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Abstract

The synthetic control method (SCM) is a major innovation in the estimation of causal treatment effects of policy

interventions and programs in a variety of settings. However, the commonly used algorithms are ill-equipped

for solving the SCM problem, which turns out to be a NP-hard bilevel optimization problem. In this paper we

show how the original SCM problem can be reliably solved using iterative algorithms based on the Tykhonov

descent approximations. Unfortunately, the true optimal solution to the original SCM is typically a corner

solution where all weight is assigned to a single predictor, contradicting the intended purpose of predictors. To

address this flaw, we propose to determine the predictor weights and donor weights separately. We show how

the donor weights can be optimized when the predictor weights are given, and consider alternative data-driven

approaches to determine the predictor weights. Re-examination of the two original empirical applications

to Basque terrorism and California’s tobacco control program demonstrates the failure of the existing SCM

algorithms and illustrates our proposed remedies.
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1. Introduction

The synthetic control method (SCM) is an appealing tool for estimating causal treatment effects of policy

interventions and programs in a variety of settings. Abadie & Gardeazabal (2003) originally introduced SCM

to examine the economic impacts of terrorism in the Basque Country. Abadie et al. (2010) further examined

the statistical foundations of the method in their study of California’s tobacco control program. Subsequently,

SCM has been used in a large number of influential applications, including Acemoglu et al. (2016) (political

connections), Cavallo et al. (2013) (natural disasters), Gobillon & Magnac (2016) (enterprise zones), Kleven

et al. (2013) (taxation of athletes), and Abadie et al. (2015) (German reunification). Recently, Cole et al. (2020)

apply SCM to study the impact of the Covid-19 lockdown on air pollution and health in Wuhan, China. Athey

& Imbens (2017) refer to SCM as “arguably the most important innovation in the policy evaluation literature

in the last 15 years.”
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Technically, SCM estimates the causal treatment effect by constructing a counterfactual of the treated unit

using a convex combination of similar units not exposed to the treatment. The convex combination requires

non-negative weights that sum to one to avoid extrapolation. In SCM, the weights are determined to ensure

that the treated unit and the synthetic control resemble each other as closely as possible prior to the treatment,

both with respect to the outcome of interest and some observed economic predictors. Since there are typically

multiple predictors, the predictors are also weighted using another set of non-negative weights. Abadie &

Gardeazabal (2003) and Abadie et al. (2010) discuss several alternative approaches to specify the predictor

weights, including the use of subjective weights. In practice, a majority of published SCM applications resort to

the data-driven procedure where the weights of predictors and control units are jointly optimized to minimize

the mean squared prediction error of the synthetic control over the pre-treatment period, applying the Synth

package described in Abadie et al. (2011).

Interestingly, a number of recent studies report that the synthetic control weights produced by Synth are

numerically unstable and inaccurate (e.g., Klößner et al., 2018; Becker & Klößner, 2017, 2018; Becker et al.,

2018; Albalate et al., 2021; Kuosmanen et al., 2021). A related but even more serious concern is that the

predictors often turn out to have little impact on the synthetic control, as noted by several authors (e.g.,

Doudchenko & Imbens, 2017; Ben-Michael et al., 2021; Kaul et al., 2021). This is a serious problem because

the statistical properties of the SCM estimator critically depend on the ability of the synthetic control to

reproduce the observed and unobserved characteristics of the treated unit (Abadie et al., 2010; Abadie, 2021).

If most predictors are assigned negligibly small weights, then the ability of SCM to reproduce the observed

characteristics and the latent factors is seriously compromised.

Recently two parallel lines of research by Malo et al. (2020) and Albalate et al. (2021) have shed further

light on the computational problems of SCM. These two groups of authors independently developed the first

explicit mathematical formulations of the standard SCM problem where the predictor weights and the donor

weights are jointly optimized, and find that the original SCM problem is in fact a NP-hard bilevel optimization

problem. This finding not only explains the numerical instability of Synth, but also suggests that Synth and

other SCM algorithms known in the literature are clearly ill-equipped for solving the original SCM problem.

Consequently, several thousands of SCM applications published thus far are based on different weights than

claimed by the authors, which may influence the qualitative conclusions.

The main contributions of the present paper1 are threefold:

1) We develop a new iterative algorithm for solving the original SCM problem, based on the Tykhonov

regularization, and formally prove that the proposed algorithm is guaranteed to converge to the optimal

solution. Revisiting the classic SCM applications to the Basque terrorism (Abadie & Gardeazabal, 2003)

1 This article consolidates and updates the main contributions of the two non-reviewed working papers Malo et al. (2020) and

Kuosmanen et al. (2021) by the authors.
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and the California tobacco control program (Abadie et al., 2010), we demonstrate that the computational

algorithms currently in use fail to converge to the true optimum.

2) We point out that the true optimal solution of the original SCM problem is typically a corner solution

where all weight is assigned to a single predictor. We show that this is also the case in the classic SCM

applications. In our interpretation, the numerical instability of SCM is a symptom, but the tendency

towards corner solutions is a more serious flaw of the original SCM method, caused by the joint optimiza-

tion of donor weights and predictor weights. Developing better algorithms to solve the NP-hard bilevel

optimization problem does not address the root cause of the problem.

3) As a remedy, we propose to determine the predictor weights and donor weights in two separate stages,

in agreement with Albalate et al. (2021) who similarly propose to decouple the two nested optimization

problems. To this end, we develop a simple two-step algorithm to optimize the donor weights when the

predictor weights are given a priori. This proves a non-trivial task, in fact, we find that the Synth algorithm

fails to produce optimal donor weights even when the predictor weights are given by the user. We also

briefly explore alternative data-driven approaches to determine the predictor weights, complementing the

SHAP approach proposed by Albalate et al. (2021). These include the use of regression-based weights,

which is also the default option of the Stata implementation of Synth (Abadie et al., 2011), and has been

used in some empirical studies (e.g., Bohn et al., 2014). Another possibility is to apply equal weights to

standardized predictors, analogous to Bloom & Van Reenen (2007) approach to aggregate management

survey indicators. We compare two variants of the regression-based approach and the uniforms weights for

standardized predictors in case of the two classic SCM applications to the Basque terrorism and California

tobacco control program.

The rest of the paper is organized as follows. Section 2 introduces the original SCM method and formulates

the data-driven approach to compute the predictor and donor weights as a bilevel optimization problem. Section

3 develops an iterative algorithm that is guaranteed to converge to the optimal solution. Section 4 demonstrates

empirically that the classic SCM applications to the Basque terrorism and the California tobacco control program

both have corner solutions, and that the existing Synth and MSCMT algorithms fail to converge to the optimum.

Section 5 explores alternative data-driven approaches to determine the predictor weights, proposes a simple two-

step approach to optimize the donor weights when the predictor weights are given a priori, and revisits the two

classic SCM applications to illustrate the proposed approaches. Section 6 presents our concluding remarks and

discusses avenues for future research. Proofs of Theorems are presented in Appendix A of Online Supplement

and the implementation of the descent algorithm is discussed in Appendix B. To allow readers reproduce

our iterative algorithm to check for the feasibility of the unconstrained optimum and the possibility of corner

solution and to reproduce our empirical results, the R code is provided in Appendix C. Appendix D of Online

Supplement describes the imputation of missing values of the Basque terrorism application for applying an
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alternative data-driven approach to determine the predictor weights.

2. Synthetic control method

2.1. Preliminaries

Following the usual notation (e.g., Abadie, 2021), suppose we observe units j = 1, . . . , J + 1, where the

first unit is exposed to the intervention and the J remaining units are control units that can contribute to the

synthetic control. The set of J control units is referred to as the donor pool. For the sake of clarity, we denote

the number of time periods prior to treatment as T pre and the number of time periods after the treatments

as T post. The outcome of interest is denoted by Y : column vectors Y pre
1 and Y post

1 with T pre and T post rows,

respectively, refer to the time series of the pre-treatment and post-treatment outcomes of the treated unit.

Similarly, matrices Y pre
0 and Y post

0 with J columns refer to the pre-treatment and post-treatment outcomes of

the control group, respectively.

Ideally, the impact of treatment could be measured as

α = Y post
1 − Y post,N

1 , (1)

where Y post,N
1 refers to the counterfactual outcome that would occur if the unit was not exposed to the treatment.

If one could observe the outcomes Y post,N
1 in an alternative state of nature, where the unit was not exposed to

the treatment, then one could simply calculate the elements of vector α. The main challenge in the estimation

of the treatment effect is that only Y post
1 is observable, whereas the counterfactual Y post,N

1 is not.

The goal of SCM is to construct a synthetic control group to estimate the counterfactual Y post,N
1 . The key

idea of the SCM is to use the convex combination of the observed outcomes of the control units Y post
0 as an

estimator of Y post,N
1 . Formally, the SCM estimator is defined as

α̂ = Y post
1 − Y post

0 W, (2)

where the J elements of column vector W are nonnegative and sum to one. The weights W characterize the

synthetic control, that is, a counterfactual path of outcomes for the treated unit in the absence of treatment.

To set the weights W , the simplest approach considered by Abadie & Gardeazabal (2003) is to track the

observed path of pre-treatment outcomes as closely as possible to minimize the mean squared prediction error

(MSPE). That is, one could apply the weights W that solve the following constrained least squares problem

min
W∈W

L(W ) =
1

T pre
∥Y pre

1 − Y pre
0 W∥2 , (3)

where

W =

W ∈ RJ :

J+1∑
j=2

Wj = 1, Wj ≥ 0, j = 2, . . . , J + 1

 (4)
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is the set of admissible weights for control units and ∥ · ∥ denotes the usual Euclidean norm. The constraints

on the weights W ensure that the synthetic control is a convex combination of the control units in the pool

of donors. The fact that SCM does not involve extrapolation is considered as one of its greatest advantages

over regression analysis (e.g., Abadie, 2021). Note that if we relax the constraints on weights W , then the

unconstrained minimization problem reduces to the classic OLS problem without the intercept term. In that

case, one could simply regress the time series Y pre
1 on the parallel outcomes of the J donors in the control group,

and set the weights W equal to the corresponding OLS coefficients. While the OLS problem has the well-known

closed form solution that satisfies the first-order conditions, however, the optimal solution to the constrained

least squares problem stated above is typically a corner solution where at least some of the constraints on weights

W are binding. The constrained least squares problem can be efficiently solved by quadratic programming (QP)

algorithms such as CPLEX, which are guaranteed to converge to the global optimum.

