between 1994 and 2015, I observe that the employment share of routine occupations fell by
10.9 percentage points (pp), similar to what is observed in the US. In Figure 1, I show that the
employment share of routine occupations has steadily declined over time. While in the US, a
bulk of the decline in routine occupations is compensated by an increase in employment share
of abstract occupations, in France we see that the 56% of the decline in routine occupation is
compensated by an increase in manual occupations and the rest by abstract occupations.

In Figure A1, I document that a majority of the decline in the employment share of routine
occupations in France is driven by a decline in the employment share of construction workers,
electrical machinery operators, foremen and assembly line workers. The increase in the employ-
ment share of abstract occupations is explained due to the increase in the employment share of
engineers, professional and managerial workers. Finally, similar to the US, the increase in the em-
ployment share of manual occupations is explained by the increase in the employment share of
personal service occupations such as restaurant servers, food preparation workers, hotel employ-
ees, barbers, hair-stylists, beauty-shop managers, child-care specialists and residential building
janitors.

Finally, the decline in the employment share of routine occupations is not limited to shift in
the sectoral composition of the economy away from routine-intensive industries like manufactur-
ing. In Appendix A, Figure A2, I replicate the graph in Figure 1 separately for manufacturing and
non-manufacturing industries. I find that the share of routine occupations declines in both these
industries. Compared to 1994, in manufacturing, the employment share of routine occupations
decline by approximately 7 pp, while in non-manufacturing declined by more than 10 pp.

Decomposing aggregate job polarization. To better understand the change in the aggregate em-
ployment share of routine occupations, I decompose whether this is driven by changes in the
occupational composition within firms or due to changes in employment growth between firms
or both. This, it tells us if the decline in the aggregate share of routine occupations is driven by
within-firm substitution of routine occupations by abstract and manual occupations or due to low
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Table 1: Aggregate Job Polarization: France vs. US

Level of employment share

(in %)

Change in employment share

(in pp)

France U.S. France U.S

1994 2015 1994 2015 1994-2015 1994-2015

Abstract 13.0 17.6 32.0 40.0 4.6 8.0

Routine 64.0 53.1 54.0 43.0 -10.9 -11.0

Manual 22.0 28.2 14.0 17.0 6.2 3.0

Notes: Author’s own calculations using DADS Postes. Aggregate employment share of occupation o is measured as the
total number of worker employed in occupation o divided by total workers employed in the economy at time t. The
numbers from the U.S. are borrowed from Foote and Ryan (2015).

employment growth of routine-intensive firms.
Denoting the aggregate share of occupation o at time t as sot, this can be written as:

sot = ∑
j

sojtψjt

where sojt is the share of employment of occupation o in firm j at time t and ψjt is the employment
share of firm j in the aggregate at time t. The change in the employment share of occupation o can
be written as:

∆sot = ∑
j∈C

ψj∆sojt︸ ︷︷ ︸
∆ Within

+ ∑
j∈C

soj∆ψjt︸ ︷︷ ︸
∆ Between

+ψNt (sNot − sCot)︸ ︷︷ ︸
Entry

+ψXt−1(s
C
ot−1 − sXot−1)︸ ︷︷ ︸

Exit︸ ︷︷ ︸
Net Entry

(1)

where ∆ indicate change over time, C denotes the set of continuing firms, i.e. those firms that are
present in period t and t− 1 of the decomposition, N denotes the set of entering firms, i.e. those
firms that are present in period t but not in period t − 1, X denotes the set of exiting firm, i.e.,
those firms that are present in period t− 1 but not in period t, sGot denotes the share of occupation
o in total employment of set G ∈ {C,N ,X} and ψGt denotes the employment share of set G.

The first term denotes the within-firm effect. It tells us how much of the aggregate change
is due to changes in the occupational composition within firms, holding fixed the employment
share of the firm. The second component is a between-firm effect and it tell us how much of the
aggregate change is driven due changes in the employment share of firms, holding fixed the occu-
pational composition within firms. The third component indicates the contribution of entry to the
aggregate change in employment share. It is positive when the employment share of occupation
o in new firms is higher than in continuing firms in period t. The fourth term denotes the contri-
bution of exit. It is positive if the share of occupation o in exiting firms is lower in surviving firms
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Figure 1: Job Polarisation in France between 1994 and 2015
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Notes: Author’s own calculations using DADS Postes. I normalize the share of each occupation to 0 in 1994 and plot
the difference in share over time relative to the initial period.

in period t− 1. The result of this decomposition is documented in Table 2.
We can draw three conclusions from Table 2. First, the decline in the aggregate employment

share of routine occupations is explained by changes in the occupational composition within firms.
On average, firms reduced the employment share of routine occupations by 8.5 pp and increased
it by 7.1 pp for abstract occupations. The share of manual occupations increased within firms
by 1.3 pp, on average. This shows that firms have shifted their optimal occupational mix away
from routine occupations towards abstract occupations. Furthermore, this evidence is consistent
with the hypothesis of routine-biased technological change proposed by Autor et al. (2003). As
firms introduce ICT capital in the workplace, this new technology replaces routine workers and
complements abstract workers.

Second, the increase in the aggregate share of manual occupations is due to changes in employ-
ment growth between firms. Table 2 shows that the employment share of routine and abstract-
intensive firms declined by 3.0 pp and 1.6 pp, respectively, while that of manual-intensive firms
increased by 4.6 pp. This evidence is puzzling in light of RBTC. Firms that are intensive in routine
occupations should see a larger decrease in relative costs and output prices leading to a shift in
product demand towards these firms. Therefore, we should expect to see growth in the employ-
ment share of routine-intensive firms, but we the opposite in the data.

Third, new firms entering the labor market have a lower share of routine occupations and a
higher share of abstract and manual occupations compared to continuing firms. As a result, entry
contributes negatively to the change in the aggregate share of routine occupations (and positively
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Table 2: Decomposing Aggregate Job Polarization

∆sojt ∆ Within ∆ Between Entry Exit Net Entry W+B
∆

Abstract 4.6 7.1 -3.0 0.40 0.08 0.49 89.1%

Routine -10.9 -8.5 -1.6 -2.05 1.26 -0.79 92.6%

Manual 6.2 1.3 4.6 1.64 -1.34 0.29 95.1%

Notes: Author’s own calculations. ∆ indicates the change in employment share over time. The figures are calculated
using DADS Postes. W+B

∆ documents the contribution of within and between components (in percentage terms) in
explaining the aggregate decline in the share of occupation o ∈ {A, R, M}

to abstract and manual occupations). On the other hand, firms that exited the labor market had a
higher share of manual occupations and a lower share of abstract and routine occupations com-
pared to continuing firms. Consequently, exit contributes positively to the change in the aggregate
share of abstract and routine occupations and negatively to the share of manual occupations. The
net entry component, which is the sum of entry and exit, explains less than 11% percent of the
change in share of each of the three occupations.

The within and between components in Eq. 1 are computed using the set of surviving firms
between 1994 and 2015. Since less than 10% of firms survive over this time period, the result
of my decomposition exercise in Table 2 might be sensitive to my choice of starting and ending
year. To demonstrate that this is not the case, I perform a series of counterfactual exercises to see
the effect of each of the four components of Eq. 1 individually over time. I set the initial level
of the share of occupation o to its level in 1994 and then cumulatively add the changes of each
component in Eq. 1 over time.9 The result of this exercise is documented in Figure 2. It is evi-
dent from the figure that within-firm substitution of routine occupations by abstract occupations
and increase in the employment share of manual-intensive firms are both secular trends over time.

Summary of facts. In summary, I document the following facts in the data. First, I find that the
employment share of routine occupations in France has declined. Second, the firm-level decom-
position highlights that the decline in routine occupations is driven by within-firm substitution of
routine occupations (primarily) by abstract occupations. Third, the employment share of abstract
and routine-intensive firms declined and that of manual-intensive firms increased. To the best of
my knowledge, facts 2 and 3 have not been documented for France before and are new to the liter-
ature. These equilibrium dynamics of employment that I have documented can be driving partly
due to technology shocks or labor supply shocks to educational composition and preferences. In
what follows, I provide a general equilibrium framework to disentangle the effect of each of these
shocks on driving the observed facts.

9A similar exercise is performed in De Loecker et al. (2020), see figure 4.
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Figure 2: Decomposition of aggregate job polarization at the firm level
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Notes: Author’s own calculations using DADS Postes. I set the initial level of the share of occupation o to its level in
1994 and then cumulatively add the changes of each component in Eq. 1 over time. Notice, the set of surviving firms
between period t− 1 and t will be different from those in period t and t + 1. As a result, the total cumulative change of
each of the component will not be same as the numbers in Table 2.

3 Model

Motivated by the facts, I construct a static model to quantify the importance of RBTC and labor
supply shocks in explaining job polarization and the split into within-firm and between-firm com-
ponents. I begin by outlining the setup of the model, followed by the model solution.

