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Abstract. An agent makes a stochastic choice from a set of lotteries. She infers
the outcomes of her options using a subjective causal model represented by a di-
rected acyclic graph, and consequently may misinterpret correlation as causation.
Her choices affect her inferences which in turn affect her choices, so the two together
must form a personal equilibrium. We show how an analyst can identify the agent’s
subjective causal model from her random choice rule. In addition, we provide nec-
essary and sufficient conditions that allow an analyst to test whether the agent’s
behavior is compatible with the model.

1. Introduction

As every economics undergraduate knows, correlation does not imply causation.
However in many economic environments, causal relationships are hard to determine,
and an agent’s perception of them is not observable. While most accept that ice cream
consumption does not cause car theft, reasonable actors may disagree about whether
the Phillips curve reflects causation or correlation. In this paper, we develop a theory
in which an analyst can use the agent’s behavior, in the form of a random choice rule,
to identify her subjective causal model and to test whether misperceived causality
explains her choices.

We motivate our results with a pair of examples. Consider a firm (the agent) faced
with a series of hiring decisions between workers who differ according to a publicly-
observable characteristic or type, e.g. their CV. The worker’s type correlates with
education, ability, and productivity, which are revealed to the firm only after it hires
him or her. The firm uses a subjective causal model to infer the productivity of each
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from the characteristics of its past hires, and employs each type in proportion to its
expected production.1 A university (the analyst) may want to know whether or not
the firm thinks that education causes productivity, conditional on ability. If the firm
thinks so, then relaxing admission standards does not lower the value of a degree,
keeping the curriculum fixed; otherwise, it might because of a decrease in signaling
value. Because the university cannot observe the firm’s causal model, she must infer
it from the frequently each type of worker is hired. Our result allows the university to
test whether its hiring decisions (behavior) are consistent with a belief that education
causes productivity.

For a second example, consider a group of firms (the agents), each a local mo-
nopolist in distinct but observationally-identical markets, choosing what price to set
for spirits. They base their pricing decision on what they perceive the effect of an
increase in price on quantity demanded to be, which they infer from a common causal
model and the history of joint realizations of prices, quantities demanded, and other
covariates with demand. A policy maker (the analyst) sets the level of an excise tax on
spirits. Our results show how the policy maker can identify the firms’ perception of the
causal effect of an increase in price and so calculate the incidence of each level of tax
from the fraction of firms who set each price (behavior) in different market conditions.2

This paper provides a theoretical methodology for identifying an agent’s subjec-
tive causal model from her behavior. We study a decision maker (DM) who chooses
from a set of actions, each determining a probability distribution over a vector of vari-
ables. Her random choice rule has a subjective causality representation if she learns
the consequences of her actions from the data generated by her past choices using a
subjective causal model described by a directed acyclic graph (DAG), and then chooses
each action with a frequency proportional to its expected utility. The choices form a
personal equilibrium: how frequently she chooses each action affects her inferences,
which in turn affects the likelihood each is chosen. We show how to identify the DM’s
subjective causal model (her DAG) and preferences from her behavior. Then, we turn
to the question of how to test whether a random choice rule has a subjective causality
representation and provide necessary and sufficient conditions for one to exist.
1Perhaps she also (privately) observes a match-specific component, such as interview performance,
relevant to productivity but independent of the other variables.
2While we focus on the individual interpretation of random choice for exposition, our results apply
equally well with a group interpretation as in this second example.
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The DM mistakes correlation for causation when her causal model is misspecified.
This creates a particular challenge for the analyst: the DM’s own behavior may create
a correlation between two variables that she misinterprets as a causal effect, the mag-
nitude of which affects how likely she is to choose each action. As an example, suppose
that a firm thinks that education alone causes productivity when it is actually caused
by ability. If some high-ability workers are more likely to have high-education than all
low-ability ones, then the perceived return to education increases with the fraction of
high-education workers hired by the firm. This incentivizes the firm to hire even more
highly-educated workers, reinforcing the effect; see Section 2.3 for a formal treatment.

Our first main result identifies the causal model that explains the DM’s behav-
ior. This entails revealing her perceived chains of causality; for example, the firm may
think that who it hires affects the education of the workforce, which in turn affects its
productivity. We show that the DM’s perceived causal chains identify all the relevant
variables and the causal relationships between them. We reveal the set of variables that
makes up each by observing that if every chain passes through a set of variables, then
independence between those variables and the others implies indifference between all
actions. For instance, the above firm is equally likely to choose either of a pair of work-
ers whose productivity and ability are independent of their level of education. Hence if
the DM is not indifferent when the variables outside a given set are independent, then
she thinks that a chain passes through that set. We then determine the direction of
causality by varying the correlation between the variables in the same causal chain.

While a large literature in economics focuses on empirically determining causality
(e.g. Card (1999)), an agent’s perception of causal relationships, regardless of its
validity, can affect the result of a policy intervention. For instance, a firm that appears
to offer workers with a particular trait a lower wage may do so because it dislikes
employing workers with the trait even when the trait has no impact on productivity
(taste-based discrimination). Alternatively, it may offer a lower wage because the trait
is correlated with another attribute, such as education, that the firm thinks affects
productivity (statistical discrimination). Policies that attempt to remedy the former,
such as affirmative action for or awarding scholarships to students with the trait, may
do nothing for the latter.3

3See Lang and Kahn-Lang Spitzer (2020) for an overview of different types of race discrimination.
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Our second main result establishes how to test whether a misspecified causal model
can explain the DM’s behavior by providing necessary and sufficient conditions for a
random choice rule to have a subjective causality representation. The axioms link her
perceptions of alternatives, as inferred from our first result, to her behavior. Holding
her perception constant, her behavior conforms closely to Logit with an expected utility
Luce index (henceforth, Logit-EU). Put another way, her choices are inconsistent with
Logit-EU only when her inferences change. For example, the axioms require that the
DM chooses two actions with the same relative frequency from two menus in which
she infers that each has the same distribution, and that she is equally likely to choose
any actions with identical distributions over a subset of variables that she thinks is
a sufficient statistic for the outcome. However, her evaluation of alternatives varies
across menus as her perception of them changes. As a consequence, she may violate
a number of standard axioms, including a necessary condition for a random utility
representation known as regularity.

An agent with a subjective causality representation perceives her options differ-
ently than the analyst does. The result places testable restrictions on her behavior in
spite of the information gap. Thus, it establishes that misspecified causality provides
enough discipline on how her beliefs are distorted to be testable; without any disci-
pline on belief distortion, testing would be impossible. More broadly, this paper adapts
decision theory methodology to identify and test an agent’s subjective model of the
world, as opposed to the usual exercise of identifying and testing her preferences with
a correct, or at least an agreed upon, model of the world. We see this as a step towards
providing testable implications for the growing literature studying agents with mis-
specified models, especially Spiegler (2016), Spiegler (2020), Eliaz and Spiegler (2018),
Eliaz et al. (2019), Eliaz et al. (2020), and Schumacher and Thysen (2020) that all use
versions of the subjective causality representation.4

The paper proceeds as follows. The next subsection reviews the related literature.
Section 2 introduces our setup and model, formalizes our running example, and then
discusses alternative interpretations of the model. Section 3 reveals the DM’s subjective
causal model from her choices. Theorem 1 shows that the DM’s behavior reveals the

4Other models where misspecification leads to distorted beliefs include Esponda and Pouzo (2016),
Bohren and Hauser (2018), Frick et al. (2019), He (2018), Heidhues et al. (2018), and Samuelson and
Mailath (2019).
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minimal causal chains in her model and that these identify the relevant portions of the
DAG. Section 4 describes the axioms that characterize the model. Theorem 2 proves
that they are necessary and sufficient for a subjective causality representation.

Related literature. Spiegler (2016) introduced the subjective causal representation,
albeit without stochasticity and without axiomatic foundations. He shows that this
can capture a number of errors in reasoning, including reverse causality and omitting
variables. Taken together, our results allow us to test the underlying assumptions
of existing work on the effects of causal misperception. This growing literature has
been applied to monetary policy (Spiegler, 2020), political competition (Eliaz and
Spiegler, 2018), communication (Eliaz et al., 2019), inference (Eliaz et al., 2020), and
contracting (Schumacher and Thysen, 2020). The majority of these papers take the
agents’ DAGs as given, whereas our goal is to identify the DAG from behavior and test
whether subjective causality explains their choices. Consequently, our results increase
the applicability of these paper.

Pearl (1995) argued for using and analyzing DAGs to understand causality. A large
literature (e.g., Cowell et al., 1999, Koller and Friedman, 2009, Pearl, 2009) develops
and applies this approach for probabilistic and causal inference. The typical exercise
either uses a DAG to estimate the causal effect of a particular intervention or to infer
which DAG(s), if any, are consistent with a given dataset.5 Schenone (2020) introduces
the DAG approach to causality into a decision theory framework. In the model, an
agent expresses preference over act-causal-intervention pairs. For instance, the DM
expresses a preference over which of two workers to hire, identical except one of whom
has been forced to obtain exactly 11 years of education. He provides necessary and
sufficient conditions for the agent’s beliefs to result from applying the “do-operator”
to intervened variables for a fixed DAG and prior. The DAG is identified from the
behavior. This approaches is complementary with the one taken by this paper. It
is mainly concerned with a normative definition of causality as a manifestation of
rationality and consequently takes interventions as observable. In contrast, this paper
uses DAGs to capture flaws in reasoning and focuses on identification from only choices
without interventions.

5Recently, Imbens (2020) contrasts with the potential outcomes approach and discusses why these
methods have attracted more attention outside of economics than within it.



6 ELLIS AND THYSEN

More generally, our paper is related to the decision theory literature studying DMs
who misperceive the world. Lipman (1999) studies a DM who may not understand
all the logical implications of information provided to her. Ellis and Piccione (2017)
develop a model where agents misperceive the correlation between actions. Kochov
(2018) models an agent who does not accurately foresee future consequences of her
action. In all three, the misperception is fixed and unaffected by the agent’s behavior.

Finally, our paper also falls into the theoretical literature studying random choice.
We fall between two strands. The first seeks to use choice data to identify features
of otherwise rational behavior, such as Gul and Pesendorfer (2006) identifying the
distribution of utility indices, Lu (2016) identifying an agent’s private information,
and Apesteguia and Ballester (2018) studying comparative risk and time preferences.
The second interprets randomness as a result of boundedly rational behavior in abstract
environments, such as Manzini and Mariotti (2014), Brady and Rehbeck (2016), and
Cattaneo et al. (2020) models of limted attention. This paper uses random choice
identify features of explicit boundedly rational behavior.

2. Model

2.1. Setting. Each action a determines a distribution over a payoff-relevant conse-
quence and n covariates. The ith covariate takes a value in Xi and the consequence
belongs to the set Xn+1. For a non-empty-set S, let ∆(S) is the set of finite support
probability distributions over S. Each action is a member the set X0 = ∆(∏n+1

i=1 Xi),
and it will be convenient to denote X−0 = ∏n+1

i=1 Xi and X = X0×X−0. We require that
Xn+1 is a compact subset of a topological space with |Xn+1| ≥ 2, and take Xi = R for
simplicity.6

The DM’s (stochastic) choice of action determines the distribution of a random
vector X = (X0, X1, . . . , Xn+1). If the DM chooses a ∈ X0, then a(x1, . . . , xn+1) is
the probability that Xi = xi for every i ∈ {1, . . . , n + 1} ≡ N∗. We identify the
distribution over actions with the 0th random variable. The last index n + 1 denotes
consequence. The set N = {1, . . . , n} indexes the set of covariates. By convention,
6We can take each Xi to be an arbitrary set with |Xi| ≥ min{|Xn+1|, |N|}. This would increase
the notational complexity, particularly for Definition 3, Proposition ??, and Lemma 10, but not
substantively change the arguments.
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capital letters refer to variables and lower case letters to realizations. We denote by
margJ p the marginal distribution of p on the variables indexed by J . With slight abuse
of notation, we sometimes identify the action a ∈ X0 with the element of ∆X that has
a marginal on X−0 equal to a and attaches probability 1 to X0 = a.

The DM decides between options in S, a finite subset of X0 where the support of
the joint distribution of covariates is the product of their marginal supports for any
available action. Every choice problem belongs to the set

S =

S ⊂ X0 :
∏
j∈N

supp(margj a) = supp(margN b) for all a, b ∈ S and S is finite

 .
This ensures that Bayes rule is well-defined and can be relaxed in specific examples.

A random choice rule ρ : X0 × S → [0, 1] where ∑a∈S ρ(a, S) = 1 and ρ(a, S) = 0
for every a /∈ S describes the DM’s choices. The probability she chooses a from S

is ρ(a, S). Identify ρS with the probability distribution over X induced by the DM’s
choice probabilities, that is

ρS ∈ ∆X where ρS(a, y) = ρ(a, S)a(y) for all a ∈ X0 and y ∈ X−0.

Note ρ(·, S) is a distribution over actions whereas ρS is a distribution over X .7

For p ∈ ∆(B), the qualifier “for p-a.e. z ∈ B” means “for almost every z ∈ B

according to p,” or equivalently “for every z in the support of p” since p has finite
support. For a set J ⊂ N∗ and x ∈ X−0, xJ denotes the event that Xj = xj for
all j ∈ J . We sometimes write xj instead of x{j}, x−j instead of x{j}c , and x∅ for
an arbitrary constant variable when it will not cause confusion. For k ∈ R ∪ Xn+1,
kj denotes the event that Xj = k. We define the mixture between lotteries a and b,
αa+ (1− α)b, in the usual way.