In addition to the outcome of interest, an integral part of SCM is to utilize additional information observed

during the pre-treatment period. Suppose we observe K variables referred to as predictors (also known as

growth factors, characteristics, or covariates), which are observed prior to the treatment or are unaffected by

the treatment, which can influence the evolution of Y . These predictors are denoted by a (K × 1) vector X1

and a (K × J) matrix X0, respectively.
2 Abadie et al. (2010) prove unbiasedness and consistency of the SCM

under the condition that the synthetic control yields perfect fit to the predictors, that is, X1 = X0W . Abadie

(2021) notes that “In practice, the condition X1 = X0W is replaced by the approximate version X1 ≈ X0W .

It is important to notice, however, that for any particular data-set there are not ex-ante guarantees on the size

of the difference X1 −X0W . When this difference is large, Abadie et al. (2010) recommend against the use of

synthetic controls because of the potential for substantial biases.”

Since the K predictors included in X do not necessarily have the same effect on the outcomes Y , Abadie

& Gardeazabal (2003) introduce a (K × K) diagonal matrix V where the diagonal elements are weights of

the predictors that reflect the relative importance of the predictors. The diagonal elements of V must be

non-negative,3 and are usually normalized to sum to unity.4 That is

2 A common practice in SCM is to include some convex combinations of the pre-treatment outcomes also as predictors (see

Abadie et al., 2010, 2015, for discussion). However, Kaul et al. (2021) demonstrate that including all pre-treatment outcomes as

predictors is not a good idea because the predictors become completely redundant in that case.

3 While Abadie et al. (2010) assume that the diagonal elements must be positive, a positive real number can be arbitrarily close

to zero, and therefore, the distinction between positive and non-negative model variables has no real meaning in optimization unless

one imposes some explicit lower bound, e.g., Vkk ≥ 0.01. Becker & Klößner (2018) set a lower bound Vkk ≥ 0.00000001, which is so

low that it has no practical meaning.

4 Of course, other normalizations are possible, but we here restrict attention to the most standard normalization that allows one

to interpret the diagonal elements of V as shared weights that sum to one.

5



V ∈

{
diag(V ) : V ∈ RK×K ,

K∑
k=1

Vkk = 1, Vkk ≥ 0

}
=: V, (5)

which is a sub-set of all non-negative diagonal matrices.

Both Abadie & Gardeazabal (2003) and Abadie et al. (2010) suggest that weights V could be subjectively

determined. However, most known applications of SCM resort to the data-driven procedure suggested by the

authors. Unfortunately, these seminal papers do not explicitly state the required optimization problem. A

closer examination of the SCM problem in the next section reveals that the SCM problem is far from trivial

from the computational point of view.

2.2. Bilevel optimization problem

Since Abadie & Gardeazabal (2003) and Abadie et al. (2010) only state the SCM problem implicitly, to gain

a better understanding of the data-driven approach, the first step is to formulate the SCM problem explicitly.

Recently Malo et al. (2020) and Albalate et al. (2021) show that the optimal weights V ⋆, W ⋆ must be obtained

as an optimal solution to the following optimistic bilevel optimization problem

min
V, W

LV (V,W ) =
1

T pre
∥Y pre

1 − Y pre
0 W (V )∥2 (6)

s.t. W (V ) ∈ Ψ(V ) := argmin
W∈W

LW (V,W ) = ∥X1 −X0W∥2V , (7)

V ∈ V,

where ∥ · ∥V is a semi-norm parametrized by V and Ψ : V ⇒ W denotes the solution set mapping from upper-

level decisions to the set of global optimal solutions of the lower-level problem. For any (K × 1) real vector Z,

we define ∥Z∥V = (Z⊤V Z)1/2. This becomes a proper norm only when V is positive-definite. If we denote the

diagonal elements of V by v1, . . . , vK , we can write the lower level objective as

LW (V,W ) =

K∑
k=1

vk

Xk,1 −
J+1∑
j=2

Xk,jWj

2

,

which allows the lower-level to be interpreted as an importance-weighted least squares with weight constraints.

As pointed out by Klößner & Pfeifer (2015), this original setup can be easily extended to allow treatment of

predictor data as time series, while maintaining the original structure of the optimization problem.

The explicit formulation of the optimization problem reveals several points worth noting. First, the SCM

problem is a bilevel optimization problem, which is far from trivial from the computational point of view. The

minimization problem (7) refers to the lower-level problem, and problem (6) is called the upper-level problem;

the SCM literature commonly uses the terms inner and outer problems, but the meaning is the same. The

problem is solvable, when it is interpreted as an optimistic bilevel problem, but the global optimum is not

necessarily unique.
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Proposition 1. The synthetic control problem defined by (6)–(7) has a global optimistic solution (V̄ , W̄ ) ∈

V ×W.

Unfortunately, the bilevel optimization problems are generally NP-hard (Hansen et al., 1992; Vicente et al.,

1994). In particular, the hierarchical optimization structure can introduce difficulties such as non-convexity

and disconnectedness (e.g., Sinha et al., 2013), which are also problematic in the present setting, as will be

demonstrated in the next section.

Second, the explicit statement of the optimization problem makes it more evident that the optimal solution

will typically be a corner solution where at least some of the first-order conditions do not hold. This causes a

serious problem for the usual derivative-based optimization algorithms. This observation can help to explain at

least partly the numerical instability of the SCM results, observed by Becker & Klößner (2017), Klößner et al.

(2018), and Albalate et al. (2021), among others. The general-purpose algorithms are simply ill-equipped for

the task at hand.

3. Iterative algorithm

The purpose of this section is to discuss a general algorithm for solving the original SCM problem (4)–(5)

where the predictor weights V are jointly optimized with the donor weights W . Since the general algorithm

proves computationally demanding, we start by checking whether the unconstrained SCM problem (3) is a

feasible solution, and also check the possibility of corner solutions. In case the optimal solution is not found

through these feasibility checks, we suggest continuing search for an optimal solution using a descent-algorithm

based on Tykhonov regularization technique or Karush-Kuhn-Tucker (KKT) approximations.

To highlight the importance of coordination between the upper-level and lower-level problems, we can

rephrase the lower-level problem (7) as

min
W∈W

Lε
W (V,W ) = ∥X1 −X0W∥2V ⋆ + ε∥Y pre

1 − Y pre
0 W (V )∥2 (8)

where ε > 0 denotes an infinitesimally small non-Archimedean scalar.5 Introducing the upper-level objective

as a part of the lower-level QP problem in (8) makes a subtle but important difference compared to problem

(7): the primary objective of both (7) and (8) is to minimize the loss function LW with respect to predictors

X. However, if there are alternate optima W ⋆ that minimize the loss function LW , problem (8) will choose the

best solution for the upper-level problem.

Proposition 2. For a given set of weights V ⋆, let Wε(V
⋆) denote the unique optimal solution to problem (8)

for any ε > 0. Then, we have that

lim
ε→0+

Wε(V
⋆) ∈ argmin

W
{LV (V

⋆,W ) : W ∈ Ψ(V ⋆)}.

5 The use of non-Archimedean ε was introduced by Charnes (1952) to avoid degeneracy in linear programming.
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The proof of the proposition is simple and can be omitted. Having ensured that constraint (5) holds, it

is important to note that the optimal weights W that minimize ∥X1 − X0W∥2V ⋆ need not be unique. This is

particularly relevant when there exist W that satisfy ∥X1 −X0W∥2V ⋆ = 0. In such cases, the non-Archimedean

ε plays an important role by allowing us to select among the alternate optima for (5) the optimal weights W

to minimize the upper-level objective (6).

Proposition 2 provides a useful result for SCM applications where the weights V are given. Recall that

weights V might be subjectively determined, as Abadie & Gardeazabal (2003) and Abadie et al. (2010) suggest.

Proposition 2 also demonstrates the critical importance of introducing an explicit link between the lower-level

problem and the upper-level problem. In general, there can be many alternate optima where the loss function

goes to zero, LW = 0. Without coordination, there is no guarantee that the SCM algorithm would converge

to the optimum. The lack of an explicit link between the upper-level and the lower-level problem is the most

fundamental reason why the Synth algorithm fails to reach the optimum.

3.1. Checking the feasibility of an unconstrained solution

Consider first the situation where no predictors are used (i.e., K = 0). In this case, the bilevel optimization

problem (6)–(7) reduces to the constrained regression problem (3). Problem (3) has a quadratic objective

function and a set of linear constraints, which guarantees existence of a unique global optimum, when the

usual assumptions of regression analysis hold (i.e., no rank deficiency). Such quadratic programming problems

are considered straightforward from the computational point of view. While general-purpose derivative based

algorithms may struggle with the constraints, the simplex-based algorithms (e.g. the CPLEX solver) will

converge to the global optimum.

Let L(W ⋆⋆) = minW∈W L(W ) denote the optimal solution to the problem (3), which is unique when no

rank deficiency is present. As Kaul et al. (2021) correctly note, this solution is the lower bound for the optimal

solution to the problem (6):

LV (V,W ) ≥ L(W ⋆⋆) for all V ∈ V, W ∈ W. (9)

Intuitively, imposing additional constraints can never improve the optimal solution. To test if there exist

importance weights V ∈ V such that W ⋆⋆ is a feasible solution to the lower level problem (7), we next solve the

following linear programming (LP) problem

min
V ∈V

LW (V,W ⋆⋆) = (X1 −X0W
⋆⋆)⊤V (X1 −X0W

⋆⋆). (10)

While the objective function of problem (10) is the same as that of the lower level problem (7) in that both

problems minimize the same loss function, problem (7) is minimized with respect to weights W , whereas

problem (10) is minimized with respect to weights V , taking W ⋆⋆ as given. This LP problem finds the optimal

predictor weights V to support the relaxed problem (3). Denote the optimal solution to problem (10) as V ⋆⋆.
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If LW (V ⋆⋆,W ⋆⋆) = 0, the optimal solution has been found. In other words, there exists matrix V ⋆⋆ ∈ V such

that W ⋆⋆ is a feasible solution to the lower level problem (7), i.e. W ⋆⋆ ∈ Ψ(V ⋆⋆). Hence, this is also the optimal

solution to the bilevel optimization problem (6)–(7).