3.1 Setup

Environment. There are two types of agents in the economy: firms and workers. There is a con-
tinuum of heterogeneous firms in the economy indexed by j. The measure of firms is J and it is
assumed exogenous. I abstract from entry and exit decision of firms given that net entry is quan-
titatively less important in explaining aggregate job polarization in the data.10 Firms hire abstract,

10I can endogenize entry and exit in the model by assuming a fixed entry cost like in Melitz (2003)
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routine and manual occupations to produce output. I assume that there is a continuum of workers,
indexed by i, who are organized into a stand-in household. The measure of workers in the econ-
omy is N and it is assumed to be exogenous. The household consumes goods produced by the
firms, and maximizes utility subject to a budget constraint. There are two types of workers in the
economy: high- and low-skilled. Each worker supplies its unit of labor inelastically. Conditional
on being employed workers optimally self-select into one of three occupations. High- and low-
skilled workers compete in the same market which implies that in equilibrium there is a single
wage rate in each occupation which is common to both skills. The economy is in a decentralized
equilibrium, firms operate under perfectly competitive output and input markets, and prices and
wages are such that markets clear.

Technology. Firms produce output using three occupational labor inputs.11 I specify the produc-
tion function for a firm j as the following nested-CES specification:12

Qj =

[
(φMjNMj)

γM−1
γM +

{
(φRjNRj)

γA−1
γA + (φAjNAj)

γA−1
γA

} γA
γM

(γM−1)
(γA−1)

]κ
γM

γM−1

(2)

where Noj is the number of workers hired by firm j in occupation o ∈ {A, R, M}, φoj ∈ [0, ∞) is
firm and occupation specific factor augmenting technological change, γA ∈ [0, ∞) is the elasticity
of substitution of abstract and routine occupations, γM ∈ [0, ∞) is the elasticity of substitution
between the manual occupations and the composite of abstract and routine occupations and κ

measures the returns-to-scale.13 Since the output market is perfectly competitive, I restrict κ < 1
(decreasing returns-to-scale) to ensure profit maximization provides a unique solution.14

I do not impose any parametric restriction on the joint distribution G(φAj, φRj, φMj). A key im-
plication of having φoj differ across firms is that in equilibrium the ratios NAj

NRj
, NMj

NRj
and NAj

NMj
will also

differ across firms. In contrast, if technological change was modelled either as Hicks’-neutral or
occupation-augmenting, the relative ratio of occupations would be identical across firms. Finally,
each firm produces an identical good and sells it in the output market at price P which I normalize
to 1 without loss of generality.

11Not modelling capital as a distinct input to labor-augmenting technologies is consistent with the view that techno-
logical change is embodied into capital.

12An alternative, isomorphic representation of the production function in Eq. 2 is the following:

Qj =

[
βM(φ̃Mj NMj)

γM−1
γM + (1− βM)

{
(1− βA)(φ̃Rj NRj)

γA−1
γA + βA(φ̃Aj NAj)

γA−1
γA

} γA
γM

(γM−1)
(γA−1)

]κ
γM

γM−1

The two formulations are the same since one can rewrite φoj = β
γM

γM−1

M φ̃oj. One can do a similar manipulation for φAj
and φMj

13In principle, I can allow for a different nest than the one specified in Eq. 2. However, this is the specification that
tends to get used most often in the literature on aggregate polarization. For instance, vom Lehn (2020) uses a similar
specification in his work on aggregate labor market polarization in the US.

14In the estimation, I will test the validity of this restriction.
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Occupational choice. I assume that there are two types of workers: high- and low-skilled.15 Frac-
tion θH, assumed exogenous, of the total labor force is high-skilled.16 Worker’s can either choose
to be employed or remain unemployed. Conditional on being employed in the labor market, they
self-select into abstract, routine or manual occupations. They receive a net wage (1 − τW

o )Wo,
o ∈ {A, R, M}, for every hour worked. τW

o denotes the tax rate paid by workers to the gov-
ernment while Wo is the gross wage, both of which differ by occupation. Unemployed workers
receive unemployment benefits bK, financed by the government’s tax collection.

High- and low-skilled workers are identical in terms of their productivity but differ in terms
of the disutility cost they pay, denoted χos, s ∈ {H, L}. I assume that disutility differs by skill
and occupation.17 This allows me to capture the empirical fact the workers with the same level
of education work in different occupations. The utility associated with working in abstract (A),
routine (R), manual (M) occupations or being unemployed (K) is specified as follows:

uixs =

ln[(1− τW
x )Wx]− χxs +

εixs
σs

, x ∈ {A, R, M}, s ∈ {H, L}

ln bK + εiKs
σs

, if x = K, s ∈ {H, L}
(3)

where σs is a parameter that pins down the scale of utility and εios (εiKs) denotes the idiosyncratic
non-pecuniary benefits of working in occupation o (being unemployed). Eq. 3 implies that, con-
ditional on skill, there exists a distribution of utility across individuals for the same occupation.
I assume that εios (εiKs) is independent and identically distributed type 1 extreme value. Given
this assumption, χos pins down the mean of the utility distribution and σs pins down its scale. If
χos is equal to zero and σs is equal to one, then the share of workers entering occupation o will be
independent of skill. See Eq.16 below for more details.

Government. The government collects taxes from employed workers and firms to finance the
unemployment benefits of workers not participating in the labor force.

T = ∑
o

Wo No[τ
W
o + τF

o ] (4)

where τW
o denotes the tax rate paid by workers in occupation o, τF

o denotes payroll tax rate paid

15In the empirical application of my model, I will refer to workers with a college-degree as high-skilled and workers
with educational qualification less than college as low-skilled.

16It is straightforward to endogenize choice of education in this model. I could assume a setup with sequential
decisions. Worker’s first chose their education level and then decide if they want to work or stay out-of-the labor force.
If they want to work they can self-select into one of the three occupations. Conditional on the draw of their expected
idiosyncratic cost, worker’s can then choose whether to attain a college-degree or not. A similar sequential setup is
used in Cortes et al. (2017)

17I do not explicitly model heterogeneity in labor efficiency across individuals. This is similar to the assumption in
Bárány and Siegel (2020). I do this for two reasons. First, if I allowed occupational sorting conditional on efficiency
then I could not separately identify the efficiency of a worker in the model from the number of worker a firm hires. I
could only do so in the aggregate. Second, it allows me to take wages directly from the data.
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by firms for occupation o, No denotes total employment in occupation o and T denotes the total
tax collected by the government. The unemployment benefits (bK) is financed from government
tax receipts

bK (NKH + NKL)︸ ︷︷ ︸
NK

= ρT, ρ ∈ (0, 1)

where ρ denotes the fraction of the total tax receipts used to finance unemployment benefits. I
assume that the rest of the tax receipts are returned back to the household as a public good.

Household Preferences. Household members derive utility from consuming the output produced
by firms. The household collects the income earned by its members and allocates it to maximize
the following utility function:

max
Cj∀j

U = U(C) (5)

s.t.
∫ J

j=0
Cjdj︸ ︷︷ ︸

= C

= (1− τW
A )WANA + (1− τW

R )WRNR + (1− τW
M )WMNM + bK NK + (1− ρ)T + Π

where Cj denotes consumption of output produced by firm j and Π denotes aggregate profits. The
preference for the representative household is a limiting case of Constant Elasticity of Substitution
(CES) preferences. Since household can perfectly substitute one good for another - the implied
elasticity of substitution is infinity - the price of every good must be the same: Pj = Pq, for all
j, q ∈ [0, J], j 6= q. I assume that the aggregate output is the numéraire and normalize its price to
unity.

3.2 Model solution

Firm’s problem. Firms are price-takers in the input and output markets. Thus, the firm’s problem
is to choose their optimal labor demand conditional on market prices:

Πj = max
NAj,NRj,NMj

Qj − (1 + τF
A)WANA − (1 + τF

R)WRNR − (1 + τF
M)WMNM (6)

where (1+ τF
o )Wo denotes the total labor cost of hiring a worker in occupation o. Profit maximiza-

tion implies that the relative demand for abstract and routine occupations is

ln
NAj

NRj
= γA ln

(1 + τF
R)WR

(1 + τF
A)WA

+ (1− γA) ln
φRj

φAj
. (7)

The relative ratio of abstract and routine occupations is determined in equilibrium by relative
wages and relative efficiencies. Their effects on relative demand is mediated by γA, the elasticity
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of substitution. As relative wages of routine occupations increase, a firm would find it optimal to
use less of routine occupations in its production. Higher the value of γA, higher the relative de-
mand for abstract occupations due to increase in relative wages of routine occupations. Moreover,
as routine occupations become more productive (i.e. φRj

φAj
increases), its effect on relative demand

depends will depend on whether γA is less than or greater than 1. If γA < 1, then occupational
inputs are gross complements. In this case, an increase in relative productivity of routine workers
would imply an increase in the relative demand for abstract occupations. Intuitively, as routine
workers become more productive, firms require less routine workers to produce the same output.
If, instead, γA > 1, then occupations are gross substitutes and an increase in the relative productiv-
ity of routine occupations will increase the relative demand for routine occupations.