2.2. Subjective Causality Representation. A directed acyclic graph (DAG) over
a set M is an asymmetric, acyclic binary relation R ⊂ M ×M , where iRj denotes
(i, j) ∈ R. A DAG R over {0, 1, . . . , n+ 1} describes the DM’s perception of causality.
Here, iRj indicates that the DM thinks thatXi causesXj and corresponds to a directed
edge in a graph. We often write R(i) for the indexes of the variables that cause Xi

7Cerreia-Vioglio et al. (2019) denote ρS by ρ(S) but interpret the DM as preferring ρ(S) to any lottery
in co(S) ⊂ ∆X .
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according to R, termed the parents of i. For a DAG R and p ∈ ∆X , pR is the probability
distribution so that pR(x) = ∏n+1

j=0 p(xj|xR(j)). See Spiegler (2016) for a discussion of
how the DAG maps into various behavioral biases and for further discussion.

A DAG R has free-will if 0 is ancestral and n + 1 is a descendant of 0: there is
no i ∈ N∗ with iR0 and 0Ri1Ri2R . . . R (n + 1) for some i1, i2, · · · ∈ N . A free-will
DAG indicates two things. First, the action is not conditioned on any of the other
variables. Second, there is a channel through which the choice of action can influence
the distribution over consequences. Say that (i, j, k) is an R-v-collider if iRk, jRk, j 6Ri,
and i 6Rj. A DAG R is perfect if there are no R-v-colliders. We focus on perfect DAGs
because otherwise the perceived marginal distribution of some variable may diverge
from its true distribution (Spiegler, 2017).

Definition 1. The random choice rule ρ has a subjective causality representation (SCR)
if there exists a free-will DAG R and a continuous, non-constant u so that

ρ(a, S) =
exp

(∫
Xn+1

u(c)dρSR(cn+1|a)
)

∑
a′∈S exp

(∫
Xn+1

u(c)dρSR(cn+1|a′)
)

for every a ∈ S and S ∈ S; then, we say ρ has an SCR (R, u). An SCR is perfect if its
DAG is perfect.

The representation corresponds to the following “as if” procedure. The DM maxi-
mizes expected utility but with a potentially incorrect perceptions of the distribution of
consequences resulting from her actions. She derives this perception from her choices
from S, which determine a “dataset” ρS of the frequency of each realization of the
random vector X. She applies her causal model to infer the conditional distribution
of consequences and covariates for each action, and updates the probability of conse-
quence c if she takes the action a to ρSR(cn+1|a). She then chooses each action with a
probability proportional to the exponential of her perceived expected utility, or equiva-
lently, picks an action if it has the highest utility after adding iid extreme-value shocks
to each action’s expectation. For comparison, a ρ has a Logit-EU representation if
there is a continuous, non-constant u so that for every a ∈ S and S ∈ S,

ρ(a, S) =
exp

(∫
Xn+1

u(c)da(cn+1)
)

∑
a′∈S exp

(∫
Xn+1

u(c)da′(cn+1)
) =

exp
(∫
Xn+1

u(c)dρS(cn+1|a)
)

∑
a′∈S exp

(∫
Xn+1

u(c)dρS(cn+1|a′)
) .
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The SCR replaces the Bayesian update ρS(·|a) with the one generated by her causal
model ρSR(·|a).

An SCR is a personal equilibrium (Köszegi and Rabin, 2006): the DM maximizes
expected utility given her beliefs that depend on her choices. It is easy to show that
an equilibrium exists for any S ∈ S using Brouwer’s fixed point theorem. For menus
with more than one, we place no restrictions on which is selected.

2.3. Running Example. Return to the firm example to illustrate our framework. Hir-
ing a given type of worker corresponds to an action. The first variable represents ability
(A = 1), the second education (E = 2), and the third productivity (P = 3). Through-
out, each takes one of two values H > L. For example, the vector (H,L,H) represents
a worker who has ability H, education L, and productivity H, and a(H,L,H) indicates
the probability that a type-a worker has those characteristics. The firm prefers to hire
high productivity workers.

Figure 1 gives some possible DAGs for the firm. Each represents a different theory
of causation. A firm represented by RHC thinks that education, and education alone,
causes productivity, one represented by RSig thinks that ability causes both education
and productivity, and one represented by REA thinks that education causes ability
and that ability causes productivity. In contrast, one represented by RRat is rational
and always correctly infers the distribution. With any DAG other than RRat, the firm
potentially misperceives the joint distribution. For instance, the RSig-firm necessarily
believes ability to be independent of productivity.

The behavior of an agent may endogenously create correlations that she misinter-
prets as causation. For instance, consider a firm whose behavior has a SCR (RHC , u).
There are three equally productive types of workers, ι, π, ν, but P is independent of
E for type-ι workers, positively correlated for type-π, and negatively correlated for
type-ν. As it hires type-π workers more often, the correlation between education and
productivity increases. The firm mistakes this correlation for causation, so it perceives
an increased return to education and hires the more-educated types more often.

This can lead to a violation of regularity, the requirement that ρ(a, S) ≥ ρ(a, S ′)
whenever a ∈ S ⊂ S ′. Every random choice rule represented by a random utility
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Figure 1. Possible DAGs in Running Example

model satisfies regularity, so the class of SCRs and RUMs do not coincide. To see
why the violation occurs, observe that when the firm decides between only ι- and π-
type workers, education is positively correlated with productivity. Since it mistakes
the correlation for causation, it hires the type with highest expected education more
often than the other. However, when it chooses between all three, the type-ν workers
may cancel out or even reverse the perceived positive relationship between education
and productivity. When this effect is strong enough, it can lead to an increase in the
probability of choosing the less-educated type.

Formally, assume that ι(HEHP ) = ι(HELP ) = 1
2 , ν(HELP ) = ν(LEHP ) = 1

2 , and
π(LELP ) = π(HEHP ) = 1

2 .
8 Suppose that u(L) = 0 and u(H) = 6. Consider menus

S = {ι, π} and T = {ι, ν, π}.9 If ρ(ι, S) = z, then

ρS(HP |LE) = 0 < ρS(HP |HE) =
z 1

2 + (1− z)1
2

z(1) + (1− z)1
2

= 1
1 + z

,

8The distribution of ability does not affect behavior, so we leave it unspecified.
9We note that S, T /∈ S, so this example is technically outside our domain. At the cost of complicating
the algebra and obscuring the logic, they can be made consistent with our assumptions by replacing
each a with a′ = (1− ε)a+ εb where ε > 0 is small enough and b(y) = 1

8 for each y ∈ {H,L}3.
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and since ι(HE) > π(HE) > 0, we have 1 > z > 1
2 . Then, 1

2 < ρS(HP |HE) < 2
3 , so

ρSR(HP |π) < 1
3 , while ρ

S
R(HP |ι) > 1

2 . Hence

ρ(π, S)
ρ(ι, S) <

exp[1
36 + 2

30]
exp[1

26 + 1
20] = exp[−1] < 1

2

and ρ(π, S) < 1
3 .

Because productivity is independent of the firm’s action conditional on education
according to R, the firm is indifferent between two worker types whose distribution
over education is identical. Therefore, ρ(ν, T ) = ρ(π, T ) = γ since the two have the
same distribution over education. Then,

ρT (HP |HE) =
(1− 2γ)1

2 + γ 1
2 + γ(0)

(1− 2γ) + 2γ 1
2

= 1
2 =

(1− 2γ)(0) + γ(0) + γ 1
2

(1− 2γ)(0) + 2γ 1
2

= ρT (HP |LE),

so ρ(ι, T ) = ρ(ν, T ) = ρ(π, T ) = 1
3 > ρ(π, S), violating regularity.

2.4. Interpretations of model. Our main interpretation of an SCR is that it de-
scribes a DM endowed with a fixed causal model that she utilizes to infer the conse-
quences of her choices. Her model maps the distribution ρS of the random vector X
into a perceived distribution ρSR of each action. We are agnostic as to why the DM
infers the overall distribution rather than just the relationship between action and con-
sequence. She may recognize that the data set is endogenous and attempt to adjust
for any endogeneity by applying her causal model. Or perhaps she (incorrectly) antic-
ipates the arrival of additional information or the possibility of taking other actions.
She may think it easier or quicker to learn the stronger correlations between the co-
variates that make up a causal chain than the weaker correlation between her action
and the outcome.

Alternatively, the DM may have limited data access (Spiegler, 2017). In this
interpretation, she only considers or observes the distributions of several overlapping
subsets of variables and then extrapolates to form a distribution over all variables using
the principle of insufficient reason. Formally, she uses the distribution that maximizes
entropy subject to matching the marginal distribution over each subset of variables in
her database. Identifying her subjective causal model corresponds to identifying the
subsets of whose distribution she matches. In the running example, consider a firm
with access to two datasets, {{0, E}, {E,P}}. That is, she does not directly observe
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the correlation between the type she hires and productivity, instead only observing the
relationships between type and education and betweeen education and productivity.
This would occur, for instance, when the firm relies on reports from the HR director
screening potential new hires and the factory foreman overseeing the workers. In this
case, the extrapolation procedure leads to the same behavior a firm who has a SCR
(RHC , u).

The SCR can also describe a DM economizing on the information she stores.
The DAG R embeds conditional independence assumptions that reduce the number of
moments needed to reconstruct the distribution. In the running example, a firm with
two worker-types available can store all the relevant information according to the DAG
RHC using only 6 parameters.10 In contrast, it would require 24 − 1 = 15 parameters
to record the probability of each possible realization of X without these assumption.

For a final interpretation, we note that when ρ has an SCR, ρSR minimizes Kullback-
Lieber divergence from ρS among all the probability distributions on X that are con-
sistent with R. Then, ρ represents a single agent Berk-Nash equilibrium (Esponda
and Pouzo, 2016) with extreme-value errors. As in that model, we can intrepret the
behavior as the steady state of a learning process with a set of parameters (probability
distributions) that do not include the “true” one.11

3. Identifying a Subjective Causal Model

In this section, we identify the DM’s subjective causal model from her choice
behavior. In a perfect, free-will DAG R, information flows along the chains of causal
relations from actions to consequences. Formally, a causal chain is an R-Active Path
from 0 to n+ 1 (or, a R-AP): a finite sequence of variables (i1, i2, . . . , im) with i1 = 0,
im = n + 1, and ijRij+1 for every j < m. This represents a chain of causal reasoning:
according to R, variable 0 causes i1, which in turn causes i2, and so on, ending with a
cause of the outcome variable. A minimal R-AP, or R-MAP, is a R-AP that cannot
be made shorter. That is, (i1, . . . , im) is an R-MAP if it is a R-AP and ij 6Rij′ whenever

10For S = {a, b}, the numbers p(a), p(HA), p(HE |a), p(HE |b), p(HP |HE), and p(HE |LE) fully deter-
mine pR.
11Whether there exists a learning process that necessarily converges to the steady state captured by
SCR remains an open question.
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j′ 6= j + 1. The main result shows that these minimal causal chains suffice to identify
a perfect, free-will DAG.

Theorem 1. Let ρ have a perfect SCR (R, u) and R′ be a perfect, free-will DAG.
Then, ρ has an SCR (R′, u′) if and only if the set of R′-MAPs coincides with the set
of R-MAPs and there exists β so that u(c) = u′(c) + β for every c ∈ Xn+1.

Only variables that appear in at least one R-MAP affect the DM’s behavior. For
a firm represented by RHC , A does not belong to an R-MAP, so another DAG R′ that
represents ρ must contain RHC but may add links to and from A, provided that doing
so does not create a cycle, a R′-MAP, or a v-collider. The relationships in causal chains
determine all other key causal relationships. While there may be others, their direction
is immaterial for the DM’s choices. For instance, a firm represented by RBoth may also
be represented by a DAG R′ that reverses the link between A and E.

We argue next that if R and R′ both represent ρ, then the R-MAPs and R′-MAPs
must coincide. Then, we construct a candidate DAG that represents ρ whenever it has
a perfect SCR. First, we show that a set of variables contains a causal chain only if
the DM expresses a preference between actions in a menu for which all other variables
are statistically independent. To determine the order of variables in a causal chain, we
establish that, ceteris paribus, she perceives a stronger relationship between her action
and her payoff when choosing from a menu of actions consistent with her model than
one that is not.

We begin by revealing the sets containing the covariates in an active path. For
K ⊆ N , we say that XK is independent within S ∈ S, written XK ⊥S XN∗\K , if
margK a = margK b for any a, b ∈ S and a(xK , xN∗\K) = a(xK)a(xN∗\K) for every
x ∈ X−0 and every a ∈ S. If XK is independent within S, then regardless of how the
DM chooses from S, XK is independent of the other random variables in the resulting
joint distribution. An experimenter can create this independence by intervening to set
their values without changing the others in a randomized controlled trial. Alternatively,
we explore allowing for an exogenous dataset in Section 5 where independence can be
induced using unavailable actions.

The following definitions are key to our identification.
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Definition 2. The set K ⊆ N separates if ρ(a, {a, b}) = 1
2 whenever XK ⊥{a,b} XN∗\K ,

and I ⊆ N is a ρ-MAP if it is a minimal set so that N \ I does not separate.

Whether a set of covariates separates, and so whether it is a ρ-MAP, depends solely on
ρ. In the randomized controlled trial interpretation, the intevention leads to separation
when it controls for all the variables through which the DM thinks the treatment can
affect the outcome. Then, the perceived average treatment effect equals zero.

When R represents ρ, each ρ-MAP equals the set of covariates in a R-MAP.

Lemma 1. If ρ has an SCR (R, u), then I ⊆ N contains the covariates in an R-MAP
if and only if N \ I does not separate.

That is, N \ I does not separate only if there exists an R-MAP (i1, . . . , im) so that
{i2, . . . , im−1} ⊂ I. Therefore, a ρ-MAP I is exactly the covariates in an R-MAP.
Since a ρ-MAP is defined by ρ and not R, every R′ that represents ρ must have an
R′-MAP with covariates I. When ∅ is a ρ-MAP, the DM thinks that actions directly
cause outcomes, so 0R(n + 1) and there are no other ρ-MAPs or R-MAPs. Similarly
when N is a ρ-MAP, she thinks that there is exactly one causal chain from actions to
outcomes, and that chain includes every covariate. In this case, there are also no other
ρ-MAPs.