3.2. Establishing an upper bound for LV

In the context of SCM, the domain of predictor weights V has K basic solutions, with the following diagonal

elements: V1 = (1, 0, · · · , 0), V2 = (0, 1, · · · , 0), · · · , VK = (0, 0, · · · , 1). That is, we assign all weight to just one

of the predictors, and leave zero weight to all other predictors. We can insert the basic solution Vk, k = 1, · · · ,K

as the weights V in problem (8), and solve the QP problem to find the optimal Wk for each k = 1, · · · ,K.

For each candidate weights Wk, k = 1, · · · ,K, we calculate the value of the upper-level loss function LV

stated in (6). Finally, we select the basic solution s in 1, · · · ,K that minimizes LV . If LW (Vs,Ws) = 0 and

LV (Vs,Ws) = L(W ⋆⋆), then the corner solution (Vs,Ws) is one of the optimal solutions. If only LW (Vs,Ws) = 0

but LV (Vs,Ws) > L(W ⋆⋆), the corner solution can be viewed as an upper bound for the optimal value.

Proposition 3. If there exist weights (Ṽ , W̃ ) ∈ V × W satisfying X0kW̃ = x1k for some predictor k, then

there exists another feasible solution (Vk, W̃ ) for the SCM problem (6)-(7), where Vk ∈ V is a corner solution

satisfying LW (Vk, W̃ ) = 0. If (Ṽ , W̃ ) is an optimal solution, then also (Vk, W̃ ) is an alternative optimal solution

for the SCM problem.

This result demonstrates that whenever the donor weights W satisfy the basic condition required for the

consistency of the SCM,X1 = X0W , even just for a single predictor k, then it is easy to generate feasible solution

candidates that are obtained by considering corner solutions with respect to predictor weights V . Intuitively,

when the number of predictors is large, it is practically impossible to construct a convex combination of control

units that matches the treated unit, in other words, no matrix W that satisfies X0W = X1 exists. But if we use

weights V to reduce the dimensionality of X by assigning some of the predictors a zero weight, then it becomes

considerably easier to find vectors W that satisfy x0kW = x1k at least for some predictor k (note x0k is the kth

row of matrix X0 and x1k is a scalar). Consequently, the set of feasible solutions for the SCM problem often

contains several candidate solutions that “switch off” the constraints concerning predictors X by assigning zero

weight, except for a single predictor k for which a perfect fit is possible. Therefore, it is understandable that

many algorithms attempting to solve the SCM problem (6)–(7) may end up assigning all weight to the most

favorable predictor and discard all other predictors by assigning the zero weight. These observations can help

to explain the empirical observation that the predictors often turn out to have little impact on the synthetic

control, which has been noted by several authors (e.g., Kaul et al., 2021; Doudchenko & Imbens, 2017; Ben-

Michael et al., 2021). While these solutions may not necessarily be optimal for the SCM problem, they can

still provide good approximations for the optimal value of the upper-level objective. Note that the previous

iterations provide us the corner solution (Vk,Wk) and the unconstrained solution W ⋆⋆, which can be used for
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constructing the following bounds for the loss function of the true optimum (V ⋆,W ⋆):

LV (Vs,Ws) ≥ LV (V
⋆,W ⋆) ≥ L(W ⋆⋆).

If the margin of LV is small and Ws ≈ W ⋆⋆ by reasonable tolerance, there is no need to iterate further. But if

there is a significant gap, the following iterative procedure is guaranteed to find the optimum.

3.3. Finding an optimal solution using Tykhonov regularization

Building on Proposition 2, the basic idea is to construct an iterative descent algorithm to find the bilevel

optimal solution by using the following regularized lower level problem:

min
W∈W

Lε
W (V,W ) = LW (V,W ) + εLV (V,W ), (11)

where ε > 0. Note that problem (11) is just a re-stated version of the QP problem (8) above. When the

optimal solution to the upper-level problem is uniquely defined, the regularized lower-level problem has con-

siderably better regularity properties than the original formulation. In the literature on bilevel programming,

this approach is known as Tykhonov regularization (Dempe, 2010). By requiring positive definiteness in the

upper-level problem, we can make relatively strong claims regarding the properties of the optimal solutions for

the regularized problem. Specifically, it can be shown that the unique optimal solution function to the problem

(11), denoted by W ⋆
εk
(V ), is Lipschitz continuous and directionally differentiable.

Definition 1 (Lipschitz continuity). A function z : Rn → Rm is called locally Lipschitz continuous at a

point x0 ∈ Rn if there exists an open neighborhood Uε(x
0) of x0 and a constant l < ∞ such that

||z(x)− z(x′)|| ≤ l||x− x′|| ∀x, x′ ∈ Uε(x
0).

Definition 2 (Directional differentiability). A function z : Rn → R is directionally differentiable at x0 if

for each direction r ∈ Rn the following one-sided limit exists:

z′(x0; r) = lim
t→0+

t−1[z(x0 + tr)− z(x0)].

The value z′(x0; r) is called the directional derivative of z at x = x0 in direction r.

Proposition 4. Consider the synthetic control problem in (6)-(7) and let the upper-level cross-product matrix

Y ⊤
0 Y0 be positive definite. Take any sequence of positive numbers {εk}∞k=1 converging to 0+. Then,

1. the optimal value of the regularized bilevel problem converges to the optimal value of the original problem

as k → ∞ i.e.

min
V,W

{LV (V,W ) : W ∈ Ψεk(V ), V ∈ V} → L⋆
V ,

where

Ψεk(V ) = argmin
W∈W

Lε
W (V,W ),
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L⋆
V = min

V,W
{LV (V,W ) : W ∈ Ψ(V ), V ∈ V}

denote the optimal solution set mapping for (11) and the upper-level optimal value of the original problem,

respectively.

2. for each εk, the unique optimal solution to the regularized lower-level problem (11), denoted by W ⋆
εk
(V ) ∈

Ψεk(V ), is directionally differentiable and

lim
k→∞

{Wεk(V )} = argmin
W

{LV (V,W ) : W ∈ Ψ(V )}

for every fixed V ∈ V.

Based on this result, solving the synthetic control problem is equivalent to considering a sequence of problems

min
V

{Lεk(V ) : V ∈ V} for εk → 0+, (12)

where the implicitly defined objective function Lεk(V ) = LV (V,W
⋆
εk
(V )) is directionally differentiable with

respect to V . The implementation of the descent algorithm is discussed in Appendix B.1. As an alternative for

the Tykhonov algorithm, the problem can be also solved using a recently developed approach based on KKT-

conditions for bilevel problems (Dempe & Franke, 2019). This alternative is briefly described in Appendix

B.2.

To summarize this section, the good news is that the SCM problem (6)–(7) is solvable. A bad news is

that the required computations prove much more demanding than the original SCM studies assumed. Worse

yet, the optimal solution is often a corner solution where most predictors are assigned a zero weight, or have a

negligible impact. We stress that imposing some small bounds for V (e.g., Vkk ≥ 0.01) would have little impact

in practice, the corner solution would simply assign the minimum weight to all predictors, except for the most

favorable predictor that would get the maximum weight (= 1–0.01(K–1)).

4. Comparison of Synth, MSCMT, and the global optimum

Applying the iterative algorithm proposed in Section 3 to the data of the two original SCM applications

to Basque terrorism (Abadie & Gardeazabal, 2003) and the California tobacco control program (Abadie et al.,

2010), we empirically verify that the optimal solution in both cases is indeed a corner solution. The corner

solution is found superior to the solutions obtained by Synth and the MSCMT algorithm proposed by Becker

& Klößner (2018). This observation demonstrates that the existing SCM algorithms fail to find the optimal

solution even in the two original applications of SCM, which are also used as illustrative examples for Synth.

We compare the results of the following three algorithms: the standard implementation of Synth described

11



in Abadie et al. (2011),6 the MSCMT package described in Becker & Klößner (2018), and the iterative algorithm

proposed by Section 3, which ensures the true global optimum.7 Tables 1 and 2 report the donor weights (W ),

the predictor weights (V ), and the loss function values of the upper-level problem (LV ) and the lower-level

problem (LW ) estimated by different algorithms in R for the Basque terrorism application and the California

tobacco control application, respectively. For convenience, we discuss the results of both tables in parallel.

Recall that the value of LV measures how well the synthetic control matches the pre-treatment outcomes

of the treated unit, and this is the upper-level objective to be minimized. In this respect, all algorithms come

relatively close to the global optimum. Note that LV depends on the measurement units of outcomes: for

example, multiplying Y pre
1 and Y pre

0 by 1 Thousand would increase LV by a factor of 1 Million. Therefore,

it is helpful to measure empirical fit with respect to the pre-treatment outcomes in terms of the coefficient

of determination (R2)—after all, the upper-level problem is just constrained least squares regression without

intercept. Such a comparison reveals that the differences in empirical fit are rather marginal, the R2 statistic

varies between 0.96866 (Synth) to 0.98541 (optimum) in the Basque example and between 0.97518 (Synth)

and 0.97878 (optimum) in the California example. In contrast, the differences in weights W and V are rather

dramatic. The results of Tables 1 and 2 help to illustrate that good empirical fit may be achieved with a wide

variety of weights W and V , but there is only one unique global optimum.

The loss function LW measures how well the synthetic control matches the predictors X1. Minimization

of LW is the lower-level objective, but the consistency of SCM depends on the (nearly) perfect match with

the predictors. In this regard, the relatively high value of LW given by the standard Synth command in both

applications indicates that Synth fails to converge to the global optimum. Furthermore, the MSCMT procedure

greatly improves LW , but the performance varies between the two empirical examples: LW converges to the

global optimum in the California case but not in the Basque case. In contrast, the value of LW at the global

optimum goes to zero, suggesting a perfect match in terms of the weighted predictors. However, this is an

illusion because the optimal solution is a corner solution that assigns all weight to a single predictor: real per

capita GDP in the Basque terrorism application and cigarette sales per capita in 1980 in the California tobacco

control application (see Tables 1 and 2). The MSCMT algorithm comes close to the corner solution in the former

application, but fails to converge to the corner solution in the latter. The Synth algorithm appears to use more

balanced weights for predictors, however, note that Synth also assigns almost 90% of the predictor weight to

cigarette sales per capita (the outcome variable) during two years of the pre-treatment period. Unfortunately,

Synth fails to solve the optimization problem it is supposed to solve; its predictor weights are not what they

6 In addition to the standard Synth command, we have also considered the genoud() option available in Synth, as noted in Abadie

et al. (2011). However, the use of the genoud() option does not improve the matter; in fact, the solution is only worse.