Similarly, the relative demand for manual occupations relative to routine occupations is as
follows:

ln
NMj

NRj
= γM ln

W̃R

W̃M
+ (1− γM) ln

φRj

φMj
+

γM − γA

1− γA
ln

[(
φRj

φAj

W̃A

W̃R

)1−γA

+ 1

]
(8)

where W̃o = (1 + τF
o )Wo. There are two key features of the expression above. First, if γA = γM =

γ, implying that the elasticity of substitution is the same for the three occupations, then the third
term in Eq. 8 disappears. In this case, Eq. 8 will be similar to Eq. 7, except that abstract occupation
will be replaced by manual occupations. I need to account for the third term given that I assume
a nested-CES specification.

Second, the effect of an improvement in the productivity of routine workers on relative de-
mand for manual and routine occupations will be mediated by γM, the elasticity of substitution
between manual occupations and the composite of abstract and routine occupations, and γA.

∂ ln NMj
NRj

∂φRj
= (1− γM)

1
φRj︸ ︷︷ ︸

Direct effect

+
γM − γA

φAj

(
φAj

φRj

)γA
(

W̃A

W̃R

)γA−1

︸ ︷︷ ︸
Indirect effect

> 0 if γA < γM < 1 (9)

Note again that, if γA = γM = γ, then the indirect effect (i.e., the second term of Eq. 9) disap-
pears. Eq. 9 states that if occupations are gross complements, i.e. γA < γM < 1, then improvements
in productivity of routine occupations will increase the relative demand for manual occupations.18

If occupations are gross complements then routine-biased technological change, the replace-
ment of workers in routine occupations by ICT technology, will be captured by an increase in
φRj
φAj

and φRj
φMj

. Given I observe wages and quantities in the data, conditional on γA and γM, I can
measure technological change for the universe of firms in the economy. This indirect approach to
measuring technological change is akin to Katz and Murphy (1992). We can see this more explicitly
by re-arranging Eq. 7 and expressing relative wages on the left-hand side instead of the relative

18If γM < 1 < γA, then an increase in φRj will increase NMj
NRj

if the direct effect dominates the indirect effect. If

γA < 1 < γM, then an increase in φRj will increase NMj
NRj

if the indirect effect dominates the direct effect.
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quantities. The resulting equation is reminiscent of the equation used by Katz and Murphy (1992)
to estimate skill-biased technological change, except that this relationship emerges directly from
the profit maximizing behaviour of firms in the model.

The key advantage of my approach is that I can measure technological change for the universe
of firms in the economy. This is often difficult if one relies on direct physical measures of technol-
ogy, investments in R&D or innovation, as it is difficult to find estimates of these measures directly
in the data outside manufacturing. Doms et al. (1997) use a direct measure by counting the usage
of advanced technology in production, however, their study is focused only on the manufacturing
industry in the US. I documented in the empirical section that the share of routine occupations has
declined even in non-manufacturing in France.19 Robots, on the other hand, are primarily used in
the auto industry and their use might have little to say about the rest of the economy.

The optimal labor demand for the three occupations are as follows:

NAj = κ
1

1−κ W̃−γA
A υ

γM(1−κ)−1
1−κ

j λ
γA−γM
Ωj

φ
γA−1
Aj (10)

NRj = κ
1

1−κ W̃−γA
R υ

γM(1−κ)−1
1−κ

j λ
γA−γM
Ωj

φ
γA−1
Rj (11)

NMj = κ
1

1−κ W̃−γM
M υ

γM(1−κ)−1
1−κ

j φ
γM−1
Mj (12)

where λΩj and υj are defined as follows:

υj =

[(
W̃M

φMj

)1−γM

+ λ
1−γM
Ωj

] 1
1−γM

, λΩj =

[(
W̃A

φAj

)1−γA

+

(
W̃R

φRj

)1−γA
] 1

1−γA

λΩj denotes the cost of hiring one unit of the composite of abstract and routine occupations and υj

is the marginal cost of the firm to produce an additional unit of output. For notational simplicity,
I suppress the dependence of λΩj and υj on equilibrium wages, the productivity shocks (φ’s) and
structural parameters except when necessary. Labor demand equations describe the standard
downward-sloping relationship between wages and quantities for each occupation. To pin down
a unique firm-size distribution, I need to ensure that κ < 1.

The equilibrium quantity and profits of the firms are as follows:

Qj =

(
κ

υj

) κ
1−κ

, Πj = (1− κ)Qj (13)

Expressions in Eq. 13 state that a more productive firms will produce a higher quantity and earn
a higher profit in equilibrium. Firms earn a fraction of their output as profits. If the production

19Autor et al. (1998) make use of computer equipment in their analysis to study the effect of computers on the labor
market. Difficulty with this approach is that computers today are ubiquitous and therefore leave very little variation to
exploit.
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technology exhibits constant returns-to-scale, i.e. κ is equal to 1, firms earn zero profit in equilib-
rium.

Finally, the assumption of a perfectly competitive output market is strong, especially given the
evidence presented by De Loecker et al. (2020) showing that aggregate markups in the US rose
from 21% above marginal cost in 1980 to 61% in 2020. In Deb et al. (2020), we explicitly account
for the possibility that output and input markets are both imperfectly competitive. We find that
changes in the output market power has a significant effect on the level of labor demand but little
effects on relative labor demand. We model imperfectly competitive markets by allowing firms
to compete with a few competitors in the goods and the labor market. These modifications give
rise to endogenous markups and markdowns which, in equilibrium, depend jointly on the market
structure, i.e. the number of competitors in a market, as well as the distribution of firm-specific
technology. In the counterfactual exercise, we shift the number of competitors in the goods market,
our measure of output market power that we estimate for the US data, and find that it decreases
labor demand proportionally. Consequently, its quantitative effect on relative quantities is negli-
gible. Based on these insights, I abstract from incorporating output market power explicitly in this
framework at this point.

Worker’s problem. The problem of a worker i is to decide whether to participate in the labor force
or not, and conditional on participation to choose which occupation to enter. This is a standard dis-
crete choice problem.20 The probability of a worker i of skill s entering into state x ∈ {A, R, M, K}
is defined as follows

Prixs = Prob [ uixs ≥ uiws, all w 6= x] (14)

= Prob [ εiws ≤ εixs + σs(Vxs −Vws), all w 6= x]

where for notational simplicity, I define Vxs as follow

Vxs =

ln[(1− τW
x )Wx]− χxs, if x ∈ {A, R, M}, s ∈ {H, L}

ln bK, if x = K, s ∈ {H, L}
(15)

If εixs is given, then the last expression of Eq. 14 is the cumulative distribution for each εixs eval-
uated at εixs + σs(Vxs − Vws), which, under the assumption that εixs is i.i.d. type 1 extreme value
equates to exp(− exp(−(εixs + σs(Vxs −Vws))). Since the ε’s are independent, the cumulative dis-
tribution over all w 6= x is the product of the individual CDFs. Of course, εixs is not given, and so
the probability is the integral of Prixs|εixs over all values of εixs weighted by its density:

20Much of the exposition of this sub-section is borrowed from Train (2009) for completeness sake. Interested readers
can read further details in Chapter 3.
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Prixs =
∫ (

∏
k 6=o

e−e−(εixs+σs(Vxs−Vws))

)
︸ ︷︷ ︸

= Prios|εixs

e−εixs e−e−εixs dεios =
eVxs

∑x′ eVx′s
(16)

The solution to the integral in Eq. 16 is a well-known logit choice probability. There are two key
features of this probability. First, Prixs is necessarily between zero and one. Second, when Vxs rises,
reflecting an improvement in the observed attributes of alternative (wages in a given occupation
increase or disutility cost of working in that occupation declines), with Vws ∀w 6= x held constant,
Prixs approaches one. As Vxs decreases, Prixs approaches zero.

Aggregation. Given the solution to the firm’s and the worker’s problem, I can now close the model
by aggregating the labor demand and supply functions of all the firms and workers, respectively,
in the economy. Once the aggregate labor demand and supply equations are derived, I can solve
for factor price to pin down the equilibrium of the economy. I start by aggregating labor demand
which will be characterized by the distribution of productivity and the measure of firms in the
economy.