To illustrate, consider a firm that is equally likely to choose each type of worker
whenever education is unrelated to the other variables, i.e. {E} separates. One can
construct such menus where the type of worker hired is positively correlated with ability
and productivity. Since the firm nevertheless hires every type equally frequently, it
must think that the correlations between type, ability, and productivity are all spurious.
Thus, its choices reveal that the firm thinks that every causal chain includes E. By
contrapositive, if it is not equally likely to hire every type for some menu where E is
independent, i.e. {E} does not separate, then its causal model has some causal chain
that does not pass through {E}. In other words, {A} contains the covariates in an
R-MAP, and the firm’s subjective DAG R includes either the chain 0RARP or 0RP .
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In the running example, the ρ-MAPs suffice to distinguish between firms with any
of the DAGs in Figure 1 except REA and RAE.12 We establish that the DM’s behavior
reveals the order of causation, allowing us to distinguish the other two DAGs as well.

Lemma 2. If ρ has SCRs (R, u) and (R′, u′), then R agrees with R′ on I ∪ {0, n+ 1}
for every ρ-MAP I.

The two Lemmas establish that the set of R-MAPs coincides with the set of R′-
MAPs when R and R′ both represent ρ. To illustrate, consider a firm for which {E,A}
is a ρ-MAP. By Lemma 1, we know that its DAG is either REA or RAE.13 We compare
two menus of workers, one consistent with REA and the other consistent with RAE but
that are otherwise equivalent. The firm identifies a stronger correlation between the
worker’s type and productivity, and hires the more productive type more often when
the menu is consistent with its subjective DAG.

More specifically, we compare ρ(a, {a, b}) and ρ(a′, {a′, b′}), with types defined as
follows. Type a (a′) workers are more likely to have high education (ability) than type
b (b′), and type a′ (b′) workers are as likely to have high ability as type a (b) workers
are to have high education:

a′(HA) = a(HE) > b(HE) = b′(HA).

Education (ability) alone determines ability (education):

a′(HE|HA) = a(HA|HE) = b(HA|HE) = b′(HE|HA)

>a′(HE|LA) = a(HA|LE) = b(HA|LE) = b′(HE|LA).

Ability (education) alone determines productivity:

a(HP |HA, xE) = b(HP |HA, x
′
E) = a′(HP |HE, xA) = b′(HP |HE, x

′
A)

>a(HP |LA, xE) = b(HP |LA, x′E) = a′(HP |LE, xA) = b′(HP |LE, x′A)

12The ρ-MAPs are ∅ for RRat, {E} for RHC , {A} for RSig, both {E} and {A} for RBoth, and {E,A}
for either RAE or REA.
13While neither of the DAGs are the most natural causal models, we stick with the running example
for consistency of exposition. For a more reasonable economic example, a DM who believes that the
Phillips curve is a causal relationship may either believe that inflation causes low unemployment or
that low unemployment causes inflation.
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for any x, x′ ∈ {H,L}. Moreover, both correlations are positive. Note that the rela-
tionships resulting from choice in {a, b} are consistent with REA, and that those from
choice in {a′, b′} are consistent with RAE.

While a and a′ (as well as b and b′) workers are equally productive, the firm does
not realize this. If the firm is more likely to employ type a than a′, then its choices
reveal that it thinks that education causes ability; otherwise, it thinks that ability
causes education. Suppose that the firm’s model is REA, so it decomposes the causal
effect of its hiring on productivity into the effects of hiring on education, of education on
ability, and of ability on productivity. The relationships between hiring and education
as well as between ability and productivity are weaker when facing {a′, b′} than when
facing {a, b}, while that between ability and education is the same. In fact when facing
{a′, b′}, education is a sufficient statistic for productivity, so adding ability in the causal
chain garbles the relationship between hiring and productivity. As a consequence, the
firm perceives a smaller causal effect of her action in {a′, b′} than in {a, b}, and so is
more likely to choose the worse type in the former than the latter.14

3.1. Constructing the revealed DAG. Theorem 1 shows that the minimal causal
chains characterize the subjective DAG. In this subsection, we construct a revealed
DAG Rρ directly from ρ that represents it whenever it has a perfect SCR.15 We use
this revealed DAG in our axiomatization to determine when the DM’s perception of
her actions remains constant, but any other perfect, free-will DAG R with the same
R-MAPs would work equally well.

The key tool to construct Rρ is a Markovian family of menus for I ⊆ N . Such a
family of menus is indexed by their potential orderings, bijections π : {0, . . . , |I|+1} →
I ∪ {0, n+ 1} with π(0) = 0 and π(|I|+ 1) = n+ 1; call the set of such bijections the
indexes for I. For any index π for I, let Rπ = {(π(k), π(k + 1)) : k = 0, ..., |I|}.

Definition 3. The family of menus {{aπ, bπ}}π is Markovian for I ⊆ N if π ranges
over the indexes for I and

(1) aπ = aπRπ , bπ = bπRπ , and aπ 6= bπ;
(2) for every i = 1, ..., |I|, aπ(xπ(i+1)|xπ(i)) = bπ(xπ(i+1)|xπ(i)) = aπ

′(xπ′(i+1)|xπ′(i));
14This is a consequence of the logit structure: the difference in utilities maps to the difference in
choice probabilities.
15Rρ is defined regardless of whether ρ has a perfect SCR.
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(3) for every pair of indexes π, π′ and d ∈ {a, b}, margπ(1) d
π = margπ′(1) d

π′ ;
(4) |suppmargi

(
1
2a

π + 1
2b
π
)
| = 2 for each i ∈ I ∪ {n+ 1}; and

(5) for each i < |I|, margπ(i) a
π-a.e. x, x′, and margπ(i+1) a

π-a.e. y, y′ with x > x′

and y > y′, aπ(yπ(i+1)|xπ(i)) > aπ(yπ(i+1)|x′π(i)).

Each of the actions defines a first-order Markov chain on the variables indexed by
I. The indexes vary the order of the chain but not the transition probabilities. The
initial distribution of the first variable, Xπ(1), is the same for every aπ and the same
for every bπ, but is not identical for aπ and bπ. For j > 1, the distribution of Xπ(j)

conditional on the realization of Xπ(j−1) is the same for aπ and bπ. Each variable has
a binary support. A high value of Xπ(i) increases the likelihood of a high value for
the Xπ(i+1) for each i ≤ |I|. Note that {{a, b}, {a′, b′}} above is a Markovian family of
menus for {E,A}.

We have defined a ρ-MAP in terms of whether its complement separates. This
requires observing choices from every menu where those variables are independent.
One can instead test whether a set is a ρ-MAP using choices from a small number of
carefully selected menus. Specifically, for each I ⊆ N let SI = {aπ, bπ} be a member
of a Markovian family of menus for I with

(1)
∫
Xn+1

[
aπ
(
cn+1|xπ(|I|)

)
− aπ

(
cn+1|x′π(|I|)

)]
u(c)dc 6= 0

for some x, x′ so that aπ
(
xπ(|I|)

)
, aπ

(
x′π(|I|)

)
> 0.16 If ρ has an SCR (R, u), then I ⊆ N

is a ρ-MAP if and only if ρ(a, SI) 6= 1
2 for any a ∈ SI and ρ(a, SI\{i}) = 1

2 for each i ∈ I
and a ∈ SI\{i}.

The subjective ordering of a ρ-MAP I is the index π∗ that maximizes the proba-
bility of choosing the better action in some Markovian family of menus for I for which
Equation (1) holds for all π.17 For any indexes π, π′, the actions aπ and aπ′ have the
same distribution over consequences, as do bπ and bπ′ . As in the illustration, the DM
perceives a smaller effect of her choice when her causal model is inconsistent with the
menu.

16The utility index u is easily identified from ρ.
17This is equivalent to maximizing the difference in choice frequencies between actions.
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We use these observations to identify the causal relationships that must belong to
the DM’s DAG. First, i is a directly revealed cause of j, or iR̄ρj, if iRπ∗j where π∗ is
the subjective ordering of a ρ-MAP. There are additional causal relationships that can
be derived from the directly revealed causes. We illustrate this for a ρ represented by
R in Figure 2. Observe that the R-MAPs are (0, 1, 3, 4) and (0, 2, 4). If ρ also has a
SCR (R′, u′), then R′ includes 2R′3 in addition to the directly revealed causes. If 3 6R′2
and 2 6R′3, then (2, 3, 4) is a R′-v-collider. If 3R′2, then either (0, 3, 2) is a R′-v-collider,
or 0R′3 and so (0, 1, 3, 4) is not an R′-MAP. In this case, we say that 2 is an indirectly
revealed cause of 3. More generally, i is an indirectly revealed cause of j if there are
variables h and k so that i and j both must cause k, h must cause i, and h must not
cause nor be caused by j. This occurs whenever there are variables i0, ..., im, j0, ..., jM
so that i0 = 0, im = i, j0 = j, jM = n + 1, ikR̄ρik+1 for all k < m, jkR̄ρjk+1 for all
k < M , iR̄ρjk for some k, and ik ¯6Rρ

jk′ for all k′ and all k < m. Finally, i is a revealed
cause of j, written iR̂ρj, if i is a direct or indirect revealed cause of j.

0

1

2

3

4

Figure 2. X2 must cause X3 but {2, 3} 6⊆ I for any ρ-MAP I

Definition 4. The revealed DAG Rρ satisfies iRρj if and only if iR̂ρj or there is k ∈ N
so that (i, j, k) is a R̂ρ-v-collider and i < j.

The revealed DAG links common parents by making the one with a lower index
the cause.18 Note that Rρ is defined regardless of whether ρ actually has an SCR. Its
interpretation as the DM’s causal model relies on ρ having a perfect SCR.

Corollary 1. If ρ has a perfect SCR, then ρ has an SCR (Rρ, u) for some u.

Hence, Rρ is natural candidate for the DM’s subjective causal model. In partic-
ular, Rρ reveals the contexts in which the DM makes the same inferences about the
18Resolving ambiguity according to any linear order would work equally well.
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consequence of an action. This observation is key for the foundations we provide in
the subsequent section.

4. Behavioral Foundations for Subjective Causality

Based on our identification in the previous section, this section characterizes the
random choice rules that have a subjective causality representation. Simple axioms that
relate the DM’s behavior in different menus are shown to be equivalent to her choices
having a perfect SCR. Throughout, the properties are illustrated in the context of
the running example. For these purposes, we assume that the firm’s revealed DAG Rρ

equals RAE, i.e. it thinks that its hiring decisions cause ability, ability causes education,
and education causes productivity.

The first axiom is standard.

Axiom 1 (Basic). For any S ∈ S and a ∈ S, ρ(a, S) > 0, and there exists S ∈ S and
a, b ∈ S with ρ(a, S) 6= ρ(b, S).

The DM chooses every available alternative with positive probability and does not
always choose every alternative with equal frequency.

The first new axiom says that if the DM perceives two actions to be the same,
then she chooses each with the same probability.

Axiom 2 (Indifferent If Identical Immediate Implications, I5).
For F = {k ∈ N∗ : 0Rρk}, if margF a = margF a′ and a, a′ ∈ S, then ρ(a, S) = ρ(a′, S).

The covariates directly caused by the DM’s action are a sufficient statistic for
her perception of it. That is, if two actions have the same distribution over these
covariates, then she perceives them to have the same consequence distribution. She
is therefore indifferent between any two actions with identical immediate implications
according to her subjective causal model. In the running example, it implies that the
firm is equally likely to hire any two types of workers having the same distribution over
ability, regardless of how they differ in their distributions over other variables. In the
firm’s mind, ability suffices to determine the other variables, including productivity.



20 ELLIS AND THYSEN

The next axiom limits the perceived difference between any two options.

Axiom 3 (Bounded Misperception). The Luce ratio is bounded: supS,a,b∈S
ρ(a,S)
ρ(b,S) <∞.

The Luce ratio indicates the strength of the DM’s preference between two actions.
Since the set of consequences is compact, there is a best and worst outcome. These
provide a natural limit to how much she can prefer one action to another. The axiom
thus bounds the size of the mistakes that the DM can make.19 In the running example,
the relative frequency of hiring any pair of workers is bounded above by the relative
frequency with which it would hire a (known) high-productivity worker relative to a
(known) low-productivity worker.

The following definitions help state the remaining axioms.

Definition 5. A lottery p ∈ ∆X (sequence of lotteries p1, p2, · · · ∈ ∆X ) leads to
(approximately) the same R-inferences as q ∈ ∆X , written p|R = q|R (pm|R → q|R),
if p(yk|yR(k)) = q(yk|yR(k)) (pm(yk|yR(k)) → q(yk|yR(k))) for q-a.e. y ∈ X−0 and k ∈ N∗

such that 0 6Rk.
A menu S ∈ S is R-Markov if a|R = b|R and aR = a for all a, b ∈ S.

To interpret the definitions, consider a DM with causal modelR = RAE. For menus
S, T ∈ S, ρS leads to the same R-inferences as ρT if the relationship between ability
and education in addition to the relationship between education and productivity is
the same for both the datasets ρS and ρT . Consequently, the causal effects of ability
on education and of education on productivity are perceived to be the same. She infers
the same effect on productivity of hiring type a ∈ S ∩ T in either of the two menus.
Similarly for menus Sm, T ∈ S, (ρSm)m leads to approximately the same R-inferences
as ρT if the two above relationships are arbitrarily close for large m. When m is big
enough, she infers almost the same effect on productivity of hiring type a ∈ Sm ∩ T in
either of the two menus. When facing an R-Markov menu, the DM’s model is correct,
and she perceives every alternative correctly.