7 The R code to implement this algorithm is documented in Appendix C. The latest updates to the R code are available on the

GitHub page: https://github.com/Xun90/SCM-Debug.git.
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Table 1: Basque terrorism application revisited: donor weights, predictor weights, loss functions, and empirical fit by different

algorithms.

Synth MSCMT Optimum

W

Catalonia 0.8508 0.6328 0.0000

Madrid 0.1492 0.1479 0.4405

Baleares 0.0000 0.2193 0.3700

La Rioja 0.0000 0.0000 0.1895

V

Schooling of working age population (%)

Illiterates 0.0156 0.0000 0

Up to primary school 0.0018 0.0000 0

With some high school 0.0442 0.0000 0

With high school or above 0.0341 0.0003 0

Investment ratio 0.0001 0.0003 0

Real GDP per capita 0.2010 0.9993 1

Sectoral shares (%)

Agriculture, forestry, and fishing 0.0948 0.0000 0

Energy and water 0.0077 0.0000 0

Industry 0.1339 0.0000 0

Construction and engineering 0.0087 0.0000 0

Marketable services 0.0097 0.0000 0

Non-marketable services 0.1081 0.0000 0

Population density 0.3403 0.0000 0

LV 0.00886 0.00429 0.00413

LW 0.24670 0.00034 0.00000

R2 0.96866 0.98485 0.98541

13



Table 2: California tobacco control application revisited: donor weights, predictor weights, loss functions, and empirical fit by

different algorithms.

Synth MSCMT Optimum

W

Utah 0.3432 0.3351 0.3939

Nevada 0.2358 0.2356 0.2049

Montana 0.1820 0.2019 0.2318

Colorado 0.1747 0.1595 0.0148

Connecticut 0.0624 0.0679 0.1091

New Hampshire 0.0000 0.0000 0.0454

V

Income per capita 0.0006 0.0000 0

Retail price of cigarettes 0.0312 0.3333 0

Population aged 15–19 (%) 0.0034 0.3333 0

Beer consumption per capita 0.0124 0.0000 0

Cigarette sales per capita 1988 0.0682 0.0000 0

Cigarette sales per capita 1980 0.3917 0.0000 1

Cigarette sales per capita 1975 0.4925 0.3333 0

LV 3.20908 3.07666 2.74366

LW 0.00170 0.00000 0.00000

R2 0.97518 0.97621 0.97878
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are claimed to be, but just artifacts of a computational failure.

Of course, the most important piece of information for SCM are the donor weightsW , which are used to form

the synthetic control. As noted above, a marginal improvement in the empirical fit leads to rather dramatic

changes in the composition of the synthetic control. Consider first the synthetic control for Basque. The

Synth algorithm identifies Catalonia and Madrid as the benchmarks, with 85% weight assigned to Catalonia.

The solution found by the MSCMT algorithm reassigns 22 percentage points of Catalonia’s weight to the

Balearic Islands, maintaining the weight of Madrid. In sharp contrast, the global optimum assigns no weight

to Catalonia, whereas the largest weights are assigned to Madrid (44%) and the Balearic Islands (37%), but

also the neighboring region of La Rioja enters the synthetic control with the 19% weight. Consider next the

synthetic control for California. Synth and MSCMT yield almost the same donor weights despite their different

estimates of the loss function values. However, the global optimum reassigns nearly all of Colorado’s weight

and 4 percentage points of Nevada’s weight to Utah (consolidating as the largest weighting state), Montana,

Connecticut, and New Hampshire (a new state entering the synthetic California).

Figure 1 illustrates the impact of suboptimal donor weights on the evolution of the synthetic Basque (panel

1a) and the synthetic California (panel 1b). Fortunately the qualitative conclusions of these two original

and highly influential applications remain, but the suboptimal weights lead to a lower treatment effect in both

cases, particularly in the Basque terrorism application. We stress that the globally optimal weights minimize the

MSPE of the pre-treatment outcomes Y pre
1 , but there is no guarantee that the weights are optimal to minimize

the MSPE of the counterfactual because the good empirical fit to pre-treatment outcomes was achieved by

disregarding all predictors except for one. We compare the solutions produced by the Synth and MSCMT

algorithms to the global optimum just to illustrate the computational failure, but the practical use of this

global optimum is not the approach that we advocate. We agree with Albalate et al.’s (2021) recent proposal

to determine the predictor weights and donor weights separately.

5. Alternative data-driven approaches

5.1. Optimizing donor weights when predictor weights are given

In the previous section we found that the original SCM problem is solvable, but unfortunately, the solution

is not nice. In light of the arguments presented in the previous section, we would strongly recommend the users

of SCM to determine the predictor weights V separately, before optimizing the donor weights W .

In this sub-section we develop a simple iterative procedure to compute the optimal weights W when the

predictor weights V ⋆ are given a priori. Recall from Section 3 the Tykhonov descent approach where the non-

Archimedean ε is gradually decreased towards zero. In practice, it is difficult to ensure that ε is sufficiently close

to zero to give the priority to the lower-level objective function LW , but high enough to achieve coordination

with the upper-level objective LV . To operationalize the theoretical idea of Section 3, we propose to optimize

the weights W using the following two-step procedure when the predictor weights V ⋆ are predetermined:
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Figure 1: The impact of suboptimal W weights on the evolution of synthetic controls.
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Step 1: Solve the QP problem

min
W

LW = (X1 −X0W )⊤V ⋆(X1 −X0W )

subject to

1⊤W = 1

W ≥ 0

Step 2: Given the optimal L⋆
W from Step 1, solve the convex programming problem

min
W

LV (V,W ) = (Y pre
1 − Y pre

0 W )⊤(Y pre
1 − Y pre

0 W )

subject to

(X1 −X0W )⊤V ⋆(X1 −X0W ) = L⋆
W

1⊤W = 1

W ≥ 0

Breaking the problem into two separate stages allows to eliminate the non-Archimedean ε in (8). In Step 1 we

minimize the lower-level objective function LW , and its optimal value is subsequently inserted as a constraint to

the optimization problem in Step 2. This establishes an explicit link between the upper-level and the lower-level

objectives. The two-step procedure explicitly considers the possibility of alternate optima in Step 1. Since the

Synth algorithm does not take the possibility of alternate optima into account, there is no guarantee that it

finds the optimal donor weights W even when the predictor weights V are defined by the user (see Appendix B

of Kuosmanen et al., 2021 for a numerical demonstration). In the next sub-sections we explore and demonstrate

alternative data-driven strategies to determine the weights V empirically.

Before proceeding to the predictor weights, it is worth to note the recent study by Abadie & L’Hour (2020),

which similarly takes the predictor weights V as given. The authors deviate from the original SCM approach in

that they focus solely on the lower-level objective of optimizing the fit with respect to the predictors, ignoring the

upper-level objective of optimizing the fit with respect to the pre-treatment outcomes. The authors introduce

an additional penalty to minimize the sum of pairwise matching discrepancies, which ensures that the optimal

donor weights are unique in this new setting. The additional penalty term to improve matching is a valuable

extension, which could be readily combined with the developments of our study. However, omitting the upper-

level objective function would typically result as poor fit to the pre-treatment outcomes. Of course, one might

incorporate pre-treatment outcomes among the predictors, but this would quite dramatically change the logic

of the original SCM. In mathematical terms, the original bilevel optimization problem would then become

a multi-objective optimization problem where the weights V govern the relative importance assigned to the

empirical fit to the pre-treatment outcomes and the fit to the additional predictors, respectively.
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5.2. Panel regression approach to determine predictor weights

There are several possibilities to set weights V based on empirical data. Both Abadie & Gardeazabal (2003)

and Abadie et al. (2010) discuss the possibility to use subjectively determined weights V . The default option

of the Stata implementation of the Synth package is to use regression-based weights V , which are also used as

starting values in the R and Matlab implementation of Synth (see Abadie et al. (2011)). In this sub-section we

similarly resort to a regression-based approach, but propose some modifications to the Synth approach.

If panel data of predictors X are available, we propose to first estimate the equation

yprejt = µ+X ′
jtβ+ γj + εjt j = 1, 2, . . . , J + 1; t = 1, 2, . . . , T pre. (13)

Model (13) can be estimated by standard fixed effects (FE) or random effects (RE) panel data regression. Note

that the FE estimator cannot be used when there are time-invariant predictors. The original SCM application

to Basque terrorism, to be revisited below, does include some time-invariant predictors. Therefore, we will

resort to the RE estimator below, assuming that the random effects γj are uncorrelated with the predictors.

Given estimated coefficients β̂, we propose to assign weights V based the absolute values of the parameter

estimates, that is

vk = |β̂k|
/ K∑

j=1

|β̂j |. (14)

We note that the Synth algorithm uses the squared values of the parameter estimates to assign weights V .

By using the absolute values rather than squared values, one achieves a more equal balance between different

predictors.

Having optimized the predictor weights, we apply the two-step procedure proposed in Section 5.1 to optimize

the donor weights. Given the optimal donor weights W ⋆, we estimate the counterfactual as

Y N
1 = Y0W

⋆ + (γ̂1 − γ̂⊤
0 W

⋆). (15)

Note that the random effects γj were not taken into account in the optimization of the donor weights. Therefore,

we utilize the estimated random effects to implement the standard bias correction, following Ben-Michael et al.

(2021) and Ferman et al. (2020).

We next illustrate the regression-based approach outlined above by reexamining the original SCM application

to Basque terrorism. Imputing the missing values by suitable methods (see Appendix D for details), we obtain

panel data for most of the predictors during the pre-treatment period. In the RE panel regression to set

weights V , we excluded the real GDP per capita, the percentage of the illiterate working-age population, and

the sectoral share of non-marketable services to avoid perfect collinearity. Table 3 reports the RE estimates of

predictor coefficients and the empirical V weights determined by equation (14) for the Basque example. The

percentage of the working age population with some high school and the sectoral share of marketable services

are found to be statistically significant predictors. Together with the percentage of the working age population
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with high school or higher education, those two significant predictors are the three most influential predictors

that receive more than 70% weight. On the other hand, the empirical V weights are relatively balanced among

the other predictors, except for population density, which is attributed less than 1% weight. In addition, the

overall empirical fit of the RE panel regression is 0.8808, with the between and within effects being 0.8734 and

0.9277, respectively. Note that 78% of the unexplained variation of the outcome is attributed to the random

effects and that the random effects are statistically significant.