Let φ = (φA, φR)
T and φ = (φA, φR, φM)T, we have that,21

ND
A = Jκ

1
1−κ W̃−γA

A

∫ ∞

0

∫ ∞

0

∫ ∞

0
υ(φ)

γM(1−κ)−1
1−κ λΩ(φ)γA−γM φ

γA−1
A g(φ) dφAdφRdφM (17)

ND
R = Jκ

1
1−κ W̃−γA

R

∫ ∞

0

∫ ∞

0

∫ ∞

0
υ(φ)

γM(1−κ)−1
1−κ λΩ(φ)γA−γM φ

γA−1
R g(φ) dφAdφRdφM (18)

ND
M = Jκ

1
1−κ W̃−γM

M

∫ ∞

0

∫ ∞

0

∫ ∞

0
υ(φ)

γM(1−κ)−1
1−κ φ

γM−1
M g(φ) dφAdφRdφM (19)

where ND
o denotes aggregate labor demand for occupation o and g(φ) denotes the joint pdf of

technology shocks. In a similar vein, I can aggregate total output and profits produced by firms in
the economy as follows:22

Q = Jκ
κ

1−κ

∫ ∞

0

∫ ∞

0

∫ ∞

0
υ(φ)

κ
κ−1 g(φ) dφAdφRdφM, Π = (1− κ)Q. (20)

I turn now to aggregate labor supply of workers across different occupations. To do so, I start
by replacing Vxs in Eq. 16 by its definition from Eq. 15 and dividing both the numerator and the
denominator by σsWK. Eq. 16 gives the share of workers in occupation o conditional on skill s.

21To derive Eq. 17 equation, I start from Eq. 10 and aggregate the demand for all firms in the economy:

ND
o =

∫ J

j=0
Nojdj, o ∈ {A, R, M}

Then, I commute the integration to φ’s rather than j to get Eq. 17.
22I assume that profits Π are distributed back to workers who supply their labor in a lump-sum manner. Given there

is no free entry of firms in the model, aggregate profit will be non-negative in the equilibrium.
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From this information, I can calculate the occupational labor supply conditional on skill s ∈ {H, L}
as follows:23

NS
os =

θsN × exp
[
σs[ln{(1− τW

o )Wo} − ln bK]− σsχos)
]

1 + Ξ
, if o ∈ {A, R, M} (21)

Ξ is defined as follows

Ξ = ∑
o′∈{A,R,M}

exp
[
σs[ln{(1− τW

o′ )Wo′} − ln bK]− σsχo′s)
]
.

NS
os denotes (with a slight abuse of notation) aggregate labor supply in occupation o conditional

on skill s.

Finally, using Eq. 21, I can define the aggregate occupation labor supply, NS
o , as follows:

NS
A = ∑

s∈{H,L}
NS

As (22)

NS
R = ∑

s∈{H,L}
NS

Rs (23)

NS
M = ∑

s∈{H,L}
NS

Ms (24)

Equilibrium. There are four markets in the economy: three labor markets for abstract, routine
and manual occupations and one market for aggregate output. As a result, there are four corre-
sponding prices, out of which the price of the aggregate good is normalized to unity.

Definition 1. The equilibrium is defined as a set of prices {WA, WR, WM} such that given prices:

1. the three occupational labor markets clear, i.e., the aggregate demand for labor equates aggregate
supply

2. the aggregate output market clears, i.e. C = Q

3. the firm-specific quantities maximize profits

4. the aggregate quantities maximize household utility

5. government budget constraint holds
23The total number of workers staying out-of-the labor force, conditional on skill s, is given as follows:

NKs =
s

1 + Ξ
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The computation of the equilibrium is straightforward. To pin down the three unknowns,
WA, WR and WM, I use the three occupational labor market clearing conditions to solve a system
of three equations in three unknowns. Conditional on the knowledge of these prices, all other
model objects can be calculated.

4 Estimation

In this section, I give details about the parameters I directly observe in the data and the ones that
I need to estimate. I specify the key identifying conditions to estimate the unobserved parameters
and the intuition behind my identification strategy. Once the model is estimated, I will use it to
conduct counterfactual exercises in the next section to quantify the role of RBTC and labor supply
shocks in explaining job polarization.

4.1 Observed parameters

Share of high-skill. The list of parameters directly observed in the data and their values are de-
scribed in Table 3. The share of high-skilled workers is calculated from the French Labor Force
Survey. Following Verdugo (2014), I define high-skilled workers as those who have at least two
years of education after completing their high-school diplomas. All other workers are categorized
as low-skilled. I find that the share of high-skilled workers increased from 23% of the total labor
force to 40% between 1994 and 2015. As documented by Verdugo (2014), this increase in college-
attainment in France is linked to education reforms implemented by the French government in
the mid-1990’s. The government created new technological and professional baccalaureates with
less stringent requirement to obtain the diploma compared to the previous high-school diploma
that spurred the access to university education in France.

Tax rate. The occupation-specific firm and worker tax rates are calculated using the work of Bozio
et al. (2016). The authors observe gross wages in the DADS and explicitly account for employer’s
payroll contribution to create a measure of the total labor cost. They separately calculate the evo-
lution of employer’s and employee’s payroll tax rate by each deciles of the wage distribution. I
use this information to construct firm’s and worker’s tax rates in Table 3.24

Equilibrium wages, quantities and unemployment benefit. I use DADS Postes to calculate the
number of workers hired (or the total number of hours employed) by each firm in the three occu-
pations. I use two separate definitions for occupational wage rates. The first definition calculates

24I define τF
M as the average of the employer’s payroll tax rate for the bottom two decile of the wage distribution. τF

R
is defined as the average of the employer’s payroll tax rate for deciles 3 to 8. Finally, τF

A is defined as the average of the
top two deciles. I use the same deciles to calculate τW

o , o ∈ {A, R, M}. In the data, I observe that the share of manual
occupations is very high in the bottom two deciles of the wage distribution and the share of abstract occupations is
equally high in the top two deciles. The share of routine occupations is high in the middle of the wage distribution.
This provides the rationale to calculate the tax rates for firms and workers as documented in Table 3
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Table 3: Parameters directly observed in the data

Parameter Description 1994 2015

θH Share of high-skilled 0.23 0.40

τF
A, τF

R , τF
M Employer’s SSC tax rates 0.44, 0.43, 0.38 0.47, 0.38, 0.18

τW
A , τW

R , τW
M Employee’s SSC tax rates 0.19, 0.21, 0.21 0.21, 0.22, 0.22

bK Unemployment benefits 13990 16470

Notes: The share of high-skilled workers is calculated from the French Labor Force Survey (Enquête Emploi). I define
high-skilled workers as the ones with at least two years of education after completing high-school (i.e. the workers
with Diplome superieure or Bac+2). The rest of the labor force is categorized as low-skilled. The firm and worker tax
rate by occupation is calculated using information from Bozio et al. (2016). The total number of firms in the economy is
calculated from DADS Postes.

the occupational wage rate as the average annual wages earned by workers employed in a given
occupation o. The second definition calculates it as the average annual wage of a narrowly defined
group - 25 to 35 year old men - to limit the influence of compositional changes. For the baseline
results presented in the next section, I use the first definition. However, the results are robust to
using the second definition. I calibrate the value of bK as follows:

bK = θRR
∑o(1− τW

o )Wo No

N − NK

where θRR is the replacement ratio, which is multiplied by the average (net) wages in the economy.
Using OECD, I set θRR ∈ (0.6, 0.7). Pinning down bK, also pins down ρ through the government
budget constraint.

4.2 Estimation strategy

In total, I have 5 parameters to estimate: κ, γA, γM, σH, σL. The first three parameters pertain to
the production function and the latter two pertain to worker’s occupational choice. Once I es-
timate these parameters, I can recover the joint distribution of technology G(φAj, φRj, φMj) non-
parametrically and estimates of the 6 disutility costs χos, one for each skill and occupation. I
estimate these parameters in three steps, as follows:

Step 1. Estimate κ, γA, γM using relative first order conditions in Eq. 7 and Eq. 8

Step 2. Given {κ̂, γ̂A, γ̂M}, back-out φAj, φRj, φMj using the structure of the model

Step 3. Estimate σH and σL and infer disutility costs as structural residuals

I describe each of these steps in detail below.
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Step 1. While the production function contains information on the three technology parameters
κ, γA and γM, the only parameter identified from it is κ. To see this, let us re-write the production
function as follows25

ln Qj = κ
γM

γM − 1
ln

EAj + ERj + EMj

EAj + ERj
+ κ

γA

γA − 1
ln

EAj + ERj

ERj
+ κ ln NRj + κ ln φRj (25)

where Eoj = (1 + τF
o )Wo Noj. The key advantage of Eq. 25 is that it is log-linear and I have reduced

the original equation with three productivity shocks to only one. Running an OLS on Eq. 25 will
not allow me to recover the structural parameters since firms choose their optimal labor demand
conditional on knowledge of φRj, which is unobserved by the econometrician. Theory provides
a link between what is unobserved (the φ’s) and the equilibrium objects that I observe directly in
the data (i.e. wages and workers hired by firms in each occupation). Hence, I can write

φRj = h (NAj, NRj, NMj, WA, WR, WM, τF
A, τF

R , τF
M) (26)

where h(·) is known. Replacing φRj in Eq. 25 by h(·) from Eq. 26, simplifies it as follows:

ln Qj =
1
κ
+ ln(EAj + ERj + EMj) + ωj (27)

where ωj is an i.i.d. measurement error introduced to keep the expression stochastic. As can be
seen from Eq. 27, I cannot identify the parameters pertaining to the elasticity of substitution (γA

and γM) from the production once I fully control for unobserved heterogeneity in φRj. This is rem-
iniscent of the functional dependence problem highlighted by Ackerberg et al. (2015): conditional
on fully controlling for φRj, there is no independent variation in NRj,

EAj+ERj
ERj

and EAj+ERj+EMj
EAj+ERj

to
identify γA and γM. However, κ is identified from Eq. 27 and I estimate it using OLS.26

To identify γA, I use the relative FOC first presented in Eq. 7. I re-write the expression by
taking expectations on both sides and including a time sub-script t as follows:

E ln
NAjt

NRjt
= γAE ln

(1 + τF
Rt)WRt

(1 + τF
At)WAt

+ (1− γA)E ln
φRjt

φAjt
. (28)

where the expectation is over j. Running an OLS on the above expression will not allow me to
recover an unbiased and consistent estimate of γA since the relative wages will be correlated with
the aggregate component of the relative technology shocks (which is unobserved).