The following axiom relates similarities in the DM’s inferences to her choices.

Axiom 4 (Luce’s Choice Axiom Given Inferences, LCI). For any S, S1, S2, · · · ∈ S
with a, b ∈ Sm ∩ S for each m: if ρSm |Rρ → ρS|Rρ, then ρ(a,Sm)

ρ(b,Sm) →
ρ(a,S)
ρ(b,S) .

19The axiom is implied by Independence and Luce’s Choice Axiom for the Logit-EU model.
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The Logit model is characterized by Luce’s Choice Axiom (Luce, 1959), which
requires that ρ(a,S′)

ρ(b,S′) = ρ(a,S)
ρ(b,S) whenever a, b ∈ S ∩S ′. LCI requires that the choice axiom

is “close” to holding whenever the DM’s inferences about the relationships captured
by Rρ are also close. In particular, when her inferences are the same, the choice axiom
holds: if S, S ′ ∈ S, a, b ∈ S ∩ S ′, and ρS|Rρ = ρS

′ |Rρ, then ρ(a,S′)
ρ(b,S′) = ρ(a,S)

ρ(b,S) . Put
another way, the statistical relationships captured by Rρ suffice for determining the
DM’s choices.

In the running example, suppose that given the firm’s choices when facing {a, b}
and {a, b, c}, the statistical relationship between ability and education is the same as
is that between education and productivity. Then, its perception of the productivity
of type-a and type-b workers is the same given either the dataset ρ{a,b} or the dataset
ρ{a,b,c}. LCI requires that relative probability of hiring a to hiring b is the same when
facing either {a, b} or {a, b, c}.

The next two axioms ensure that ρ has a Logit-EU representation for menus where
the DM’s inferences are correct. Axiom 4 guarantees that Luce’s Choice Rule holds for
all such menus.

Axiom 5 (Rρ-Markov Independence). If {αp+ (1−α)r, r}, {βp+ (1− β)r, r} ∈ S are
Rρ-Markov, then

β ln ρ(αp+ (1− α)r), {αp+ (1− α)r, r})
ρ(r, {αp+ (1− α)r, r}) = α ln ρ(βp+ (1− β)r, {βp+ (1− β)r, r})

ρ(r, {βp+ (1− β)r, r}) .

For Rρ-Markov menus, the DM’s perception of each alternative is correct. For
any such menu, the independence axiom holds. Moreover, the relative probability of
choosing αp+ (1− α)r to r is log linear in α because of the Logit functional form.

When the DM perceives her actions correctly, her behavior is suitably continuous
in the consequence distribution.

Axiom 6 (Rρ-Markov Continuity). If {p, q}, {p1, q1}, {p2, q2}, · · · ∈ S are all Rρ-
Markov, margn+1 pm → margn+1 p, and margn+1 qm → margn+1 q, then

ρ(pm, {pm, qm})
ρ(qm, {pm, qm})

→ ρ(p, {p, q})
ρ(q, {p, q}) .
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Only the consequence matters for payoffs. So when the DM’s inferences are correct,
what determines her preferences over lotteries are their distributions over that variable.
If the distributions over consequences for two pairs of lotteries are close, then their
relative choice frequencies are also close. In particular, if two correctly-perceived pairs
of lotteries have the same consequence distributions, then they have the same Luce
ratio. That is, if margn+1 p

′ = margn+1 p, margn+1 q
′ = margn+1 q, and both {p, q} and

{p′, q′} are Rρ-Markov, then ρ(p′,{p′,q′})
ρ(q′,{p′,q′}) = ρ(p,{p,q})

ρ(q,{p,q}) .

The main result of this section characterizes the rules with a perfect SCR.

Theorem 2. A random choice rule ρ has a perfect subjective causality representa-
tion if and only if Rρ is a perfect, free-will DAG and ρ satisfies Basic, I5, Bounded
Misperception, LCI, Rρ-Markov Independence, and Rρ-Markov Continuity.

The result highlights the connection between SCR and the Logit-EU model. No-
tice that if Axioms 1, 4, 5, and 6 hold when the part of their hypotheses involving Rρ are
dropped, the choice rule has a Logit-EU representation. The axioms thus indicate the
circumstances under which the choice rule does not diverge from Logit. I5 says two al-
ternatives are chosen with same probability whenever they coincide on the distribution
of the Rρ-immediate implications of the action, whereas Logit-EU requires coincidence
on the consequence distribution. Bounded Misperception gives a maximum deviation
in the relative choice frequencies. LCI restricts violations of Luce’s Choice Axiom to
when inferences change. Rρ-Markov Independence and Continuity show independence
and continuity hold whenever alternatives are perceived correctly.

We outline the proof for sufficiency here, and defer a formal proof to the appendix.
We first show that the choice rule has a Logit-EU representation when restricted to Rρ-
Markov menus. Then, we relate the DM’s choices from S to those from a Rρ-Markov
copy of S, S ′1. That is, for every a ∈ S, there is an a′ ∈ S ′1 so that a′(·) = ρSRρ(·|a)
and S ′1 is Rρ-Markov. Our goal is to show that for any a, b ∈ S, a and b are chosen
with the same relative frequency in S as a′ and b′ are in S ′1. To do so, we add distinct
alternatives to S ′1 to form a nested sequence of menus (S ′m)∞m=1 while maintaining that
each S ′m is Rρ-Markov. Bounded Misperception implies that the probability of choosing
anything in S from S ′m ∪ S goes to zero as the number of alternatives in S ′m goes to
infinity. In particular, the inferences that the DM makes from S ′m ∪ S approach those
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she makes from S ′1, which are in turn equal to those she makes from S. LCI implies
that the relative frequency with which a′ and b′ are chosen from S ′m ∪ S converges to
that for a′ and b′ in S ′1. Moreover, a and a′ (as well as b and b′) are chosen from S ′m∪S
with the same probability. Applying LCI another time, we see that a and b are chosen
with the same relative frequency in S as a′ and b′ are in S ′1, completing the proof.

We conclude by further clarifying the relationship between SCR and Logit-EU.

Corollary 2. A random choice rule ρ has a Logit-EU representation if and only if
0 Rρ (n+ 1) and ρ satisfies Basic, I5, Bounded Misperception, LCI, Rρ-Markov Inde-
pendence, and Rρ-Markov Continuity.

Note that 0 Rρ (n + 1) if and only if ∅ is a ρ-MAP, and if so, ∅ is also the only
ρ-MAP as noted earlier. When 0 Rρ (n+1), those are the only nodes related by Rρ, so
p|Rρ = q|Rρ for any p, q ∈ ∆X . Consequently, LCI becomes the Luce Choice Axiom.
It is easy to verify that the remainder of the axioms ensure that the Luce Index has
the desired form.

5. Discussion and Extensions

This section concludes the paper by looking at some implications of the model
and considering how our modeling decisions affect our results. We discuss some of the
biases in reasoning that arise with a subjective causal model. Then, the behavior of
two DMs with nested causal models are compared. We then examine how to extend
our analysis to eliminate stochasticity and the endogeneity of the dataset.

5.1. Biases. A DM with SCR may be subject to illusion of control: she may overesti-
mate her ability to control events. As Langer (1975, p. 311) writes, “In skill situations
there is a causal link between behavior and outcome.... Success in luck or chance ac-
tivities is apparently uncontrollable. The issue of present concern is whether or not
this distinction is generally recognized. The position taken here is that it is not.” The
firm in Section 2.3 is subject to illusion of control when choosing from {π, ι}. Its action
does not affect productivity, yet it would be willing to pay a premium to choose one
worker over another.
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While our model is formally static, it can be viewed as the steady state of a learn-
ing process. With such an interpretation, her initial behavior can be self-confirming,
leading to status quo bias (Samuelson and Zeckhauser, 1988), omission bias (Ritov and
Baron, 1992), and other biases. Status quo bias is a tendency toward “maintaining
one’s current or previous decision.” The related omission bias indicates a preference
for inaction. Formally, such biases occur in SCR when there exist multiple personal
equilibria. Then, a DM who begins choosing according to one particular personal equi-
librium tends to stay there. Congruence bias (Wason, 1960) refers to a tendency not
to test alternative hypotheses. For similar reasons to the above, the DM’s behavior
may conform to a sub-optimal personal equilibrium. She fails to experiment with other
actions sufficiently frequently to push her beliefs towards the better equilibrium.

A misspecified causal model can lead to an agent treating Berkson’s bias as an
actual causal relationship. Berkson’s bias, also known as collider bias, is a statistical
artifact that leads to an increase in correlation between two covariates when condi-
tioning on a common consequence. The following example illustrates the criticism
by Griffith et al. (2020) of Miyara et al. (2020)’s finding that smoking may prevent
symptomatic Covid-19. Suppose that Serious Covid (C) and Smoking (S, the agent’s
action) both decrease Lung Functionality (L), and that C and poor L both increase
the odds of Hospitalization (H). However, the agent thinks that S affects L, L affects
C, and C alone affects H. This agent can become convinced that Smoking decreases
risk of Serious Covid, even if in reality Smoking and Serious Covid are independent or
even moderately positively correlated. See also Spiegler (2016)’s dieter’s dilemma.

5.2. Comparative Coarseness. A coarser causal model leaves out some variables
or relationships relative to another. Authors often explain “irrational” behavior in
situations with adverse selection via coarseness. For instance, Eyster and Rabin (2005),
Jehiel (2005), and Esponda (2008) argue that the winner’s curse reflects bidders who do
not fully take into account the relationship between others’ actions and signals.20 In this
subsection, we compare DMs in terms of the coarseness of their model. In particular,
how can an analyst separate two DMs who differ in that one’s model contains more
variables than the other’s?

20Section 5 of Spiegler (2016) discusses how and to what extent these models fit into the DAG frame-
work.
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Definition 6. Say that ρ2 has a coarser model than ρ1 if ρ1(·, S) = ρ2(·, S) whenever
XN\N∗(ρ2) ⊥S XN∗(ρ2).

Consider DM1 represented by ρ1 and DM2 represented by ρ2. As revealed by
Theorem 1, DM2 considers the variables outside N∗(ρ2) irrelevant for determining the
consequence of her action. The condition says that if those variables are actually
irrelevant when choosing from S, i.e. they are independent of the other variables, then
the two DMs choose identically from S. This ensures that whenever DM2 thinks a
variable is relevant, so does DM1.

Proposition 1. Let ρ1 and ρ2 have perfect SCRs. If ρ2 has a coarser model than ρ1,
then Rρ2 = Rρ1

⋂ [N∗(ρ2)]2 and the utility indices are equal up to addition of a constant.
The converse holds up to the selection of a personal equilibrium.

The result shows that the comparison reveals when the models of two DMs are
nested. Specifically, they agree on the causal relationship between any two variables
that both consider relevant and on the desirability of outcomes. However, they may
disagree on which variables are relevant, with DM1 considering any variable relevant
that DM2 does. In this sense, DM2 has a coarser model than DM1.

5.3. Exogenous dataset. We introduce a modification of our setting where the dataset
used by the DM is exogenously given and does not depend on her behavior. This set-
ting provides rich variation in the DM’s inferences. It is particularly applicable to an
experimental implementation of our result. Most of the insights from our analysis with
an endogenous dataset are readily applicable. Indeed, it guarantees uniqueness of the
personal equilibrium and ensures that the DM conforms to Logit holding the dataset
fixed.

Formally, we consider behavior in an environment (S, q) where the DM’s choice
set S ∈ S and the DM’s dataset q ∈ ∆X has q(a) > 0 for each a ∈ S and∏

j∈N
supp(margj q) = supp(margN q).

Let E be the set of such pairs. The DM’s behavior is given by the augmented random
choice rule ρ∗ : X0 × E → [0, 1] with ∑a∈S ρ

∗(a;S, q) = 1 and ρ∗(a;S, q) > 0 only if
a ∈ S. The frequency she chooses a in the environment (S, q) is ρ∗(a;S, q).
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Definition 7. The augmented random choice rule ρ∗ has an Exogenous SCR (ESCR)
if there exists a free-will DAG R and a continuous, non-constant u so that

ρ∗(a;S, q) =
exp

(∫
Xn+1

u(c)dqR(cn+1|a)
)

∑
a′∈S exp

(∫
Xn+1

u(c)dqR(cn+1|a′)
)

for every a ∈ S and S ∈ S.

It is easy to adapt our identification results to this setting. Theorem 1 holds as
stated. To establish that the behavior on R-MAPs is uniquely pinned down, we apply
the conditions directly to the dataset rather than to the options in the menu. For
instance, Lemma 1 says that a subset of covariates contains a R-AP if and only if
its complement separates. The result continues to hold after we modify the definition
of separates to say that K ⊂ N separates if ρ∗(a; {a, b}, q) = 1

2 whenever XK is
independent of the other variables according to q: q(x) = q(xK)q(xN∗\K) for q-a.e.
x ∈ X . That is, independence is required for the dataset, not the menu. If the dataset
is easily manipulable, as in an experiment, then the condition may be substantially
easier to test. Similarly, we can identify the subjective ordering of a ρ-MAP I by using
ρ∗(·; {aπ, bπ}, 1

2a
π + 1

2b
π) in place of ρ(·, {aπ, bπ}) given a Markovian family of menus

{aπ, bπ} for I.

5.4. Deterministic choice. The SCR is derived from Spiegler (2016) where choice is
deterministic. We have adopted a stochastic choice framework throughout the paper.
The stochastic setting is closer to that typically used in empirical and experimental
work. It also deals with some technical issues. For instance, it pins down beliefs about
the consequence distribution of every alternative. Moreover, it applies when only one of
potentially many personal equilibria is observed. Our insights apply to a deterministic
choice model, once suitably adapted. We discuss how to apply them to identification
in this subsection.