Given the empirically set V weights, we next determine the optimal W weights to construct the synthetic

Basque by using the two-step procedure described in Section 5.1. The donor weight is assigned to Cantabria

(79.9%), Catalonia (12.4%), and Madrid (7.7%). Interestingly, Cantabria enters the synthetic control with a

large weight. Cantabria is a neighboring region to the Basque Country, but it was not included in any of the

the three synthetic controls considered in Section 4.

Figure 2 illustrates the impact of the alternative strategy to set V on the evolution of the synthetic Basque.

The time series start from 1960, which is the first year in the panel model. Note that the absolute RE weights

approach with bias-correction yields notably better fit to the pre-treatment outcomes than the SCM that does

not use any predictors, which is exactly the same as the “global optimum” considered in Section 4 obtained by

assigning all weight to a single predictor. The synthetic Basque based on the absolute RE weights still identifies

the treatment effect of Basque terrorism on real GDP per capita. However, the treatment effect is considerably

smaller than the synthetic control that does not use any predictors. The treatment effect disappears by the

mid-1990s. This example illustrates that appropriate use of the predictors does influence the results, and can

potentially affect the qualitative conclusions.

One of the key assumptions of any treatment effect model is that the control group is not exposed to the

treatment. This assumption does not, strictly speaking, hold in the present application because a significant

proportion of Euskadi Ta Askatasuna (ETA)’s terrorism activity took place in other regions, including Madrid

and Catalonia, which have large weight in the synthetic control. Abadie & Gardeazabal (2003) indicate that

69% of deaths attributed to terrorism occurred in the Basque Country, which directly implies that almost one

third of deaths occurred in the regions that form the donor pool. Further, the specification of the pre-treatment

and post-treatment periods (before and after 1970, respectively) could be debated. ETA was founded in 1968

and there were three victims during the pre-treatment period, but only one victim during the first three years of

the post-treatment period. The difference between the actual outcome and the counterfactual synthetic control

becomes evident from the year 1975 onwards, which matches perfectly with the death of Dictator Franco and

the transition towards democracy. While we do not intend to deny the economic cost of ETA’s terrorism,

perhaps at least some part of the observed treatment effect may be attributed to the economic transition from

Franco’s dictatorship to democracy, which had varying effects across different regions of Spain. Of course,

ETA’s terrorism is also closely related to this historical context, but ETA’s terrorism did not cause the major

political regime shift in Spain.
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Table 3: Predictor coefficients and empirical predictor weights for the Basque example.

Predictors Coefficients Robust standard errors Empirical V

Schooling of working age population (%)

Up to primary school 0.0397 0.0264 0.0532

With some high school 0.2567∗∗∗ 0.0527 0.3439

With high school or above 0.2126 0.2275 0.2848

Investment ratio -0.0085 0.0068 0.0114

Sectoral shares (%)

Agriculture, forestry, and fishing 0.0150 0.0335 0.0201

Energy and water 0.0196 0.0389 0.0262

Industry 0.0446 0.0368 0.0598

Construction and engineering -0.0477 0.0715 0.0639

Marketable services 0.1007∗∗ 0.0397 0.1349

Population density -0.0014 0.0016 0.0019

Intercept -5.7426∗∗ 2.9123

R2: within = 0.9277, between = 0.8734, overall = 0.8808

σγ̂ = 0.2062, σε̂ = 0.1099, ρ = 0.7789 (fraction of variance due to γi)

Note: * p ≤ 0.10; ** p ≤ 0.05; *** p ≤ 0.01.
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Figure 2: The impact of alternative approaches on the evolution of synthetic Basque.

5.3. Uniform weights to standardized predictors

Suitable panel data are not always available for the purposes of SCM. The original application to California’s

tobacco control program is one example of such application. Another possibility would be to apply uniform

V weights when panel data for the predictors are simply unavailable. In this approach, we propose to first

standardize the predictors as

zik = (xik–X̄k)) / std(Xk).

and subsequently apply equal weights vk = 1/K to the standardized predictors. By doing so, all predictors will

count, and the weights are invariant to rescaling or changing the units of measurement.

We next illustrate the application of uniform V weights by revisiting the California tobacco control applica-

tion. The donor weights are obtained by applying the two-stage procedure proposed in Section 5.1. This yields

the following optimal donor weights: Colorado (62.6%), Connecticut (27.8%), Texas (6.5%), and Utah (3.2%).

Colorado was included in the synthetic control in the results of Section 4, but the use of standardized uniform

predictor weights notably increases its weight. In contrast, Utah was previously assigned the largest weight,

but in the present analysis it gets only 3.2% weight.

Figure 3 illustrates the impact of the uniform V on the evolution of the synthetic California. Note that in

this example the uniform V approach leads to worse empirical fit to the pre-treatment outcomes than the SCM
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Figure 3: The impact of alternative approaches on the evolution of synthetic California.

that does not use any predictors. There is a trade-off: when we put more emphasis on optimizing the empirical

fit with respect to predictors X, then the fit with respect to pre-treatment outcomes is likely to deteriorate,

and vice versa. In our interpretation, Figure 3 is a useful illustration of why focusing solely on optimizing the fit

with respect to predictors, ignoring the pre-treatment outcomes, is not necessarily a viable solution. In many

applications, the good pre-treatment fit of Synth is to some extent illusion because it tends to put negligibly

small weight to many predictors.

However, it is reassuring to find that the post-treatment outcomes of the synthetic California based on

uniform V are very similar to those of the synthetic California in the absence of predictors. Therefore, the use

of predictors mainly affects the pre-treatment fit, but not so much the post-treatment. One would be mainly

interested in the post-treatment effect, so this would help to support the empirical finding that there was indeed

impact. In fact, we suggest that one could examine a range of alternative V weights for testing robustness of

the treatment effect (as an additional tool, in addition to the placebo trials and statistical tests that are already

known in the literature).

In summary, the main point of Section 5 is to demonstrate that alternative data-driven approaches to

determine the weights V are available. The empirical comparisons above demonstrate that the introduction

of empirically determined V weights presents a viable remedy to the ill-designed Synth algorithm. While the

relative merits of the alternative approaches clearly warrant further research, in light of the problems discussed
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in Sections 2 and 4, we strongly recommend that the suboptimal weights produced by Synth should not be

used.

6. Conclusions

SCM has proved a highly appealing approach to estimate causal treatment effects, as a large number of

published applications demonstrates. Unfortunately, the computational difficulties caused by joint optimization

of the donor weights and the predictor weights not only result as inaccuracy and numerical instability, but in

our view, cast serious doubts on the reliability of the original SCM and the Synth package. Referring to the

secondary title of this article, we would classify the synthetic control methods currently available into three

groups.

First, we would argue that decoupling the nested optimization problems of predictor weights and donor

weights is the good approach and the most promising way forward, in agreement with Albalate et al. (2021).

In this paper we developed a simple two-step algorithm to optimize the donor weights when the predictor

weights are given a priori, and also briefly explored two alternative data-driven approaches to determine the

predictor weights using regression analysis or applying uniform weights to standardized predictors, thereby

complementing the SHAP approach proposed by Albalate et al. (2021).

Second, we developed an iterative computational algorithm for solving the original SCM problem, which

turned out to be a NP-hard bi-level optimization problem. We were the first ones to prove that our SCM

algorithm converges to the optimal solution. However, empirical application of the new algorithm strongly

suggests that the true optimal solution is typically a corner solution where all predictor weight is assigned to a

single predictor. We show that this is the case in the two classic SCM applications by Abadie & Gardeazabal

(2003) and Abadie et al. (2010). We stress that development of a better computational algorithm is not the

solution that we advocate because it does not help to address the root cause of the problem. Due to the

computational complexity of the original SCM formulation, we consider this a bad method.

Third, the ugly solution is to continue the use of the Synth package in applications, despite the accumulating

evidence on its numerical instability and demonstrably suboptimal solutions, which may distort the qualitative

conclusions. We sincerely hope that the results of this paper would not only contribute to the better under-

standing of the synthetic control methods, but also help to facilitate the good practices more broadly to the

empirical practice in economics, operational research, statistics, and other related areas. The synthetic control

methods are already highly influential for decision-making involving important societal problems, and have

potential to become even more influential in the future.

We hope that our study could open important avenues for future research, both empirical and methodological

studies. From the empirical point of view, the findings of our paper call for systematic replication of the published

SCM studies to examine whether and to what extent the use of suboptimal weights produced by Synth has

affected the qualitative conclusions. Becker & Klößner (2017) is an excellent example of such a replication
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study. We hope that the qualitative results of the influential SCM studies prove robust to the optimization

errors that are evidently present, but this remains to be tested empirically. Our replication of the two original

applications of SCM showed that the suboptimal weights yield somewhat different results than the optimal

ones, but fortunately the qualitative conclusions of these two studies remain.

From the methodological point of view, it would be urgent to further examine alternative decoupled data-

driven approaches to determine the predictor weights, including regression-based methods, to gain a better

understanding of which method is most suitable for the purposes of SCM. While we strongly recommend the

users of the classic SCM to determine the predictor weights a priori, we do not consider the joint optimization

of the predictor weights and the donor weights entirely hopeless. However, the loss function to be minimized

requires careful reconsideration to ensure that the optimal solution is meaningful for the intended purposes

of using the predictors, and that the problem remains computationally tractable. It would also be helpful to

establish more detailed practical guidelines regarding what kind of variables are suitable predictors for SCM.