I will rely on the time-series variation in the tax rate in my estimation of γA. Specially, I will

25To derive this equation, start by rewriting the production function as follows.

Qj = (φRj NRj)
κ

[(
φMj NMj

φRj NRj

) γM−1
γM

+

[
1 +

(
φAj NAj

φRj NRj

) γA−1
γA
] γA (γM−1)

γM (γA−1)
]κ

γM
γM−1

Next, invert the relative FOC’s of NAj
NRj

and NMj
NRj

to express the relative ratio of φ’s as a function of observables (relative
wages and relative quantities). Finally, take logs on both sides to get Eq. 25.

26I replace the left hand side of Eq. 27 by value-added observed in the balance-sheet data.
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instrument the relative labor cost, ln (1+τF
Rt)WRt

(1+τF
At)WAt

, in Eq. 28 by the employers payroll contribution
(1+τF

Rt)

(1+τF
At)

. Payroll taxes are either used to finance future benefits for workers (e.g., pensions) or
the French public health system and are a plausible source of exogenous variation. As has been
documented by Bozio et al. (2016), for many countries the difference between gross wages and
total labor cost paid by the employer is small and this wedge has remained stable. The picture
is very different for France where payroll taxes are substantial (around 17% of GDP) and have
dramatically changed over the period starting the mid-1990’s.27 France has the highest payroll tax
rate among OECD countries, with marginal rates close to 40% of gross earnings. Employer payroll
taxes have been reduced on low-wage earners and increased on high-wage earners.28 Hence, it can
be argued that the payroll taxes evolve independently of the aggregate technology shocks in the
economy and constitute a valid instrument in this setting.29 Thus, the key identifying assumption
in estimating γA is the following:

(1 + τF
Rt)

(1 + τF
At)
⊥⊥ E ln

φRjt

φAjt
(29)

Finally, to estimate γM, I use the relative FOC between manual and routine occupations. I
follow the same steps as outlined in the estimation of γA. The key identifying assumption in
estimating γM is the following

(1 + τF
Rt)

(1 + τF
Mt)
⊥⊥ E ln

φRjt

φMjt
(30)

Step 2. Once the three technology parameters are estimated, I can proceed to recover the technol-
ogy shocks. To do so, I invert the firm-level FOCs in Eq. 7 and Eq. 8. After taking exponents on
both sides, this inversion gives me the φAj

φRj
and φMj

φRj
in Eq. 31 and Eq. 32 respectively. Once I know

the ratios of these shocks, I separately identify their levels by inverting the labor demand equation
for routine occupations in Eq. 11. This gives me the level of φRj and I can use Eq. 31 and Eq. 32 to
calculate φAj and φRj, respectively.

φ̂Ajt

φ̂Rjt
=

[
NAjt

NRjt
×
(

W̃At

W̃Rt

)γ̂A
] 1

γ̂A−1

(31)

φ̂Mjt

φ̂Rjt
=

[
NMjt

NRjt
×

W̃ γ̂M
Mt

W̃ γ̂A
Rt

× λ
γ̂A−γ̂M
Ωjt

] 1
γ̂M−1

(32)

27Starting from the mid-1990s to the present day, average payroll tax rates stabilized at aroung 46% of labor cost for
the top half of the wage distribution while it decline for the lower percentiles. The rationale behind this was to reduce
unemployment among low skilled workers by declining the labor cost for employers. Those payroll tax cuts initially
affected workers whose wage was below 1.1 times the national minimum wage but has been progressively extended to
1.6 times the national minimum wage.

28See Bozio et al. (2016) for information on the two important reforms pertaining to employers payroll taxes in mid-
1960’s and mid-1990’s.

29For instance, these payroll taxes can evolve as a function of the labor force composition which is exogenous to the
change in technology.
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φ̂Rjt =

[
NRjt × W̃ γ̂A

Rt

κ̂
1

1−κ̂ × υ
γ̂M(1−κ̂)−1

1−κ̂

j × λ
γ̂A−γ̂M
Ωjt

] 1−κ̂
κ̂

(33)

where λΩjt and υjt are defined as follows

λΩjt =

[(
W̃At

φ̂Rjt

φ̂Ajt

)1−γA

+ W̃1−γA
Rt

] 1
1−γA

, υjt =

[(
W̃Mt

φ̂Rjt

φ̂Mjt

)1−γM

+ λ
1−γM
Ωjt

] 1
1−γM

Step 3. To estimate the scale parameters σH and σL, I rely on an instrumental variable strategy. To
formulate the estimation equation that I take to the data, I start by noting that I can re-write Eq.
21 for the three occupations as follows:

ln
Nost

NKst
= σs ln

(1− τW
ot )Wot

bK
− σsχost, o ∈ {A, R, M}, s ∈ {H, L}. (34)

I stack the three occupations together and run the system of equations separately for high and
low-skilled workers to infer σH and σL. Notice that the OLS estimate of σH and σL will be biased
as the disutility cost that are unobserved to the econometrician will be correlated with wages. To
circumvent this identification problem, I instrument equilibrium wages with employer’s payroll
tax rate, the same instrument I used to estimate the elasticity of substitution parameters in Step 1.
In the case of σH and σL, these instruments act as standard exclusion restrictions. Once I estimate
σH and σL, I infer disutility costs from Eq. 34 as structural residuals of the labor supply equation.

4.3 Intuition behind the identification strategy

In general, estimating the slope of both the demand the supply curve requires at least two instru-
ments. However, as shown by Zoutman et al. (2018), in specific cases theory provides restrictions
such that two elasticities can be identified by a single instrument. Let me demonstrate the key
intuition behind the identification strategy via an illustrative example.30 For simplicity, assume
there is no occupational choice on behalf of workers and labor is supplied perfectly inelastically. I
observe equilibrium quantity, Nt, and wages before taxes, Wt. There is a tax rate levied on firms
denoted τt and it is assumed exogenous. Assuming log-linearity, the supply-demand system is
given by

nt = εDwt + γzt + νD
t (35)

nt = εSwt + ηzt + νS
t (36)

where lower case letters nt and wt indicate logged quantities and price, respectively, zt ≡ f (τt) is
a pre-specified function of the tax rate, and νS

t and νD
t are supply and demand disturbance terms.

30A similar example is provided in Zoutman et al. (2018)
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Figure 3: The effect of an increase in tax rate in identifying supply and demand elasticities

I allow the instrument to enter both supply and demand equations initially. The reduced-form
equations can be represented as follows:nt

wt

 =

πzn

πzw

 zt + ξt, where

πzn

πzw

 =

 εSγ−εDη
εS−εD
γ−η

εS−εD

 (37)

From Eq. 37, it is clear that I cannot separately identify the demand and supply elasticities given
that I have two reduced parameters in the π vector and four structural parameters to estimate. I
will impose two restrictions motivated by the theory to show that the structural parameters are
indeed identified under these restrictions. The first restriction is the standard exclusion restriction:
the instrument zt, which in my general model is the employer’s payroll taxes, only enter Eq. 35
and not the supply equation (Eq. 36), i.e. η = 0. This (standard) exclusion restriction should help
identify εS. The second restriction relies on the idea that firm’s labor demand decision are not
based on equilibrium wage but the total labor cost they have to pay. Therefore, an increase in wt

and an increase in gross of tax rate zt ≡ ln(1 + τt), affect labor demand in an identical manner.
As a result, the coefficient on the instrument in the demand equation equals the demand elasticity
γ = εD. Under these two restrictions, it can be shown thatπzn

πzw

 =

 εSεD

εS−εD
εD

εS−εD

 =⇒ εS =
πzn

πzw
, εD =

πzn

1 + πzw

This simple example shows that with the tax rate and under the two restrictions outlined earlier,
the supply and demand elasticities are indeed identified. The graphical intuition of the idea is
given in Figure 3.
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5 Results

In this section, I start by discussing the estimation results of the structural parameters. Then, I
proceed to document the distribution of technology shocks that I infer through the lens of my
model. Finally, I perform a series of counterfactual exercises to quantify the importance of RBTC
and labor supply shocks in explaining changes within firms, between firms and aggregate job
polarization.