Formally, we suppose that the DM’s behavior is described by a choice correspon-
dence c : S ⇒ ∆(X0) where p(S) = 1 for all p ∈ c(S) and c(S) 6= ∅ for each S ∈ S.21

For any p ∈ ∆(X0), write pX ∈ ∆(X ) for the resulting dataset, i.e. pX is the lottery so
that pX(a, y) = p(a)a(y) for every (a, y) ∈ X .

21As shown in Spiegler (2016), there may not exists a personal equilibrium that does not mix.
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Definition 8 (Spiegler (2016)). For ε > 0, the lottery p ∈ ∆(B) is a (R, u, ε)-personal
equilibrium for B ∈ S if p(a) > 0 for all a ∈ B and

p(a) ≥ ε =⇒ a ∈ arg max
a′∈B

∫
Xn+1

u(c)dpXR (cn+1|a′).

The lottery p ∈ ∆(B) is a (R, u)-personal equilibrium for B ∈ S if there exists a
sequence (pt)∞t=1 so that pt is a (R, u, 1/t)-personal equilibrium for B and pt → p.

The choice correspondence c has a Deterministic SCR (DSCR) if there exists a
free-will DAG R and a non-constant, continuous u : Xn+1 → R so that for every
B ∈ S, p ∈ c(B) if and only if p is a (R, u)-personal equilibrium for B. A DSCR (R, u)
is perfect if R is perfect. Observe that limiting cases of SCR are personal equilibrium.
Formally, let ρλ be a random choice rule having a perfect SCR (R, λu) for λ > 0. If
ρλn(a, S)→ p(a) for every a ∈ S and λn →∞, then p is an (R, u)-personal equilibrium
for S.

Again, Theorem 1 continues to hold. The arguments that establish necessity
require some changes. As above, Lemma 1 requires only minor alterations: we replace
“ρ({a, b})(a) = 1

2” with “c({a, b}) = ∆{a, b}” in Definition 2. Similarly, we replace
“ρ-MAP” with “c-MAP” by making the natural substitutions.

Adapting Lemma 2 requires more work. Consider a Markovian family of menus for
a c-MAP J . The construction of the family of menus ensures that any misperception
preserves the ordinal preference between aπ and bπ, though it may affect the perceived
magnitude of their difference. If aπ would be better than bπ if correctly perceived,
then the personal equilibrium for each menu in the family is a deterministic choice
of aπ. To reveal her subjective ordering, we augment the Markovian family with an
outside option that she necessarily perceives “almost” correctly but that is worse than
a correctly-perceived aπ. Whenever π disagrees with the DM’s DAG and the outside
option is good enough, there is a personal equilibrium where she chooses the outside
option. In Appendix B.1, we formalize these the arguments.

Appendix A. Proofs from Main Text

A.1. Proof of Lemma 1.
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Lemma 3. For any p ∈ ∆X and free-will DAG R, if there is no from 0 to j for
any j ∈ J , then pR(xJ |a) = pR(xJ) for p-a.e. a ∈ X0. Moreover, if there is no from
0 to j for every j ∈ J within the set L and Xi ⊥{p} X−i for all i ∈ N \ L, then
pR(xJ |a) = pR(xJ) for p-a.e. a ∈ X0.

Proof. Let Rl be a linear order that completes R, i.e. iRj implies iRlj and Rl is
complete and transitive (Rl exists since R is acyclic). Relabel so that 0Rl1Rl2 . . . , and
note that R(i) ⊂ {1, . . . , i}. We prove the result by induction. Let (IHm) be “If there
is no R-AP from 0 to j for all j ∈ J where J ⊂ {1, . . . ,m}, then pR(xJ |a) = pR(xJ).”
Consider m = 1. Then, J = {1}. If there is no R-AP from 0 to 1, then clearly
pR(x1|a) = p(x1). So (IH1) is true.

Assume (IHm) is true. Consider any J ′ ⊂ {1, . . . ,m + 1} for which there is no
R-AP from 0 to j for all j ∈ J ′. If m+ 1 /∈ J ′, the claim follows from IHm, so consider
J ′ = J

⋃{m + 1} for J ⊂ {1, . . . ,m} and no R-AP from 0 to j for all j ∈ J ′. Let
J̃ = R(m+ 1) \ J and Ĵ = R(m+ 1)⋂ J . Let

X (x̄J ′ , a) = {x ∈ X : x0 = a, xJ ′ = x̄J ′}.

Then,

pR(x̄J ′ |a) =
∑

x∈X (x̄J′ ,a)

∏m
k=1 p(xk|xR(k))
p(x0 = a) p(x̄m+1|xR(m+1))

=
∑

x∈X (x̄J′ ,a)
pR(x̄J , x(J ′)c |a)p(x̄m+1|xR(m+1))

=
∑

yJ̃∈XJ̃

pR(x̄J , yJ̃ |a)p(x̄m+1|x̄Ĵ , yJ̃).

Since there is no R-AP from 0 to m+ 1, there is no R-AP from 0 to any j ∈ J ⋃ J̃ ,
and clearly J ⋃ J̃ ⊂ {1, . . . ,m}. By (IHm), pR(x̄J , yJ̃ |a) = pR(x̄J , yJ̃), so pR(x̄J ′ |a) =
pR(x̄J ′). This completes the induction step, (IHm) so is true for all m, which in turn
establishes the result.

For the moreover, assume that XN\L ⊥{p} XL. Let Q be R where every link
between a node in N \ L and a node in L is dropped. Then, pQ(x) = pR(x) for every
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x since when k ∈ L we can write

p(xk|xR(k)) = p(xk|xR(k)∩L, xR(k)\L)

= p(xk|xR(k)∩L) = p(xk|xQ(k)).

and if k /∈ L we can write

p(xk|xR(k)) = p(xk|xR(k)∩L, xR(k)\L)

= p(xk|xR(k)\L) = p(xk|xQ(k)).

Apply the preceding argument to pQ to get the result. �

Proof of Lemma 1. For necessity, consider a set J = N \ I that does not separate.
For contradiction, assume that I does not contain an R-AP. Then, all R-APs from
0 to n + 1 go through J . Since J does not separate, there exists B = {a, b} where
Xj ⊥B X−j for all j ∈ J and ρB(a) > 1

2 . Let Q be R where all links involving a node
in J are dropped and q = ρB. By construction, q(xjx−j) = q(xj)q(x−j) for all x ∈ X
and j ∈ J . Then, qQ(x) = qR(x) for every x ∈ X since we can write

q(xi|xR(i)) = q(xi|xR(i)∩J , xR(i)\J)

= q(xi|xR(i)\J) = q(xi|xQ(i)).

Since
qR(x̄n+1|a) =

∑
x∈X (x̄n+1,a)

qR(xR(n+1)|a)q(x̄n+1|xR(n+1)),

where X (x̄J , a) = {x ∈ X : x0 = a, xJ = x̄J} and R(n + 1) satisfies the hypothesis
of Lemma 3 for Q, ρBR(xn+1|a) = ρBR(xn+1|b) for any a, b in B. But this contradicts
ρ(a,B) > 1

2 .

For sufficiency, consider any I = {i1, . . . , im} ⊂ J so that 0Ri1Ri2R . . . RimR(n+
1). We want to show that N \ J ≡ J c does not separate. The claim is true if there
exists a, b with ρ(a, {a, b}) 6= 1

2 and Xj′ ⊥{a,b} X−j′ for every j′ ∈ N \J . If 0 R (n+ 1),
then this is trivial since c(xn+1) = [αa + (1 − α)b]R(xn+1|c) for every x ∈ Xn+1, α ∈
(0, 1), and c ∈ {a, b}. Otherwise, pick a Markovian family of menus {{aπ, bπ}}π for
I (Definition 3) where

∫
aπ(xn+1)u(x)dx 6=

∫
bπ(xn+1)u(x)dx for each index π, noting

that Xj′ ⊥{aπ ,bπ} X−j′ holds for every j′ ∈ N \J and each index π. Let π∗ be the index
such that π∗(j) = ij for j ≤ m, and label a = aπ

∗ and b = bπ
∗ . For any α ∈ (0, 1), let
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q ∈ ∆(X ) equal αx+ (1− α)b. Note that q = qR, so qR(xn+1|c) = c(xn+1) for c = a, b.
This establishes that ρ(a, {a, b}) 6= 1

2 , completing the proof. �

A.2. Proof of Proposition ??. When a probability measure p ∈ ∆X has binary
support on each of its components, let i denote the event “variable i equals the larger
outcome” and −i denote the event “variable i equals the smaller outcome.”

Lemma 4. Fix a DAG R and a set J = {j1, . . . , jm} with 0Rj1Rj2R . . . jmR(n + 1)
and no other links in J , for any Markovian family of menus {{aπ, bπ}}π for J and
π∗ be the bijection so that π∗(i) = ji for each i. For any index π and any α > 0, if
a(j1) > b(j1) , ρ = αa+ (1− α)b, and pπ = αaπ + (1− α), then

pπR(n+ 1 | −i) < pπR(n+ 1 | i) and pπR(n+ 1 | i) ≤ ρR(n+ 1 | i)

when i is the first index such that π(i) 6= π∗(i).

Proof of Lemma 4. We prove by induction on |J |. The basic case is when |J | = 1.
Pick any index π, and note that π = π∗, so the Lemma is trivially holds given the
construction.

Induction Step: (IH) Suppose that the Lemma is true for any R′, J ′ and π∗′ as
in the statement with |J ′| ≤ m. Consider a R, J and π∗ as in the statement with
|J | = m+ 1. Relabel the variables in J such that π∗ is the identity map on 1, . . . , |J |.
Let a = aπ

∗ and b = bπ
∗ , and ρ = αa + (1 − α)b. This construction implies strict

MLRP, and so a(i) > b(i) for each i ∈ J ∪ {n+ 1}. Also by construction,

pπ(π(i)) = ρ(i) & pπ(xπ(i+1) | xπ(i)) = ρ(xπ(i+1) | xπ(i))

for every index π and every i ∈ J .

Pick any index π; if π = π∗ the conclusion holds, so assume π 6= π∗. Let i∗ =
mini∈J i 6= π(i). Define a new DAG R̂ = R ∩ {i∗ + 1, ..., |J |, n + 1}2, an index π′ on
J ′ = J \ {1, . . . , i∗} so that π′(i) = |{j ∈ J ′ : π−1(j) ≤ i}|, and actions âπ′ , b̂π′ so that

marg{n+1}∪J ′ ĉ
π′ = marg{n+1}∪J ′ c

π

and attach probability one to x̄N\J ′ for some x̄ ∈ X . Clearly âπ
′
, b̂π

′ are part of a
Markovian family of menus {{âπ̂, b̂π̂}}π̂ for J ′ and âπ′(π′(1)) > b̂π

′(π′(1)). Letting π∗∗
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satisfy π∗∗(i) = π∗(i+ i∗) set

q = αâπ
′ + (1− α)b̂π′ & ρ′ = αâπ

∗∗ + (1− α)b̂π∗∗ .

Then, IH implies that qR̂(n+1|i∗+1) > qR̂(n+1|−(i∗+1)) and that ρ′
R̂

(n+1|i∗+1) ≥
qR̂(n+ 1|i∗+ 1). Since pπ(i∗+ 1|i∗) > pπ(i∗+ 1|− i∗) by applying strict MLRP multiple
times and pπ(xi+1|xi) = q(xi+1|xi) for i > i∗, we have pπR(n+ 1|xi∗) equal to

pπ(i∗ + 1|xi∗)[qR̂(n+ 1|i∗ + 1)− qR̂(n+ 1| − (i∗ + 1))] + qR̂(n+ 1| − (i∗ + 1)).

Conclude that pπR(n+1|i∗) > pπR(n+1|−i∗). Moreover, let k be such that π(i∗+k) = i∗.
For i ≥ 1 we have ρ′(π∗∗(i+ 1)|xπ∗∗(i)) equals

pπ(π(i∗ + i+ 1) | xπ(i∗+i)) = ρ(i∗ + i+ 1 | x(i∗+i)) if i+ 1 < k

pπ(π(i∗ + i+ 2) | xπ(i∗+i)) = ρ(i∗ + i+ 2 | x(i∗+i)) if i+ 1 = k

pπ(π(i∗ + i+ 2) | xπ(i∗+i)) = ρ(i∗ + i+ 2 | x(i∗+i)) if i+ 1 > k

so ρ′
R̂

(n + 1|π∗∗(i)) = ρR(n + 1|π∗∗(i)) for any i. Letting î be the first index so that
π′(̂i) 6= π∗∗(̂i),

ρR(n+ 1|i∗)

=ρ(π∗∗(̂i)|i∗)[ρ′
R̂

(n+ 1|π∗∗(̂i))− ρ′
R̂

(n+ 1| − π∗∗(̂i))] + ρ′
R̂

(n+ 1| − π∗∗(̂i))

>ρ(π∗∗(̂i)|i∗)[qR̂(n+ 1|π∗∗(̂i))− qR̂(n+ 1| − π∗∗(̂i))] + qR̂(n+ 1| − π∗∗(̂i))

=pπ(n+ 1|i∗)

since ρ′(n+1) = q(n+1) by construction and ρ′
R̂

(n+1|π∗∗(̂i)) > qR̂(n+1|π∗∗(̂i)) by IH.
Conclude the Lemma is true when |J | = m+ 1, establishing the Lemma by induction
for all J . �

Proof of Lemma 2. Let ρ have a SCR (R, u), and J be a ρ-MAP. We show that there
is a unique π∗ so that for any Markovian family of menus {{aπ, bπ}}π for J , either
ρ(aπ, {aπ, bπ}) = 1

2 for all π or π∗ maximizes |ρ(aπ, {aπ, bπ})−ρ(bπ, {aπ, bπ})| across all
indexes π. This π∗ has the same ordering as R on J , so any other DAG the represents
ρ must agree with R on J ∪ {0, n+ 1}.
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Relabel the variables in J to be the first m = |J | integers, such that π∗ is the
identity map on J , and a = aπ

∗ and b = bπ
∗ . Write a(i+1 | i) = ri and a(i+1 | i) = si,

noting ri > si for every i by definition.