At present, many SCM studies include a mixed set of predictors expressed in levels, logs, differences, and

percentage growth rates, which may leave too much room for a user to manipulate the results by creative data

transformations.
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Online Supplement for “Synthetic Control Methods: The Good, the Bad, and the Ugly”

Appendix A. Proofs of theorems

Appendix A.1. Regularity Conditions for Parametric Optimization

In this section, we will briefly review a few central concepts from parametric optimization literature that

we will later need while discussing the notions of optimality for the synthetic control problem. Without loss of

generality, the lower level problem can be stated as a parametric optimization problem

min
y

{f(x, y) : g(x, y) ≤ 0, h(x, y) = 0}, (A.1)

where f : Rn × Rm → R, g : Rn × Rm → Rp, h : Rn × Rm → Rq. The constraints

g(x, y) = (g1(x, y), . . . , gp(x, y))
⊤,

h(x, y) = h1(x, y), . . . , hq(x, y))
⊤,

are assumed to be smooth vector-valued functions. The problem is a convex parametric optimization problem,

when all functions f(x, ·), gi(x, ·), i = 1, . . . , p, are convex and the functions hj(x, ·), j = 1, . . . , q, are affine-linear

on Rn for each fixed x ∈ Rn. The solution set mapping Ψ : Rn ⇒ Rm is defined by

Ψ(x) = argmin
y

{f(x, y) : g(x, y) ≤ 0, h(x, y) = 0},

which is a point-to-set mapping from the upper level decisions to the set of global optimal solutions of the

parametric problem. For convex problems, the solution sets Ψ(x) are closed and convex subsets of Rm.

When it comes to regularity conditions in bilevel programming, the following two conditions have often been

utilized. The first condition is concerned with compactness of the feasible set of the lower level problem:

Definition 3 (C). The set {(x, y) : Rn × Rm : g(x, y) ≤ 0, h(x, y) = 0} is non-empty and compact.

This is enough to guarantee that the set of optimal solutions for the parametric problem

Ψ(x) := argmin
y

{f(x, y) : g(x, y) ≤ 0, h(x, y) = 0}

is non-empty and compact for each x ∈ {z : Ω(z) ̸= ∅}, where

Ω(x) = {y ∈ Rm : g(x, y) ≤ 0, h(x, y) = 0}

is the feasible set mapping for the lower level problem.

The second regularity condition is the commonly applied Mangasarian-Fromowitz constraint qualifications:

1



Definition 4 (MFCQ). We say that Mangasarian-Fromowitz constraint qualification is satisfied at point

(x0, y0) if there exists a direction d ∈ Rm such that

∇ygi(x
0, y0)d < 0, for each i ∈ I(x0, y0) = {j : gj(x0, y0) = 0},

∇yhj(x
0, y0)d = 0, for each j = 1, . . . , q

and the gradients of the equality constraints {∇yhj(x
0, y0) : j = 1, . . . , q} are linearly independent.

These regularity conditions play an important role in ensuring existence of optimal solutions for optimistic

bilevel problems such as the synthetic control problem discussed in this paper. Let F : Rn×Rm → R denote the

upper level objective function that is minimized with respect to upper-level constraints X := {x : G(x) ≤ 0},

G : Rn → Rl. An optimistic solution to a bilevel problem can then be defined as a point solving the following

minimization problem:

min
x

{φ0(x) : x ∈ X}, (A.2)

where φ0(x) = miny{F (x, y) : y ∈ Ψ(x)}.

Theorem 1 (Dempe, 2010). Let the assumptions (C) and (MFCQ) be satisfied at all points (x, y) ∈ X × Rm

with y ∈ Ω(x). Then, a global solution of the bilevel problem (A.2) exists provided there is a feasible solution.

In addition to the existence of optimal solutions, the regularity conditions imply upper-semicontinuity of

the optimal solution set mapping.

Definition 5 (Upper semicontinuity). A set-valued mapping Ψ : Rn ⇒ Rm is said to be upper semicontin-

uous at a point x ∈ Rn if, for each open set V with Ψ(x) ⊂ V , there exists an open neighborhood Uδ(x) of x

such that Ψ(x′) ⊂ V for each x′ ∈ Uδ(x).

In the special case, where Ψ is a single-valued mapping, the notion of upper semicontinuity corresponds to the

usual continuity of a function.

Theorem 2 (Bank et al., 1982; Dempe, 2010). Consider the parametric optimization problem (A.1) at x =

x0 ∈ Rn and let the assumptions (C) and (MFCQ) be satisfied for all feasible points (x, y) with x = x0 and

y ∈ Ω(x0). Then, the solution set mapping Ψ is upper semicontinuous and the optimal value function φ is

continuous at x0.

While the solution set mapping is upper semicontinuous under these relatively weak regularity conditions,

it is generally not continuous. The continuity of a solution set mapping is possible only under considerably

stronger assumptions such as the strong sufficient optimality condition of second order (SSOC) and constant

rank constraint qualification (CRCQ).
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Definition 6 (SSOC). The strong sufficient optimality condition of second order holds at (x0, y0) if for each

pair of Lagrange multipliers (λ, µ) ∈ Λ(x0, y0) and for each direction d ̸= 0 with

∇ygi(x
0, y0)d = 0, ∀i ∈ J(λ) := {j : λj > 0},

∇yhj(x
0.y0)d = 0, j = 1, . . . , q

we have that

d⊤∇yyL(x
0, y0, λ, µ)d > 0.

Definition 7 (CRCQ). The constant rank constraint qualification holds at point (x0, y0)) if there exists an

open neighborhood Uε(x
0, y0) of (x0, y0) such that for each subset

I ⊂ I(x0, y0) := {i : gi(x0, y0) = 0}, J ⊂ {1, . . . , q},

the family of gradient vectors

{∇ygi(x, y) : i ∈ I} ∪ {∇yhj(x, y) : j ∈ J}

has the same rank for all (x, y) ∈ Uε(x
0, y0).

Let L(x, y, λ, µ) = f(x, y) + λ⊤g(x, y) + µ⊤h(x, y) denote the Lagrangian function of problem (A.1) and let

Λ(x, y) = {(λ, µ) ∈ Rp × Rq : λ ≥ 0, λ⊤g(x, y) = 0,∇yL(x, y, λ, µ) = 0}

be the set of Lagrange multipliers at (x, y).

Theorem 3 (Dempe, 2010). Consider the problem (A.1) at x = x0 ∈ Rn and let the assumptions (MFCQ),

(SSOC), and (CRCQ) be satisfied at (x0, y0) with y0 being a unique local optimal solution. Then, there exists

a unique local optimal solution function y(·) that is locally Lipschitz continuous and directionally differentiable

at x = x0. The directional derivative in direction r coincides with the unique optimal solution of the following

quadratic programming problem

min
d

0.5d⊤∇2
yyL(x

0, y0, λ0, µ0)d+ d⊤∇2
xyL(x

0, y0, λ0, µ0)r,

s.t. ∇ygi(x
0, y0)d+∇xgi(x

0, y0)r


= 0, if i ∈ J(λ0),

≤ 0, if i ∈ I(x0, y0) \ J(λ0),

∇yhj(x
0, y0)d+∇xhj(x

0, y0)r = 0 for all j = 1, . . . , q,

for any (λ0, µ0) ∈ Λ(x0, y0) that solve

max
(λ,µ)∈Λ(x0,y0)

∇xL(x
0, y0, λ, µ).
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Appendix A.2. Proof of Proposition 1

To show existence of a global optimal solution, it is enough to verify that assumptions (C) and (MFCQ) are

satisfied.

Let g(V,W ) = −W and h(V,W ) =
∑J

j=1Wj − 1 denote the constraints in the lower-level problem. Clearly,

the set {(V,W ) ∈ RK×K × RJ : g(V,W ) ≤ 0, h(V,W ) = 0} is non-empty and compact. Therefore, condition

(C) holds.

To check (MFCQ), let (V0,W0) ∈ V ×W and define

I0 = {j : gj(V0,W0) = −Wj = 0}.

If W0 > 0, we have I0 = ∅ and (MFCQ) holds trivially. If there exists at least some index j such that W0,j = 0,

we need to check the gradient conditions. Let d ∈ RJ be a candidate direction. From the inequality constraints

we have that ∇wg(V,W )d = −d < 0, which means that for every j ∈ I0, we require dj > 0. When combined

with the equality constraint we have that

∇wh(V0,W0)d =
∑
j∈I0

dj +
∑
j∈Ic0

dj = 0,

where Ic0 = {j : gj(V0,W0) ̸= 0}. Since h(V0,W0) = 0, all coefficients cannot be zero, the set Ic0 is non-empty.

Therefore, we can find d such that (MFCQ) holds. Now the existence of the optimal solution follows from

Theorem 1, which concludes the proof.

Appendix A.3. Proof of Proposition 3

Note that the convex combination X0W̃ is a K-dimensional vector, where each scalar element X0kW
⋆ is a

convex combination of predictor k = 1, · · · ,K. Suppose X0kW̃ = X1k for some arbitrary k, but not necessarily

for other predictors. In this case, it is easy to verify that W̃ remains an optimal solution to the reduced single-

dimensional problem using Vk such that the loss-function of the lower-level problem goes to zero. Since the

lower-level loss function cannot be improved, we have W̃ ∈ Ψ(Vk) and the solution is considered feasible for the

bilevel problem (6)-(7). Furthermore, if the original solution was bilevel optimal, then also the other solution

(Vk, W̃ ) remains optimal, since the upper-level objective value depends only on W̃ . This concludes the proof.

Appendix A.4. Proof of Proposition 4

Given that the assumptions of Theorem 2 are satisfied, the solution set mapping Ψεk of the regularized lower-

level problem (8) is upper semi-continuous. That is, for each sequence {(V k,W k, εk)}∞k=1 with limk→∞ V k = V̄ ,

limk→∞ εk = 0+ and W k ∈ Ψεk(V
k) for all k, each accumulation point of the sequence {W k}∞k=1 is an optimal

solution to the lower level problem, i.e. the accumulation points belong to Ψ0(V̄ ) = Ψ(V̄ ). Then, by continuity

of LV the first assertion follows.

To show the second assertion it is enough to verify that the regularized lower-level problem meets the

assumptions of Theorem 3. This is easy to check because the requirement that Y ⊤
0 Y0 is positive definite means
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that ∇wwLV (V,W ) is positive definite at each (V,W ) ∈ V × W, which means that (SSOC) is satisfied at all

feasible points. As a result, Theorem 3 implies that the set Ψεk(V
k) = {W k(V k)} is a singleton and the optimal

solution function W k(V k) is uniquely defined and directionally differentiable at each εk > 0. The remaining

part of the claim follows from the inequality

LW (V k,W k(V k)) ≥ min
W∈W

LW (V k,W )

that holds due to feasibility. As a result, we have that

LV (V
k,W k(V k)) ≤ min

W
{LV (V

k,W ) : W ∈ Ψ(V k)},

which then implies the last assertion for every fixed V k ∈ V. This concludes the proof.