5.1 Estimation results

The estimation results are documented in Table 4, panel A. I find that the value of κ, the parameter
measuring returns-to-scale, is 0.931. This value is less than one consistent with the theoretical
restriction of decreasing returns-to-scale. The OLS estimate of γA, the elasticity of substitution
between abstract and routine occupations is 1.75. This estimate can be biased due to endogeneity
issues mentioned in the previous section. I address these concerns by using the relative tax-rate
of employer’s payroll contribution as instruments for relative wages. I find that the IV estimate
of γA decreases to 1.45. The OLS and IV estimates of γM, the elasticity of substitution between
manual and the composite of abstract and routine occupations, are 2.64 and 2.76, respectively.

To the best of my knowledge, the only other estimate of the elasticity of substitution (between
occupations) in the literature is by Goos et al. (2014), who find a value between 0.854 and 0.899,
depending on their specification.31 The value estimated in this paper is higher compared to their
estimate and given that it is above one implies that occupations are gross substitutes. There are
important differences between the model and the estimation strategy used by Goos et al. (2014)
compared to this paper. They assume a partial equilibrium framework and do not explicitly ad-
dress the endogeneity issues involved in estimating the elasticity parameter since they assume
that the wages are exogenous. In contrast, I outline a general equilibrium model and account
explicitly for the endogeneity of wages in my estimation.32

Other work in the literature calibrates a value of γA to be less than one (Duernecker et al.
(2016) calibrate a value of 0.56 for two occupations, Lee and Shin (2017) calibrate a value of 0.70,
and Aum et al. (2018) a value of 0.81). As a robustness check, I re-run my counterfactual analysis
below by assuming γA < γM < 1. None of the results presented later change qualitatively when I
use this alternative calibration for the elasticity parameters. The intuition behind this result stems
from the fact that if γA < γM < 1, then polarization in the model occurs due to increase in φRj

φAj
and

φRj
φMj

. However, if 1 > γA > γM, then the model can still capture aggregate job polarization, albeit

via an increase in φAj
φRj

and φMj
φRj

instead.
Finally, I find that the OLS estimates of σH and σL are downward biased. I find that σH is greater

than σL which implies that variance of the idiosyncratic preferences of high-skilled workers is

31See Table 3 in their paper. The coefficient on log industry marginal cost reports the estimate of the elasticity of
substitution parameter of their specification.

32Moreover, they do not aggregate occupations into three groups while estimating their specification.
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Table 4: Parameter estimates of technology, labor supply and disutlity costs

A. Parameter Estimates

κ γA γM σH σL

OLS
0.931***

(0.02)

1.75***

(0.02)

2.64***

(0.05)

2.47***

(0.20)

-0.23

(0.24)

IV -
1.45***

(0.03)

2.76***

(0.06)

3.44***

(0.30)

1.20***

(0.39)

First-stage -
-0.63***

(0.01)

-0.77***

(0.01)

1.36***

(0.14)

1.36***

(0.14)

N 22 22 22 66 66

B. Estimates of disutility cost parameters

χAH χRH χMH χAL χRL χML

1994 0.46 -0.18 0.07 1.72 -0.90 -0.55

2015 0.36 -0.38 -0.24 1.51 -0.81 -0.92

Notes: Standard errors are reported in parenthesis. *** p < 0.01, ** p < 0.5, * p <0.1. κ is estimated by merging DADS
Postes with FICUS/FARE. I run OLS on Eq. 27 after taking expectations on both sides. N denotes the total number of
observations used in estimation. All other coefficient are estimated using DADS Postes and the French Labor Survey
between 1994 and 2015.

lower than that of low-skilled workers. In Table 4, panel B, I present the estimates of the disutility
cost of working in occupation o conditional on skill, denoted χos. The estimates suggest that the
disutility cost of entering into abstract occupations is higher for a low-skilled worker compared
to a high-skilled worker. On the contrary, the amenity (given the estimate of χos is negative) of
entering into routine and manual occupation is higher for low-skilled workers compared to high-
skilled workers. Importantly, these estimates change over time. In particular, there are important
changes in these estimates for low-skilled workers: while the estimates of χRL decreases over time
(note that the chi’s are preceded by a negative sign in the specification), the estimate of χML in-
creases over time. My analysis cannot provide definitive evidence on what underlying factors are
driving this shift in the distribution of disutility costs over time for low-skilled workers. Given
the evidence on alternative work arrangements seen across many industrialized countries,33 this

33Katz and Krueger (2019) find that the percentage of workers engaged in alternative work arrangements - defined as
temporary help agency workers, on-call workers, contract workers, and independent contractors or freelancers - rose
from 10% in 1995 to 15.8% in 2015. Using the American Time Use Survey (ATUS), Kaplan and Schulhofer-Wohl (2018),
find that there is a substantial heterogeneity in how the non-physical costs and benefits of work have changed over
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could potentially reflect workers preferences for autonomy and workplace flexibility or changes
in the physical and non-physical costs of work in routine occupations. However, these changes
could also capture elements that I do not directly incorporate in my theoretical framework such
as changes in labor market institutions and the role of labor market power. I will study the impli-
cation of these changes in worker preferences over time in my counterfactual exercise that follow
this section.

Distribution of technology shocks. Conditional on the estimates of κ, γA, γM, I use Eq. 34-36
to infer the values for φAj, φRj, φMj. In Figure 4, I employ kernels to estimate the distribution of
the log of these productivity terms for 1994 and 2015. The figure suggests that there is a first-
order stochastic dominance (FOSD) of 2015 distribution of ln φAj and ln φRj compared to 1994.
Meanwhile, I observe a second-order stochastic shift (SOSD) in the 2015 distribution of ln φMj over
1994. Technological change differs strongly between of firms of different size. To demonstrate
this point, in Appendix B Figure A3, I plot the distribution of these shocks separately for firms
that employ less than 100 workers, to whom I refer to as small and medium-sized firms, and
those that employ more than or equal to 100 workers, the large firms in the economy. I find
that 2015 distribution of ln φAj FOSD the 1994 distribution for small and medium-sized (SMS)
firms and the large firms. In the case of routine occupations, the results show there is evidence of
FOSD of the 2015 distribution for SMS firms (panel c), while the 2015 distribution SOSD the 1994
distribution for large firms (panel d). Finally, for manual occupations I find there is SOSD of the
2015 distribution of ln φMj for SMS firms and the large firms in the economy.

Given that my estimates of γA and γM are both greater than one, the model predicts routine-
biased technological change if ln φAj

φRj
and ln φMj

φRj
both increase over time. In other words, we should

see a first-order stochastic dominance of the 2015 distributions compared to 1994. In Figure 5,
I plot how these distributions have changed over time, separately for SMS firms and the large
firms. With regards to the distribution of ln φAj

φRj
, I find that there is a FOSD of the 2015 distribution

for both SMS and large firms. On the other hand, there is SOSD of the 2015 distribution of ln φMj
φRj

for SMS firms compared to the 1994 distribution, while there is a shift to the right of the 2015
distribution compared to the 1994 distribution for the large firms. These estimates suggests that
routine-biased technological change is not a uniform process affecting all firms equally. Evidence
from Figure 5 shows that RBTC is mostly occurring in large firms of the economy where we see
clear evidence of a right-ward shift of the both ln φAj

φRj
and ln φMj

φRj
distributions in 2015. In the coun-

terfactual experiments that follow this sub-section, I will quantify to what extent these changes in
the firm technology can explain aggregate job polarization and changes within firms and between
firms.

time. Women have shifted towards occupations that produce more happiness and meaningfulness while men have
shifted towards occupations that less happiness and meaningfulness.
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Figure 4: CDF of the ln(φA), ln(φR) and ln(φM): 1994 vs. 2015
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5.2 Counterfactual experiments

To quantify the effect of RBTC, educational change and change in disutility costs in explaining job
polarization, I perform the following counterfactual exercise. Denote Φt = ({φ̂Ajt, φ̂Rjt, φ̂Mjt}Jt

j=1)
T

as the level of technology shocks estimated at time t, θt = (θHt, Nt)T as the aggregate share of
high-skilled workers in the economy at time t, χt = (χAHt, χRHt, χMHt, χALt, χRLt, χMLt)

T denote
the disutility cost paid by workers at time t and τt = (τW

At, τW
Rt , τW

Mt, τF
At, τF

Rt, τF
Mt)