Consider the Markovian family of menus {{aπ, bπ}}π for J ∈⊂ N . Consider a =
aπ
∗ and b = bπ

∗ where a(1) = x = 1− a(−1), b(1) = y = 1− b(−1), and x > y (WLOG
after relabeling since x = y implies a = b).

Fix any index π 6= π∗. Since aπ(π(1)) − bπ(π(1)) = (x − y) and aπ(π(k + 1)) −
bπ(π(k + 1)) = [aπ(π(k)) − bπ(π(k))](rk − sk) for k ≥ 1, [aπ(i) − bπ(i)] < [a(i) − b(i)]
for every i ∈ J . Furthermore,

ρ
{aπ ,bπ}
R (n+ 1 | cπ) = cπ(i)ρ{a

π ,bπ}
R (n+ 1 | i) + cπ(−i)ρ{a

π ,bπ}
R (n+ 1 | −i)

and

ρ
{a,b}
R (n+ 1 | x0 = c) = c(i)ρ{a,b}R (n+ 1 | i) + c(−i)ρ{a,b}R (n+ 1 | −i).

Let i be the first index such that π(i) 6= i. Combining the above with the results from
Lemma 4 we get

ρ
{a,b}
R (n+ 1 | a)− ρ{a,b}R (n+ 1 | b) = [a(i)− b(i)][ρ{a,b}R (n+ 1 | i)− ρ{a,b}R (n+ 1 | −i)]

> [aπ(i)− bπ(i)][ρ{a
π ,bπ}

R (n+ 1 | i)− ρ{a
π ,bπ}

R (n+ 1 | −i)]

= ρ
{aπ ,bπ}
R (n+ 1 | aπ)− ρ{a

π ,bπ}
R (n+ 1 | bπ).

Label suppmargn+1 a = {x1, x2}. Now,∣∣∣∣∣
∫
Xn+1

u(x)dρ{a,b}R (xn+1|a)−
∫
Xn+1

u(x)dρ{a,b}R (xn+1|b)
∣∣∣∣∣

=
(
ρ
{a,b}
R (n+ 1 | a)− ρ{a,b}R (n+ 1 | b)

)
|u(x1)− u(x2)|

>
(
ρ
{aπ ,bπ}
R (n+ 1 | aπ)− ρ{a

π ,bπ}
R (n+ 1 | bπ)

)
|u(x1)− u(x2)|

=
∣∣∣∣∣
∫
Xn+1

u(x)dρ{a
π ,bπ}

R (xn+1|aπ)−
∫
Xn+1

u(x)dρ{a
π ,bπ}

R (xn+1|bπ)
∣∣∣∣∣

whenever u(x1) 6= u(x2), and all are equal to zero when u(x1) = u(x2). Hence, the
difference has a unique maximum at π∗, establishing the result. �
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The result is completed by noting that the minimal active paths are sufficient to
identify all fundamental links in the subjective DAG.

A.3. Preliminary Results for Proof of Theorem 1. For a DAG Q, let N∗(Q) be
the minimal set of nodes such that margn+1 pQ(· | a) = margn+1 pR∩N∗(Q)2(· | a) and
N∗(ρ) = {i ∈ N : i ∈ I for some ρ-MAP I} ∪ {0, n + 1}. A DAG Q′ is equivalent to
Q if and only if pQ = pQ′ for all p ∈ ∆(X ). Let the skeleton of Q be Q̃ = {(i, j) :
iQj or jQi}.

Proposition 2 (Theorem 1 of Verma and Pearl (1991)). Two DAGs are equivalent if
and only if they have the same skeleton and the set of v-colliders.

Let the set of free-will DAGs behaviorally equivalent to Q be

BQ = {Q′ : pQ(·) = pQ′(·) for all p ∈ ∆(X ) and Q′(0) = ∅} .

Definition 9. Consider two nodes i, j ∈ N∗. If iGj for all G ∈ BQ, then the link
iGj is called a fundamental link in Q and denoted by iQ̂j. An Q-AP (i0, ..., im) is
Q-fundamental if ijQ̂ij+1 for all j < m.

Proposition 3 (Prop 6 of Schumacher and Thysen (2020)). Given be a perfect DAG
Q, N∗(Q) = {i ∈ N | i is part of a Q-fundamental active path between 0 and n+ 1}.

The fundamental links are characterized in the next proposition. Before that we
need another definition.

Definition 10. The distance between any two nodes i, j, denoted by d(i, j), is given
by the number of links in the shortest path between i and j.

Proposition 4 (Prop 7 of Schumacher and Thysen (2020)). Let Q be a perfect, free
will DAG, and consider a link (i, j) ∈ Q. Then, iQ̂j if and only if at least one of the
following conditions is satisfied:

(a) d(0, i) = d(0, j)− 1,
(b) there exists a node k ∈ N such that kQ̂i and k 6Qj.

A.4. Proof of Theorem 1. Let N∗(ρ) = {i ∈ N : i ∈ I for some ρ-MAP I}∪{0, n+
1}.
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Lemma 5. If ρ has a perfect SCR (R, u), then N∗(ρ) ⊆ N∗(R).

Proof. It is enough to show that all the links between nodes in I ∪ {0, n + 1} are
fundamental for every ρ-MAP I. Suppose for contradiction that I is a ρ-MAP and
I ∪{0, n+ 1} contains non-fundamental links. Let iRj be the non-fundamental link in
I ∪ {0, n+ 1} that is closest to the node 0.

If i = 0, then we have an immediate contradiction, since all links from 0 are
fundamental by definition. Therefore suppose that i ≥ 1 and let k ∈ I ∪ {0, n + 1}
such that kRi. By assumption kRi is fundamental. Since iRj is non-fundamental this
implies (by Proposition 4.b) that kRj. However, this contradicts that I is a ρ-MAP as
I \ {i} contains an R-AP. �

Lemma 6. If ρ has a perfect SCR (R, u), then N∗(R) ⊆ N∗(ρ).

Proof. Let i ∈ N∗(R).

Step 1: [kR̂l and k 6= 0 implies ∃j ∈ N s.t. jR̂k and j 6Rl.]

Let k, l ∈ N so that kR̂l and k 6= 0. We want to show that there exists a node
j ∈ N so that jR̂k and j 6Rl. As k 6= 0 and R is a perfect free-will DAG there exists
at lest one node j so that jR̂k. Assume for contradiction that for every node j so that
jR̂k it holds that jRl. As this rules out condition Proposition 4.b, it must be that
d(0, k) = d(0, l)− 1. Since d(0, k) > 0, then by definition there exists a node j so that
jRk and d(0, j) = d(0, k) − 1. By Proposition 4.a jR̂k and by assumption jRl. But
then d(0, l) ≤ d(0, j) + 1 = d(0, k), a contradiction.

Step 2: [There exists a fundamental active path between 0 and n+ 1 that contains i
so that there are no links in R between the nodes that precede i and the nodes that
succeed i on the path.]

Let j and k be two nodes in the same fundamental active path, and let j be
closer to 0 on the path than k. Note, that if there exists a link between j and k in
R, then jR̂k. If kRj, then there is a cycle in R as jR̂ . . . R̂k by their position on the
fundamental path. Furthermore, if there is no link between j and k, then j is not linked
to any nodes further down the path. Suppose that jR̂ · · · kR̂k + 1, j 6Rk and jRk + 1.
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Then there is a v-collider (j, k, k + 1), a contradiction since R is perfect. Inductively
applying this argument completes the claim.

Pick some fundamental active path between 0 and n + 1 that contains i. We fix
the part of the path that succeeds i: iR̂ . . . R̂n+ 1. We reconstruct the path preceding
i as follows. Delete all the nodes that precede i. Let k and l be the first two nodes
on the path. When k 6= 0 pick a node j so that jR̂k and j ˆ6Rl (by Step 1 such a node
exists), and add the link jR̂k to the path. When we add a link that contains 0 we are
done. The resulting fundamental active path satisfy the claim.

Let I be the nodes on this fundamental active path.

Step 3: [I contains a ρ-MAP containing i]

Let I−(I+) be the set of nodes that precede (succeed) i on the path constructed
in Step 2. By construction all the link in R between I− and I+ involve i. Thus, I \ {i}
cannot contain an R-AP. However, as I contains an active path between 0 and n+ 1,
then I contains a ρ-MAP containing i, and by definition i ∈ N∗(ρ). �

By Lemmas 5 and 6, we can restrict attention to DAGs on N∗(ρ). For a DAG Q,
say that I ⊆ N is a Q-MAP-set if I = {i2, ..., im−1} and (i1, i2, ..., im) is a Q-MAP-set.
If ρ has an SCR (Q, u), then I is a ρ-MAP if and only if I is a Q-MAP-set. For a
Q-MAP-set I, the I-ancestors and I-descendants of i ∈ I ∪ {0, n + 1} are the sets
AI(i) = {j ∈ I : jQ̄i} and DI(i) = {j ∈ I : iQ̄j} where Q̄ is the transitive closure of
Q.

Lemma 7. For a perfect, free-will DAG Q and i, j ∈ N∗(Q), iQ̂j if and only if there
exist Q-MAP-sets I and J so that i ∈ I and j ∈ J , AI(i) ∩ DJ(j), AI(i) ∪ DJ(j)
contains a Q-MAP-set, and [AI(i) ∪ DJ(j)] \ {i} does not contain a Q-MAP-set or
i = 0 (j = n+ 1) and there exists a Q-MAP-set J (I) so that DJ(j) = J (AI(i) = I).

Proof. Let Q be a perfect, free-will DAG and i, j ∈ N∗(Q). Suppose first that iQ̂j.
If i = 0 or if there exists a Q-MAP-set I that contains both i and j then the above
conditions are satisfied: AI(i)∩DI(j) = ∅, AI(i)∪DI(j) = I, and either i 6= 0 in which
case [AI(i)∪DI(j)] \ {i} does not contain a Q-MAP-set or i = 0 and [AI(i)∪DI(j)] \
{i} = I. Therefore, suppose that there does not exists a Q-MAP-set containing both
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i and j. By Step 2 of Lemma 6, we can find a Q-MAP-sets I and J so that j ∈ J ,
i ∈ I, and any link from AI(i) to DJ(j) involves i. Observe that AI(i) ∩ DJ(j) = ∅,
since i′ ∈ AI(i) ∩DJ(j) implies i′Q . . . QiQ̂jQ . . . Qi′, contradicting that Q is acyclic.
Furthermore, AI(i) ∪ DJ(j) contains a Q-AP and therefore a Q-MAP-set. However,
[AI(i) ∪DJ(j)] \ {i} does not contain a Q-MAP-set by construction.

Now, suppose i = 0 (j = n + 1) and there exists a Q-MAP-set J (I) so that
DJ(j) = J (AI(i) = I). This implies that 0Qj (iQn + 1), and thus 0Q̂j (iQ̂n + 1) by
definition. Next, fix Q-MAP-sets I and J so that i ∈ I, j ∈ J , AI(i) ∪DJ(j) contains
a Q-MAP-set, and [AI(i) ∪DJ(j)] \ {i} does not. Since [AI(i) ∪DJ(j)] \ {i} does not
contain a Q-MAP-set, i /∈ DJ(j) and no i′ ∈ AI(i)\{i} has a link to anything in DJ(j).
We claim that iQj. As AI(i) ∪ DJ(j) contains a Q-MAP-set by hypothesis, iQj∗ for
some j∗ ∈ DJ(j) \ {j}. Let j′ ∈ DJ(j) be a parent of j∗ and i′ ∈ I be a parent of
i. As Q is perfect, iQ̃j′. If j′Qi, then since Q is perfect and i′Qi we must have j′Q̃i′;
by hypothesis, j′Qi′. This same logic requires that j′ be a parent of i′’s parent, the
parent of the parent of i′, and so on. Inductively, it requires j′Q0, a contradiction of
Q having free-will. Hence, iQj′, and by the same arguments iQj′′ for any j′′ ∈ DJ(i)
so that j′′Qj′. Successively applying the same argument implies that iQj. If iQj, then
iQ̂j as there exists a node in i′ ∈ AI(i) with i′Q̂i and i′ 6 Qj. �

Lemma 8. In a perfect, free will DAG Q with i, j ∈ N∗(Q), if iQj and i 6 Q̂j, then
there exists k such that iQ̂k and jQ̂k.

Proof. Let i, j ∈ N∗(Q). Suppose iQ̃j, i ˆ6Rj, and j ˆ6Ri. We show first that iQk and
jQk for some k. By Lemma 7, there exist Q-MAP-sets I and J such that i contains
I (j contains J). Let k be the maximum length in DI(i) ∪ DJ(i) from i or j to a
common descendant. The payoff relevant node n + 1 is a descendant of both i and j
so k < ∞. If k = 1, the claim is proved. Let k∗ be the closest common descendant.
For contradiction, assume k > 1. Let A0

i = A0
j = k∗, Azi be the immediate ancestor in

DI(i) of Az−1
i [AziQAz−1

i ] , and Azj be the immediate ancestor in DJ(i) of Az−1
j .

Since Q is perfect, A1
i Q̃A

1
j . WLOG, A1

iQA
1
j (otherwise repeat with roles of i and

j interchanged). But then A1
iQA

1
j and A2

jQA
1
j is a v-collider. So A1

i Q̃A
2
j and A1

iQA
z′
j

for all z′ < 2. For z ≥ 2, assume A1
i Q̃A

z
j and A1

iQA
z′
j for all z′ < z. If AzjQA1

i , then
A1
i is a common descendant of i and j and is closer to either than k∗. Then, A1

iQA
z
j
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and Az+1
j QAzj , so A1

i Q̃A
z+1
j by perfection and moreover A1

iQA
z′
j for all z′ < z + 1.