Appendix B. Implementation of SCM algorithm

Appendix B.1. Descent algorithm based on Tykhonov regularization

Based on Proposition 4, the original synthetic control problem can be solved by considering a sequence of

single-level problems

min
V

{Lεk(V ) : V ∈ V} for εk → 0+, (B.1)

where the implicitly defined objective function Lεk(V ) = LV (V,W
⋆
εk
(V )) is directionally differentiable with

respect to V . In the literature on bilevel programming such approach is commonly referred as Tykhonov

regularization (Dempe, 2010). This approach is not often available because of the strictness of (SSOC) and

(CRCQ) conditions. However, when these criteria are satisfied, they enable the use of algorithms that are

essentially similar to gradient descent.

Let EΛ(V,W ) be the vertex set of lower-level Lagrange multipliers corresponding to point (V,W ),

Λ(V,W ) = {(λ, µ) : λ ≥ 0, λ⊤g(V,W ) = 0,∇wL(V,W, λ, µ) = 0},

where L(V,W, λ, µ) = Lε
W (V,W )+λ⊤g(V,W )+µ⊤h(V,W ) denotes the Lagrangian function for the regularized

lower level problem. Under (MFCQ) condition, the set Λ(V,W ) is known to be a non-empty, convex and compact

polyhedron. Here functions g(V,W ) and h(V,W ) denote the vector of lower level inequality constraints and the

equality constraint, respectively.

For a fixed vertex (λ0, µ0) ∈ Λ(V 0,W 0) at a point (V,W ) = (V 0,W 0), we write I(λ0) to denote the family

of all index sets

I ⊂ I(V 0,W 0) := {i : gi(V 0,W 0) = 0}

that satisfy the following two conditions:

(C1) There is (λ, µ) ∈ EΛ(V 0,W 0) such that J(λ) := {i : λi > 0} ⊂ I ⊂ I(V 0,W 0).

5



(C2) The gradients {∇wgi(V
0,W 0) : i ∈ I} ∪ {∇wh(V

0,W 0)} are linearly independent.

Following Dempe (2010), the solution algorithm, which is essentially an adaptation of gradient descent, can

be outlined as follows: Tykhonov-Descent: Input: Synthetic control problem (6)-(7). Output: A Bouligand

stationary solution. Step 1: Select V 0 ∈ V, set k = 0, choose ϵ, δ ∈ (0, 1), a small ϵ′ > 0, a sufficiently small

κ > 0, and a w < 0. Step 2a: Choose (Kk, λk, µk) with

(λk, µk) ∈ EΛ(W ⋆
εk
(V k), V k) and Kk ∈ I(λk)

Compute an optimal solution (dk, rk, γk, ηk, sk) for problem (B.2). If sk < w then go to Step 3. If sk ≥ w

and not all possible samples (λk, µk,Kk) are tried, then continue with Step 2a. If all (λk, µk,Kk) have been

tried, set w = w/2. If |w| < ϵ′, go to Step 2b, otherwise continue with Step 2a. Step 2b: Choose (Kk, λk, µk)

satisfying

Kk ⊂ Iκ(W
⋆
εk
(V k), V k) and (C2) as well as

(λk, µk) ∈ argmin
(λ,µ)

{∥∇wL(W ⋆
εk
(V k), V k, λ, µ∥2 : λj = 0, j /∈ Kk}.

Here Iκ = {j : −κ ≤ gj(V,W ) ≤ 0} denotes the set of κ-active lower-level inequalities. Compute an optimal

solution (dk, rk, γk, ηk, sk) for problem (B.2). If sk < w, go to Step 3. If sk ≥ w and not all (λk, µk,Kk) have

been tried, continue with Step 2b. If all Kk have been tried, then set w = w/2. If |w| < ϵ′, then stop. Step 3:

Choose a largest step-size tk ∈ {δ, δ2, δ3, δ4, . . . } such that

Lεk(V
k + tkrk) ≤ Lεk(V

k) + ϵtksk, G(V k + tkrk) ≤ 0.

If tk < ϵ′, then drop the actual set Kk and continue searching for a new set Kk in Step 2a or 2b. Step 4: Set

V k+1 = V k + tkrk, k = k + 1. Step 5: If a stopping criterion is satisfied, i.e. εk is sufficiently small, then stop.

Otherwise, set εk+1 = δεk and compute W ⋆
εk+1

(V k+1) and go to step 2. The directional derivative in Step 2

can be computed using quadratic programming based on Theorem 3 by Dempe (2010). Let Kk ∈ I(λk) be

some index set and νk = (λk, µk) ∈ EΛ(zk) be a vertex, where zk = (V k,W k). Then the descent direction rk

is obtained as part of a solution to the following problem:

min
d,r,γ,η,s

s (B.2)

s.t. L′
εk
(V k; rk) := ∇wLV (z

k)d+∇vF (zk)r ≤ s

∇vGi(V
k)r ≤ −Gi(V

k) + s, i = 1, . . . ,K + 2

∇2
wwL(zk, νk)r +∇⊤

wg(z
k)γ +∇⊤

wh(z
k)η = 0

∇wgi(z
k)d+∇vgi(z

k)r


= 0, i ∈ Kk

≤ −gi(z
k) + s, i /∈ Kk

∇wh(z
k)d+∇yh(z

k)r = 0

λi + γi + s ≥ 0, i ∈ Kk, γi = 0, i /∈ Kk, ∥r∥ ≤ 1.
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When the problem has a feasible solution (dk, rk, γk, ηk, sk) such that the objective value is negative, sk < 0,

for some index set Kk and vertex νk, then the point (V k,W k) is not locally optimal. This means that there

exists a direction rk for which the directional derivative of Lεk is negative at V k.

When parametrizing the algorithm, it is useful to choose the value for ϵ′ to be small enough to ensure that

Step 3 terminates only if a setKk is selected in Step 2b such that the problem (B.2) has a negative optimal value.

It is also noteworthy that the Step 2b should be considered only when the value of Lεk(V
k; rk) is sufficiently

small and even then only for small κ. Otherwise there is a risk of increasing numerical effort substantially. For

discussion on the convergence of this kind of algorithm to a Bouligand stationary point, we refer to Dempe &

Schmidt (1996).

Appendix B.2. Algorithm based on KKT approximations

The use of KKT reformulations has been a common practice when solving bilevel problems. Unfortunately,

this has turned out to be far more difficult than anticipated. Quite commonly, the local optimal solutions

obtained by solving KKT reformulated problems do not correspond to the local optimal solutions of the original

bilevel problem. While the KKT reformulations are equivalent to the original problem in terms of global optimal

solutions, the equivalence is lost when numerical algorithms need to be used. Since KKT reformulations typically

lead to a nonconvex optimization problem, the solution algorithms tend to find only stationary or local optimal

solutions, which may not correspond to the solutions of the original problem.

Fortunately, there are still some good news left when it comes to the use of KKT conditions in practice.

In their recent paper, Dempe & Franke (2019) suggest a numerically stable approach for handling optimistic

bilevel problems with convex lower level problem. The idea is based on a clever approximation of the KKT

transformation which enables us to use general solution algorithms for non-convex optimization problems to

approximate the local optimal solution of the original bilevel optimization problem.

Now instead of considering the classical KKT reformulation of the problem, the idea developed in the paper

by Dempe & Franke (2019) is to construct perturbed problems that approximate the original formulation. Let

L denote the Lagrangian corresponding to the lower level problem,

Lε(V,W, λ) = Lε
W (V,W ) + λ⊤g(V,W ).

We then solve a sequence of perturbed problems

min
V,W,λ

LV (V,W )

G(V ) ≤ 0

||∇wLε(V,W, λ)|| ≤ e1 (B.3)

g(V,W ) ≤ 0

λ ≥ 0,

−λigi(V,W ) ≤ e2, i = 1, . . . , J + 2,
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for (e1, e2) → 0+ and ε → 0+. Here, the norm || · || can be chosen to be for instance the Chebyshev norm

||a||∞ = maxi=1,...,n |ai| or the usual Euclidean norm ||a||2 =
√∑n

i=1 a
2
i . The function G is defined such that

it matches the definition of set V = {V : G(V ) ≤ 0} in (5). Similarly, g represents the lower level constraints

such that W = {W : g(V,W ) ≤ 0} corresponds to (4).

Earlier, a similar approach of using sequence of perturbed problems to solve bilevel problems has also been

considered by Mersha & Dempe (2011), who suggested a specifically tailored algorithm to solve the problem.

Later, however, Dempe & Franke (2019) have shown that the assumptions made earlier have been too restrictive

and the sequence of perturbed problems can actually be solved by an arbitrary algorithm.

Appendix C. R code

In this appendix we provide the essential R code to help the reader to reproduce our empirical results or

adapt the code for their own applications. The latest updates to the code and the technical documentation are

available at GitHub: https://github.com/Xun90/SCM-Debug.git. We assume the reader is familiar with the

Synth R package (see Abadie et al., 2011 for an introduction), and suggest the use of the dataprep() function

provided in Synth to pre-process the data.

Step 1: Load necessary R packages.

library("Synth") #Synth package

#The two QP solvers used by "Synth" are employed here for a direct comparison with "Synth"

library(kernlab) #QP solver 1: ipop

library(LowRankQP) #QP solver 2: LowRankQP , whose results are reported in this study

library(lpSolve) #LP solver

library(matrixcalc) #for matrix calculations

Step 2: Re-examine the Synth results for the California tobacco control application with 1,000 random

reorderings of predictors.

##loop on 1000 random orders

lossV <- matrix(0, 1000, 1)

lossW <- matrix(0, 1000, 1)

W <- matrix(0, 38, 1000)

V <- matrix(0, 7, 1000)

C <- matrix(0, 7, 1000)

set.seed (42)

for (i in 1:1000){

row <- sample(nrow(X0))

C[,i] <- row

dataprep.out$X0 <- X0[row ,]

dataprep.out$X1 <- as.matrix(X1[row ,])

synth.out <- synth(data.prep.obj = dataprep.out , method = "BFGS")

lossV[i,] <- synth.out$loss.v

lossW[i,] <- synth.out$loss.w

W[,i] <- synth.out$solution.w
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sorted <- cbind(row , t(synth.out$solution.v))

sorted <- sorted[order(sorted[,"row"]) ,]

V[,i] <- sorted [,2]}

Step 3: Re-examine the Synth results for the California tobacco control application with 1,000 random

reorderings of donors.