T as the level of
employer and employee tax rates at time t. The time-subscript can take one of two values: 0 or
1, where 0 denotes year 1994 and 1 denotes the year 2015. I can disentangle the contribution of
RBTC, educational shift and the cost distribution in explaining the change of the employment
share of occupation o as specified in Eq. 38. The first term of the decomposition gives the con-
tribution of technological change in explaining the change in the aggregate employment share of
occupation o. In this experiment, I shift the distribution of Φt from 1994 to 2015 as estimated in
the data and hold all other components fixed to their level in 1994. The second component gives
us the (conditional) contribution of the change in the educational composition of the labor force in
explaining the change in the aggregate share of occupation o. The contribution is conditional since
the level of technology is held to its level in 2015 from the previous step. I follow the same step to
account for the contribution of disutility costs and changes in the tax-rates over time.Notice that,
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Figure 5: CDF of the ln(φA)− ln(φR) and ln(φM)− ln(φR) by firm size: 1994 vs. 2015
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by construction, the contribution of technology, education, cost distribution and payroll taxes sum
up to the total change predicted by the model. The results are presented in Table 5.34

∆sot = so(Φ1, θ1, χ1, τ1)− so(Φ0, θ0, χ0, τ0) (38)

∆sot = so(Φ1, θ0, χ0, τ0)− so(Φ0, θ0, χ0, τ0)︸ ︷︷ ︸
Contribution of technological change

+ so(Φ1, θ1, χ0, τ0)− so(Φ1, θ0, χ0, τ0)︸ ︷︷ ︸
Contr. of education composition | tech

+ so(Φ1, θ1, χ1, τ0)− so(Φ1, θ1, χ0, τ0)︸ ︷︷ ︸
Contr.of preference shifts | educ, tech

+ so(Φ1, θ1, χ1, τ1)− so(Φ1, θ1, χ1, τ0)︸ ︷︷ ︸
Contr. of payroll taxes | propensity, educ, tech

34The results are robust to a different ordering. Results for different ordering available upon request.
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Table 5: Quantifying the contribution of technology, education, preferences and taxes

∆Data Technology Educationc Preferencesc Taxesc

Abstract 4.65 3.18 6.14 -1.77 -2.90

Routine -10.89 -2.37 -3.05 -5.60 0.13

Manual 6.23 -0.81 -3.09 7.37 2.76

Notes: The superscript c denotes the fact that contribution of education is conditional on technology being at the 2015
level, the contribution of preferences is conditional on technology and education being at the 2015 level and so forth.

Contribution of RBTC. I start by considering the contribution of technological change on the ag-
gregate employment share of the three occupations. Given that the occupational choice is endoge-
nous in the model, if technological change is the key driver of aggregate job polarization then this
counterfactual should be able to explain the changes in the employment shares as observed in the
data. I find that the total contribution of technological change is to decrease the aggregate employ-
ment share of routine and manual occupations by 2.37 pp and 0.81 pp, respectively, and increase
it by 3.18 pp for manual occupations. In the data, I documented that the aggregate employment
share of abstract and manual occupations increased by 4.66 pp, and 6.23 pp, respectively, while it
declined for routine occupations by 10.89 pp. In percentage terms, technological change explains
approximately 21.7% of the total decline in the employment share of routine occupations. As is
evident from these results, routine-biased technological change in and by itself can explain less
than one-quarter of the decline in the aggregate employment share of routine occupations.

To understand the mechanism through which technological change affects the equilibrium, I
decompose its contribution into a within-firm and a between-firm effect.35 These results are also
documented in Table 6. I find that technological change induces firms to substitute routine oc-
cupations by abstract occupations within firms. This is the substitution channel conventionally
highlighted by the literature. On average, the share of routine and manual occupations decline by
5.75 pp and 0.87 pp, respectively, while the share of abstract occupations increase by 6.62 pp. The
contribution of the substitution channel is to account for approximately 52.8% of the decline in
the aggregate share of routine occupations. However, this is not the only margin through which
changes in φAj, φRj, φMj affect the equilibrium share of routine occupations. I find that the employ-
ment share of routine intensive firms increased by 3.48 pp. This is explained by the fact that RBTC
increases the productivity of routine intensive firms relatively more compared to non-routine in-
tensive firms. As a consequence, employment gets reallocated from non-routine intensive firms to
routine intensive firms, which in turn increases the employment share of routine intensive firms.

To provide further evidence that RBTC affects routine and non-routine intensive firms un-
equally, I compare the (log) firm size distribution in 1994 with the counterfactual (log) firm size
distribution in 2015, accounting only for the effect of technological change. As it can be seen from

35I apply the decomposition from Eq. 1 on the simulated economies generated from this counterfactual.
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Table 6: Within- and between-firm decomposition: Counterfactual vs. Data

∆ Within Between Net Entry

Abstract
3.18 6.62 -3.56 0.13

4.65 7.12 -3.01 0.54

Routine
-2.37 -5.75 3.48 -0.10

-10.89 -8.48 -1.59 -0.82

Manual
-0.81 -0.87 0.08 -0.03

6.23 1.32 4.57 0.34

Figure 6a, there is more mass on the right tail of the counterfactual (log) firm size distribution in
2015 compared to 1994. This implies that big firms become even bigger over time and small firms
get smaller. It turns out that those firms getting bigger over time had a high initial share of routine
occupations. To show this, in Figure 6b, I plot the occupational composition of firms by their size
in 1994. This figure shows that in 1994 the share of abstract and manual occupations is decreasing
in the (log) firm size while the share of routine occupations is increasing. I verified that a similar
relationship holds for 2015. Combined together these graphs show that firms big firms tend to be
intensive in routine occupations, i.e. have a high share of routine occupations, and benefit more
from higher productivity compared to non-routine intensive firms due to RBTC.

In summary, the productivity-enhancing channel, which raises the aggregate employment
share of routine occupations, partially offsets the substitution channel, which reduces the aggre-
gate employment share of routine occupations. The net effect of these two channels is to decrease
the aggregate share of routine occupations by 2.37 pp.

Contribution of educational composition. I quantify the importance of the shift in education in
explaining aggregate job polarization. I change the parameter θt from its 1994 level to its 2015 level
holding the disutility cost parameters and payroll taxes fixed to their level in 1994. Technology
parameters are held fixed at their level in 2015 as outlined in Eq. 38. At the aggregate level, the
total contribution of technological change is to increase the share of abstract occupations by 6.14
pp, while the share of routine and manual occupations decline by 3.05 pp and 3.09 pp, respectively.
As these results show, the shift in the educational composition of the labor force is responsible for
explaining the rise in the aggregate share of abstract occupations.

To understand the mechanism through which educational composition affect the aggregate
share of abstract occupations, I decompose it into within- and between-firm effects. The results are
documented in Table ??. I find that the share of abstract occupations increases, while it decreases
for routine and manual occupations within firms. I find similar patterns for between-firm changes,
however, in terms of magnitude, between-firm effects are quantitatively more important.

To grasp the intuition behind these findings, it is informative to start by looking at the relative
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Figure 6: Counterfactual firm size distribution and occupational composition by firm size
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first order conditions in Eq. 7 and Eq. 8. Given that there is no change in technology over time,
the relative labor demand is only affected through changes in relative wages. Since the share of
abstract occupations increases while the share of routine and manual occupations decrease, the
wages of abstract occupations relative to routine and manual occupations must have declined
(remember, occupations are gross substitutes). The question then remains: why do relative wages
decline due to shift in θt? Since high-skilled workers face a low disutility cost of entering in
abstract occupations relative to routine and manual occupations, as θt increase, relatively more
workers enter into abstract occupations. This can be seen in Figure 7a, where I simulate the effect
of a shift in θt on worker’s labor supply decision using the 1994 wages from the data. Absent the
general equilibrium feedback on wages, it shows that the share of high-skilled workers in abstract
occupations increases from 7% to 12%. The share of high-skilled workers in routine occupations
increases, but the overall share of routine and manual occupations both decrease.

The net effect of these changes is to shift the labor supply curve of abstract occupations to the
right and given no concurrent shift in demand, lowers the wages in equilibrium. Due to lower
wages, firms that initially had a high share of abstract occupations benefit from a lower labor cost
and improve their productivity compared to non-abstract intensive firms. This leads to realloca-
tion of workers towards these firms raising the share of abstract occupations in the aggregate.

Contribution of disutility costs. I consider the effect of the shift in the disutility costs over time
in explaining aggregate job polarization. The total effect of this change is to decline the aggregate
share of abstract and routine occupations by 1.77 pp and 5.60 pp, respectively, while it increases the
share of manual occupations by 7.37 pp. The within- and between-firm decomposition (Table ??)
shows that the share of manual occupations increases, while it decreases for abstract and routine
occupations within firms. I find similar patterns for between-firm changes, however, in terms of
magnitude, between-firm effects are quantitatively more important.
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Table 7: Quantifying the contribution of other factors

∆ Within Between

Abstract

Education 6.14 0.93 5.20

Propensity -1.77 -0.24 -1.52

Taxes -2.90 -0.41 -2.48

Total 1.47 0.28 1.20

Routine

Education -3.05 -0.39 -2.65

Propensity -5.60 -1.46 -4.14

Taxes 0.13 -0.02 0.16

Total -8.52 -1.09 -6.63

Manual

Education -3.09 -0.54 -2.54

Propensity 7.37 1.70 5.67

Taxes 2.76 0.44 2.37

Total 7.04 1.60 5.50

Notes: In this decomposition, there will be no role for entry and exit. This is because I also shift the total number of
firms from 129321 in 1994 to 114231 in 2015 along with the three technology shocks in the counterfactual pertaining to
technology. Hence, in the subsequent counterfactuals, the total number of firms are also held fixed and the net entry
component is zero. Results are robust to an alternative specification where I shift N, the total number of firms in the
economy, separately from the technology shocks.