Inductively conclude that A1
iQA

z
j for all z ≥ 2. By arguments as above we must have

A1
iQj.

Since jQi implies the DAG has a cycle, we must have iQj. Then, iQj and A1
iQj,

so iQA1
i by perfection. Since iQj is not fundamental, i’s predecessor i∗ must have

i∗Qj [i∗QIi implies i∗Qj]. But then i∗Qj and A1
iQj, so i∗QA1

i by perfection. But this
contradicts that I is a Q-MAP-set! Conclude k∗ = 1.

By the above arguments, there is no loss in assuming that k∗ is successor of j in
the Q-MAP-set J . Since the link between i and j is not fundamental, let Q be the
equivalent DAG with jQi. Proposition 4 gives that d(j, 0) 6= d(i, 0)− 1 and that j′Q̂j
implies j′Qi. Let j∗ be j’s predecessor in J . Since k ∈ DJ(j), j∗ 6Rk. Then, j∗ 6Rk,
j∗Qi, and iQk, so iQ̂k by Proposition 4. (If j∗ ˆ6Ri, then the predecessor of j∗, j∗∗ has
j∗∗Qi. Repeat with j∗ = j∗∗ until j∗Q̂i for j∗ ∈ J . This terminates because J is finite,
and the j∗ we find must not be 0 since if j∗∗ = 0, then J is not an Q-MAP-set.) �

Lemmas ?? and ?? establish necesssity. Let ρ have a perfect SCR (R, u). To
establish sufficiency, consider any perfect, free-will DAG R′ ⊆ N∗(ρ) so that (i1, ..., im)
is a R′-MAP if and only if it is also a R-MAP. By Lemma 7, iR̂j if and only if iR̂′j. By
Lemma 8, (i, j) ∈ R′ \ R̂′ if and only if iR̂′k and jR̂′k for some k. Since R̂′ = R̂, either
iRj or jRi. Hence, R∗ = R∩N∗(ρ)2 and R′ have the same skeleton and v-colliders. By
Proposition 2, ρSR∗ = ρSR′ , so ρ has an SCR (R′, u) if and only if it has an SCR (R∗, u).
By Lemmas 5 and Lemma 6, ρ has an SCR (R∗, u). Uniqueness of u follows from the
uniqueness results for Logit and EU since the DM having a logit-EU representation on
R-Markov menus. �

A.5. Preliminary Results for Proof of Theorem 2.

Lemma 9. If ρ has a perfect SCR, then Rρ is a perfect, free-will DAG.

Proof. Let ρ have a perfect SCR (R, u). Note that by construction Rρ is a directed
graph and 0 is ancestral. It has already been shown that if there is a fundamental link
in R from node i to node j, then iR̂ρj (henceforth iR∗j) and so iRρj. It remains to be
Rρ does not have any cycles or v-colliders. Denote by iQj a pair (i, j) with i ∈ Rρ(j)



38 ELLIS AND THYSEN

for which i 6R∗j in order to distinguish the fundamental links from the non-fundamental
links.

Step 1: Rρ does not contain any cycles.
First we list some immediate facts, that will be useful later on:

(1) Any cycle contains at least one fundamental link.
This follows immediately from the construction of Rρ from the non-fundamental
links.

(2) Any cycle contains at least one non-fundamental link.
Otherwise, the set of fundamental links is not consistent with the agent’s DAG.

(3) Any cycle contains at least two non-fundamental links.
If there is a cycle iR∗jQkR∗...R∗i, then there is also a DAG R′ in the behavioral
equivalence class of R where kR′j since the link jRk is non-fundamental. For
this DAG, kR′i or iR′k (otherwise, (k, i, j) is a v-collider). To avoid a cycle,
only kR′i is possible, so kR∗i. But then jR′k creates a cycle, so it must be that
kR∗j, a contradiction.

(4) Any nodes connected by a path of non-fundamental links have the same distance
to node 0.
This follows immediately from Proposition 4.

(5) The shortest cycle is of length 3.
Suppose that the shortest cycle is of length 4 or more. Then there exists a
fundamental link iR∗j and a non-fundamental link jQk in this cycle such that
k 6Rρi and i 6Rρk. Otherwise this is not the shortest cycle. However, this con-
tradicts that jQk is a non-fundamental link: any perfect DAG R′ behaviorally
equivalent to R must have iR′j, i 6R′k and k 6R′i, so kR′j would constitute a
v-collider.

Suppose for contradiction that Rρ has at least one cycle. By the above if there
exists a cycle in Rρ, then there are i, j, k ∈ N such that iR∗jQkQi. Since iR∗j, then
there exists a node l ∈ N such that lR∗i and l 6Rj (and l 6R′j for any R′ behaviorally
equivalent to R). Let R′, R′′ be perfect DAGs on N∗(ρ) behaviorally equivalent to R
with iR′k and kR′′i. Since R′′ has no cycles, kR′′j. Since R′′ is perfect, kR′′i, and
lR∗i, lR′′k or kR′′l; hence either lQk or kQl by Proposition 2. Therefore, either lR′k
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or kR′l. If lR′k, then (l, i, k) is a v-colllider in R′ (since l and i cannot be linked), but
if kR′l, then iR′kR′lR′i is a cycle. Conclude that kR∗i, contradicting that kQi.

Step 2: Rρ does not contain any v-colliders.
Suppose for contradiction that Rρ has a v-collider (i, j, k). Let D(l) be the Rρ descen-
dants of l, i.e. for any j ∈ D(l) there is a directed path from l to j in Rρ. By Step 1
and that there are a finite number of nodes, there is no loss in picking (i, j, k) to be
such that the set D(v) = D(i) ∪D(j) ∪D(k) does not contain any v-colliders in R∗.
We must have iQk and jQk; if iR∗k, then jR∗k by definition, and if iR∗k, then jR∗k.

Since n+ 1 ∈ D(i), D(j), D(k) by definition, there exists nodes l and l′ such that
iR∗l, kR∗l, jR∗l′ and kR∗l′. Note that lRj implies lR∗j as Rρ does not contain any
cycles by Step 1. This in turn implies kR∗j, contradicting kQj. Similarly, jRl implies
iRj or jRi, which contradicts that (i, j, k) is a v-collider. Similarly, neither iRl′ or l′Ri
can hold. As a result, we get a contradiction from lRρl′ or l′Rρl since D(v) does not
contain a v-collider.

Let l∗ ∈ arg minl′′∈D(l)∪D(l′) d(l, l′′) + d(l′, l′′). Either l∗ = l or l∗ = l′. Suppose
not, then there exists m,m′ ∈ N such that m ∈ D(l), mRρl∗, m′ ∈ D(l′), m′Rρl∗,
and either m 6= l or m′ 6= l′. Since l∗,m,m′ ∈ D(v), (m,m′, l∗) is not a v-collider, so
mRρm′ or m′Rρm. In the former case, d(l,m′) + d(l′,m′) < d(l, l∗) + d(l′, l∗), and in
the latter case d(l,m′) + d(l′,m′) < d(l, l∗) + d(l′, l∗). This contradicts the definition of
l∗, so l∗ = l or l∗ = l′.

Suppose l∗ = l′, so there is a directed path from l to l′. Let m be the parent of
l′ on that path. Since jR∗l′, (j,m, l′) cannot be a v-collider, so either jRρm or mRρj.
The latter would cause a cycle, so jRρm. Similarly, kRρm. Let m∗ be the parent of
m on the path. The same argument implies that jRρm∗ and kRρm∗. By continuing
this way, we see jRρl, a contradiction. A similar contradiction obtains when l∗ = l.
Conclude Rρ does not contain a v-collider, completing the proof. �

Lemma 10. If Rρ is a perfect, free-will DAG and ρ satisfies Axioms 1, 4, 5, and 6 ,
then there exists non-constant u : Xn+1 → R so that

ρ(a, S) =
exp

(∫
Xn+1

u(c)da(cn+1)
)

∑
b∈S exp

(∫
Xn+1

u(c)db(cn+1)
)
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for every Rρ-Markov S ∈ S, and u is unique up to adding a constant.

Proof of Lemma 10. Say that ρ has a Luce representation with index u on a subset of
menus Σ ⊂ S if for every S ∈ Σ, ρ(a, S) = u(a)/∑b∈S u(b) for every a ∈ S.

For any finite Y ⊂ Xn+1, let P (Y, ε) = {p ∈ ∆Xn+1 : p(Y ) = 1, p(y) ≥ ε∀y ∈ Y }
for ε ∈ (0, 1

M
) withM = |Y |. For any p1, . . . , pm ∈ P (Y, ε), there is an Rρ-Markov menu

S = {a1, . . . , am} so that margn+1 ai = pi. To do so, let (i0 = 0, i1, . . . , ik = n + 1)
be a minimal active path in Rρ, i.e. ijR

ρij+1 for j = 0, 1, ..., k − 1, and label Y =
{y1, . . . , yM}. Take A(Y, η) ⊂ ∆X to be the lotteries so that Xij takes values between
1 andM for j = 1, . . . , k−1, xij+1 = xij with probability (1−η) and equals every other
value with equal probability, Xn+1 = yi with probability 1 whenever Xik−1 = i, and
Xj = 0 with probability 1 for every j /∈ {i0, . . . , ik}. Observe that A(Y, η) is convex,
and that there is an a ∈ A(Y, η) so that a(Xn+1 = yi) ≥ a(X1 = i)(1 − η)k, which
approaches 1 as η → 0 and a(X1 = i) → 1, and if a(X1 = j) = a(X1 = j′) for all
j, j′ 6= i, then a(Xn+1 = yj) = a(Xn+1 = y′j) < a(X1 = i)(1− η)k. In particular, given
ε > 0, there exists η > 0 so that for any pi ∈ P (Y, ε) there is an ai ∈ A(Y, η) so that
margn+1 ai = pi by convexity. In particular {margn+1 a : a ∈ A(Y, η)} = P (Y, ε) for
appropriately chosen η.

Let P (Y ) = ∪ε>0P (Y, ε). We claim that there exists is a Luce representation
uY on all Rρ-Markov S for which margn+1 a ∈ P (Y ) for every a ∈ S, and uY (a) =
uY (b) whenever margn+1 a = margn+1 b. By the above, there exists an η > 0 so that
for every a ∈ S there exists a′ ∈ A(Y, η) with margn+1 a

′ = margn+1 a. Let S ′ be
these actions. By Axiom 4 and standard results, there is a Luce representation when
restricted to A(Y, η); let uη be its index. By Axiom 6, uη(a)/uη(b) = uη′(a′)/uη′(b′)
whenever margn+1 a = margn+1 a

′ and margn+1 b = margn+1 b
′. Pick η∗ and a ∈

A(Y, η∗). Normalize uη′ for each η′ < η∗ so that uη′(a) = uη∗(a). Since there is one
degree of freedom, uη′ = uη′′ on their common domain. Let this be uY , and then Axiom
6 establishes the claim.

Next, we extend to any other P (Y ′) where Y ′ ⊃ Y . Pick Y and p∗ ∈ P (Y ). Define
U = uY on P (Y ). Now, take Y ′ ⊃ Y and r ∈ P (Y ′). Set

λ = exp
[
2 ln uY ′

(1
2p
∗ + 1

2r
)
− ln uY ′(r)

]
/U(p∗)
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and then take v(p) = λuY ′(p) for any p ∈ P (Y ′). There is a unique continuous
extension of v to cl(P (Y ′)), which includes P (Y ), and this extension of v coincides
with U . Hence v extends U to cl(P (Y ′)). Then, the set on which we define the Luce
index is irrelevant for its value and hence we can extend U to all of ∆(Xn+1).

To see that this is consistent, consider the sequence pm = m−1
m
p∗ + 1

m
r, noting

pm+1 = 1
m+1p

∗ + m
m+1pm. For each m, there is η > 0 and r, p∗m, p∗m+1 ∈ A(Y ′, η) so that

margn+1 p
∗
m = pm, margn+1 r

∗ = r, and margn+1 p
∗
m+1 = pm+1. Then by Axiom 5,

m− 1
m

ln ρ({p∗m+1, r
∗})(p∗m+1)

ρ({p∗m+1, r
∗})(r∗) = m

m+ 1 ln ρ({p∗m, r∗})(pm)
ρ({p∗m+1, r

∗})(r∗)

⇐⇒ m− 1
m

[ln v(pm+1)− ln v(r)] = m

m+ 1[ln v(pm)− ln v(r)]

since the menus are Rρ-Markov. Recursively substituting yields that

ln v(pm+1) =
m∏
j=2

j2

j2 − 1[ln v(1
2p+ 1

2r)− ln v(r)] + ln v(r)→ 2 ln v(1
2p+ 1

2r)− ln v(r)

so lim v(pm+1) = u(p∗). Pick any q, and set qm = m−1
m
q + 1

m
r Since margn+1 pm+1 →

margn+1 p
∗ and margn+1 qm+1 → margn+1 q,

ρ({pm,qm})(pm)
ρ({pm,qm})(qm) →

ρ({p∗,q})(p∗)
ρ({p∗,q})(q) by Axiom 6.

Then, v(pm)/v(qm) → U(p)/U(q), implying that v(qm) → U(q). Moreover, for any
other q′m so that margn+1 q

′
m → q, we must have v(q′m) → U(q) by Axiom 6 and that

v(qm) converges.