##loop on 1000 random orders

lossV <- matrix(0, 1000, 1)

lossW <- matrix(0, 1000, 1)

W <- matrix(0, 38, 1000)

V <- matrix(0, 7, 1000)

C <- matrix(0, 38, 1000)

set.seed (42)

for (i in 1:1000){

column <- sample(ncol(X0))

C[,i] <- column

dataprep.out$X0 <- X0[,column]

dataprep.out$Z0 <- Y0pre[,column]

synth.out <- synth(data.prep.obj = dataprep.out , method = "BFGS")

lossV[i,] <- synth.out$loss.v

lossW[i,] <- synth.out$loss.w

V[,i] <- t(synth.out$solution.v)

sorted <- cbind(column , synth.out$solution.w)

sorted <- sorted[order(sorted[,"column"]) ,]

W[,i] <- sorted [,2]}

Step 4: Implement the iterative algorithm proposed by Malo et al. (2020) to check for the feasibility of the

unconstrained optimum and the possibility of corner solutions.

scm.corner <- function(Y1pre ,Y0pre ,X1,X0){

##step1

Tpre <- dim(Y0pre)[1]

nDonors <- dim(Y0pre)[2]

#QP setup

c1 <- -t(Y0pre) %*% Y1pre

H1 <- t(Y0pre) %*% Y0pre

A1 <- matrix(rep(1,nDonors), ncol = nDonors)

b1 <- 1

r1 <- 0

l1 <- matrix(rep(0,nDonors), nrow = nDonors)

u1 <- matrix(rep(1,nDonors), nrow = nDonors)

#run QP

step1_ipop <- ipop(c = c1, H = H1 , A = A1, b = b1, l = l1 , u = u1, r = r1 ,

margin = 0.0005 , maxiter = 1000, sigf = 7, bound = 10) #QP_Solver1

step1_lowr <- LowRankQP(Vmat = H1 , dvec = c1, Amat = A1, bvec = b1 , uvec = u1 ,

method = "LU") #QP_Solver2

W_ipop <- matrix(step1_ipop@primal , nrow = nDonors)

W_lowr <- step1_lowr$alpha

L1_ipop <- (t(Y1pre) %*% Y1pre)/Tpre + 2/Tpre * (t(c1) %*% W_ipop
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+ 0.5 * t(W_ipop) %*% H1 %*% W_ipop)

L1_lowr <- (t(Y1pre) %*% Y1pre)/Tpre + 2/Tpre * (t(c1) %*% W_lowr

+ 0.5 * t(W_lowr) %*% H1 %*% W_lowr)

##step2

#normalize X - Synth

nvarsV <- dim(X0)[1]

big.dataframe <- cbind(X0, X1)

divisor <- sqrt(apply(big.dataframe , 1, var))

scaled.matrix <- t(t(big.dataframe) %*% ( 1/(divisor)

* diag(rep(dim(big.dataframe)[1], 1)) ))

X0.scaled <- scaled.matrix[,c(1:( dim(X0)[2]))]

if(is.vector(X0.scaled)==TRUE)

{X0.scaled <- t(as.matrix(X0.scaled))}

X1.scaled <- scaled.matrix[,dim(scaled.matrix)[2]]

#LP setup

f.obj_ipop <- (X1.scaled - X0.scaled %*% W_ipop)^2

f.obj_lowr <- (X1.scaled - X0.scaled %*% W_lowr)^2

f.con <- rbind(rep(1,nvarsV), diag(x = 1, nrow = nvarsV))

f.dir <- c("=", rep(" >=",nvarsV))

f.rhs <- c(1, rep(0,nvarsV))

#run LP

step2_ipop <- lp ("min", f.obj_ipop , f.con , f.dir , f.rhs)

step2_lowr <- lp ("min", f.obj_lowr , f.con , f.dir , f.rhs)

V_ipop <- step2_ipop$solution

V_lowr <- step2_lowr$solution

L2_ipop <- step2_ipop$objval

L2_lowr <- step2_lowr$objval

scm.corner.out <- list(W = cbind(W_ipop ,W_lowr), V = cbind(V_ipop ,V_lowr),

Lv = c(L1_ipop ,L1_lowr), Lw = c(L2_ipop ,L2_lowr))

return(scm.corner.out)}

Step 5: Implement the two-step procedure described in Section 5.1. This implementation is currently a

hybrid of Section 5.1 and Malo et al. (2020). Since there are currently no reliable solvers in R for the second-

stage convex programming problem, we solve the non-Archimedean problem (8) iteratively, decreasing ε towards

zero until the objective function reaches the optimal solution of the first-stage QP problem.

two.step.iterative <- function(Y1pre ,Y0pre ,X1.scaled ,X0.scaled ,SV){

#SV - predictor weights defined by the user

##Solve non -Archimedean problem (8)

Tpre <- dim(Y0pre)[1]

nDonors <- dim(Y0pre)[2]

#QP setup

A <- matrix(rep(1,nDonors), ncol = nDonors)

b <- 1

r <- 0

l <- matrix(rep(0,nDonors), nrow = nDonors)

u <- matrix(rep(1,nDonors), nrow = nDonors)

#Loop on 10 epsilon values (0.1^1 ... 0.1^10) to find the best performer
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L_upper = matrix(0, 10, 2)

L_lower = matrix(0, 10, 2)

W_ipop = matrix(0, nDonors , 10)

W_lowr = matrix(0, nDonors , 10)

for (i in 1:10){

eps <- 0.1^(i) #epsilon - penalty term

c <- (-t(X0.scaled) %*% diag(SV1) %*% X1.scaled) - eps * t(Y0pre) %*% Y1pre

H <- t(X0.scaled) %*% diag(SV1) %*% X0.scaled + eps * t(Y0pre) %*% Y0pre

#run QP

QP_ipop <- ipop(c = c, H = H, A = A, b = b, l = l, u = u, r = r,

margin = 0.0005 , maxiter = 1000, sigf = 7, bound = 10) #QP_Solver1

QP_lowr <- LowRankQP(Vmat = H, dvec = c, Amat = A, bvec = b, uvec = u,

method = "LU") #QP_Solver2

W_ipop[,i] <- matrix(QP_ipop@primal , nrow = nDonors)

W_lowr[,i] <- QP_lowr$alpha

L_upper[i,1] <- 1/Tpre * t(Y1pre - Y0pre %*% W_ipop[,i]) %*%

(Y1pre - Y0pre %*% W_ipop[,i])

L_upper[i,2] <- 1/Tpre * t(Y1pre - Y0pre %*% W_lowr[,i]) %*%

(Y1pre - Y0pre %*% W_lowr[,i])

L_lower[i,1] <- t(X1.scaled - X0.scaled %*% W_ipop[,i]) %*% diag(SV1) %*%

(X1.scaled - X0.scaled %*% W_ipop[,i])

L_lower[i,2] <- t(X1.scaled - X0.scaled %*% W_lowr[,i]) %*% diag(SV1) %*%

(X1.scaled - X0.scaled %*% W_lowr[,i])}

##Use the first step of the two -step procedure in Section 4.1 to determine epsilon

c1 <- (-t(X0.scaled) %*% diag(SV) %*% X1.scaled)

H1 <- t(X0.scaled) %*% diag(SV) %*% X0.scaled

#run QP

QP_ipop1 <- ipop(c = c1, H = H1, A = A, b = b, l = l, u = u, r = r,

margin = 0.0005 , maxiter = 1000, sigf = 7, bound = 10) #QP_Solver1

QP_lowr1 <- LowRankQP(Vmat = H1, dvec = c1, Amat = A, bvec = b, uvec = u,

method = "LU") #QP_Solver2

W_ipop1 <- matrix(QP_ipop1@primal , nrow = nDonors)

W_lowr1 <- QP_lowr1$alpha

W1 <- cbind(W_ipop1 , W_lowr1)

obj_left <- t(X1.scaled) %*% diag(SV) %*% X1.scaled

Lw_ipop1 <- obj_left + 2 * (t(c1) %*% W_ipop1 + 1/2 * t(W_ipop1) %*% H1 %*% W_ipop1)

Lw_lowr1 <- obj_left + 2 * (t(c1) %*% W_lowr1 + 1/2 * t(W_lowr1) %*% H1 %*% W_lowr1)

Lw1 <- c(Lw_ipop1 , Lw_lowr1)

two.step.iterative.out <- list(W = cbind(W_ipop ,W_lowr), W1 = W1, V = SV,

L_upper = L_upper , L_lower = L_lower , Lw1 = Lw1)

return(two.step.iterative.out)}

Appendix D. Imputation of missing values

The Synth R package contains the original data for the Basque terrorism application. This data set contains

incomplete panel data for the predictors across different regions in the pre-treatment period (1960–1969) (see

Abadie et al., 2011 for more details). To implement the panel regression approach described in Section 5.2 to
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determine predictor weights in the Basque terrorism application, it is necessary to impute the missing values

by suitable methods.

For the six sectoral share predictors (i.e., “sec.agriculture”, “sec.energy”, “sec.industry”, “sec.construction”,

“sec.services.venta”, and “sec.services.nonventa”), panel data are available for odd years only (1961, 1963, . . .,

1969). We replaced the missing values in even years from 1962 through 1968 with the mean of the data of two

adjacent years. We then estimated a linear time trend by regressing the values of 1961–1969, and used the

predicted value for the year 1960.

For the four schooling predictors (i.e., “school.illit”, “school.prim”, “school.med”, and “school.high”) and

the predictor “investment ratio”, panel data are available only for the years 1964–1969. Again, we estimated a

linear time trend by regressing the values of 1964–1969, and used the predicted values for the years 1960–1963.

Finally, the predictor “population density” was observed only in the year 1969. Since the population density

usually changes very slowly, in the absence of better data, we used the observed value of population density in

the year 1969 throughout the pre-treatment period 1960–1969.
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