The intuition behind this result is similar to the one presented above. Change in disutility
cost over time act as a negative supply shock to routine occupations. In Figure 7b, I simulate the
effect of a shift in χt on worker’s labor supply decision using the 1994 wages from the data. As is
seen from the graph, change in disutility costs play a substantially important role in driving the
decline in the aggregate share of routine occupations. Notice that the aggregate share of abstract
occupations is unaffected in this simulation. This is due to the fact that these costs change mostly
for low-skilled workers who face a high disutility cost of entering in abstract occupations in 1994
and 2015. The shift in supply for manual occupations lowers the wages for manual occupations
and increases the employment share of manual-intensive firms.
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Figure 7: The effect of changes in θt and χt on labor supply
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6 Conclusion

This paper delves further into the drivers of aggregate job polarization. The general consensus
in the literature is that routine-biased technological change (RBTC) is a key driver of this phe-
nomenon. In this paper, I show that RBTC has important macroeconomic implications, especially
on the firm-size distribution, but it can exclusively explain aggregate job polarization. I show this
to be case for France, a country that has rapidly polarized starting the mid-1990’s.

Using administrative data for France, I first document that changes in the occupational com-
position within firms and changes in employment growth between firms are quantitatively im-
portant in explaining aggregate job polarization. I rationalize these facts by constructing a general
equilibrium model with firm heterogeneity and endogenous occupational choice where job po-
larization and changes within and between firms are explained by the interaction of two forces:
technology shocks that make routine occupations relatively more productive; and supply shocks
that change the labor force composition over time. To address the endogeneity issues in estimating
demand and supply parameters, I rely on the recent insights by Zoutman et al. (2018), and exploit
the variation in payroll tax-rates as instrument to estimate these parameters.

Upon estimation, I find that RBTC affects aggregate employment share of routine occupations
through two competing channels. On the one hand, RBTC induces within-firm substitution of rou-
tine occupations by non-routine occupations. This substitution channel, conventionally empha-
sized in the literature, reduces the share of routine occupations in the aggregate by approximately
52.8%. On the other hand, improvement in firm productivity induced by such a technological
change increases productivity of routine-intensive firms, and their size over time. This between-
firm effect is quantitatively important and partially offsets the decline induced by the substitution
channel. The net effect of these two forces is that, in equilibrium, the aggregate share of routine
occupations decreases by 2.37 pp despite rapid routine-biased technological change. The model
shows that changes in the educational composition of the labor force as well as changes in worker
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preferences is an important driving force of aggregate job polarization.
There are two key limitations of this project that I would like to address in the future. I assume

that the shift in the educational composition of the labor force is exogenous. Clearly, education, in
part, may respond to technological change. I would like to endogenize educational choice in the
future extensions of my work by allowing individuals to choose between two schooling levels,
high school and college as in Heckman et al. (1998). Second, I assume that input markets are
perfectly competitive. An important avenue for future research is to account for the role of non-
competitive labor markets in explaining job polarization as in Card et al. (2018) and Deb et al.
(2020). Introducing monopsony power in the model can also help to better understand the role of
minimum wage in affecting job polarization through its effect on the employment of low-skilled
workers in the economy.
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Appendix

Appendix A: Descriptive Statistics, Occupational Classification and job
polarization by industry

Occupational Classification

Every job in DADS Postes is categorized by a two-digit PCS occupational code. Following the
occupational classification adopted by Albertini et al. (2017) in their work on job polarization in
France, I aggregate these 22 codes into three groups: abstract, routine and manual occupations.
The classification into three groups is based on following definitions:

• Abstract: These occupations include problem-solving and managerial tasks as primary func-
tions on their job. Examples of occupations included in this group are engineers (PCS 38),
executives (PCS 37) and scientists (PCS 34).

• Routine: This group includes occupations that perform cognitive or physical tasks that fol-
low closely prescribed sets of rules and procedures and are executed in a well-controlled
environment. Example includes occupations such industrial workers (PCS 62 and 67), office
workers (PCS 54) and mid-level managers (PCS 46).

• Manual: This occupational group do not need to perform abstract problem-solving or man-
agerial tasks but are nevertheless difficult to automate because they require some flexibility
in a less than fully predictable environment. Example includes personal service workers
(PCS 56), driver and security workers (PCS 53 and 64) among others.

The occupational grouping tries to capture the fact that automation and ICT capital should re-
place workers performing repetitive tasks. Further details concerning the assignment process, the
employment share of each occupational group in 1994, and its change over time is documented in
Appendix A, Table A2 (Abstract), Table A3 (Manual), Table A4 (Routine).

Descriptive Statistics

In the following Appendix, I provide additional details on sample selection and descriptive statis-
tics of the sample as well as classification of PCS occupations into Abstract, Routine and Manual
occupations. In terms of sample selection, as mentioned in the main text, I keep all workers be-
tween the age of 18 and 65 and include all firms that hires at least one worker in each of the three
occupations: abstract, routine and manual. Before making this selection, I observe the following
distribution of firm size in the data. As shown in Table A1, most firms in the sample have less
than 10 workers, however bulk of aggregate employment is concentrated in large firms.
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Table A1: Full Sample: DADS Postes, 1994-2015

Firms with

... workers

Avg. Number

of Firms

Percentage of

Firms

Percentage of

Hours

Less than 10 1,074,510 87.10 21.0

10-99 143,762 11.70 29.0

100-500 11,868 1.00 18.0

Above 500 2,380 0.20 32.0

Occupational Classification and Job Polarization by Industry

Next, I document the classification of occupations into three groups in Table A2 (Abstract), Ta-
ble A3 (Manual), Table A4 (Routine). As mentioned in the main text, I follow the classification
adopted by Albertini et al. (2017). For completeness, I also describe the representative 4-digit
sub-occupations description. The main idea that this classification tries to capture is that routine
occupations can be directly substituted by advances in ICT technology while non-routine occu-
pations is only indirectly affected. Non-routine occupations are further classified based on their
task content: non-cognitive are abstract occupations and non-routine manual are called manual
occupations. In Figure A1, I plot the employment share of selected PCS occupational groups and
their change over time. The change in employment share for routine occupations by manufactur-
ing and non-manufacturing industries is plotted in Figure A2.

Table A2: List of PCS occupations categorized as Abstract

Title
2-digit

PCS Codes

Representative 4-digit

sub-occupations

Engineers 38

Technical managers for large companies,

Engineers and R&D manager,

Electrical chemical and materials engineers,

IT R&D engineers,

Purchase, planning, quality control and production managers,

Telecommunications engineers and specialists

Top Managers, Executives 37
Managers of large companies,

Finance, accounting, sales and advertising managers

Health Professionals, Teachers 42 + 43 High school teachers, Education counsellors, Nurse, Physiotherapist

Scientific, creative professionals 34 + 35 Professors, Public Researchers, Psychology Specialists, Pharmacists

Heads of Business 21 + 23 Heads of businesses (large and small businnes included)
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Table A3: List of PCS occupations categorized as Manual

Title
2-digit

PCS Codes

Representative 4-digit

sub-occupations

Personal Service workers 56

Restaurant servers, food prep workers.

Hotel employees, Barbers, Hair Stylists,

Beauty shop employees, Child care providers,

Home health aids, Residential building janitors,

Caretakers

Drivers, Security workers 53 + 64 Truck, taxi and delivery drivers

Manual workers 63 + 68

Includes both skilled and unskilled:

Gardener, Master electricians, bricklayers, carpenters, Master cooks,

Bakers, butchers

Crane and forklift operator 65
Warehouse truck and forklift drivers, heavy crane and vehicle operators,

Other skilled warehouse workers

Table A4: List of PCS occupations categorized as Routine

Title
2-digit

PCS Codes

Representative 4-digit

sub-occupations

Industrial workers 62 + 67

Includes both low and high-skilled:

Construction workers

Metalworkers, pipe fitters, wielders,

Operators of electrical and electronic equipment,

Shipping, moving and warehouse workers,

Production workers

Mid-level managers 46
Mid-level professionals in various industries,

Store, hotel and food service managers

Foremen, supervisors 48
Foremen and supervisors from

manufacturing industries, food service industries

Office workers 54 Receptionist, secretaries

Technicians 47
Installation and maintenance

of IT and non-IT equipments

Retail workers 55 Retails employees, cashiers
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Figure A1: Employment share in levels and change for selected PCS occupations
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Figure A2: Job Polarisation by Industry
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Appendix B: Distribution of technology shocks by firm size

Figure A3: CDF of the ln(φA), ln(φR) and ln(φM) by firm size: 1994 vs. 2015
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