Now, let U be the overall Luce index and V = lnU . V is affine (by Axiom 5),
continuous (by Axiom 6), and ranks every lottery in ∆(Xn+1). Conclude there exists
u : Xn+1 → R so that V (p) =

∫
u(c)dp(c) for any p ∈ ∆Xn+1. Then, U(p) = expV (p) =

exp
∫
u(c)dp(c), completing the proof. �

A.6. Proof of Thoerem 2. Necessity: Suppose that ρ has a perfect SCR. Lemma 9
implies that Rρ is a perfect, free-will DAG, and Theorem 1 implies that ρ has an SCR
(Rρ, u). Axioms 2 and 6 are obviously necessary. Axiom 4 follows from continuity of
the expected utility functional and ρSm|R→ ρS|R implies ρSmRρ (·|a)→ ρSRρ(·|a). Axiom
5 follows since for an Rρ-Markov menu S,

ln ρ(a, S)
ρ(b, S) =

∫
Xn+1

u(c)da(cn+1)−
∫
Xn+1

u(c)db(cn+1),
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so if a = αa′ + (1− α)b,

ln ρ(a, S)
ρ(b, S) = α

∫
Xn+1

u(c)d[a′ − b](cn+1).

Axiom 3 follows from∫
u(c)dpR(cn+1|a′) ∈

[
min
x∈X−0

∫
u(c)dp(cn+1|xN), max

x∈X−0

∫
u(c)dp(cn+1|xN)

]
by iterated expectations.

Sufficiency: Suppose that ρ satisfies the axioms and that Rρ is a perfect free-will
DAG. Given Lemma 10, we approximate choice in every menu by a sequence of Rρ-
Markov menus. Pick any S = {a1, a2, . . . , am} ∈ S. We show that

(2) ρ(ai, S)
ρ(aj, S) =

exp[
∫
Xn+1

u(c)dρSRρ(cn+1|ai)]
exp[

∫
Xn+1

u(c)dρSRρ(cn+1|aj)]

for any i, j. The DM then has a SCR (Rρ, u), since the probabilities add up to one.

Define a′k(y) = ρSRρ(y|ak) for every k and every y ∈ X−0. Pick any i, j, and let a =
ai, b = aj, a′ = a′i, and b′ = a′i. Since {a′, b′} is Rρ-Markov, ρ(a′, {a′, b′})/ρ(b′, {a′, b′})
has the desired form by Lemma 10. If a′ = b′, then a(xF ) = b(xF ) where F = {k ∈
N∗ : 0 ∈ Rρ(k)}, so ρ(a, S) = ρ(b, S) by Axiom 2, and the formula holds.

Otherwise, let S1 = {a′, b′} and recursively define Sm = Sm−1 ∪ { 1
m
a′ + m−1

m
b′}.

Each Sm is Rρ-Markov by construction, and each has m + 1 distinct alternatives. By
Axiom 3, there exists K > 0 so that for any a′′, b′′ ∈ S ′′ ∈ S, ρ(a′′,S′′)

ρ(b′′,S′′) ≤ K. In
particular, for Sm \ S = {s1, . . . , sM(m)} (noting M(m) ≥ m + 1 − |S|), a′′ ∈ S, and
i ≤M(m), we have K−1ρ(a′′, Sm ∪ S) < ρ(si, Sm ∪ s). Then,

1 ≥
∑

i≤M(m)
ρ(si, Sm ∪ S) + ρ(a′′, Sm ∪ s) ≥ [M(m)K−1 + 1]ρ(a′′, Sm ∪ s)

so ρ(a′′, Sm ∪ S) ≤ K
m+1−|S|+K → 0 as m→∞.

For pm = ρSm∪S and arbitrary i ∈ N∗ with 0 6Rρi and E = Rρ(i), we have

pm(xi|xE) = 1
pm(xE)

∑
a′′∈S

pm(a′′)pm(xE|a′′)a′′(xi|xE) + pm(Sm)pm(xE|x0 ∈ Sm)a′(xi|xE)
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for p-a.e. x ∈ X−0 since â(xi|xE) = a′(xi|xE) for all â ∈ Sm. This converges to
ρS1(xi|xE) = a′(xi|xE) because pm(a′′) → 0 for all a′′ ∈ S. Since i and xRρ(i) were
arbitrary, ρSm∪S|Rρ → ρS1 |Rρ = ρS|Rρ.

Axiom 2 gives that ρ(Sm ∪ S, a) = ρ(Sm ∪ S, a′) and ρ(Sm ∪ S, b) = ρ(Sm ∪ S, b′).
Axiom 4 implies that

ρ(a′, Sm ∪ S)
ρ(b′, Sm ∪ S) = ρ(a, Sm ∪ S)

ρ(b, Sm ∪ S) →
ρ(a′, S1)
ρ(b′, S1)

and that
ρ(a′, Sm ∪ S)
ρ(b′, Sm ∪ S) = ρ(a, Sm ∪ S)

ρ(b, Sm ∪ S) →
ρ(a, S)
ρ(b, S) .

Therefore, ρ(a′,S1)
ρ(b′,S1) = ρ(a,S)

ρ(b,S) and Equation (2) holds for i, j. Since i, j and S were arbi-
trary, ρ has an SCR. �

Appendix B. Proofs from Section 5

B.1. Deterministic Identification. First identify u. Given a c-MAP I and p, q ∈
∆(Xn+1) let {aπ, bπ} be a Markovian family of menus for I where suppmargj aπ =
{h, l} for h > l, cπ(xn+1|hπ(|I|)) = p(x) and cπ(xn+1|lπ(|I|)) = q(x) for all c ∈ {a, b},
aπ(hπ(1)) > bπ(hπ(1)). Observe that

pXR (xn+1|a)− pXR (xn+1|b) =[p(x)− q(x)][pXR (hj|hi)− pXR (hj|li)][aπ(hi)− bπ(hi)] + q(x)

for any p ∈ ∆({aπ, bπ}) when i ∈ I is s.t. 0Ri, and j ∈ I is s.t. jR(n + 1). Since
pXR (hj|hi) > 0, c({aπ, bπ}) = {δaπ} whenever

∫
udp >

∫
udq, c({aπ, bπ}) = {δbπ} when-

ever
∫
udp <

∫
udq, and c({aπ, bπ}) = ∆({aπ, bπ}) whenever

∫
udp =

∫
udq.

Let uc by the utility index that represents c above. For any u and DAG R, define
ρ(R,u) to be a choice rule with a perfect SCR (R, u). We generalize Markovian family
of menus as follows.

Definition 11. Given a DAG R, u0 ∈ (0, 1) and ε > 0, say that {{âπ, b̂π, êπ}}π is a
(R, u0, ε)-DMarkovian family of menus for J ⊂ N if there exists a Markovian family of
menus for J {aπ, bπ} where suppmargj aπ = {h, l} for h > l > 0, uc(h) > uc(l), and all
j ∈ J ∪ n+ 1, margj′ aπ = δ0 for j′ ∈ N \ J , aπ(hn+1|hπ(|I|)) = aπ(ln+1|lπ(|I|)) = 1, and
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aπ(hπ(1)) > bπ(hπ(1)), and for each π,

âπ = (1− ε2)aπ + ε2ι

b̂π = (1− ε2)bπ + ε2ι

êπ = (1− ε− ε2)dz + ερ
{aπ ,bπ}
(R,uc) + ε2ι

dz = u0δ{(0,...,0,h)} + (1− u0)δ{(0,...,0,l)}

ι = (xI , 0N\I , xn+1) 7→ 1
23−#Iχ{h,l,0}I×0N\I×{h,l}(xI , 0N\I , xn+1).

Setting ε = 0, {{aπ, bπ}}π is a Markovian family of menus (without full-support).
The menu {aπ, bπ, eπ} also has a Markovian structure (but not binary), and has the
same conditional distributions for h, l as {aπ, bπ}. It adds an extra value, 0, that
is an absorbing state and leads to payoff of h with probability u0. For ε > 0, the
above is true only approximately, and so we need to take the limit. Moreover, for
any q, q′ ∈ co{âπ, b̂π, êπ}, q(xπ(i+1)|xπ(i)) = q′(xπ(i+1)|xπ(i)) and Xπ(i+1) is conditionally
independent of X0, . . . , Xπ(i−1).

Proposition 5. Suppose that c has a DSCR (R, u) and that {{âπ, b̂π, êπ}}π is a
(R, u0, ε)-DMarkovian family of menus for a c-MAP I.
If ε > 0 is small enough and u0 < âπ(hn+1) is large enough, then π agrees with R if
and only if (1, êπ) /∈ c({âπ, b̂π, êπ}).

For each ε define pε ∈ ∆X to be so that

pε(ĉπ, y) =
ερ(R,uc)({aπ, bπ})(cπ)cπ(y) + ε2 1

2
|I|+1

ε+ ε2

when yi ∈ {h, l} for i ∈ I and yi = 0 for all other i. Then, pε(ĉπ, y) → ρ
{aπ ,bπ}
(R,uc) (cπ, y),

and when π does not agree with R and I contains a ρ-MAP,

pεR(hn+1|âπ)→
(
ρ
{aπ ,bπ}
(R,uc)

)
R

(hn+1|aπ) < aπ(hn+1)← pε(hn+1|âπ)

by Proposition ??.

Proof. Take any index π. Let Rπ be a perfect free-will DAG that agrees with π on I.
Pick ε and u0 so that

pεRπ(hn+1|âπ) > êπ(hn+1) > max
{Q:Q∩I2 6=Rπ∩I2}

pεQ(hn+1|âπ).
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As ε→ 0, pεRπ(hn+1|âπ)→ aπ(hn+1) and the lower bound is below aπ(hn+1) by Propo-
sition ??, so a u0 exists for every sufficiently small ε > 0.

Suppose that π that does not agree with R. Consider

pt =
(
(1− t−1), êπ; t−1/2, âπ; t−1/2, b̂π

)
noting that

pt(xj|xi)→t→∞ pε(xj|xi) =
ερ
{aπ ,bπ}
(R,uc) (xixj) + ε2 1

9

ερ
{aπ ,bπ}
(R,uc) (xi) + ε2 1

3

→ε→0 ρ
{aπ ,bπ}
(R,uc) (xj|xi)

for x ∈ {h, l}n+1 and i, j ∈ I. Since pt(êπ) → 1, ptR(hn+1|êπ) → êπ(hn+1) by Spiegler
(2017). and hence ptR(hn+1|êπ) > ptR(hn+1|âπ) > ptR(hn+1|b̂π) for all t sufficiently large.
Hence (pt) is a sequence of 1/t-personal equilibria that converges to (1, êπ).

Now suppose that π that agrees with R. For contradiction, pt be a (R, u, 1/t)-
personal equilibrium that converges to (1, êπ). As above, pt(xj|xi) → ρ

{aπ ,bπ}
(R,uc) (xj|xi).

But since π agrees with R, this implies that ptR(hn+1|âπ) → aπ(hn+1) > ptR(hn+1|êπ),
requiring that pt(êπ) ≤ 1/t, a contradiction. �

B.2. Proof of Proposition 1. Let ρ1 and ρ2 have perfect SCRs and ρ2 have a coarser
model than ρ1. This implies that ρ1(·, S) = ρ2(·, S) whenever Xi ⊥S X−i for all
i ∈ N \ K and K is ρ2-MAP. We show first that if K is a ρ2-MAP, then K is also
a ρ1-MAP. Pick {a, b} where Xi ⊥S X−i for all i ∈ N \ K and ρ2(a, {a, b}) 6= 1

2 . By
hypothesis, ρ1(a, {a, b}) 6= 1

2 and so N \ K does not separate for ρ1. Hence there is
K ′ ⊆ K that is a ρ1-MAP. Since N \ K ′ does not separate for ρ1, there exists {a, b}
where Xi ⊥S X−i for all i ∈ N \K ′ and ρ1(a, {a, b}) 6= 1

2 . But since N \K ′ ⊇ N \K
hypothesis, ρ2(a, {a, b}) = ρ1(a, {a, b}) 6= 1

2 and so N \ K ′ does not separate for ρ2

either. Since K ′ ⊆ K and K is the smallest set that does not separate, K = K ′.

We now show that R̂ρ2 ⊆ R̂ρ1 . The above gives that N∗(ρ2) ⊆ N∗(ρ1). Let
{{aπ, bπ}}π be a Markovian family of menus for a ρ2-MAP K. By construction,
Xi ⊥{aπ ,bπ} X−i for all i ∈ N \ K and all indexes π. Hence the ρ2-subjective or-
dering is the same as the ρ1-subjective ordering, clearly implying that R̂ρ2 ⊆ R̂ρ1 . This
completes the proof after taking Ri = Rρi .
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Conversely, let ρ1 and ρ2 have perfect SCRs (R1, u1) and (R2, u2) where u2 = u1+β
and R2 = R1∩[N ′ ×N ′] for some N ′ ⊂ {0, ..., n+1}. Pick any ρ2-MAPK = {i1, ..., im}
where (i0 = 0, i1, . . . , im, im+1 = n+ 1) is an R2-MAP. Then, it is also an R1-AP since
R2 ⊂ R1. If ijR1ik and k 6= j + 1, then k /∈ N ′ and (i0, ..., im+1) cannot be an R2-
MAP, so (i0, ..., im+1) is also a R1-MAP and K is a ρ1-MAP. Now, pick any S so that
Xi ⊥S X−i for all i ∈ N \K and any p ∈ ∆S with full support. Viewing p as a member
of ∆X , observe that for i ∈ K ∪ {n+ 1} and p-a.e. x ∈ X ,

p
(
xi|xR1(i)

)
=p

(
xi|xR2(i), xR1(i)\N ′

)
=p

(
xi|xR2(i)∩K , x(R1(i)\N ′)∩K

)
= p

(
xi|xR2(i)

)
where the second equality follows from independence, and the third from K ⊂ N ′.
Hence pR1 = pR2 , and the set of R1-personal equilibriums for S equals the set of
R2-personal equilibriums for S. �
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